
1

Extending String Similarity Join to Tolerant Fuzzy Token Matching*

JIANNAN WANG, GUOLIANG LI, and JIANHUA FENG
Tsinghua University

String similarity join that finds similar string pairs between two string sets is an essential operation in
many applications, and has attracted significant attention recently in the database community. A significant
challenge in similarity join is to implement an effective fuzzy match operation to find all similar string
pairs which may not match exactly. In this paper, we propose a new similarity function, called “fuzzy token
matching based similarity”, which extends token-based similarity functions (e.g., jaccard similarity and
cosine similarity) by allowing fuzzy match between two tokens. We study the problem of similarity join using
this new similarity function and present a signature-based method to address this problem. We propose new
signature schemes and develop effective pruning techniques to improve the performance. We also extend our
techniques to support weighted tokens. Experimental results show that our method achieves high efficiency
and result quality, and significantly outperforms state-of-the-art approaches.

Categories and Subject Descriptors: H.2.8 [Database Applications]; H.3.3 [Information Search and
Retrieval]: Search Process, Clustering

General Terms: Algorithms, Performance, Experiment

Additional Key Words and Phrases: string similarity join, similarity function, signature scheme, fuzzy token
matching based similarity, weighted tokens

1. INTRODUCTION
Similarity join has become a fundamental operation in many applications, such as
data integration and cleaning, near duplicate object detection and elimination, and
collaborative filtering [Xiao et al. 2008a]. In this paper we study string similarity join,
which, given two sets of strings, finds all similar string pairs from each set. Existing
similarity-join approaches [Sarawagi and Kirpal 2004; Chaudhuri et al. 2006; Arasu
et al. 2006; Bayardo et al. 2007; Xiao et al. 2008a; Xiao et al. 2009; Wang et al. 2010]
mainly use the following functions to quantify similarity of two strings.

Token-based similarity functions: They first tokenize strings as token sets (“bag
of words”), and then quantify the similarity based on the token sets, such as jaccard
similarity and cosine similarity. Usually if two strings are similar, their token sets
should have a large overlap. Token-based similarity functions have a limitation that
they only consider exact match of two tokens, and neglect fuzzy match of two tokens.
Note that many data sets contain typos and inconsistences in their tokens and may
have many mismatched token pairs that refer to the same token. For example, consider
two strings “nba mcgrady” and “macgrady nba”. Their token sets are respectively {nba,
mcgrady} and {macgrady, nba}. The two token sets contain a mismatched token pair
(mcgrady, macgrady). As an example, the jaccard similarity between the two strings

*This is a preliminary release of an article accepted by ACM Transactions on Database Systems. The defini-
tive version is currently in production at ACM and, when released, will supersede this version.
Author’s address: Department of Computer Science and Technology, Tsinghua National Laboratory
for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China; email:
wjn08@mails.tsinghua.edu.cn, liguoliang@tsinghua.edu.cn, fengjh@tsinghua.edu.cn
Copyright 201x by the Association for Computing Machinery, Inc. Permission to make digital or hard copies
of part or all of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to Post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM
Inc., fax +1 (212) 869-0481, or permissions@acm.org.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:2 J. Wang et al.

is 1/3 (the ratio of the number of tokens in their intersection to that in their union).
Although the two strings are very similar, their jaccard similarity is very low.

In order to make token-based similarity cope with typos, we can tokenize a string
into a q-gram set rather than bags of words. We adopt the most common way to
generate q-gram sets [Chandel et al. 2007; Hassanzadeh and Miller 2009]. Given a
string, the method first extends each word in the string to a new word by prefix-
ing and suffixing q − 1 special symbols (e.g. $), and then generates all substrings
with q characters for the new word. The q-gram set for the string is obtained by
merging the generated substrings for all new words. For example, consider two
strings “nba mcgrady” and “macgrady nba”, and suppose q = 3. The first string can
be tokenized as {$$n, nb, nba, ba, a$$, $$m, $mc, mcg, cgr, gra, rad, ady, dy$, y$$}, and
the second string can be tokenized as {$$m, $ma, mac, acg, cgr, gra, rad, ady, dy$, d$$,
$$n, nb, nba, ba, a$$}. Since their gram sets share twelve common grams, their jac-
card similarity based on 3-gram tokenization is 12

17 , which is a reasonable similarity
value for the two strings. Typically, q-gram based approaches [Chandel et al. 2007;
Hassanzadeh and Miller 2009] tend to select a smaller gram size q in order to capture
typos, but on the other hand, a smaller q may make the strings match a lot of grams
that are generated from dissimilar words. Therefore, even with the q-gram tokeniza-
tion, token-based similarity still has some limitations.

Character-based similarity functions: They use characters in the two strings to
quantify the similarity, such as edit distance which is the minimum number of single-
character edit operations (i.e., insertion, deletion, and substitution) needed to trans-
form one to another. In comparison with token-based similarity, edit distance is sen-
sitive to the positions of the tokens in a string. For example, recall the two strings
“nba mcgrady” and “macgrady nba”. Their edit distance is 9. Although the two strings
are very similar, their edit-distance-based similarity is very low.

The above two classes of similarity functions have limitations in evaluating the
similarity of two strings. These problems seem trivial but are very serious for many
datasets, such as Web query log and person names. To address these problems,
we propose a new similarity function, fuzzy token matching based similarity (here-
inafter referred to as fuzzy-token similarity), by combining token-based similarity and
character-based similarity. Different from token-based similarity that only considers
exact match between two tokens, we also incorporate character-based similarity of mis-
matched token pairs into the fuzzy-token similarity. For example, recall the two strings
“nba mcgrady” and “macgrady nba”. They contain one exactly matched token “nba” and
one approximately matched token pair (mcgrady, macgrady). We consider both of the
two cases in the fuzzy-token similarity. We give the formal definition of the fuzzy-
token similarity and prove that many well-known similarity functions (e.g., jaccard
similarity) are special cases of fuzzy-token similarity (Section 2).

There are several challenges to address the similarity-join problem using fuzzy-
token similarity. Firstly, fuzzy-token similarity is more complicated than token-based
similarity and character-based similarity, and it is even rather expensive to compute
fuzzy-token similarity of two strings (Section 2.2). Secondly, for exact match of token
pairs, we can sort the tokens and use prefix filtering to prune large numbers of dis-
similar string pairs [Chaudhuri et al. 2006]. However as we consider fuzzy match of
two tokens, it is nontrivial to sort the tokens and use prefix filtering. Thus it calls for
new effective techniques and efficient algorithms. Thirdly, in real-world applications,
as different tokens may have different weights, it is essential for our techniques to
support weighted tokens. In this paper, we propose fuzzy token matching based string
similarity join (called Fast-Join) to address these problems. To summarize, we make
the following contributions.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:3

• We propose a new similarity function, fuzzy-token similarity, and prove that many
existing token-based similarity functions and character-based similarity functions
are special cases of fuzzy-token similarity.

• We formulate the similarity-join problem using fuzzy-token similarity. We propose a
signature-based framework to address this problem.

• We propose a new signature scheme for token sets and prove it is superior to the
state-of-the-art method. We present a new signature scheme for tokens and develop
effective pruning techniques to improve the performance.

• We extend fuzzy-token similarity to support weighted tokens, and propose novel sig-
nature schemes for weighted token sets.

• We have implemented our method on real data sets. The experimental results show
that our method achieves high performance and result quality, and outperforms
state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 proposes the fuzzy-token
similarity. Section 3 formalizes the similarity-join problem using fuzzy-token similar-
ity and presents a signature-based method. We propose new signature schemes for
token sets and tokens respectively in Section 4 and Section 5. Section 6 extends our
techniques to support weighted tokens. Experimental results are provided in Section 7.
We review related works in Section 8 and conclude the paper in Section 9.

2. FUZZY-TOKEN SIMILARITY
We first review existing similarity functions, and then formalize the fuzzy-token simi-
larity. Finally we prove that existing similarities are special cases of fuzzy-token simi-
larity.

2.1. Existing Similarity Functions
String similarity functions are used to quantify the similarity between two strings,
which can be roughly divided into three groups: token-based similarity, character-
based similarity, and hybrid similarity.
Token-based similarity: It tokenizes strings into token sets (e.g., using white space)
and quantifies the similarity based on the token sets. For example, given a string
“nba mcgrady”, its token set is {nba, mcgrady}. We give some representative token-based
similarity: dice similarity, cosine similarity, and jaccard similarity, defined as follows.
Given two strings s and s′ with token sets T and T ′:

Dice Similarity: DICE(s, s′) = 2·|T∩T ′|
|T |+|T ′| ,

Cosine Similarity: COSINE(s, s′) = |T∩T ′|√
|T |·|T ′|

,

Jaccard Similarity: JACCARD(s, s′) = |T∩T ′|
|T |+|T ′|−|T∩T ′| .

Note that there may exist duplicate tokens in token sets, to avoid multi-set inter-
section, we append each token with an ordinal number to distinguish duplicate to-
kens [Chaudhuri et al. 2006; Wang et al. 2012].

Token-based similarity functions use the overlap of two token sets to quantify
the similarity. However, they only consider exactly matched token pairs to com-
pute the overlap, and neglect the approximately matched pairs which refer to the
same token. For example, consider two strings s1 = “nba trace mcgrady” and s2 =
“trac macgrady nba”. Their token sets share one token “nba”, and their jaccard sim-
ilarity is 1/5. Consider another string s3 = “nba trace video”. For s1 and s3, their
token sets share two tokens {nba,trace}, and their jaccard similarity is 2/4. Although

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:4 J. Wang et al.

JACCARD(s1, s2) < JACCARD(s1, s3), actually s2 should be much more similar to s1 than
s3, since all of the three tokens in s2 are similar to those in s1.
Character-based similarity: It considers characters in strings to quantify the sim-
ilarity. As an example, edit distance is the minimum number of single-character edit
operations (i.e. insertion, deletion, substitution) to transform one into another. For
example, the edit distance between “macgrady” and “mcgrady” is 1. We normalize the
edit distance to interval [0,1] and use edit similarity to quantify the similarity of two
strings, where edit similarity between two strings s and s′ is NED(s, s′) = 1− ED(s,s′)

max(|s|,|s′|)
in which |s| (|s′|) denotes the length of s (s′).

Note that edit similarity is sensitive to the position information of each to-
ken. For example, the edit similarity between strings “nba trace mcgrady” and
“trace mcgrady nba” is very small although they are actually very similar.
Hybrid Similarity: [Chaudhuri et al. 2003] proposed generalized edit similarity
(GES), which extends the character-level edit operator to the token-level edit opera-
tor. For example, consider two strings “nba mvp mcgrady” and “mvp macgrady”. We can
use two token-level edit operators to transform the first one to the second one (e.g.
deleting the token “nba” and substituting “mcgrady” for “macgrady”). Note that we can
consider the token weight in the transformation. For example, “nba” is less important
than “macgrady” and we can assign a lower weight for “nba”. However the generalized
edit similarity is sensitive to token positions.

Chaudhuri et al. [Chaudhuri et al. 2003] also derived an approximation of general-
ized edit similarity (AGES). This similarity ignores the positions of tokens and requires
each token in one string to match the “closest” token (the most similar one) in another
string. For example, consider two strings s = “wnba nba” and s′ = “nba”. For the tokens in
s “wnba” and “nba”, their “closest” tokens in s′ are both “nba”. We respectively compute
the similarity between “wnba” and “nba” and that between “nba” and “nba”. The AGES
between s and s′ is the average value of these two similarity values, i.e. AGES(s,s′)
= 0.75+1

2 = 0.875. However, as shown in the experiment, AGES did not have good per-
formance since the “closest” tokens chosen by AGES may not be real fuzzy-matching
tokens.

To address this problem, SoftTFIDF [Cohen et al. 2003] used a threshold to remove
the “closest” tokens with lower similarity. For example, consider the two strings in the
above example. If we specify a threshold of 0.8, for the token “wnba” in s, although its
“closest” token in s′ is “nba”, their similarity will not be considered since it is smaller
than the specified threshold (i.e., NED(wnba, nba) = 0.75 < 0.8). With the help of the
threshold, SoftTFIDF can achieve much better performance than AGES, but to the best
of our knowledge, there does not exist any efficient similarity-join algorithm for Soft-
TFIDF.

Considering the limitations of existing similarity functions, in the following sections,
we propose a new similarity function along with an efficient similarity-join algorithm
to support fuzzy-token matching.

2.2. Fuzzy-Token Similarity
We propose a powerful similarity function, fuzzy-token similarity, by combining token-
based similarity and character-based similarity. Different from token-based similarity
which computes the exact overlap of two token sets (i.e., the number of exactly matched
token pairs), we compute fuzzy overlap in considering fuzzy match between tokens as
follows.

Given two token sets, we use character-based similarity to quantify the similarity
of token pairs from the two sets. As an example, in this paper we focus on edit simi-

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:5

larity, which is a good measurement in capturing typographical errors for text docu-
ments [Xiao et al. 2008a]. We first compute the edit similarity of each token pair from
the two sets, then use maximum weight matching in bipartite graphs (bigraphs) for
computing fuzzy overlap as follows.

We construct a weighted bigraph G =
(
(X,Y), E

)
for token sets T and T ′ as follows,

where X and Y are two disjoint sets of vertices, and E is a set of weighted edges that
connect a vertex from X to a vertex in Y . In our problem, as illustrated in Figure 1,
the vertices in X and Y are respectively tokens in T and T ′, and an edge from a token
t ∈ T to a token t′ ∈ T ′ is their edit similarity. For example, in the figure, the edge with
the weight w1,1 means that the edit similarity between t1 and t′1 is w1,1. Intuitively,
if two tokens are not similar, their similarity value does not make any sense, thus
the corresponding edge should not be considered. To achieve this goal, we specify an
edit-similarity threshold δ, and only keep the edges whose weight is no smaller than δ.
For example, consider t = “boeing” and t′ = “boxing”. Obviously, they have different
meanings, and their similarity should not be considered. But without using δ, we still
need to add an edge between t and t′ with the weight of NED(boeing, boxing) = 0.83.
However, if we specify an edit-similarity threshold δ = 0.9, this issue can be solved
since NED(wnba, nba) = 0.83 < 0.9, and the edge will be removed.

The maximum weight matching of G is a set of edges M ⊆ E satisfying the following
conditions: (1) Matching: Any two edges in M have no a common vertex; (2) Maximum:
The sum of weights of edges in M is maximal. We use G’s maximum weight matching
as the fuzzy overlap of T and T ′, denoted by T ∩̃δ T

′. Note that the time complexity for
finding maximum weight matching is O(|V |2 ∗ |E|) [Bertsekas 1993], where |V | is the
number of vertices and |E| is the number of edges in bigraph G. We give an example to
show how to compute the fuzzy overlap.

w1,1

w2,m

wn-1,m

w2,2

wn,2

.

.

.

.

.

.

t1

t2

t3

t'1

t'2

tn-1

tn

t'm

T
0

T
0

TT

Fig. 1. Weighted bigraph.

Example 2.1. Consider two strings s = “nba mcgrady” and s′ = “macgrady nba”.
We first compute the edit similarity of each token pair: NED(nba, macgrady) = 1

8 ,
NED(nba, nba) = 1, NED(mcgrady, macgrady) = 7

8 , NED(mcgrady, nba) = 1
7 . For an edit-

similarity threshold δ = 0.8, we construct a weighted bigraph with two weighted edges:
one edge e1 with weight 1 for token pair (nba, nba) and the other edge e2 with weight
7
8 for token pair (mcgrady, macgrady). The maximum weight matching of this bigraph
is the edge set {e1, e2} which meets two conditions: matching and maximum. Thus the
fuzzy overlap T ∩̃0.8 T ′ is {e1, e2} and its weight is |T ∩̃0.8 T ′| = 15

8 .

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:6 J. Wang et al.

Using fuzzy overlap, we define fuzzy-token similarity.

Definition 2.2 (Fuzzy-Token Similarity). Given two strings s and s′ and an edit-
similarity threshold δ, let T and T ′ be the token sets of s and s′ respectively,
Fuzzy-Dice Similarity: FDICEδ(s, s′) =

2·|T ∩̃δT
′|

|T |+|T ′| ,

Fuzzy-Cosine Similarity: FCOSINEδ(s, s′) =
|T ∩̃δT

′|√
|T |·|T ′|

,

Fuzzy-Jaccard Similarity: FJACCARDδ(s, s′)= |T ∩̃δT
′|

|T |+|T ′|−|T ∩̃δT ′| .

For example, consider s and s′ in Example 2.1. Their fuzzy-jaccard is
FJACCARDδ(s, s′)= 1+7/8

4−1−7/8=15/17.

Discussion. Fuzzy-token similarity is able to capture two types of errors: (1) token
swap error means that tokens may match in different positions, e.g., “nba mcgrady”
and “mcgrady nba”; (2) edit error means that tokens may match approximately, e.g.,
“macgrady” and “mcgrady”. Typically, these errors are introduced when the data is ac-
quired manually or from Optical Character Recognition (OCR), and changing the order
of tokens has little effect on the meaning of the data. In practice, there are many real
application domains satisfying the characteristics, such as Web query log and scanned
person names.

In addition, the use of the threshold δ will introduce a bias against errors in short
tokens (e.g., the token whose length is smaller than δ

1−δ needs to match exactly). This
bias is reasonable since a short token contains fewer characters, potentially resulting
in fewer number of edit errors.

2.3. Comparison with Existing Similarities
In this section, we compare fuzzy-token similarity with existing similarities. Exist-
ing token-based similarity such as jaccard similarity obeys the triangle inequality,
however fuzzy-token similarity does not obey the triangle inequality. We give an ex-
ample to prove this property. Consider three strings with only one token, s1=“abc”,
s2=“abcd” and s3=“bcd”. We have NED(s1, s2)=NED(s2, s3)=0.75, and NED(s1, s3) = 1

3 .
Let edit-similarity threshold δ = 0.5. We have |s1 ∩̃0.5 s2|=|s2 ∩̃0.5 s3|=0.75 and
|s1 ∩̃0.5 s3|=0 (as 1

3 < 0.5). Thus FJACCARDδ(s1, s2)=FJACCARDδ(s2, s3)= 0.75
2−0.75 = 0.6

and FJACCARDδ(s1, s3) = 0. Usually, one minus the similarity denotes the correspond-
ing distance. We have (1−0.6)+(1−0.6) < (1−0). Thus fuzzy-jaccard does not obey the
triangle inequality. Similarly, the example can also show fuzzy-dice and fuzzy-cosine do
not obey the triangle inequality. Thus our similarities are not metric-space similarities
and cannot use existing studies [Jacox and Samet 2008] to support our similarities1.

Next we investigate the relationship between fuzzy-token similarity and existing
similarities. We first compare it with token-based similarity. If δ = 1 for fuzzy-token
similarity, then a fuzzy overlap will be equal to the overlap (Lemma 2.3), and the
corresponding fuzzy-token similarity will turn to token-based similarity. Thus token-
based similarity is only a special case of the fuzzy-token similarity when δ = 1.

LEMMA 2.3. For token sets T and T ′, |T ∩̃1 T ′| = |T ∩ T ′|.

PROOF. When δ = 1, consider the weighted bigraph between T and T ′. For each
edge, it connects two same tokens. Since there’s no common vertex among the edges,

1Our similarities will become metric-space similarities if we do not use δ. But in this case, the precision of
our similarities is very low (see the experiment in Section 7.1.1.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:7

|T ∩̃1 T ′| is the sum of the weights of all the edges. As the weight of each edge is 1, we
have |T ∩̃1 T ′| is equal to |T ∩ T ′|.

For the general case (δ ∈ [0, 1]), a fuzzy overlap never have a smaller value than the
corresponding overlap (Lemma 2.4).

LEMMA 2.4. For token sets T and T ′, |T ∩̃δ T ′| ≥ |T ∩ T ′|.
PROOF. When δ = 1, consider the weighted bigraph between T and T ′. With δ de-

creasing, it may have additional edges. So, |T ∩̃δ T ′| ≥ |T ∩̃1 T ′|. Applying Lemma 2.3
to the inequality, we have the Lemma 2.4.

Based on this Lemma, we can deduce that fuzzy-token similarity will never have a
smaller value than the corresponding token-based similarity. One advantage of this
property is that for a string pair, if they are similar evaluated by token-based similar-
ity, then they are still similar for fuzzy-token similarity.

Next we compare fuzzy-token similarity with edit similarity. We find that edit simi-
larity is also a special case of the fuzzy-token similarity as stated in Lemma 2.5.

LEMMA 2.5. Given two strings s and s′, let token sets T = {s} and T ′ = {s′}, we
have |T ∩̃δ=0 T ′| = NED(s, s′).

PROOF. When δ = 0, consider the weighted bigraph between T = {s} and T ′ = {s′}.
It has only one edge with the weight NED(s, s′). Its maximum weight matching consists
of this edge, so we have |T ∩̃δ=0 T ′| = NED(s, s′).

Based on the above analysis, fuzzy-token similarity is a generalization of many ex-
isting similarities, such as jaccard similarity and edit similarity, and also has some
different properties from existing similarities which pose new challenges when using
it to quantify the similarity.

3. STRING SIMILARITY JOIN USING FUZZY-TOKEN SIMILARITY
In this section, we study the similarity-join problem using fuzzy-token similarity to
compute similar string pairs.

3.1. Problem Formulation
Let S and S′ be two collections of strings, and R and R′ be the corresponding collections
of token sets. For T ∈ R and T ′ ∈ R′, let Fδ(T, T

′) denote the fuzzy-token similarity
of T and T ′, where Fδ could be FJACCARDδ, FCOSINEδ, and FDICEδ. We define the
similarity-join problem as follows.

Definition 3.1. (Fuzzy token matching based string similarity join): Given two col-
lections of strings S and S′, and a threshold τ , a fuzzy token matching based string
similarity join is to find all the pairs (s, s′) ∈ S × S′ such that Fδ(T, T

′) ≥ τ , where
T (T ′) is the token set of s(s′).

A straightforward method to address this problem is to enumerate each pair (T, T ′) ∈
R×R′ and compute their fuzzy-token similarity. However this method is rather expen-
sive, and we propose an efficient method, called Fast-Join.

3.2. A Signature-Based Method
We adopt a signature-based method [Sarawagi and Kirpal 2004]. For ease of presen-
tation, we introduce this method using self-join, i.e. R = R′. First we generate sig-
natures for each token set, which have a property that: given two token sets T and
T ′ with signature sets Sig(T) and Sig(T ′) respectively, T and T ′ are similar only if
Sig(T) ∩ Sig(T ′) ̸= ϕ. Based on this property we can filter large numbers of dissimilar

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:8 J. Wang et al.

pairs and obtain a small set of candidate pairs. Finally, we verify the candidate pairs
to generate the final results. We call our method as Fast-Join.
Signature Schemes: It is very important to devise a high-quality scheme in this
framework, as such signature can prune large numbers of dissimilar pairs. Section 4
and Section 5 study how to generate high-quality signatures.
The filter step: This step generates candidates of similar pairs based on signatures.
We use an inverted index to generate candidates [Sarawagi and Kirpal 2004] as follows.
Each signature in the signature sets has an inverted list of those token sets whose sig-
nature sets contain the signature. In this way, two token sets in the same inverted lists
are candidates as their signature sets have overlaps. For example, given token sets
T1, T2, T3, T4, with Sig(T1) = {ad, ac, dc}, Sig(T2) = {be, cf, em}, Sig(T3) = {ad, ab, dc},
and Sig(T4) = {bm, cf, be}. The inverted list of “ad” is {T1, T3}. Thus (T1, T3) is a can-
didate. As there is no signature whose inverted list contains both T1 and T2, they are
dissimilar and can be pruned. To find similar pairs among the four token sets, we
generate two candidates (T1, T3) and (T2, T4) and prune the other four pairs.

We can optimize this framework using the all-pair based algorithm [Bayardo et al.
2007]. In this paper, we focus on how to generate effective signatures and use this
framework as an example. Our method can be easily extended to other frameworks.
The refine step: This step verifies the candidates to generate the final results. Given
two token sets T1 and T2, we construct a weighted bigraph as described in Section 2.2.
As it is expensive to compute the maximum weight matching, we propose an improved
method. We compute an upper bound of the maximal weight by relaxing the “matching”
condition, that is we allow that the edges in M can share a common vertex. We can
compute this upper bound by summing up the maximum weight of edges of every
token in T (or T ′). If this upper bound makes Fδ(T, T

′) smaller than τ , we can prune
the pair (T, T ′), since Fδ(T, T

′) is no larger than its upper bound and thus will also be
smaller than τ .

4. SIGNATURE SCHEME OF TOKEN SETS
In the signature-based method, it is very important to define a high-quality signature
scheme, since a better signature scheme can prune many more dissimilar pairs and
generate smaller numbers of candidates. In this section we propose a high-quality
signature scheme for token sets.

4.1. Existing Signature Schemes
Let us first review existing signature schemes for exact search, i.e., δ = 1. Consider
two token sets T = {t1, t2, . . . , tn} and T ′ = {t′1, t′2, . . . , t′m} where ti denotes a token in
T and t′j denotes a token in T ′. Suppose T and T ′ are similar if |T ∩ T ′| ≥ c, where c is
a constant. A simple signature scheme is Sig(T) = T and Sig(T ′) = T ′. Obviously if T
and T ′ are similar, their overlap is not empty, that is Sig(T) and Sig(T ′) have common
signatures. A well-known improved method is to use prefix filtering [Chaudhuri et al.
2006], which selects a subset of tokens as signatures. To use prefix filtering, we first
fix a global order on all signatures (i.e. tokens). We then remove the ⌈c− 1⌉ signatures
with largest order from Sig(T) and Sig(T ′) to obtain the new signature set Sigp(T) and
Sigp(T

′). Note that if T and T ′ are similar, |Sigp(T) ∩ Sigp(T
′)| ̸= ϕ [Chaudhuri et al.

2006].
For example, consider two token sets T = {nba, kobe, bryant}, T ′ = {nba, tracy,

mcgrady} and a threshold c = 2. They cannot be filtered by the simple signature
scheme, as Sig(T) = T and Sig(T ′) = T ′ have overlaps. Using alphabetical or-
der, we can remove “nba” from Sig(T) and “tracy” from Sig(T ′), and get Sigp(T)=

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:9

{bryant,kobe} and Sigp(T
′) ={nba,mcgrady}. As they have no overlap, we can prune

them.
However, it is not straightforward to extend this method to support δ ̸= 1 as we

consider fuzzy token matching. For example, consider the token sets {hoston, mcgrady}
and {houston, macgrady}. Clearly they have large fuzzy overlap but have no overlap.
To address this problem, we propose an effective signature scheme for fuzzy overlap.

4.2. Token-Sensitive Signature
As the similarity function Fδ is rather complicated and it is hard to devise an effective
signature scheme for this similarity, we simplify it and deduce an Equation that if
Fδ(T, T

′) ≥ τ , then there exists a constant c such that |T ∩̃δ T ′| ≥ c. Then we propose
a signature scheme Sigδ(·) satisfying: if |T ∩̃δ T ′| ≥ c, then Sigδ(T) ∩ Sigδ(T ′) ̸= ϕ. We
can devise a pruning technique: if Sigδ(T) ∩ Sigδ(T ′) = ϕ, we have |T ∩̃δ T ′| < c and
Fδ(T, T

′) < τ , thus we can prune (T, T ′). Section 4.3 gives how to deduce c for different
similarity functions. Here we discuss how to devise effective signature schemes for
|T ∩̃δ T ′| ≥ c.
Signature scheme for |T ∩̃δ T ′| ≥ c: Given two token sets T = {t1, t2, . . . , tn} and
T ′ = {t′1, t′2, . . . , t′m}, we study how to generate the signature sets Sigδ(T) and Sigδ(T ′)
for the condition δ ̸= 1 such that if |T ∩̃δ T ′| ≥ c, then Sigδ(T) ∩ Sigδ(T ′) ̸= ϕ.

Intuitively, |T ∩̃δ T
′| ≥ c means that there are at least c similar token pairs between

T and T ′, where two tokens ti ∈ T and t′j ∈ T ′ are similar if and only if NED(ti, t′j) ≥ δ

holds. To generate Sigδ(T) and Sigδ(T ′), we first generate the signatures of tokens ti
and t′j , denoted as sigδ(ti) and sigδ(t′j) respectively, such that if NED(ti, t′j) ≥ δ holds,
sigδ(ti) ∩ sigδ(t′j) ̸= ϕ. (We will discuss the signature scheme for tokens in Section 5.)
Let Sigδ(T) =

⊎n
i=1 sig

δ(ti) and Sigδ(T ′) =
⊎m

i=1 sig
δ(t′i) be the signatures of T and

T ′ respectively, where
⊎

denotes the union operation for multisets2. Then we have if
|T ∩̃δ T

′| ≥ c, there will be at least c token pairs between T and T ′ whose signature sets
have overlap, i.e. |Sigδ(T) ∩ Sigδ(T ′)| ≥ c. The following Lemma shows the correctness
of the signature scheme for token sets.

LEMMA 4.1. For two token sets T = {t1, t2, . . . , tn} and T ′ = {t′1, t′2, . . . , t′m}, if
|T ∩̃δ T ′| ≥ c, then |Sigδ(T) ∩ Sigδ(T ′)| ≥ c where Sigδ(T) =

⊎n
i=1 sig

δ(ti) and
Sigδ(T ′) =

⊎m
i=1 sig

δ(t′j).

PROOF. Recall that T ∩̃δ T ′ denotes the maximum weight matching of their cor-
responding weighted bigraph G. Each edge in G for vertices ti ∈ T and t′j ∈ T ′ is
NED(ti, t′j) ≥ δ. We construct another bigraph G′ with the same vertices and edges
as G except that the edge weights are assigned as follows. Then for each edge of ver-
tices ti and t′j in G′, we assign its weight to |sigδ(ti) ∩ sigδ(t′j)|. As there exists an
edge in G between ti and t′j , we have NED(ti, t′j) ≥ δ, thus sigδ(ti) ∩ sigδ(t′j) ̸= ϕ.
Since |sigδ(ti) ∩ sigδ(t′j)| ≥ 1 ≥ NED(ti, t′j), for any edge in G′, its weight is no
smaller than that of the corresponding edge in G. Therefore, the maximum match-
ing weight in G′ is no smaller than that in G. Without loss of generality, let M =
{(t1, t′1), (t2, t′2), . . . , (tk, t′k)} be the maximum weight matching of G′ where each ele-
ment (ti, t

′
i) in M denotes an edge of G′ with the edge weight of |sigδ(ti) ∩ sigδ(t′i)|.

Thus the maximal matching weight of G′ is
∑k

i=1 |sigδ(ti) ∩ sigδ(t′i)|. Based on the def-

2In this paper, we use multiset which is a generalization of a set. A multiset can have more than one
membership, that is there may be multiple instances of a member in a multiset.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:10 J. Wang et al.

inition of matching, no two edges in M have a common vertex. Hence,
k∑

i=1

|sigδ(ti) ∩ sigδ(t′i)| ≤ |
(k⊎

i=1

sigδ(ti)
)
∩
(k⊎

i=1

sigδ(t′i)
)
|

≤ |
(n⊎

i=1

sigδ(ti)
)
∩
(m⊎

i=1

sigδ(t′i)
)
|

Since the maximal matching weight in G′ is no smaller than that in G, then we have
k∑

i=1

|sigδ(ti) ∩ sigδ(t′i)| ≥ |T ∩̃δ T ′|

Based on the above two equations, we can deduce that

|Sigδ(T) ∩ Sigδ(T ′)| = |
(n⊎

i=1

sigδ(ti)
)
∩
(m⊎

i=1

sigδ(t′i)
)
| ≥ |T ∩̃δ T ′| ≥ c.

Therefore, the lemma is proved.

Obviously we can use prefix filtering to improve this signature scheme. We fix a
global order and then generate Sigδp(T) from Sigδ(T) by removing the last ⌈c − 1⌉ sig-
natures with largest order. Example 4.2 gives an example.

Example 4.2. Consider the collection of token sets R in Figure 2. Given δ = 0.8
and c = 2.4, we aim to generate a signature set for each token set in R such that if
two token sets are similar (i.e. |Ti ∩̃0.8 Tj | ≥ 2.4), then their corresponding signature
sets have overlaps (i.e. Sigδ(Ti) ∩ Sigδ(Tj) ̸= ϕ). We assume the global order is the
alphabetical order in this example.

At the first step, as shown in “Token Signatures”, we collect all the tokens in R
and generate a signature set for each token. Here we choose some q-grams (sub-
strings of the token that consists of q consecutive characters) as token’s signa-
tures [Xiao et al. 2008a], which will be explained in Section 5. For instance, the sig-
nature set of “macgrady” is {ac, cg, ad}. We find that if two tokens are similar (e.g.
NED(macgrady, mcgrady) ≥ 0.8), they at least share one signature (e.g. “ad”).

At the second step, we generate signatures Sigδ(Ti) as the union of its tokens’ sig-
natures. For example, consider the token set T2 = {trcy, macgrady, mvp}, we have
Sigδ(T2) = {tr1, rc1, cy1, ac2, cg2, ad2, mv3}. Each signature has a superscript that de-
notes which token generates this signature. For instance, “ac2” denotes that the sig-
nature “ac” is generated from the second token “macgrady”. Note that Sigδ(Ti) is a
multiset. For example, Sigδ(T1) contains two “an” from the second and the third tokens
respectively.

At the third step, to generate signatures using prefix filtering, we delete ⌈c− 1⌉ = 2
largest signatures from Sigδ(Tj) and generate Sigδp(Tj). For instance, we can get
Sigδp(T2) by removing “rc” and “tr” from Sigδ(T2) since they are the two largest signa-
tures based on alphabetical order. Using this signature scheme, Sigδp(T2) have no over-
lap with Sigδp(T3), so we can filter (T2, T3). For other token-set pairs such as (T2, T1),
because Sigδp(T2) and Sigδp(T1) have a common signature (i.e. “cy”), they will be consid-
ered as the candidate pair for further verification.

Token-Sensitive Signature: We propose a novel signature scheme that can remove
many more signatures than prefix filtering. As an example, consider the token sets

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:11

{ kobe, bryant, age }
{ mvp, tracy, mcgrady }

T3
T4

Token Set

{ kobe, and, trancy }
{ trcy, macgrady, mvp }

ID

T1
T2

sig�(bryant) = { br , ry , ya , an , nt}

sig�(age) = { ag , ge }

sig�(mcgrady) = { mc , cg , gr , ra , ad , dy }

Token Signatures

sig�(kobe) = { ko , ob , be }

sig�(and) = { an , nd }

sig�(trancy) = { tr , ra , an , nc , cy }

sig�(trcy) = { tr , rc , cy }

sig�(macgrady) = { ma , ac , cg , gr , ra , ad , dy }

sig�(mvp) = { mv, vp }

.

. . .

. . .

Prefix-Filtering Signatures

Sig�p(T1) = { an2 , an3 , be1 , cy3 , ko1 , nc3 , ob1 }

Sig�p(T2) = { ac2 , ad2 , cg2 , cy1 , mv3 , rc1 , tr1 }

. . .

Signatures

Sig�(T1)={ ko1 , ob1 , be1 , an2 , an3 , nc3 , cy3 }

Sig�(T2)={ tr1 , rc1 , cy1 , ac2 , cg2 , ad2 , mv3 }

Sig�(T3) ={ ko1 , ob1 , be1, br2 , an2 , nt2 , ag3 }

Sig�(T4)={ mv1 , ra2 , ac2 , cy2 , cg3 , ad3 , dy3 }

Sig�p(T3) = { ag3 , an2 , be1 , br2 , ko1 , nt2 , ob1 }

Sig�p(T4) = { ac2 , ad3 , cg3 , cy2 , dy3 , mv1 , ra2 }

Token-Sensitive Signatures

Sig�t(T1) = { an2 , an3 , be1 , cy3 , ko1 , nc3 , ob1 }

Sig�t(T2) = { ac2 , ad2 , cg2 , cy1 , mv3 , rc1 , tr1 }

Sig�t(T3) = { ag3 , an2 , be1 , br2 , ko1 , nt2 , ob1 }

Sig�t(T4) = { ac2 , ad3 , cg3 , cy2 , dy3 , mv1 , ra2 }
. . .

�

�

�

� �'

Generate 2-gram sets of tokens

Generate signatures of token sets
(The superscript denotes which
token generates the signature)

Delete 2 largest signatures
(alphabetical order)

Delete the maximal number of
largest signatures (alphabetical
order) that contain 2 tokens

Candidates: (T1,T2),(T1,T3),(T1,T4),(T2,T4) Candidates:(T2,T4)

sig�(tracy) = { tr , ra , ac , cy }

RR

Fig. 2. Prefix-filtering signatures and token-sensitive signatures of the token sets in R (δ = 0.8, c = 2.4).

T1 and T3 in Figure 2. Sigδ(T1) and Sigδ(T3) have a large overlap {an, be, ko, ob}.
Thus based on prefix filtering, when c = 2.4 they will not be filtered. Here we have an
observation that these signatures are only generated from two tokens. For example,
the overlap {an2, be1, ko1, ob1} in T3 is generated from two tokens “kobe” and “bryant”.
That is T3 at most has two similar tokens with T1. However, if |T1 ∩̃0.8 T3| ≥ 2.4, T3 has
at least ⌈c⌉ = 3 tokens similar to T1. Therefore, T1 and T3 should be filtered. Based on
this observation, we devise a new signature scheme called token-sensitive signature
scheme. Given a token set T , we generate its token-sensitive signature set Sigδt (T)
as follows. Different from prefix filtering signature scheme which removes the last
⌈c − 1⌉ signatures, token-sensitive signature scheme removes the maximal number of
largest signatures (in the global order on signatures) that are generated from at most
⌈c − 1⌉ distinct tokens. That is if we remove one more signatures, then the removed
signatures are generated from ⌈c⌉ tokens. The following lemma shows the correctness
of the token-sensitive.

LEMMA 4.3. Given two token sets T and T ′, and a threshold c, if Sigδt (T)∩Sigδt (T ′) =
ϕ, the token pair (T, T ′) can be filtered, i.e. |T ∩̃δ T ′| < c.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:12 J. Wang et al.

PROOF. Let Ω be a set of tokens in T whose signatures have been removed when
generating Sigδt (T). Based on the definition of Sigδt (T), we have |Ω| = ⌈c− 1⌉. Let ∆ be
the rest of the tokens in T , i.e. ∆ = T − Ω. We prove it by contradiction. Assume the
lemma does not hold. That is, there exists T and T ′ such that if Sigδt (T)∩Sigδt (T

′) = ϕ,
then |T ∩̃δT

′| ≥ c.
As there are ⌈c− 1⌉ tokens in Ω, the size of the fuzzy overlap between Ω and T ′ is

|Ω∩̃δT
′| ≤ ⌈c− 1⌉ < c. (1)

And since T = Ω + ∆, the size of the fuzzy overlap between T and T ′ is no larger
than the size of the fuzzy overlap between Ω and T ′ plus the size of the fuzzy overlap
between ∆ and T ′, i.e.

|T ∩̃δT
′| ≤ |Ω∩̃δT

′|+ |∆∩̃δT
′|. (2)

As |T ∩̃δT
′| ≥ c, according to Equations 1 and 2, we have

|∆∩̃δT
′| ≥ 1. (3)

Similar to Equation 2, as T ′ = Ω′ +∆′, we have

|∆∩̃δT
′| ≤ |∆∩̃δΩ

′|+ |∆∩̃δ∆
′|. (4)

Based on the given condition Sigδt (T) ∩ Sigδt (T
′) = ϕ, there is no similar token pairs

between ∆ and ∆′, i.e. ∆ ∩∆′ = ϕ, thus according to Equations 3 and 4, we have

|∆∩̃δΩ
′| ≥ 1. (5)

Similarly, we can also deduce

|Ω∩̃δ∆
′| ≥ 1. (6)

Next we prove Equation 5 and Equation 6 cannot hold simultaneously.
From Equation 5, we can derive that there exist two tokens t ∈ ∆1, and t′ ∈ Ω′, such

that sigδ(t) ∩ sigδ(t′) ̸= ϕ. Consider a signature s1 ∈ sigδ(t) ∩ sigδ(t′). Based on the
definition of ∆′, for any token t ∈ ∆1, we can easily deduce sigδ(t) ∈ Sigδt (T), thus

s1 ∈ Sigδt (T). (7)

Since Sigδt (T) ∩ Sigδt (T
′) = ϕ, we can derive from Equation 7 that s1 /∈ Sigδt (T

′). As
s1 ∈ sigδ(t′) ⊆ Sigδ(T ′), we have

s1 ∈ Sigδ(T ′)− Sigδt (T
′). (8)

Similarly, we can also deduce from Equation 6 that there exists a signature s2 such
that

s2 ∈ Sigδt (T
′), (9)

s2 ∈ Sigδ(T)− Sigδt (T). (10)

Since the signatures in Sigδ(T) (Sigδ(T ′)) are sorted according to a global order, for
any signature in Sigδt (T) (Sigδt (T ′)), it must rank before all the signatures in Sigδ(T)−
Sigδt (T) (Sigδ(T ′) − Sigδt (T

′)). On one hand, based on Equations 7 and 10, s1 ranks
before s2 in the global order . However, on the other hand, based on Equations 8 and 9,
we can also deduce that s2 ranks before s1 in the same global order. Hence, s1 = s2.
But this contradicts with Sigδt (T) ∩ Sigδt (T

′) = ϕ. Therefore, the assumption does not
hold, and the lemma is proved.

We give the pseudo-code of token-sensitive signature scheme in Figure 3. Firstly,
Sigδt (T) is initialized as the union of the signature sets of T ’s tokens. Then we scan

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:13

ALGORITHM 1: TokenSensitiveSignature(T, c)
Input: T is a token set

c is a fuzzy-overlap threshold
Output: Sigδt (T) is the token-sensitive signature set of T

1 begin
2 Sigδt (T) =

⊎
t∈T sigδ(t);

3 Let H be a hash table storing token ids;
4 for each stid ∈ Sigδt (T) in decreasing global order on signatures do
5 if tid /∈ H then
6 Add tid into H;
7 if H.size() ≥ c then
8 break;

9 Remove stid from Sigδt (T);

10 return Sigδt (T);

Fig. 3. Algorithm of generating token-sensitive signatures for a token set

the signatures in Sigδt (T) based on the pre-defined global order decreasingly. For each
signature stid, we check whether the token tid has occurred before. We use a hash table
H to store the occurred tokens. If tid has occurred (i.e. tid ∈ H), we remove stid from
Sigδt (T). If tid has not occurred (i.e. tid /∈ H), we add tid into H and if H.size() ≥ c, we
stop scanning the following signatures and return the signature set Sigδt (T); otherwise,
we remove stid from Sigδt (T) and scan the next signature. Example 4.4 shows how this
algorithm works.

Example 4.4. Consider the token set T1 in Figure 2. Given δ = 0.8 and c = 2.4,
we first initialize Sigδ(T1) = {an2, an3, be1, cy3, ko1, nc3, ob1} with signatures sorted
in alphabetical order. We scan the signatures in Sigδ(T1) from back to front. Initially,
H = {}. For the last signature “ob1”, it comes from the first token “kobe” in T1, since
1 /∈ H, we add 1 into H. As the size of H = {1} is smaller than 2.4, we remove “ob1” from
Sigδ(T1) and scan the next signature “nc3”. Since “nc3” comes from the third token and
3 /∈ H, we add 3 into H. As the size of H = {1, 3} is smaller than 2.4, we remove “nc1”
from Sigδ(T1). Note that the prefix filtering signature scheme will stop here, but the
token-sensitive signature scheme will scan the next signature “ko1”. Since “ko1” comes
from the first token and 1 ∈ H, we can directly remove “ko1” from Sigδ(T1) and scan
the following signatures. We can also remove “cy3”, “be1”,“an3” as they come from the
first or the third tokens which have already been added into H. Finally, we stop at the
signature “an2”. Since “an2” comes from the second token and 2 /∈ H, we add 2 into H.
As the size of H = {1, 2, 3} is no smaller than 2.4, we stop removing signatures and
return the final signature set Sigδt (T1) = {an2}.

Figure 2 shows the token-sensitive signatures of the token sets in R. Compared with
prefix-filtering signature scheme, it significantly reduces the size of a signature set and
filters more token-set pairs. In Example 4.2, prefix-filtering signature scheme can only
prune (T2, T3) and (T3, T4), but since Sigδt (T1)∩Sigδt (T2) = ϕ and Sigδt (T1)∩Sigδt (T3) = ϕ
and Sigδt (T1) ∩ Sigδt (T4) = ϕ, token-sensitive signature scheme can further filter the
token-set pairs (T1, T2) and (T1, T3) and (T1, T4).

Lemma 4.5 proves that token-sensitive signature scheme is superior to the prefix-
filtering signature scheme since for any token set, it generates no more signatures
than the prefix-filtering signature scheme.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:14 J. Wang et al.

LEMMA 4.5. Given the same global order and the same signature scheme for tokens,
for any token set T , the token-sensitive signature scheme generates no more signatures
than the prefix filtering signature scheme, i.e., Sigδt (T) ⊆ Sigδp(T).

PROOF. Consider the union of signatures of the tokens in T , i.e. Sigδ(T). If the
last ⌈c⌉ signatures in Sigδ(T) come from ⌈c⌉ different tokens, then both of signature
schemes will remove the last ⌈c − 1⌉ signatures; otherwise, token-sensitive signature
scheme will continue to remove signatures but prefix filtering signature scheme only
remove the last ⌈c− 1⌉ signatures.

4.3. Deducing Constant c
In this section, we introduce how to compute the constant c for fuzzy-token similarity,
that is, if Fδ(T, T

′) ≥ τ , then there exists a constant c such that |T ∩̃δ T
′| ≥ c. We utilize

similar ideas for existing token-based similarity to deduce such constants [Bayardo
et al. 2007].

Fuzzy-Dice Similarity:

2 · |T ∩̃δ T ′|
|T |+ |T ′|

≥ τ =⇒ 2 · |T ∩̃δ T ′|
|T |+ |T ∩̃δ T ′|

≥ τ

=⇒ |T ∩̃δ T ′| ≥ τ

2− τ
· |T |

Fuzzy-Cosine Similarity:

|T ∩̃δ T ′|√
|T | · |T ′|

≥ τ =⇒ |T ∩̃δ T ′|√
|T | · |T ∩̃δ T ′|

≥ τ

=⇒ |T ∩̃δ T ′| ≥ τ2|T |

Fuzzy-Jaccard Similarity:

|T ∩̃δ T ′|
|T |+ |T ′| − |T ∩̃δ T ′|

≥ τ =⇒ |T ∩̃δ T ′|
|T | − |T ∩̃δ T ′|+ |T ∩̃δ T ′|

≥ τ

=⇒ |T ∩̃δ T ′| ≥ τ · |T |

Thus given a token set T , we can deduce that c = τ
2−τ · |T | for fuzzy-dice, c = τ2|T |

for fuzzy-cosine, and c = τ · |T | for fuzzy-jaccard.
We can prove that if Fδ(T, T

′) ≥ τ , then Sigδt (T) ∩ Sigδt (T
′) ̸= ϕ. We only show

the proof of fuzzy-jaccard. fuzzy-dice and fuzzy-cosine can be proved similarly. If
FJACCARDδ(T, T

′) ≥ τ , then |T ∩̃δ T
′| ≥ max(c1, c2) where c1 = τ ·|T | and c2 = τ ·|T ′|. Let

Sigδt (T) and Sigδt (T)
′ be the signature set of T when the fuzzy-overlap threshold is c1

and max(c1, c2) respectively. Let Sigδt (T ′) and Sigδt (T
′)′ be the signature set of T ′ when

the fuzzy-overlap threshold is c2 and max(c1, c2) respectively. As |T ∩̃δ T
′| ≥ max(c1, c2),

Sigδt (T)
′ ∩ Sigδt (T

′)′ ̸= ϕ. As max(c1, c2) is no smaller than c1 and c2, Sigδt (T)′ ⊆ Sigδt (T)
and Sigδt (T

′)′ ⊆ Sigδt (T
′), thus Sigδt (T) ∩ Sigδt (T

′) ̸= ϕ.

5. SIGNATURE SCHEMES FOR TOKENS
As we need to use the signatures of tokens for generating the signatures of token sets,
in this section, we study effective signature schemes for tokens.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:15

5.1. Extending Existing Signature Schemes to Support Edit Similarity
Many signature schemes [Gravano et al. 2001; Xiao et al. 2008a; T. Bocek 2007; Arasu
et al. 2006; Wang et al. 2009] are proposed to evaluate edit distance. They generate
signature sets for tokens t and t′, such that if ED(t, t′) is no larger than an edit-distance
threshold λ, then their signature sets have overlaps. But for edit similarity, tokens with
different lengths might have different edit-distance thresholds. In order to use existing
signature schemes, given an edit-similarity threshold δ, for a token t we can compute
its maximal edit-distance threshold λ such that for any token t′ if NED(t, t′) ≥ δ, then
ED(t, t′) ≤ λ. As NED(t, t′) = 1 − ED(t,t′)

max(|t|,|t′|) ≥ δ, we have 1 − ED(t,t′)
|t|+ED(t,t′) ≥ δ, that is

ED(t, t′) ≤ 1−δ
δ · |t|. Thus we can set λ = 1−δ

δ · |t|. For example, consider the token
“tracy” and δ = 0.8. For any token t′ such that NED(tracy, t′) ≥ 0.8, the edit distance
between t′ and “tracy” is no larger than 1−0.8

0.8 · |5| = 1.25. Next we review existing
signature schemes for tokens. Note that they are designed for edit distance instead of
edit similarity, we extend them to support edit similarity. Indeed, the techniques can
be easily applied to solve edit-similarity join problem.
q-gram-based signature scheme [Gravano et al. 2001; Xiao et al. 2008a] utilizes the
idea that if two tokens are similar, they will have enough common q-grams where
a q-gram is a substring with length q. To extend q-gram-based signature scheme to
support edit similarity, for a token t we compute its maximal edit-distance threshold
λ = 1−δ

δ · |t| based on the given edit-similarity threshold δ. We generate t’s signature
set using the edit-distance threshold λ. However the q-gram-based signature scheme
is ineffective for short tokens as it will result in a large number of candidates which
need to be further verified.
Deletion-based neighborhood generation [T. Bocek 2007]: We can use the same
idea as the q-gram-based signature scheme to extend the deletion-based neighborhood
generation to support edit similarity. However this scheme will generate a large num-
ber of signatures for long tokens, even for a large edit-similarity threshold.
Part-Enum [Arasu et al. 2006] uses the pigeon-hole principle to generate signatures.
For a token t, it first obtains the q-gram set represented as a feature vector. For two
tokens, if their edit distance is within λ, then the hamming distance between their fea-
ture vectors is no larger than q · λ. Based on this property, to generate the signatures
of the token t with the edit-distance threshold λ, Part-Enum only needs to generate
the signatures of the feature vector of t with the hamming-distance threshold q · λ. It
divides the feature vector into ⌈ q·λ+1

2 ⌉ partitions, and based on the pigeon-hole prin-
ciple there exists at least one partition whose hamming distance is no larger than
1. For each partition, it further divides the partition into multiple sub-partitions. All
of the sub-partitions compose the signatures of t. To extend Part-Enum to support
edit similarity, we cannot simply generate signatures with the maximal edit-distance
threshold. This is because edit distance will affect the number of partitions. For exam-
ple, given the edit-similarity threshold δ = 0.8 and q = 1, for “macgrady” the maximal
edit-distance threshold λ = 1−0.8

0.8 · |8| = 2, and Part-Enum needs to divide its feature
vector into ⌈ 1·2+1

2 ⌉ = 2 partitions. But for “mcgrady”, the maximal edit-distance thresh-
old λ = 1−0.8

0.8 · |7| = 1, and Part-Enum needs to divide its feature vector into ⌈ 1·1+1
2 ⌉ = 1

partition. Although NED(mcgrady,macgrady) ≥ 0.8, their signature sets have no over-
lap. To solve this problem, for a token t we compute the minimum length δ · |t| of a
token t′ such that NED(t, t′) ≥ δ. When generating the signatures for t, we consider the
maximal edit-distance threshold ⌊ 1−δ

δ · l⌋ for each possible length l of the token t′, i.e.
l ∈ [δ · |t|, |t|]. For example, consider the token “macgrady”. The length range is [0.8 ·8, 8].
Two lengths 7 and 8 satisfy this range. For them, we respectively compute the maxi-

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:16 J. Wang et al.

mal edit-distance thresholds for l = 7, ⌊ 1−0.8
0.8 · |7|⌋ = 1 and for l = 8, ⌊ 1−0.8

0.8 · |8|⌋ = 2.
The signature set of “macgrady” for δ = 0.8 is the union of its signature set with the
edit-distance thresholds 1 and 2. However Part-Enum needs to tune many parameters
to generate signatures, and it generates larger numbers of candidates as it ignores the
position information.
Partition-ED [Wang et al. 2009] is a partition-based signature scheme to solve
approximate-entity-extraction problem. It also uses the pigeon-hole principle to gener-
ate signatures. Different from Part-Enum, it directly partitions a token instead of the
feature vector of a token. Each token t will generate two signature sets, one is called
query signature set sigδq(t) and the other is called data signature set sigδd(t). For two
tokens t and t′, if ED(t, t′) ≤ λ, then sigδq(t)∩sigδd(t

′) ̸= ϕ. Given an edit-distance thresh-
old λ, to obtain sigδq(t) it divides t into ⌈λ+1

2 ⌉ partitions, and based on the pigeon-hole
principle there exists at least one partition whose edit distance is no larger than 1. It
adds 0- and 1-deletion neighborhoods of each partition into sigδq(t) [T. Bocek 2007]. To
obtain sigδd(t), it still divides t into ⌈λ+1

2 ⌉ partitions. But for each partition, it also needs
to shift and scale it to generate more partitions [Wang et al. 2009]. For all generated
partitions, it adds their 0- and 1-deletion neighborhoods into sigδd(t)

To extend Partition-ED to support edit similarity, for the query signature set sigδq(t),
we only need to generate sigδq(t) with the edit-distance threshold 1−δ

δ · |t|. For the data
signature set, as the same reason as Part-Enum, since the edit distance can affect
the number of partitions, we compute the minimum length δ · |t| and the maximum
length |t|

δ of a token t′ such that NED(t, t′) ≥ δ. We generate sigδq(t) with the edit-
distance threshold ⌊ 1−δ

δ · l⌋ for each possible length l of t′, i.e. l ∈ [δ · |t|, |t|]. For ex-
ample, consider the token “macgrady” and δ = 0.8. The length range is [0.8 · 8, 8

0.8].
Four lengths 7,8,9,10 satisfy this range. We generate sigδd(t) with the edit-distance
thresholds ⌊ 1−0.8

0.8 · |7|⌋ = 1, ⌊ 1−0.8
0.8 · |8|⌋ = 2, ⌊ 1−0.8

0.8 · |9|⌋ = 2 and ⌊ 1−0.8
0.8 · |10|⌋ = 2.

However, Partition-ED will generate many redundant signatures. For example, for the
strings with lengths 9 as their edit-distance threshold with “macgrady” should be no
larger than (1 − δ) ∗ max(9, |macgrady|) = 1.8, thus we do not need to generate signa-
tures with the edit-distance threshold 2. Similarly, for strings with lengths 7 and 8, we
only need to generate signatures with the edit-distance threshold 1. To address this
problem, we propose a new signature scheme Partition-NED in Section 5.2. Figure 4
compares the number of signatures generated by Partition-ED and Partition-NED for
different lengths of tokens (δ = 0.75). We can see when the length of token is larger
than 8, Partition-ED will generate many more signatures than Partition-NED. For ex-
ample, Partition-ED generates 125 signatures for the tokens whose length is 10, and
Partition-NED only generates 56 signatures. Experimental result in Section 7 shows
our algorithm achieves the best performance when using the Partition-NED signature
scheme for generating signatures of tokens.

5.2. Partition-NED Signature Scheme
As discussed in Section 5.1, when extending existing signature schemes to support edit
similarity, they have some limitations. To address these limitations, in this section we
propose a new signature scheme for edit similarity called Partition-NED.
Overview of Partition-NED: For each token, we generate the same query signature
set sigδq(t) as Partition-ED. Next we discuss how to generate the data signature set,
sigδd(t), such that for any token t′, if t′ is similar to t within δ (i.e., NED(t, t′) ≥ δ), then
sigδd(t)∩ sigδq(t

′) ̸= ϕ holds. We first compute the possible lengths of the tokens that can

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:17

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14 16 18 20

of

 S
ig

na
tu

re

Token Length

Partition-ED
Partition-NED

Fig. 4. Comparison of the number of signatures between Partition-ED and Partition-NED for different
length of tokens (δ = 0.75).

be similar to t, i.e., [δ · |t|, |t|
δ]. Then, we enumerate each possible length, and add the

corresponding signatures into sigδd(t). Consider one of possible lengths, n ∈ [δ · |t|, |t|
δ].

When generating query signature sets, all the tokens with the length n are divided into
d = ⌈λ+1

2 ⌉ partitions, where λ = ⌊ 1−δ
δ · n⌋ is the maximal edit-distance threshold. For

any token (whose length is n) that is similar to t, based on the pigeon-hole principle,
there exists at least one partition whose edit distance with a substring of t is within 1.
If we can find the corresponding substrings in t for each partition, we only need to add
0- and 1-deletion neighborhoods of them into sigδd(t).

For example, consider a token t = c1c2 · · · c9. Given δ = 0.75, to generate t’s data sig-
nature set, we first compute the possible lengths of the tokens that can be similar to t,
i.e., [0.75 · 9 = 6.75, 9

0.75 = 12]. There are six possible lengths 7,8,9,10,11,12 satisfying
the range. For each possible length, e.g. n = 12, we compute the maximal edit-distance
threshold λ = ⌊ 1−0.75

0.75 · 12⌋ = 4, and get d = ⌈ 4+1
2 ⌉ = 3 partitions. Since λ = 4 and

d = 3, based on the pigeon-hole principle, for any token (whose length is 12) that is
similar to t, there at least exists one partition whose edit distance with a substring
of t is within 1. Therefore, the problem is how to find such substrings of t. In the fol-
lowing, we give the algorithm to solve this problem and propose two effective pruning
techniques to reduce the number of substrings.
Algorithm description: Consider a token t = c1c2 · · · cm. To find the corresponding
substrings of t w.r.t the length n, let t′ be an arbitrary token whose length is n, i.e., t′ =
c′1c

′
2 · · · c′n. Note that we introduce the notation t′ only for ease of presentation. Suppose

t′ is divided into d partitions: t′[1 : ℓ] = c1 . . . cℓ; t
′[ℓ+1 : 2ℓ+1] = cℓ+1 . . . c2∗ℓ; · · · ; t′[(d−

1) ∗ ℓ + 1 : n] = c(d−1)∗ℓ+1 . . . cn, where ℓ = ⌊n
d ⌋. For example, in Figure 5 the token t′

is divided into d = 3 partitions t′[1 : 4], t′[5 : 8] and t′[9 : 12], where ℓ = ⌊ 12
3 ⌋ = 4. Let

t[pi : qi] = cpicpi+1 · · · cqi denote the i-th partition of t. Let λ = (1−δ) ·max(|t|, |t′|) be the
edit-distance threshold between t and t′. For example, in Figure 5 if NED(t, t′) ≥ 0.75,
then ED(t, t′) ≤ (1− 0.75) ·max(9, 12) = 3, thus the edit-distance threshold is λ = 3. For
the partitions of t′, we consider three cases to find corresponding substrings in t.
Case 1 - the first partition: Suppose the first partition t′[p1 = 1 : q1] has zero or one edit
error. For the case that t′[1 : q1] has zero edit error, t′[1 : q1] is exactly the same as the
substring t[1 : q1] of t. For the other case that t′[1 : q1] has one edit error, we respectively
consider three operations, i.e. replacement, deletion or insertion. If the edit operation
is replacement, t′[1 : q1] can be transformed to t[1 : q1] by one replacement operation; if
the edit operation is deletion, t′[1 : q1] can be transformed to t[1 : q1− 1] by one deletion
operation; if the edit operation is insertion, t′[1 : q1] can be transformed to t[1 : q1 + 1]

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:18 J. Wang et al.

by one insertion operation. Therefore, for the first partition t′[p1 = 1 : q1], we select
the substrings t[1 : q1 − 1], t[1 : q1], and t[1 : q1 + 1]. For example, in Figure 5, the first
partition is t′[1 : 4], thus we select the corresponding substrings t[1 : 3], t[1 : 4] and
t[1 : 5] from t.
Case 2 - the last partition: Suppose the last partition t′[pd : n] has one or zero edit
errors. For the case that t′[pd : n] has zero edit error, t′[pd : n] is exactly the same as
the substring t[m− n+ pd : m] of t. For the other case that t′[pd : n] has one edit error,
we respectively consider three operations, i.e. replacement, deletion or insertion. If the
edit operation is replacement, t′[pd : n] can be transformed to t[m − n + pd : m] by one
replacement operation; if the edit operation is deletion, t′[pd : n] can be transformed to
t[m − n + pd : m] by one deletion operation; if the edit operation is insertion, t′[1 : q1]
can be transformed to t[1 : q1 + 1] by one insertion operation. Therefore, for the first
partition t′[p1 = 1 : q1], we select the substrings t[1 : q1−1], t[1 : q1], and t[1 : q1+1]. For
example, in Figure 5, the last partition is t′[9 : 12], thus we select t[5 : 9], t[6 : 9] and
t[7 : 9] from t.
Case 3 - the middle partitions: Suppose a middle partition t′[pi : qi] (i ̸= 1, d) has zero
or one edit operation. To find its corresponding substrings in t, we can easily derive
that their lengths cannot differ from the length of t′[pi : qi] by more than 1. That is,
the lengths of the corresponding substrings should be within [qi − pi, qi − pi + 2]. Next
we need to determine starting positions of the corresponding substrings in t. Wang et
al. [Wang et al. 2009] presented that there are at most λ insertions or deletions before
t′[pi : qi], thus the starting positions of the corresponding substrings must be within
[pi − λ, pi + λ]. Therefore, for a middle partition t[pi : qi], we select the substrings of t
whose starting positions are within [pi − λ, pi + λ] and lengths are within [qi − pi, qi −
pi + 2]. For example, consider the middle partition t′[5 : 8] in Figure 5. Since λ = 3, the
starting positions are within [2, 8]. For each starting position in [2, 8], we select three
substrings whose lengths are within [3, 5]. For example, we select t[2 : 4], t[2 : 5] and
t[2 : 6] for the starting position 2. We only select t[7 : 9] for the starting postilion 7 since
t[7 : 10] and t[7 : 11] exceeds the length of t.

In Figure 5, for all the partitions of t′, we totally find 21 corresponding substrings of
t. Next, we propose two pruning techniques to reduce unnecessary substrings.
Minimal-Edit-Distance Pruning: Suppose t[pi : qi] is the corresponding substring of
the partition t′[p′i : q

′
i]. When computing the edit distance between t and t′, t[pi : qi] and

t′[p′i : q
′
i] should be aligned, and their prefix strings t[1 : pi−1] and t′[1 : p′i−1] should be

aligned, and their suffix strings t[qi + 1 : m] and t′[q′i + 1 : n] should be aligned. So the
edit distance ED(t, t′) is the sum of ED(t[pi : qi], t′[p′i : q

′
i]), ED(t[1 : pi − 1], t′[1 : p′i − 1])

and ED(t[qi + 1 : m], t′[q′i + 1 : n]). We know that the edit distance between two strings
is no smaller than their length difference. Thus we can compute the minimum of the
edit distance,

ED(t, t′) ≥ |ξ|+ |pi − p′i|+ |(m− qi)− (n− q′i)| (11)
where |ξ| = |(qi − pi)− (q′i − p′i)| is the length difference between t[pi : qi] and t′[p′i : q

′
i].

If the right side of Equation 11 is larger than λ, then we can prune the substrings
t[pi : qi]. For example, in Figure 5 we can prune the corresponding substring t[3 : 7] for
the partition t′[5 : 8] since the minimum of ED(t, t′) is |1|+ |3−5|+ |(9−7)− (12−8)| = 5
and 5 is larger than λ = 3.
Duplication Pruning: Recall three cases of selecting the corresponding substrings,
we consider each partition independently, and thus some conditions may be repeatedly
considered. For example, consider the substring t[3 : 5] for the partition t′[5 : 8] in
Figure 5. On the left t[1 : 2] of t[3 : 5], it needs at least two edit operations to align
t[1 : 2] and t′[1 : 4]. Therefore, there exists at most one edit error on the right t[6 : 9] of

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:19

t'

c1 c4

t'[1:4]

c2 c3 c5 c8c6 c7 c9

t'[5:8]

t

t[1:3]

t'[1:4]

t'[9:12]

t'[5:8]

c'1 c'4c'2 c'3 c'5 c'8c'6 c'7 c'9 c'10 c'11
Legend：

t'[9:12]

Minimal-Edit-Distance Pruning

Duplication Pruning

Case 1

Case 2

Case 3

c'1 c'4c'2 c'3 c'5 c'8c'6 c'7 c'9 c'10 c'11 c'12

c1 c4c2 c3 c5 c8c6 c7 c9

t[1:4]

t[1:5]

c'1 c'4c'2 c'3 c'5 c'8c'6 c'7 c'9 c'10 c'11 c'12

c1 c4c2 c3 c5 c8c6 c7 c9

t[5:9]

t[6:9]

t[7:9]

c'1 c'4c'2 c'3 c'5 c'8c'6 c'7 c'9 c'10 c'11 c'12

c1 c4c2 c3 c5 c8c6 c7 c9

c'1 c'4c'2 c'3 c'5 c'8c'6 c'7 c'9 c'10 c'11 c'12

c1 c4c2 c3 c5 c8c6 c7 c9

t[2:4]

t[2:5]

t[2:6]

t[3:5]

t[3:6]

t[3:7]

t[4:6]

t[4:7]

t[4:8]

t[5:7]

t[5:8]

t[5:9]

t[6:8]

t[6:9]

.
.

.

c'1 c'4c'2 c'3 c'5 c'8c'6 c'7 c'9 c'10 c'11 c'12

c1 c4c2 c3 c5 c8c6 c7 c9

t[7:9]

c'12

Fig. 5. For the partitions of t′, we find eight corresponding substrings t[1:3], t[1:4], t[6:9],t[7:9], t[4:6], t[4:7],
t[5:7] and t[5:8] of t (δ = 0.75).

t[3 : 5] due to the total edit distance λ = 3. Note that the condition that t[6 : 9] has one
or zero edit error has been considered in Case 2, and thus we can prune the substring
t[3 : 5].

Formally, to find the substrings of t, we first consider the first partition and the last
partition. Then we consider the middle partitions from right to left. For the partition
t′[p′i : q′i] and let k denote the number of partitions behind t′[p′i : q′i]. We can prune
the substrings in t′ with starting positions larger than p′i + λ − 2k (or smaller than
p′i−(λ−2k)). This is because for each of such substrings, e.g. t[pi : qi], the edit operations
before t[pi : qi] will be larger than λ− 2k and correspondingly the edit operations after
t[pi : qi] will be smaller than 2k (otherwise the total edit distance is larger than λ).
As there are k partitions behind t[pi : qi], there at least exists one partition with zero
or one edit error. As this partition has been considered, we can prune the substring
t[pi : qi].

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:20 J. Wang et al.

In Figure 5, using minimal-edit-distance pruning we can prune 10 substrings and
using duplication pruning we can prune 8 substrings. Using both of them, we can
reduce the number of substrings from 21 to 8.

6. EXTENSION TO WEIGHTED TOKEN SETS
In real-world applications, different tokens may have different weights. For example,
consider T = {kobe, and, tracy}. As “and” is a frequent token, matching the other to-
kens “kobe” and “tracy” are more important than matching “and”, thus “kobe” and
“tracy” should have higher weights than “and”. We call a token set with weighted to-
kens as a weighted token set. In this section, we extend Fast-Join to support weighted
token sets. We first define weighted fuzzy-token similarity in Section 6.1, and then
propose two novel signature schemes for weighted token sets in Section 6.2 and Sec-
tion 6.3, respectively.

6.1. Definition of Weighted Fuzzy-Token Similarity
We use weighted overlap to quantify the similarity of weighted token sets. The
weighted overlap between T and T ′, denoted by W(T ∩ T ′), is defined as the sum
of the weights of the tokens in their intersection. For example, consider T =
{(kobe, 8), (and, 1), (tracy, 10)} and T ′ = {(kobe, 8), (trany, 14)} (The number in each
round bracket is token’s weight). Based on the definition, their intersection is T ∩ T ′ =
{(kobe, 8)}, so their weighted overlap is W(T ∩T ′) = 8. Note that the weighted overlap
neglects fuzzy matching tokens, e.g. (tracy,10) and (trany,14). To address this prob-
lem, we extend weighted overlap to weighted fuzzy overlap as follows.

Given two weighted token sets, T and T ′, we construct a weighted bigraph G =(
(X,Y), E

)
where each vertex in X (Y) is a token in T (T ′) and E is an edge set for pair

(t, t′) ∈ T × T ′. The weight of edge (t, t′) quantifies the importance of (fuzzy) matching
between t and t′ which relies on three values: the edit similarity NED(t, t′) between
t and t′, the weight W(t) of t, and the weight W(t′) of t′. There is an edge between
t and t′ if their edge weight W(t, t′) is not smaller than a threshold δ. For example,
consider t = (tracy, 10) and t′ = (trany, 14). The weight of their edge is a combination
of NED(tracy, trany) = 0.8, W(tracy) = 10 and W(trany) = 14. Instead of using a
specific function to combine the three values, we define a general aggregation function
as below,

W(t, t′) = A
(

NED(t, t′),W(t),W(t′)
)
, (12)

where the aggregation function A(·, ·, ·) satisfies two requirements:

(1) Monotonicity: Since a larger value of NED(t, t′), W(t), or W(t′) should lead to a
larger weight of an edge, the function is monotonically non-decreasing.

(2) Symmetry: Since the weight of an edge between t and t′ should be the same as that
between t′ and t, the function is symmetric.

We generate tokens’ weights using the well-known inverse document frequency
(IDF) from the IR community [Baeza-Yates and Ribeiro-Neto 1999]. Intuitively, if a
token (e.g., (and, 1)) is very frequent, and occurs in a lot of token sets, it should be as-
signed a much smaller weight than other infrequent tokens (e.g., (kobe, 8)). The IDF
method may also assign a high weight to typo tokens since they are usually less fre-
quent than the correctly spelled tokens. This problem would lead Equation 12 to a
higher value than what it should be, and output some dissimilar pairs of token sets as
results. As it is hard to predicate typo tokens, one heuristic solution is to assume the
token with a higher weight as a typo, and decrease the effect of its weight to the final
value. We defer the detailed study of this problem to future work. In the remainder
of the paper, for ease of presentation, we use the following function as an example of

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:21

Equation 12,

W(t, t′) = NED(t, t′)× W(t) +W(t′)

2
. (13)

After constructing the weighted bigraph, we compute the maximum weight match-
ing of the graph, and define it as the weighted fuzzy overlap T ∩̃δ T ′. The correspond-
ing maximum weight is W(T ∩̃δ T ′), which is the sum of the weights of the edges
in T ∩̃δ T ′. Next we give an example to explain how to compute the weighted fuzzy
overlap between two weighted token sets.

(kobe, 8)

(and, 1)

(tracy, 10)

(kobe, 8)

(trany, 14)

1£
8+8

2
= 81£

8+8

2
= 8

4

5
£

10+14

2
= 9:6

4

5
£

10+14

2
= 9:6

W(T e\0:8T
0) = 8 + 9:6 = 17:6W(T e\0:8T
0) = 8 + 9:6 = 17:6

T
0

T
0TT

Fig. 6. Computing the weighted fuzzy overlap between two weighted token sets, T and T ′ (δ = 0.8).

Example 6.1. Consider two weighted token sets, T = {(kobe,8), (and,1), (tracy,10)}
and T ′ = {(kobe,8), (trany,14)}. To compute the weighted fuzzy overlap between
T and T ′, we construct a weighted bigraph as shown in Figure 6. We first com-
pute the edit similarity of each pair of tokens in T × T ′: NED(kobe, kobe) = 1,
NED(kobe, trany) = 0, NED(and, kobe) = 0, NED(and, trany) = 0.4, NED(tracy, kobe) =
0, NED(tracy, trany) = 0.8. Suppose the given edit-similarity threshold is δ = 0.8.
Since only NED(kobe, kobe) = 1 ≥ 0.8 and NED(tracy, trancy) = 0.8 are no smaller
than δ = 0.8, based on our definition, there are two (fuzzy) matching token pairs,
thus we add two edges to the weighted bigraph. The weight of each edge is com-
puted by Equation 13. For example, for the edge between “tracy” and “trany”, we
have W(tracy) = 10, W(trany) = 14, so its weight is 4

5 × 10+14
2 = 9.6. As the two edges

do not share any common vertex, the maximum weight matching of the weighted bi-
graph consists of the two edges. The corresponding maximum weight is the sum of
their weights, i.e. W(T ∩̃0.8T

′) = 8 + 9.6 = 17.6.

Using weighted fuzzy overlap, we define weighted fuzzy-token similarity.

Definition 6.2 (Weighted Fuzzy-Token Similarity). Given two strings s and s′ and
an edit-similarity threshold δ, let T and T ′ be the weighted token sets of s and s′
respectively, we have
Weighted Fuzzy-Dice Similarity: WFDICEδ(s, s′) =

2·W(T ∩̃δT
′)

W(T)+W(T ′) ,

Weighted Fuzzy-Cosine Similarity: WFCOSINEδ(s, s′) =
W(T ∩̃δT

′)√
W(T)·W(T ′)

,

Weighted Fuzzy-Jaccard Similarity: WFJACCARDδ(s, s′)= W(T ∩̃δT
′)

W(T)+W(T ′)−W(T ∩̃δT ′)
.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:22 J. Wang et al.

6.2. Weighted-prefix-filtering signature scheme
To make Fast-Join support weighted fuzzy-token similarity, we need to study signature
schemes for weighted token sets. That is, given two weighted token sets, T and T ′, we
generate signatures Sigδ(T) and Sigδ(T ′) such that if W(T ∩̃δT

′) ≥ c, then Sigδ(T) ∩
Sigδ(T ′) ̸= ϕ. One simple signature scheme is to merge the signatures of all tokens, i.e.
Sigδ(T) =

⊎
t∈T sigδ(t) and Sigδ(T ′) =

⊎
t′∈T ′ sigδ(t′). This method is feasible because

if W(T ∩̃δT
′) ≥ c, then there at least exists a pair of tokens (t, t′) ∈ T × T ′ such that

NED(t, t′) ≥ δ (otherwise, W(T ∩̃δT
′) = 0). Based on the definition of the signature

scheme for tokens, we have sigδ(t) ∩ sigδ(t′) ̸= ϕ, thus Sigδ(T) ∩ Sigδ(T ′) ̸= ϕ. To
improve the simple signature scheme, we find some signatures in Sigδ(T) and Sigδ(T ′)
can be removed. In this section, we propose a prefix-filtering based signature scheme to
reduce signatures. We develop a more sophisticated signature scheme to remove more
signatures in next section.

We first consider the problem that “in which case we can remove the signatures
s1, s2, · · · , sk from Sigδ(T) such that for any T ′ ∈ R, if W(T ∩̃δT

′) ≥ c, then Sigδ(T) −
{s1, s2, · · · , sk} still has overlap with Sigδ(T ′)?”

To explore the problem, we build a weighted bigraph Gδ for Sigδ(T) and Sigδ(T ′).
Each signature in Sigδ(T) and Sigδ(T ′) is taken as a vertex. Sigδ(T) and Sigδ(T ′) rep-
resents two disjoint sets of vertices. For each pair of signatures in Sigδ(T ′)× Sigδ(T ′),
if the two signatures in the pair are the same, we add a weighted edge between
them. The weight of the edge is equal to the weight between the two tokens that
generate the signatures of the pair. For example, consider two weighted token sets
T = {(kobe, 8), (and, 1), (tracy, 10)} and T ′ = {(kobe, 8), (trany, 14)}. Figure 7 shows
the weighted bigraph Gδ built for Sigδ(T) and Sigδ(T ′). We first generate the signa-
tures of three tokens “kobe”, “and”, “tracy” in T to obtain the set of vertices Sigδ(T),
and generate the signatures of two tokens “kobe”, “trany” in T ′ to obtain the other dis-
joint set of vertices Sigδ(T ′). Then we add edges between Sigδ(T) and Sigδ(T ′). Since
“ra” is a vertex in both Sigδ(T) and Sigδ(T ′), we add an edge for “ra”. As “ra” in Sigδ(T)
comes from the token “tracy”, and “ra” in Sigδ(T ′) comes from the token “trany”, the
weight of the edge for “ra” is equal to W(tracy, trany) = 9.6. Similarly, for the vertices
“ko”, “ob”, “be” and “an”, we add four edges to Gδ whose weights are W(kobe, kobe) = 8,
W(kobe, kobe) = 8, W(kobe, kobe) = 8, W(and, trany) = 0, respectively.

8 ko
ob
be

an

ra
ac
cy

Sig±(T)Sig±(T)

T = f(kobe, 8), (and, 1), (tracy, 10)gT = f(kobe, 8), (and, 1), (tracy, 10)g

T
0 = f(kobe, 8), (trany, 10)gT
0 = f(kobe, 8), (trany, 10)g

Sig±(T 0)Sig±(T 0)

sig±(kobe)sig±(kobe)

sig±(and)sig±(and)

sig±(tracy)sig±(tracy)
sig±(trany)sig±(trany)

ko
ob
be

ra
an
ny

8
8

9.6
0

sig±(kobe)sig±(kobe)

Fig. 7. A weighted bigraph Gδ built for Sigδ(T) and Sigδ(T ′) (δ = 0.8).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:23

By comparing Gδ with the weighted bigraph G built for T and T ′, we find that for
each edge in G, there at least exists a corresponding edge in Gδ that has the same
weight. Consider an edge (t, t′) in G whose weight is W(t, t′). Since t and t′ are similar,
we have sigδ(t) ∩ sigδ(t′) ̸= ϕ. For any signature in sigδ(t) ∩ sigδ(t′), based on the
definition of Gδ, there is an edge in Gδ that connects with it whose weight is W(t, t′).
Therefore, the weight of the maximum weight matching of Gδ must be no smaller than
that of G. Since the weight of the maximum weight matching of G is no smaller than c,
i.e. W(T ∩̃δT

′) ≥ c, we have the weight of the maximum weight matching of Gδ is no
smaller than c.

Next we study how the removal of the vertices s1, s2, · · · , sk from Sigδ(T) affects the
weight of the maximum weight matching of Gδ. After removing a vertex si, we need to
remove all the edges that connect with si from Gδ. Let Wmax(si) denote the maximum
weight of the edges that connect with si (We will discuss how to compute Wmax(si) in
the later text). So the weight of the maximum weight matching of Gδ is at most reduced
by Wmax(si). Similarly, after removing all the vertices s1, s2, · · · , sk from Sigδ(T), the
weight of the maximum weight matching of Gδ is at most reduced by

∑k
i=1 Wmax(si).

Since the weight of the maximum weight matching of Gδ is no smaller than c, if the
total reduced weight is smaller than c, i.e.,

k∑
i=1

Wmax(si) < c, (14)

then after removing the vertices s1, s2, · · · , sk from Sigδ(T), the weight of the maxi-
mum weight matching of Gδ is still larger than zero. That is, there is at least an edge
between Sigδ(T)− {s1, s2, · · · , sk} and Sigδ(T ′), thus Sigδ(T)− {s1, s2, · · · , sk} still has
overlap with Sigδ(T ′).

Now we discuss how to compute Wmax(si). Recall the definition of Gδ, the weight of
an edge that connects with si in Gδ is equal to the weight between two tokens that
respectively generate si in T and T ′. Since T is given, the token that generates si in
T can be easily obtained, denoted by tsi . However, for the token that generates si in
T ′, since T ′ could be any token set in R, we need consider all possible tokens that
generate si. Let Rsi denote all the tokens in R whose signature sets contain si, and we
have

Wmax(si) = max
t′∈Rsi

W(tsi , t
′). (15)

Since W(tsi , t
′) = A

(
NED(tsi , t

′),W(tsi),W(t′)
)

(Equation 12), then we have

Wmax(si) = max
t′∈Rsi

A
(

NED(tsi , t
′),W(tsi),W(t′)

)
. (16)

Note that it is expensive to compute Wmax(si) based on Equation 16 since we need
to enumerate every t′ ∈ Rsi . To avoid such expensive computation, we compute an
upper bound for Wmax(si), which can be computed efficiently. As A(·, ·, ·) is a monotonic
function, and NED(tsi , t

′) ≤ 1, we have

Wmax(si) ≤ A
(
1,W(tsi), max

t′∈Rsi

W(t′)
)
. (17)

The equation maxt′∈Rsi
W(t′) denotes the maximum weight of the tokens whose

signature sets signature si. For ease of presentation, we use a simplified notation
Wmax(tsi) to replace maxt′∈Rsi

W(t′). Therefore, the upper bound of Wmax(si) is

Wu
max(si) = A

(
1,W(tsi),Wmax(tsi)

)
. (18)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:24 J. Wang et al.

Maximum Token Weight

{ (age, 12), (kobe, 8) }T3
Weighted Token Set

{ (kobe, 8), (and, 1), (tracy, 10) }
{ (kobe, 8), (trany, 14) }

ID

T1
T2

Signatures

Sig�(T1) ={ (ko1, 8), (ob1, 8), (be1, 8), (an2, 7.5), (ra3, 12), (ac3, 10), (cy3, 13) }

Sig�(T2) ={ (ko1, 8), (ob1, 8), (be1, 8), (ra2, 14), (an2, 14), (ny2, 14) }

Sig�(T3) ={ (ag1, 12), (ko1, 8), (ob1, 8), (be1, 8) }

Sig�(T4) ={ (tr 1, 16), (rc1, 16), (cy1, 16) , (ag2, 12) }

{ (trcy, 16), (age, 12) }T4
sig�(trcy) = { tr , rc , cy }

Token Signatures

sig�(kobe) = { ko , ob , be }

sig�(and) = { an }

sig�(tracy) = { ra , ac , cy }

sig�(trany) = { ra , an , ny }

sig�(age) = { ag }

W
u
max(cy)

=A
¡

1;W(tracy);Wmax(t\cy")
¢

=1 ¢
W(tracy) +Wmax(t\cy")

2

=
10 + 16

2
= 13

W
u
max(cy)

=A
¡

1;W(tracy);Wmax(t\cy")
¢

=1 ¢
W(tracy) +Wmax(t\cy")

2

=
10 + 16

2
= 13

RR

Weighted-Prefix-Filtering Signatures

Sig�p(T1) ={ (ac3, 10), (an2, 7.5), (be1, 8), (cy3, 13), (ko1, 8), (ob1, 8), (ra3, 12) }

Sig�p(T2) ={ (an2, 14), (be1, 8), (ko1, 8), (ny2, 14), (ob1, 8), (ra2, 14) }

Sig�p(T3) ={ (ag1, 12), (be1, 8), (ko1, 8), (ob1, 8) }

Sig�p(T4) ={ (ag2, 12), (cy1, 16), (rc1, 16), (tr1, 16) }

For each signature , compute
the maximum weight of the
tokens whose signature sets
contain the signature

�
�

Generate signatures of weighted token sets
(The number after each signature denotes the
weight of the signature , and the superscript
denotes which token generates the signature)

�

�

�'

Weighted-Token-Sensitive Signatures

Sig�t(T1) ={ (ac3, 10), (an2, 7.5), (be1, 8), (cy3, 13), (ko1, 8), (ob1, 8), (ra3, 12) }

Sig�t(T2) ={ (an2, 14), (be1, 8), (ko1, 8), (ny2, 14), (ob1, 8), (ra2, 14) }

Sig�t(T3) ={ (ag1, 12), (be1, 8), (ko1, 8), (ob1, 8) }

Sig�t(T4) ={ (ag2, 12), (cy1, 16), (rc1, 16), (tr1, 16) }

Remove the maximal number of
signatures such that the sum of
their weights is smaller than 25

Remove the maximal number of
signatures such that the sum of the
maximum weight of each group of
signatures is smaller than 25

Wmax(t\ko") = 8Wmax(t\ko") = 8

Wmax(t\ob") = 8Wmax(t\ob") = 8

Wmax(t\be") = 8Wmax(t\be") = 8

Wmax(t\an") = 14Wmax(t\an") = 14

Wmax(t\ra") = 14Wmax(t\ra") = 14

Wmax(t\ac") = 10Wmax(t\ac") = 10

Wmax(t\ag") = 12Wmax(t\ag") = 12

Wmax(t\cy") = 16Wmax(t\cy") = 16

Wmax(t\ny") = 14Wmax(t\ny") = 14

Wmax(t\tr") = 16Wmax(t\tr") = 16

Wmax(t\rc") = 16Wmax(t\rc") = 16

Fig. 8. Weighted-prefix-filtering signatures and weighted-token-sensitive signatures of the weighted token
sets in R (δ = 0.8, c = 25).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:25

ALGORITHM 2: WeightedPrefixFilteringSignature(T, c)
Input: T is a weighted token set

c is a weighted-fuzzy-overlap threshold
Output: Sigδp(T) is the weighted-prefix-filtering signature set of T

1 begin
2 Sigδp(T) =

⊎
t∈T sigδ(t);

3 sum = 0;
4 for each s ∈ Sigδp(T) in decreasing global order on signatures do
5 Wu

max(s) = A
(
1,W(ts),Wmax(ts)

)
;

6 sum = sum+Wu
max(s);

7 if sum ≥ c then
8 break;

9 Remove s from Sigδp(T);

10 return Sigδp(T);

Fig. 9. Algorithm of generating weighted prefix-filtering signatures for a weighted token set.

Note that we do not need to compute Wmax(tsi) on the fly. Instead, we precompute
and store Wmax(ts) for all signatures as follows. We enumerate each signature s of each
token t ∈ R, and compare Wmax(ts) with W(t). If W(t) is larger, we update Wmax(ts)
to W(t). After the enumeration, we obtain Wmax(tsi) for all signatures. For example,
consider R = {T1, T2, T3, T4} in Figure 8. We first generate the signatures of each to-
ken in R, i.e., sigδ(and) = {an}, sigδ(trany) = {ra, an, ny}, sigδ(kobe) = {ko, ob, be},
sigδ(tracy) = {ra, ac, cy}, sigδ(age) = {ag}, and sigδ(trcy) = {tr, rc, cy}. Then we
enumerate the signatures of the six tokens. For the first token “and”, it has one sig-
nature “an”. We compare Wmax(t“an”) = 0 with W(and) = 1 (The weight of each token
can be found in Figure 8). Since W(and) is larger, we set Wmax(t“an”) = 1. For the sec-
ond token “trany”, it has three signatures “ra”, “an” and “ny”. We respectively compare
Wmax(t“ra”) = 0, Wmax(t“an”) = 1 and Wmax(t“ny”) = 0 with W(trany) = 14, and set
Wmax(t“ra”) = 14, Wmax(t“an”) = 14 and Wmax(t“ny”) = 14. Similarly, after enumerating
the other four tokens, we obtain Wmax(ts) for all signatures in Figure 8.

When deciding whether s1, s2, · · · , sk can be removed from Sigδ(T), we first compute
Wu

max(si) for each signature si (i ∈ [1, k]), and call it as the weight of signature si, and
then compare the sum of signatures’ weights with the threshold c, i.e.,

k∑
i=1

Wu
max(si) < c. (19)

If the equation holds, as Wu
max(si) is the upper bound of Wmax(si) (i ∈ [1, k]), Equation14

must hold, thus we can remove s1, s2, · · · , sk from Sigδ(T). For example, consider
Sigδ(T1) = {ko1, ob1, be1, an2, ra3, ac3, cy3} in Figure 8. Suppose c = 25. To decide
whether “ac” and “cy” can be removed from Sigδ(T1), we need to compute the weights of
“ac” and “cy”, i.e. Wu

max(ac) and Wu
max(cy). Figure 8 shows how to compute Wu

max(cy).
Since “cy” comes from “tracy” in T1, we have t“cy” = “tracy”, thus W(t“cy”) =
W(tracy) = 10. As computed above, Wmax(tcy) = 16. Based on Equation 18, we obtain
Wu

max(cy) = A
(
1,W(t“cy”),Wmax(tcy)

)
= 1 · 10+16

2 = 13. Similarly, we can also obtain
Wu

max(ac) = 10 for the signature “ac”. Since c = 25 and Wu
max(cy) +Wu

max(ac) = 23 < 25,
based on Equation 19, the signatures “cy” and “ac” can be removed from Sigδ(T1).

Now we have shown that the signatures s1, s2, · · · , sk can be removed from Sigδ(T)

if
∑k

i=1 Wu
max(si) < c. The next question is can we also remove the signatures from

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:26 J. Wang et al.

Sigδ(T ′). Inspired by the prefix-filtering signature scheme, we fix a global order on
all signatures, and remove the signatures based on the global order. In this case,
the signatures can be removed from both Sigδ(T) and Sigδ(T ′). We call such signa-
ture scheme as weighted-prefix-filtering signature scheme. Figure 9 gives the pseudo-
code of the signature scheme. Let Sigδp(T) denote the signature set of T gener-
ated by the weighted-prefix-filtering signature scheme. Initially, Sigδp(T) = Sigδ(T).
Then we remove signatures from Sigδp(T) based on the decreasing global order on
signatures. Let sum be the sum of the removed signatures’ weights. For each sig-
nature s, we compute s’s weight Wu

max(s) and add it to sum. If sum ≥ c, that
is Equation 19 does not hold, we stop removing signatures and return Sigδp(T);
otherwise, we remove the signature s from Sigδp(T), and repeat the above pro-
cess. For example, Figure 8 shows the weighted-prefix-filtering signatures for four
weighted token sets in R. Consider T1 = {(kobe, 8), (and, 1), (tracy, 10)}. We first obtain
Sigδ(T1) = {(ac3, 10), (an2, 7.5), (be1, 8), (cy3, 13), (ko1, 8), (ob1, 8), (ra3, 12)} (The signa-
tures are sorted based on alphabetical order, and the number in the round bracket is
signature’s weight). Next we remove the signatures in Sigδ(T1) from back to front.
The last two signatures (ob1,8) and (ra3,12) can be removed since c = 25 and the
sum of their weights is Wu

max(ra) + Wu
max(ob) = 20 < 25. Note that we are unable

to continue to remove (ko1,8) since Wu
max(ra) +Wu

max(ob) +Wu
max(ko) = 28 > 25. There-

fore, Sigδp(T1) = {(ac3, 10), (an2, 7.5), (be1, 8), (cy3, 13), (ko1, 8)}. Lemma 6.3 shows the
correctness of the algorithm.

LEMMA 6.3. Given two weighted token sets T and T ′, and a threshold c, if
W(T ∩̃δ T ′) ≥ c, then Sigδp(T) ∩ Sigδp(T

′) ̸= ϕ.

PROOF. Let Ω = Sigδ(T) − Sigδp(T) denote the set of removed signatures from
Sigδ(T). Let Ω′ = Sigδ(T ′) − Sigδp(T

′) denote the set of removed signatures from
Sigδ(T ′). We prove it by contradiction. Assume the lemma does not hold. That is, there
exists T and T ′ such that if W(T ∩̃δ T ′) ≥ c, then Sigδp(T) ∩ Sigδp(T

′) = ϕ.
Based on the definition of Sigδp(T), we have

Sigδp(T) ∩ Sigδ(T ′) ̸= ϕ. (20)

And since Sigδ(T ′) = Sigδp(T
′) + Ω′, and Sigδp(T) ∩ Sigδp(T

′) = ϕ, we have

Sigδp(T) ∩ Ω′ ̸= ϕ. (21)

Similarly, we can also deduce that

Sigδp(T
′) ∩ Ω ̸= ϕ. (22)

Since the signatures in Sigδ(T)
(
Sigδ(T ′)

)
are sorted based on a global order, for any

signature in Sigδp(T)
(
Sigδp(T

′)
)
, it must rank before all the signatures in Ω (Ω′). Sup-

pose s1 ∈ Sigδp(T)∩Ω′ and s2 ∈ Sigδp(T
′)∩Ω. On one hand, since s1 ∈ Sigδp(T) and s2 ∈ Ω,

s1 ranks before s2 in the global order. However, on the other hand, since s2 ∈ Sigδp(T
′)

and s1 ∈ Ω′, we can also deduce that s2 ranks before s1 in the same global order. Hence,
s1 = s2. However, as s1 ∈ Sigδp(T) and s2 ∈ Sigδp(T

′), Sigδp(T) and Sigδp(T
′) have the com-

mon signature s1 (= s2), which contradicts with Sigδp(T) ∩ Sigδp(T
′) = ϕ. Therefore, the

assumption does not hold, and the lemma is proved.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:27

6.3. Weighted-token-sensitive signature scheme
When deciding how many signatures can be removed, weighted-prefix-filtering sig-
nature scheme does not consider which token each removed signature comes from.
Based on this observation, in this section, we propose a more sophisticated signature
scheme, called weighted-token-sensitive signature scheme, which takes into account
which token each removed signature comes from. This method is able to remove more
signatures than weighted-prefix-filtering signature scheme.

Revisit the problem that “in which case we can remove the signatures s1, s2, · · · , sk
from Sigδ(T) such that for any T ′ ∈ R, if W(T ∩̃δT

′) ≥ c, then Sigδ(T)− {s1, s2, · · · , sk}
still has overlap with Sigδ(T ′)?”

As discussed in the previous section, if W(T ∩̃δT
′) ≥ c, the weight of the maximum

weight matching of Gδ built for Sigδ(T) and Sigδ(T ′) is no smaller than c. Next we
seek to derive a stronger condition about Gδ by taking into account which token each
signature comes from. We find there exists a set of edges E in Gδ such that (1) The sum
of the weights of these edges, denoted by W(E), is no smaller than c; (2) The vertices
(i.e. signatures) connected by these edges come from different tokens. To prove that, we
construct the edge set E as follows. For each token pair (t, t′) in T ∩̃δT

′, since t and t′ are
similar, we have sigδ(t)∩sigδ(t′) ̸= ϕ. For any signature in sigδ(t)∩sigδ(t′), based on the
definition of Gδ, there is an edge in Gδ that connects with the signature whose weight
is W(t, t′). We choose any one of these edges, and add it into E. Obviously, the sum of
the weights of the edges in E is W(E) =

∑
(t,t′)∈T ∩̃δT ′ W(t, t′) = W(T ∩̃δT

′) ≥ c. Since
T ∩̃δT

′ is the maximum weight matching of Gδ, there is no common token among the
token pairs in T ∩̃δT

′, thus we have the signatures connected by the edges in E come
from different tokens. For example, consider the weighted bigraph Gδ in Figure 7.
As shown in Figure 6, T ∩̃δT

′ contains two token pairs, one is (kobe, kobe), and the
other is (tracy, trany). So we need to add two edges into E. For the first token pair,
since sigδ(kobe) ∩ sigδ(kobe) = {ko, ob, be}, there are three edges that respectively
connects with “ko”, “ob” and “be”, and we add one of the three edges into E, e.g. the
edge connecting with “ko”, and its weight is W(kobe, kobe). For the second edge, since
sigδ(tracy) ∩ sigδ(trany) = {ra}, there is only one edge that connects with “ra”, and
we add the edge into E, and its weight is W(tracy, trany). After adding the two edges,
we have W(E) = W(kobe, kobe) + W(tracy, trany) that is equal to W(T ∩̃δT

′) ≥ c. In
addition, the signatures “ko” and “ra” connected by these two edges come from different
tokens, i.e. “kobe” and “tracy” in T , and “kobe” and “trany” in T ′.

Next we study how the removal of the signatures s1, s2, · · · , sk from Sigδ(T) affects
the edges in E. We divide s1, s2, · · · , sk into |T | groups, G1,G2, · · · ,G|T |, where Gj (j ∈
[1, |T |]) consists of the signatures that come from the j-th token of T . For each group
of signatures, e.g. Gj , if we remove them from Sigδ(T), since they come from the same
token, i.e., j-th token, based on the definition of E, there is at most one edge connecting
with them, thus at most one edge will be removed, whose weight is no larger than the
maximum weight of the signatures in Gj , i.e.

max
s∈Gj

{
Wu

max(s)
}
. (23)

Therefore, after removing all groups of signatures from Sigδ(T), the sum of the weights
of the removed edges in E is no larger than

∑
1≤j≤|T |

max
s∈Gj

{
Wu

max(s)
}
. (24)

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:28 J. Wang et al.

Since the sum of the weights of all edges in E is W(E) ≥ c, if the following equation
holds ∑

1≤j≤|T |

max
s∈Gj

{
Wu

max(s)
}
< c, (25)

then after removing all groups of signatures, i.e., s1, s2, · · · , sk, from Sigδ(T), the sum
of the weights of the rest edges in E is still larger than zero. That is, there is at least
an edge between Sigδ(T)− {s1, s2, · · · , sk} and Sigδ(T ′), thus Sigδ(T)− {s1, s2, · · · , sk}
still has overlap with Sigδ(T ′). Recall that weighted-prefix-filtering signature scheme
uses Equation 19 to decide whether s1, s2, · · · , sk can be removed. It is worth noting
that if Equation 19 holds, Equation 25 must hold. Therefore, weighted-token-sensitive
signature scheme can remove no smaller number of signatures than weighted-prefix-
filtering signature scheme.

For example, consider Sigδ(T1)={(ko1,8), (ob1,8), (be1,8), (an2,7.5), (ra3,12), (ac3,10),
(cy3,13)} in Figure 8, where the superscript of each signature denotes which token
generates the signature. Suppose c = 25. To decide whether the last four signatures
(an2,7.5), (ra3,12), (ac3,10), (cy3,13) can be removed from Sigδ(T1), we divide them
into |T1| = 3 groups according to their superscripts, G1 = {}, G2 = {(an2, 7.5)}, and
G3 = {(ra3, 12), (ac3, 10), (cy3, 13)}. For G1 = {}, as there is no signature in it, the maxi-
mum weight of the signatures in G1 is 0; For G2, as there is only one signature, and its
weight is Wu

max(an
2) = 7.5, the maximum weight of the signatures in G2 is 7.5; For G3,

as there are three signatures, and their weights are Wu
max(ra

3) = 12, Wu
max(ac

3) = 10,
Wu

max(cy
3) = 13, the maximum weight of the signatures in G3 is 13. We add up the max-

imum weights of G1, G2 and G3, and obtain 0+7.5+13 = 20.5. Since their sum is smaller
than c = 25, based on Equation 25, weighted-token-sensitive signature scheme can re-
move the four signatures. But note that weighted-prefix-filtering signature scheme
cannot remove the four signatures since the sum of the weights of the four signatures
is 7.5 + 12 + 10 + 13 = 42.5 ≮ c = 25 (i.e. Equation 19 does not hold).

Now we have shown that the signatures s1, s2, · · · , sk can be removed from Sigδ(T)
if Equation 25 holds. The next question is that can we also remove the signatures from
Sigδ(T ′). We find if fixing a global order on all signatures, and removing the signatures
based on the global order, then we can remove the signatures from both Sigδ(T) and
Sigδ(T ′). Figure 10 illustrates the pseudo-code of the weighted-token-sensitive signa-
ture scheme. Let Sigδt (T) denote the signature set of T generated by the weighted-
token-sensitive signature scheme. Initially, Sigδt (T) = Sigδ(T). Then we remove signa-
tures from Sigδt (T) based on the decreasing global order on signatures. We maintain
a hash map H to store the maximum weight of each group of signatures. Initially, the
maximum weight of each group is set to zero. For each signature stid, we compare its
weight with the maximum weight H[tid] of its group, if stid’s weight is larger, we up-
date H[tid] to stid’s weight. If the sum of the maximum weights of all groups

∑
j H[j] is

larger than or equal to the threshold c, we stop scanning the following signatures and
return the signature set Sigδt (T); otherwise, we remove stid from Sigδt (T) and scan the
next signature. Lemma 6.4 shows the correctness of the algorithm.

For example, Figure 8 shows the weighted-token-sensitive signatures for four
weighted token sets in R. Consider T1 = {(kobe, 8), (and, 1), (tracy, 10)}. We first obtain
Sigδ(T1) = {(ac3, 10), (an2, 7.5), (be1, 8), (cy3, 13), (ko1, 8), (ob1, 8), (ra3, 12)} (The signa-
tures are sorted based on alphabetical order), and initialize Sigδt (T1) as Sigδ(T1).
Next we remove the signatures in Sigδt (T1) from back to front. For the last signa-
ture (ra3, 12), we compare its weight 12 with H[3] = 0, as ra3’s weight is larger, we
set H[3] = 12. As H[1] + H[2] + H[3] = 12 is smaller than c = 25, we remove (ra3, 12)
from Sigδt (T1) and scan the following signatures. Similarly, we can also remove the fol-
lowing signatures (ob1,8), (ko1,8), (cy3,13), (be1,8) and obtain H[1] = 8 and H[2] = 0

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:29

ALGORITHM 3: WeightedTokenSensitiveSignature(T, c)
Input: T is a weighted token set

c is a weighted-fuzzy-overlap threshold
Output: Sigδt (T) is the weighted-token-sensitive signature set of T

1 begin
2 Sigδt (T) =

⊎
t∈T sigδ(t);

3 Let H be a hash map from group id to maximum weight;
4 Initialize H[j] = 0 for j ∈ [1, |T |];
5 for each stid ∈ Sigδt (T) in decreasing global order on signatures do
6 w = Wu

max(s
tid);

7 if H[tid] < w then
8 H[tid] = w;
9 if

∑
j H[j] ≥ c then

10 break;

11 Remove stid from Sigδt (T);

12 return Sigδt (T);

Fig. 10. Algorithm of generating weighted token-sensitive signatures for a weighted token set.

and H[3] = 13. Next we scan the next signature (an2,7.5). Since its weight is larger
than H[2] = 0, we set H[2] = 7.5. As H[1] + H[2] + H[3] = 8 + 7.5 + 13 = 28.5 is not
smaller than c = 25, we stop removing signatures and return the final signature set
Sigδt (T1) = {(ac3, 10), (an2, 7.5)}.

LEMMA 6.4. Given two weighted token sets T and T ′, and a threshold c, if
W(T ∩̃δ T ′) ≥ c, then Sigδt (T) ∩ Sigδt (T

′) ̸= ϕ.

PROOF. Let Ω = Sigδ(T) − Sigδt (T) denote the set of removed signatures from
Sigδ(T). Let Ω′ = Sigδ(T ′) − Sigδt (T

′) denote the set of removed signatures from
Sigδ(T ′). We prove it by contradiction. Assume the lemma does not hold. That is, there
exists T and T ′ such that if W(T ∩̃δ T ′) ≥ c, then Sigδt (T) ∩ Sigδt (T) = ϕ.

Based on the definition of Sigδt (T), we have

Sigδt (T) ∩ Sigδ(T ′) ̸= ϕ. (26)

And since Sigδ(T ′) = Sigδt (T
′) + Ω′, and Sigδt (T) ∩ Sigδt (T

′) = ϕ, we have

Sigδt (T) ∩ Ω′ ̸= ϕ. (27)

Similarly, we can also deduce that

Sigδt (T
′) ∩ Ω ̸= ϕ. (28)

Since the signatures in Sigδ(T)
(
Sigδ(T ′)

)
are sorted based on the same global order,

for any signature in Sigδt (T)
(
Sigδt (T

′)
)
, it must rank before all the signatures in Ω

(Ω′). Suppose s1 ∈ Sigδt (T) ∩ Ω′ and s2 ∈ Sigδt (T
′) ∩ Ω. On one hand, since s1 ∈ Sigδt (T)

and s2 ∈ Ω, s1 ranks before s2 in the global order. However, on the other hand, since
s2 ∈ Sigδt (T

′) and s1 ∈ Ω′, we can also deduce that s2 ranks before s1 in the same global
order. Hence, s1 = s2. However, as s1 ∈ Sigδt (T) and s2 ∈ Sigδt (T

′), Sigδt (T) and Sigδt (T
′)

have the common signature s1 (= s2), which contradicts with Sigδt (T) ∩ Sigδt (T
′) = ϕ.

Therefore, the assumption does not hold, and the lemma is proved.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:30 J. Wang et al.

7. EXPERIMENTAL STUDY
We used two real data sets and evaluated the effectiveness and the efficiency of our
proposed methods.
Data sets: 1) AOL Query Log3: We generate two sets of strings and each data sets
included one million distinct real keyword queries. 2) DBLP Author: We extracted
author names from DBLP dataset4. We also generate two sets of strings and each
data sets included 0.6 million real person names. Table I illustrates detailed statistical
information of the data sets, which gives the number of strings, the average number of
tokens in a string, the maximal number of tokens in a string, and the minimal number
of tokens in a string. Figures 11(a)-11(b) show the length distribution of tokens.

Table I. Dataset statistics.

Data Sets Sizes avg token no max token no min token no
Query Log 1,000,000 3.35 132 1
Author 613,542 2.77 8 1

We implemented all the algorithms in C++ and compiled using GCC 4.2.3 with -
O3 flag. We used inverse document frequency (IDF) to sort the signatures. All the
experiments were run on a Ubuntu Linux machine with an Intel Core 2 Quad E5420
2.50GHz processor and 4 GB memory.

1

2

3

4

5

6

 5 10 15 20 25

of

 T
ok

en
s(

*1
04)

Token Length

1

2

3

4

5

 5 10 15 20 25 30

of

 T
ok

en
s(

*1
04)

Token Length
(a) Author (b) Query Log

Fig. 11. Token length distribution.

7.1. Fuzzy-Token Similarity
In this section, we aim to make a thorough analysis of fuzzy-token similarity in or-
der to examine the motivation of designing this new similarity function. We chose
100,000 queries from the Query Log dataset, and computed the similar string pairs
using fuzzy-token similarity and existing similarity functions. It is worth noting that
there are a lot of similarity functions for string matching. Some previous papers [Chan-
del et al. 2007; Cohen et al. 2003] have done excellent works in comparing their perfor-
mance in various domains. They have shown that sophisticated similarity functions,
such as SoftTFIDF [Cohen et al. 2003] and Language Model Similarity [Chandel et al.
2007], can typically quantify string similarity better. Unfortunately, there does not ex-
ist any efficient similarity-join algorithm for these similarity functions. Since the goal

3http://www.gregsadetsky.com/aol-data/
4http://www.informatik.uni-trier.de/∼ley/db

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:31

of this paper is to extend string similarity join to tolerant fuzzy-token matching, in
the experiment, we only compare with the existing similarity functions that can sup-
port efficient similarity-join algorithms. Nevertheless, it is also important to explore
new similarity-join algorithms for other sophisticated similarity functions, and we will
study this problem in future work.

7.1.1. Evaluating Fuzzy-Token Matching. Fuzzy-token similarity not only takes into ac-
count exact-token matching, but also fuzzy-token matching. To investigate the impor-
tance of fuzzy-token matching, we compared the quality of the results generated by
jaccard similarity, which only considers exact-token matching, and fuzzy-jaccard sim-
ilarity, which considers both exact-token matching and fuzzy-token matching. Specifi-
cally, we varied the (fuzzy-)jaccard threshold from 0.95 to 0.7, and compared the sim-
ilar string pairs generated by jaccard similarity and fuzzy-jaccard similarity, respec-
tively. Table II shows the number of results (i.e., the number of string pairs above the
threshold) and the result precision (i.e., the percentage of correctly identified match-
ing pairs out of all string pairs above the threshold). To evaluate the result precision,
we randomly selected 100 results from the generated similar pairs and asked five re-
search members from our group to evaluate the results blindly. In the following ex-
periments, unless otherwise stated, we used the same method to evaluate the result
precision. From the table, we see that fuzzy-jaccard similarity can identify many more
results without decreasing the precision than jaccard similarity. For example, when
the threshold is τ = 0.8, fuzzy-jaccard similarity returned 1520 pairs with 93% pre-
cision while jaccard similarity only returned 415 pairs with 94%. That is, fuzzy-token
matching helped to identify almost four times more results than exact-token matching,
and there was only a drop of 1% in precision. These experimental results validated the
effectiveness of fuzzy-token matching for string matching.

Table II. Evaluating the effectiveness of fuzzy-token matching (δ = 0.8).

τ
Jaccard Similarity Fuzzy-Jaccard Similarity

of Results Precision(%) # of Results Precision(%)
0.95 127 100 212 99
0.9 132 99 560 100

0.85 166 99 986 98
0.8 405 94 1520 93

0.75 1100 90 2344 86
0.7 1201 69 2698 84

By analyzing the results generated by fuzzy-jaccard similarity and jaccard similar-
ity, we found there are mainly two types of errors in the results:
(1) Incorrect fuzzy-token matching: We used edit similarity along with a threshold
to decide whether two tokens are fuzzy matching or not. An inappropriate threshold
may mistakenly take two different meaning tokens as fuzzy-matching tokens. For ex-
ample, consider two real queries “boxing com” and “boeing com” in our experiments. If
we set the edit-similarity threshold to δ = 0.8, since NED(boxing, boeing) = 0.83 ≥ 0.8,
“boxing” and “boeing” will be considered as fuzzy matching, thus their edit-similarity
value (i.e., 0.83) will be incorrectly incorporated into the fuzzy-jaccard similarity be-
tween the two queries. To avoid the problem, we can specify a higher edit-similarity
threshold (e.g., δ = 0.9). In this case, since NED(boxing, boeing) = 0.83 < 0.9, “boxing”
and “boeing” will not be considered as fuzzy matching.

In order to investigate the effect of edit-similarity threshold on result quality, we
fixed the fuzzy-jaccard similarity as τ = 0.7, and varied the edit-similarity threshold
from 0.9 to 0.1. We plotted the number of results and the result precision for every

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:32 J. Wang et al.

edit-similarity threshold as shown in Figure 12. From the figure, we can see that edit-
similarity threshold had a significant effect on the result quality, and a small threshold
may lead to quite low precision. For example, when the threshold was δ = 0.9, fuzzy-
jaccard similarity can achieve 81% precision. If we reduced the threshold to δ = 0.5,
although more results were returned, the precision was only 5%. Therefore, it is re-
quired to consider edit-similarity threshold when defining fuzzy-token similarity.

102

103

104

105

0.9 0.7 0.5 0.3 0.1

of

 R
es

ul
ts

Edit-Similarity Threshold

81%

51%

5% 6% 4%

x% denotes precision

Fig. 12. Evaluating result quality of fuzzy-jaccard for different edit-similarity thresholds (τ = 0.7).

(2) Non-weighed tokens: Fuzzy-token similarity assumes every token has the same
weight. But in practice, some tokens may be more important than others. Consider two
real queries “www holiday inn com” and “www edinburgh holiday inn com” in our exper-
iments. They match four tokens and mismatch one token, thus their fuzzy-jaccard
similarity is 4

4+5−4 = 0.8. But it is easy to see that the unmatched token “edinburgh” is
more important than some other matching tokens (e.g., “www” and “com”), thus it might
be better to employ weighted similarity function to quantify their similarity.

To investigate the effect of weights on result quality, we assigned each token t with
an IDF weight, computed by log N

Nt
, where N is the total number of records and Nt is

the total number of records containing t. We fixed edit-similarity threshold δ = 0.8, and
varied (weighted) fuzzy-jaccard threshold τ from 0.95 to 0.7. For each τ , we generated
results using fuzzy-jaccard and weighted fuzzy-jaccard, respectively, and compared
their precision as shown in Figure 13. We can see both fuzzy-jaccard and weighted
fuzzy-jaccard can achieve good precision for large τ . For example, when τ = 0.85, the
precision of fuzzy-jaccard and weighted fuzzy-jaccard was 98% and 96%, respectively.
For smaller τ (e.g. 0.7), weighted fuzzy-jaccard can still keep the precision larger than
90%, while the precision of fuzzy-jaccard was decreased to 84%. This is because there
were a lot of queries with three or four tokens. For such queries, if they mismatch an
important token, they are very likely to be dissimilar. In this case, weighted fuzzy-
jaccard would give them a much lower similarity value, while fuzzy-jaccard could still
give them a higher similarity value than the small threshold (e.g., 0.7).

7.1.2. Comparing with existing solutions. In our paper, we propose a new similarity func-
tion that not only tolerates fuzzy-token matching but also supports efficient similarity-
join algorithms. One natural question is whether existing solutions can achieve the
same goal. To answer this question, we compare with the following existing similarity
functions.
GES and AGES are two hybrid similarity functions proposed by [Chaudhuri et al.
2003]. They have already been described in Section 2.1.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:33

 50

 60

 70

 80

 90

 100

 0.7 0.75 0.8 0.85 0.9 0.95

Pr
ec

is
io

n
(%

)
(Weighted) Fuzzy-Jaccard Threshold

Fuzzy-Jaccard
Weighted Fuzzy-Jaccard

Fig. 13. Comparing result quality of fuzzy-jaccard and weighted fuzzy-jaccard (δ = 0.8).

Jaccard+ES is a weighted combination of jaccard similarity and edit similarity, de-
noted by α · JACCARD + (1−α) · NED, where α is a parameter that is used to adjust the
weights of jaccard similarity and edit similarity. If we choose a larger α, Jaccard+ES
can capture more token swap errors (i.e., “nba mcgrady” and “mcgrady nba”) since jac-
card similarity is assigned a larger weight. Otherwise, if we choose a smaller α, Jac-
card+ES can capture more edit errors (i.e., “nba mcgrady” and “nba macgrady”). We var-
ied α from 0 to 1 with the step size of 0.1, and found that Jaccard+ES achieved the best
performance when α = 0.5. Thus, we chose α = 0.5 in our experiments.
QGram denotes jaccard similarity based on q-gram tokenization. In the experiment,
we adopted the most common way to generate q-gram sets [Chandel et al. 2007; Has-
sanzadeh and Miller 2009], and set q = 2 since it achieves the best performance.
WQGram denotes weighted jaccard similarity based on q-gram tokenization. Each
gram was assigned an IDF weight.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 500 1000 1500 2000 2500 3000

Pr
ec

is
io

n
(%

)

of Results

Fuzzy-Jaccard
GES

AGES
Jaccard+ES

QGram
WQGram

Fig. 14. Comparing the result quality of fuzzy-jaccard similarity and existing similarity functions.

We computed similar string pairs using Fuzzy-Jaccard, GES, AGES, Jaccard+ES,
and QGram, respectively. For each similarity function, we identified the top-k pairs
with the highest similarity values as results. We varied the number of results (i.e. k)
from 500 to 3000, and compared the result precision as shown in Figure 14.

We can see Fuzzy-Jaccard achieved better results than existing hybrid similar-
ity functions, GES and AGES. This is because GES gave a low similarity value
to the similar string pairs where the same keywords occurred in different posi-
tions, and the closest tokens chosen by AGES may not be real fuzzy-matching to-

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:34 J. Wang et al.

100

101

102

103

104

 500 1000 1500 2000 2500 3000

T
im

e
(S

ec
on

ds
)

of Results

Fuzzy-Jaccard
Jaccard+ES

Fig. 15. Comparing the running time of generating results for Fuzzy-Jaccard (δ = 0.8) and Jaccard+ES.

kens. QGram and WQGram did not perform well either5 since they typically se-
lect a smaller value of q in order to capture typos, but a smaller q may make the
strings match a lot of grams that are generated from dissimilar words. For exam-
ple, consider two real queries “blood test for dog” and “best dog food”. Obviously,
they have different meanings. But both QGram and WQGram will compute a high
similarity value for them since their 2-gram sets share thirteen common grams, i.e.,
{b, oo, od, d, es, st, t$, $f, fo, d, do, og, g}. But it is easy to see that many grams are
generated from dissimilar words. For example, the first gram “$b” is generated from
“blood” and “best”.

Figure 14 also shows that Jaccard+ES can achieve as good performance as Fuzzy-
Jaccard in terms of precision. But existing works [Wang et al. 2011b; Chaudhuri et al.
2007] have shown that there is no method that can efficiently find similarity-join
results for a weighted combination of similarity functions like Jaccard+ES. In order
to compare with the proposed similarity-join algorithm for Fuzzy-Jaccard in this pa-
per, we implemented the following similarity-join algorithm for Jaccard+ES. Given
a threshold τ , we can easily deduce that if the Jaccard+ES similarity between two
strings is no smaller than τ , their jaccard similarity must be no smaller than 2τ − 1
since their edit similarity is at most equal to one. Based on this idea, we first utilized
existing similarity-join methods [Wang et al. 2012] to find a candidate set of pairs
whose jaccard similarity is no smaller than 2τ − 1, and then check the candidate pairs
whether their Jaccard+ES similarity satisfies the threshold τ . We adopted this method
to find similar string pairs for τ = 0.8, 0.75, 0.7, 0.65. Figure 15 shows the number of re-
sults and the running time for each threshold. For comparison’s sake, Figure 15 also
shows the running time of using the efficient fuzzy-jaccard-similarity join method pro-
posed in this paper to generate similar string pairs for τ = 0.9, 0.85, 0.8, 0.75, 0.7, 0.65.
From the figure, we can see the time to obtain the results for Fuzzy-Jaccard is 20x
to 100x faster than that for Jaccard+ES. Therefore, Fuzzy-Jaccard is more applicable
than Jaccard+ES in practice.

We also compared the running time of Fuzzy-Jaccard and QGram, and found that
QGram is more efficient than Fuzzy-Jaccard. For instance, when the threshold is 0.8,
Fuzzy-Jaccard spent 17.01s while QGram only consumed 3.29s. This is because QGram
did not consider whether the matching grams are generated from similar tokens or
not. Although it saved running time, it may lead to lower result quality as discussed in
Figure 14. To further evaluate the result quality on the data sets with different string
lengths, we constructed five data sets from the Query Log data set, which consisted

5 The minimum, average and maximum token counts of the picked strings for the quality evaluation of
QGram and WQGram are 1, 3.6 and 9, respectively.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:35

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

10 20 30 40 50

Pr
ec

is
io

n
(%

)
String Length

Fuzzy-Jaccard
QGram

Fig. 16. Comparing the result quality of Fuzzy-Jaccard and QGram for different string lengths (τ = 0.8).

of the strings with the lengths smaller than 10, 20, 30, 40 and 50, respectively. Fig-
ure 16 compared the result quality of Fuzzy-Jaccard and QGram on the five data sets
with the threshold of 0.8. We can see Fuzzy-Jaccard consistently achieved good quality
for different string lengths while QGram can only obtain comparable performance as
Fuzzy-Jaccard for the string length smaller than 10. For longer strings, QGram per-
formed much worse than Fuzzy-Jaccard since longer strings contain more tokens, thus
it is more necessary to consider whether the matching grams come from the similar
tokens or not.

7.1.3. Comparing with a simple fuzzy-jaccard similarity-join method. Having seen the effec-
tiveness of fuzzy-jaccard similarity for string matching, we next evaluate a simple
fuzzy-jaccard similarity-join method, which combines jaccard-similarity pre-filtering
with fuzzy-jaccard post-verification. Specifically, the method first utilizes efficient algo-
rithms to filter the pairs with very low jaccard similarity, and then computes the fuzzy-
jaccard similarity of the remaining pairs to obtain the final results. If this method is
as good as the proposed fuzzy-jaccard-similarity-join algorithm in this paper, we can
only use this method instead of inventing new similarity-join algorithms.

Due to jaccard-similarity pre-filtering, the simple similarity-join method may miss
some results whose jaccard-similarity is smaller than the jaccard threshold, but fuzzy-
jaccard similarity is larger than or equal to the fuzzy-jaccard threshold. To evaluate
the missed results, we varied the jaccard threshold from 0.1 to 0.5, and computed
the percentage of missed results for different fuzzy-jaccard thresholds τ = 0.7, 0.8, 0.9.
In Figure 17, we can see the simple similarity-join method missed a lot of results. For
example, when the jaccard threshold was 0.4, the simple method would miss about 40%
results for τ = 0.8. Although decreasing the jaccard threshold can reduce the number
of missed results, the simple similarity-join method would still miss some results even
if the threshold was decreased to 0.1, e.g., 12% results for τ = 0.7.

On the other hand, decreasing the jaccard threshold would also increase the running
time since we need to verify more unfiltered pairs. We compared the running time
of the simple similarity-join method and the efficient similarity-join algorithm pro-
posed in our paper. Figure 18 shows the comparison results for fuzzy-jaccard thresh-
olds τ = 0.7, 0.8, 0.9. We only plotted one line for the simple similarity-join method
since its performance kept the same for various fuzzy-jaccard thresholds. From the fig-
ure, we can see that the simple similarity-join method run much slower than our effi-
cient fuzzy-jaccard similarity algorithm, with the differences being greater for smaller
thresholds. For example, if the threshold was 0.3, the simple method was about ten
times slower than our algorithm.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:36 J. Wang et al.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.1 0.2 0.3 0.4 0.5

Pe
rc

en
ta

ge
 o

f
m

is
se

d
re

su
lts

 (
%

)
Jaccard Threshold

Fuzzy-Jaccard Threshold τ=0.7
Fuzzy-Jaccard Threshold τ=0.8
Fuzzy-Jaccard Threshold τ=0.9

Fig. 17. Evaluating the percentage of missed results for different jaccard thresholds (δ = 0.8).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.1 0.2 0.3 0.4 0.5

T
im

e
(S

ec
on

ds
)

Jaccard Threshold

Fuzzy-Jaccard SimJoin (τ=0.7)
Fuzzy-Jaccard SimJoin (τ=0.8)
Fuzzy-Jaccard SimJoin (τ=0.9)
Simple Fuzzy-Jaccard SimJoin

Fig. 18. Comparing the running time of simple similarity-join algorithm and fuzzy-jaccard similarity-join
algorithm (δ = 0.8).

Based on the analysis above, the simple similarity-join method would not only miss
some results, but also run very inefficiently. This motivates us to study the efficient
similarity-join algorithm for fuzzy-jaccard similarity that cannot miss any result. In
the following experiments, we will make a thorough analysis on the efficient similarity-
join algorithm proposed in this paper.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.1 0.2 0.3 0.4 0.5

Pe
rc

en
ta

ge
 o

f
m

is
se

d
re

su
lts

 (
%

)

Jaccard Threshold

Fuzzy-Jaccard Threshold τ=0.7
Fuzzy-Jaccard Threshold τ=0.8
Fuzzy-Jaccard Threshold τ=0.9

Fig. 19. Evaluating the percentage of missed results for different jaccard thresholds (δ = 0.8, Title dataset).

It is worth noting that the datasets (i.e. Query Log and Author) used in the paper
mainly consist of the strings with a small number of tokens. For some other datasets

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:37

1

101

102

103

104

105

 0.75 0.8 0.85 0.9 0.95

T
im

e
(s

ec
on

ds
)

Edit-Similarity Threshold

q-gram
deletion-based

Part-Enum
Partition-ED

Partition-NED

1

101

102

103

104

105

 0.75 0.8 0.85 0.9 0.95

T
im

e
(s

ec
on

ds
)

Edit-Similarity Threshold

q-gram
Part-Enum

Partition-ED
Partition-NED

(a) Author (b) Query Log
Fig. 20. Performance for different token signature schemes (τ = 0.8).

 0

 20

 40

 60

 80

 100

 0.75 0.8 0.85 0.9 0.95

of

 S
ig

na
tu

re
s

(*
10

5)

Edit-Similarity Threshold

Partition-NED
Partition-ED

 0

 100

 200

 300

 400

 0.75 0.8 0.85 0.9 0.95

of

 S
ig

na
tu

re
s

(*
10

5)

Edit-Similarity Threshold

Partition-NED
Partition-ED

(a) Author (b) Query Log
Fig. 21. Comparison of the number of signatures between Partition-ED and Partition-NED (τ = 0.8).

with much larger number of tokens in each string, we find that it is less necessary for
them to consider fuzzy-matching tokens since the similarity of these strings are typi-
cally dominated by the exactly matching tokens. To examine the idea, we constructed
a new dataset, denoted by Title, with 100,000 paper titles randomly selected from the
DBLP dataset. We compared the simple similarity-join method with our similarity-
join algorithm on this new dataset. As shown in Figure 19, the simple similarity-join
method still missed some results, but not as many as on the Query Log dataset (see
Figure 17). For example, when the jaccard threshold was 0.4, the simple method only
missed 6.2% results for τ = 0.8 on the Title dataset, but it missed about 40% results
on the Query Log dataset.

7.2. Evaluation on Different Signature Schemes for Tokens
In this section, we compared the performance of different token signature schemes. We
implemented five methods: q-gram based method [Xiao et al. 2008a], deletion-based
neighborhood generation [T. Bocek 2007], Part-Enum [Arasu et al. 2006], Partition-
ED [Wang et al. 2009] and Partition-NED. We extended them to support edit similarity
using the methods in Section 5.1. We used the token-sensitive signature scheme for
generating token sets. Figure 20 gives the results.

We see that the q-gram based method achieved the worst performance as it can only
use small q for short tokens, but small q resulted in large numbers of false-positive re-
sults. Part-Enum also performed worse since converting a token to the feature vector

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:38 J. Wang et al.

 0

 10

 20

 30

 0.7 0.75 0.8 0.85 0.9 0.95

of

 R
em

ov
ed

 S
ig

na
tu

re
s(

*1
05)

Fuzzy-Jaccard Threshold

token-sensitive
prefix-filtering

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.75 0.8 0.85 0.9 0.95

of

 R
em

ov
ed

 S
ig

na
tu

re
s(

*1
05)

Fuzzy-Jaccard Threshold

token-sensitive
prefix-filtering

(a) Author (b) Query Log
Fig. 22. Comparison of the number of signatures removed by prefix-filtering and token-sensitive signature
schemes (δ = 0.85).

destroyed the position information of grams. The deletion-based neighborhood gener-
ation scheme achieved higher performance for the Author data set as the tokens are
usually short in person names. But for the Query Log dataset, the method generated
large numbers of signatures for long tokens and achieved very low performance, and
it did not report any result within 106 seconds. Thus in the figure we did not show
the results of the deletion-based neighborhood generation. Partition-NED performed
the best of all the signature schemes. When the edit-similarity threshold is large,
Partition-ED has the comparable performance with Partition-NED. However when
the edit-similarity threshold becomes smaller, Partition-ED will be less efficient than
Partition-NED. This is because Partition-ED generated large numbers of signatures,
but Partition-NED used the pruning techniques to remove unnecessary signatures.

In addition, we compared the numbers of token signatures generated from Partition-
ED and Partition-NED. Figure 21 shows the results. We can see our method can re-
duce large numbers of signatures. For instance, on the Query Log dataset, for δ = 0.8,
Partition-NED generated 2.8∗107 signatures while Partition-ED only generated 1.8∗107
signatures.

As Partition-NED achieved the highest performance, we used Partition-NED for gen-
erating token signatures in the remainder experiments of this paper.

7.3. Evaluation on Signature Schemes of Token Sets
In this section, we compared the performance of token-sensitive signature scheme and
prefix-filtering signature scheme. We first compared the number of removed signa-
tures. Figure 22 shows the results.

We can see that token-sensitive signature scheme can remove many more signa-
tures as it considered token information in the removal step. For example, on the Au-
thor dataset, for τ = 0.8, the token-sensitive signature scheme can remove 1.5 ∗ 106

signatures and the prefix-filtering signature scheme only removed 0.9 ∗ 106 signatures.
We also compared the number of candidates gotten from the two token-set signature

schemes. Figure 23 shows the results. We see that token-sensitive signature scheme
generated fewer candidates than prefix-filtering signature scheme. This is because it
removed many more unnecessary signatures. For example, on Query Log, for δ = 0.85,
token-sensitive signature scheme generated less than 1.2∗106 candidates, while prefix-
filtering signature scheme generated 1.3∗107 candidates.

Finally, we compared the running time of using the two token-set signature schemes
to solve the similarity-join problem and Figure 24 shows results. We can see the al-
gorithm using the token-sensitive signature scheme is 3 to 5 times faster than that
using the prefix-filtering signature scheme, as the former can remove large numbers

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:39

1

101

102

103

104

105

 0.75 0.8 0.85 0.9 0.95

of

 C
an

di
da

te
s(

*1
06)

Edit-Similarity Threshold

token-sensitive
prefix-filtering

1

101

102

103

104

105

 0.75 0.8 0.85 0.9 0.95

of

 C
an

di
da

te
s(

*1
06)

Edit-Similarity Threshold

token-sensitive
prefix-filtering

(a) Author (b) Query Log
Fig. 23. Comparison of the number of candidates between prefix-filtering and token-sensitive signature
schemes (τ = 0.8).

 0

 30

 60

 90

 120

 150

 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(S

ec
on

ds
)

Fuzzy-Jaccard Threshold

token-sensitive
prefix-filtering

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(S

ec
on

ds
)

Fuzzy-Jaccard Threshold

token-sensitive
prefix-filtering

(a) Author (b) Query Log
Fig. 24. Comparison of the running time of using prefix-filtering and token-sensitive signature schemes
(δ = 0.85).

of unnecessary token signatures. For example, on the Author dataset, for τ = 0.8, if
using the token-sensitive signature scheme, the algorithm took less than 30s, while if
using the prefix-filtering signature scheme, the time increased to 130s.
7.4. Evaluation on Signature Schemes of Weighted Token Sets
In this section, we evaluated the signature schemes of weighted token sets, i.e.,
weighted-prefix-filtering signature scheme and weighted-token-sensitive signature
scheme. We respectively used them to perform Fast-Join on Author and Query Log
datasets, and compared their performance in terms of the number of removed signa-
tures, the number of candidates, and the total running time.

In the paper, we have proved that weighted-token-sensitive signature scheme can re-
move as many or more signatures than weighted-prefix-filtering signature scheme. To
see how weighted-token-sensitive signature scheme performs in practice, we compared
the number of signatures removed by the two signature schemes on real datasets.
Figure 25 shows the results. We can see weighted-token-sensitive removed 2 to 5
times more signatures than weighted-prefix-filtering. For example, on the Query Log
dataset, for τ = 0.85, the weighted-token-sensitive can remove 14.1∗105 signatures but
the weighted-prefix-filtering only removed 4.53 ∗ 105 signatures.

Next we evaluated the number of candidates generated by the two signature
schemes. Note that the fewer the number of candidates, the less the verification time.
As shown in Figure 26, weighted-token-sensitive generated much fewer number of
candidates than weighted-prefix-filtering. This is because weighted-token-sensitive

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:40 J. Wang et al.

 0

 5

 10

 15

 20

 0.7 0.75 0.8 0.85 0.9 0.95

of

 R
em

ov
ed

 S
ig

na
tu

re
s(

*1
05)

Weighted-Fuzzy-Jaccard Threshold

weighted-token-sensitive
weighted-prefix-filtering

 0

 5

 10

 15

 20

 0.75 0.8 0.85 0.9 0.95

of

 R
em

ov
ed

 S
ig

na
tu

re
s(

*1
05)

Weighted-Fuzzy-Jaccard Threshold

weighted-token-sensitive
weighted-prefix-filtering

(a) Author (b) Query Log
Fig. 25. Comparison of the number of signatures removed by weighted-prefix-filtering and weighted-token-
sensitive signature schemes (δ = 0.85).

took into consideration token information, and removed more signatures, thus lead
to fewer candidates. For example, on the Query Log datasest, for δ = 0.85, weighted-
token-sensitive generated 7.2 ∗ 105 candidates, while weighted-prefix-filtering gener-
ated 67.8 ∗ 105 candidates.

Finally, we measured the running time of performing Fast-Join by using the two sig-
nature schemes. Figure 27 shows the results. We can see the algorithm using weighted-
token-sensitive is 2 to 3 times faster than that using weighted-prefix-filtering, as the
former can remove large numbers of signatures. For example, on the Author dataset,
for τ = 0.8, if using weighted-token-sensitive, the algorithm took less than 3.5s, while
if using weighted-prefix-filtering, the time increased to 10.6s.

1

101

102

103

104

105

 0.75 0.8 0.85 0.9 0.95

of

 C
an

di
da

te
s(

*1
05)

Edit-Similarity Threshold

weighted-token-sensitive
weighted-prefix-filtering

1

101

102

103

104

105

 0.75 0.8 0.85 0.9 0.95

of

 C
an

di
da

te
s(

*1
05)

Edit-Similarity Threshold

weighted-token-sensitive
weighted-prefix-filtering

(a) Author (b) Query Log
Fig. 26. Comparison of the number of candidates between weighted-prefix-filtering and weighted-token-
sensitive signature schemes (τ = 0.8).

7.5. Put Everything Together
In this section, we further evaluated the algorithm of solving the similarity-join prob-
lem, which included three phases: (1) generating signatures; (2) filtering dissimilar
pairs and computing candidates; (3) verifying the candidates to get the final results.
We used token-sensitive signature scheme for token sets and Partition-NED for token
signatures. Figure 28 shows the results by varying the fuzzy-jaccard threshold τ .

For the Author dataset, three phases took the similar amount of time. For the Query
Log dataset, the phase of generating signatures was rather expensive. This is because
in the data set the tokens have larger length, which resulted in larger edit-distance

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:41

 0

 5

 10

 15

 20

 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(S

ec
on

ds
)

Weighted-Fuzzy-Jaccard Threshold

weighted-token-sensitive
weighted-prefix-filtering

 0

 5

 10

 15

 20

 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(S

ec
on

ds
)

Weighted-Fuzzy-Jaccard Threshold

weighted-token-sensitive
weighted-prefix-filtering

(a) Author (b) Query Log
Fig. 27. Comparison of the running time of using weighted-prefix-filtering and weighted-token-sensitive
signature schemes (δ = 0.85).

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

 0.75 0.8 0.85 0.9 0.95

T
im

e
(S

ec
on

ds
)

Fuzzy-Jaccard Threshold

verification
candidate
signature

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0.75 0.8 0.85 0.9 0.95

T
im

e
(S

ec
on

ds
)

Fuzzy-Jaccard Threshold

verification
candidate
signature

(a) Author (b) Query Log
Fig. 28. Performance for different steps (δ = 0.85).

thresholds. When τ became smaller the filter and the verification time increased. The
reason is that a smaller τ will result in more candidate pairs. It is worth noting that
we do not need to perform weighted bigraph matching for every candidate. As shown
in Section 3.2, we can compute an upper bound of fuzzy-token similarity, if the upper
bound is smaller than the threshold, we can prune the candidate.

7.6. Evaluation on Other Similarity Functions
We evaluated the performance of different fuzzy-token similarities, fuzzy-jaccard simi-
larity, fuzzy-dice similarity, and fuzzy-cosine similarity. Figure 29 shows the results.
We see that fuzzy-dice similarity and fuzzy-cosine similarity took more time than
fuzzy-jaccard similarity. This is because for the same τ , they deduced a smaller fuzzy-
overlap threshold than fuzzy-jaccard similarity. We also evaluate the result quality of
the three similarities. We find that when fixing the same thresholds δ and τ , fuzzy-
jaccard similarity archived higher precision but returned fewer relevant pairs than
the other two similarities. For example, when δ = 0.85 and τ = 0.8, fuzzy-jaccard simi-
larity returned 1029 relevant pairs with the precision 95%, while fuzzy-dice similarity
returned 3298 pairs with the precision 71% and fuzzy-dice similarity returned 3324
pairs with the precision 70%.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:42 J. Wang et al.

 0

 50

 100

 150

 200

 250

 0.75 0.8 0.85 0.9 0.95

T
im

e
(S

ec
on

ds
)

Fuzzy-Token-Similarity Threshold

Fuzzy Jaccard
Fuzzy Dice

Fuzzy Cosin

Fig. 29. Performance for different functions on the Author dataset (δ = 0.85)

8. RELATED WORKS
String similarity join is a basic operation in data cleaning and integration, and has at-
tracted significant attention recently [Gravano et al. 2001; Sarawagi and Kirpal 2004;
Arasu et al. 2006; Bayardo et al. 2007; Xiao et al. 2008b; Xiao et al. 2008a; Wang
et al. 2010; Vernica et al. 2010; Zhang et al. 2010; Qin et al. 2011; Li et al. 2011b;
Wang et al. 2012]. Most of the prior works use signature-based methods, and focus on
the develop of effective signature scheme. [Gravano et al. 2001] devised a gram-based
signature scheme for edit similarity join. [Xiao et al. 2008b] optimized this method
by pruning unnecessary grams. [Qin et al. 2011] proposed a hybrid gram and chunk
signature scheme that is proved to be able to generate the minimum number of sig-
natures. [Chaudhuri et al. 2006] proposed a prefix-filtering signature scheme that is
applicable to a variety of similarity functions. [Bayardo et al. 2007] developed several
optimization techniques to make the prefix-filtering signature scheme scale to large
data sets. [Wang et al. 2012] found different prefix lengths lead to different perfor-
mance, and proposed a cost model to adaptively select an appropriate prefix. There are
also some studies on partition-based signature schemes [Arasu et al. 2006; Li et al.
2011b] which mainly focus on hamming distance and edit distance, respectively. How-
ever, these signature schemes are not developed specific to the fuzzy-token similarity.
Although the prefix-filtering signature scheme can be extended to the fuzzy-token sim-
ilarity, it was quite expensive, and generated a large number of candidates. Therefore,
we proposed token-sensitive signature scheme which is proved to be better than the
prefix-filtering signature scheme. In the experiment, we have extensively compared
the two signature schemes. The experimental results also proved our claim. In addi-
tion to the signature-based methods, [Jacox and Samet 2008] studied the metric-space
similarity join. The method cannot solve our problem since fuzzy-token similarity does
not obey the triangle inequality.

There are some studies on fuzzy token matching based similarity. [Chaudhuri et al.
2003] proposed generalized edit similarity (GES) and an approximation of generalized
edit similarity (AGES), which extends the character-level edit operator to the token-
level edit operator. [Arasu et al. 2008] proposed a transformation-based framework
for similarity join by considering user-defined string transformations, such as syn-
onyms and abbreviations. They employed a signature-based method, and defined the
signature scheme as the union of string transformations related to each string. When
applying the signature scheme to our problem, as discussed in Section 4.2, it is less
effective than the token-sensitive signature scheme since it ignored the fact that some
signatures can be removed. [Jestes et al. 2010] studied probabilistic string similarity
joins with expected edit distance constrains. The method needs some extra inputs such

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:43

as probabilistic string attributes, while Fast-Join needs little human effort, and thus is
an application-independent method to combine two types of similarity measures. More
importantly, our similarity can subsume existing ones. A big benefit of our method is
that it can be easily extended to support existing similarity functions.

Weighted similarity was widely used in real applications, and many existing works
explored how to make their approaches support to weighted similarity [Arasu et al.
2006; Bayardo et al. 2007; Hadjieleftheriou and Srivastava 2010]. However, existing
weighted similarity is defined without considering the fuzzy matching tokens. There-
fore, we extend our earlier conference paper [Wang et al. 2011a] to support weighted
token similarity, and make the following significant contributions.

• We proposed weighted fuzzy-token similarity to quantify the fuzzy-token similarity
of weighted token sets.

• To support weighted fuzzy-token similarity, we proposed effective signature
schemes for weighted token sets, i.e., weighted-prefix-filtering signature scheme and
weighted-token-sensitive signature scheme.

• We conducted new experiments to evaluate our newly proposed signature schemes,
and compare with more existing similarity functions on result quality.

• We formally proved the correctness of our techniques in all Lemmas and Theorems.

Some other related fields are approximate string searching [Kim et al. 2005; Li et al.
2007; Li et al. 2008; Hadjieleftheriou et al. 2008; Lee et al. 2007; Hadjieleftheriou
et al. 2009; Zhang et al. 2010; Deng et al. 2013], [Kim et al. 2005], which given a query
string and a set of strings, finds all similar strings of the query string in the string
set, and approximate entity extraction [Wang et al. 2009; Chakrabarti et al. 2008;
Agrawal et al. 2008; Lu et al. 2009; Chaudhuri et al. 2009; Li et al. 2011a], which
given a document and a set of strings, extracts all substrings from the document that
are similar with the strings in the string set.

9. CONCLUSION
In this paper we have studied the problem of string similarity join. We proposed a
new similarity function by combing token-based similarity and character-based simi-
larity. We proved that existing similarities are special cases of fuzzy-token similarity.
We proposed a signature-based framework to address the similarity join using fuzzy-
token similarity. We proposed token-sensitive signature scheme, which is superior to
the state-of-the-art signature scheme. We extended existing signature schemes for
edit distance to support edit similarity. We devised a partition-based token signature
scheme and developed pruning techniques to improve the performance. We also ex-
tended fuzzy-token similarity to support weighted tokens, and developed effective sig-
nature schemes, i.e., weighted-prefix-filtering signature scheme and weighted-token-
sensitive signature scheme, to improve the performance. The experimental results on
real datasets show that our method achieves high result quality and performance.

10. ACKNOWLEDGEMENT
This work was partly supported by the National Natural Science Foundation of China
under Grant No. 61003004, 61272090, and 61373024, National Grand Fundamental
Research 973 Program of China under Grant No. 2011CB302206, a project of Tsinghua
University under Grant No. 20111081073, Tsinghua-Tencent Joint Laboratory for In-
ternet Innovation Technology, and the “NExT Research Center” funded by MDA, Sin-
gapore, under Grant No. WBS:R-252-300-001-490.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

1:44 J. Wang et al.

References
AGRAWAL, S., CHAKRABARTI, K., CHAUDHURI, S., AND GANTI, V. 2008. Scalable ad-hoc entity extraction

from text collections. PVLDB 1, 1, 945–957.
ARASU, A., CHAUDHURI, S., AND KAUSHIK, R. 2008. Transformation-based framework for record matching.

In ICDE. 40–49.
ARASU, A., GANTI, V., AND KAUSHIK, R. 2006. Efficient exact set-similarity joins. In VLDB. 918–929.
BAEZA-YATES, R. A. AND RIBEIRO-NETO, B. A. 1999. Modern Information Retrieval. ACM Press / Addison-

Wesley.
BAYARDO, R. J., MA, Y., AND SRIKANT, R. 2007. Scaling up all pairs similarity search. In WWW. 131–140.
BERTSEKAS, D. P. 1993. A simple and fast label correcting algorithm for shortest paths. Netw. 23, 7, 703–

709.
CHAKRABARTI, K., CHAUDHURI, S., GANTI, V., AND XIN, D. 2008. An efficient filter for approximate mem-

bership checking. In SIGMOD Conference. 805–818.
CHANDEL, A., HASSANZADEH, O., KOUDAS, N., SADOGHI, M., AND SRIVASTAVA, D. 2007. Benchmarking

declarative approximate selection predicates. In SIGMOD Conference. 353–364.
CHAUDHURI, S., CHEN, B.-C., GANTI, V., AND KAUSHIK, R. 2007. Example-driven design of efficient record

matching queries. In VLDB. 327–338.
CHAUDHURI, S., GANJAM, K., GANTI, V., AND MOTWANI, R. 2003. Robust and efficient fuzzy match for

online data cleaning. In SIGMOD Conference. 313–324.
CHAUDHURI, S., GANTI, V., AND KAUSHIK, R. 2006. A primitive operator for similarity joins in data clean-

ing. In ICDE. 5–16.
CHAUDHURI, S., GANTI, V., AND XIN, D. 2009. Mining document collections to facilitate accurate approxi-

mate entity matching. PVLDB 2, 1, 395–406.
COHEN, W. W., RAVIKUMAR, P. D., AND FIENBERG, S. E. 2003. A comparison of string distance metrics for

name-matching tasks. In IIWeb. 73–78.
DENG, D., LI, G., FENG, J., AND LI, W.-S. 2013. Top-k string similarity search with edit-distance con-

straints. In ICDE. 925–936.
GRAVANO, L., IPEIROTIS, P. G., JAGADISH, H. V., KOUDAS, N., MUTHUKRISHNAN, S., AND SRIVASTAVA,

D. 2001. Approximate string joins in a database (almost) for free. In VLDB. 491–500.
HADJIELEFTHERIOU, M., CHANDEL, A., KOUDAS, N., AND SRIVASTAVA, D. 2008. Fast indexes and algo-

rithms for set similarity selection queries. In ICDE. 267–276.
HADJIELEFTHERIOU, M., KOUDAS, N., AND SRIVASTAVA, D. 2009. Incremental maintenance of length nor-

malized indexes for approximate string matching. In SIGMOD Conference. 429–440.
HADJIELEFTHERIOU, M. AND SRIVASTAVA, D. 2010. Weighted set-based string similarity. IEEE Data Eng.

Bull. 33, 1, 25–36.
HASSANZADEH, O. AND MILLER, R. J. 2009. Creating probabilistic databases from duplicated data. VLDB

J. 18, 5, 1141–1166.
JACOX, E. H. AND SAMET, H. 2008. Metric space similarity joins. ACM Trans. Database Syst. 33, 2.
JESTES, J., LI, F., YAN, Z., AND YI, K. 2010. Probabilistic string similarity joins. In SIGMOD Conference.

327–338.
KIM, M.-S., WHANG, K.-Y., LEE, J.-G., AND LEE, M.-J. 2005. n-Gram/2L: A space and time efficient two-

level n-gram inverted index structure. In VLDB. 325–336.
LEE, H., NG, R. T., AND SHIM, K. 2007. Extending q-grams to estimate selectivity of string matching with

low edit distance. In VLDB. 195–206.
LI, C., LU, J., AND LU, Y. 2008. Efficient merging and filtering algorithms for approximate string searches.

In ICDE. 257–266.
LI, C., WANG, B., AND YANG, X. 2007. VGRAM: Improving performance of approximate queries on string

collections using variable-length grams. In VLDB. 303–314.
LI, G., DENG, D., AND FENG, J. 2011a. Faerie: efficient filtering algorithms for approximate dictionary-

based entity extraction. In SIGMOD Conference. 529–540.
LI, G., DENG, D., WANG, J., AND FENG, J. 2011b. Pass-Join: A partition-based method for similarity joins.

PVLDB 5, 3, 253–264.
LU, J., HAN, J., AND MENG, X. 2009. Efficient algorithms for approximate member extraction using

signature-based inverted lists. In CIKM. 315–324.
QIN, J., WANG, W., LU, Y., XIAO, C., AND LIN, X. 2011. Efficient exact edit similarity query processing with

the asymmetric signature scheme. In SIGMOD Conference. 1033–1044.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

Extending String Similarity Join to Tolerant Fuzzy Token Matching 1:45

SARAWAGI, S. AND KIRPAL, A. 2004. Efficient set joins on similarity predicates. In SIGMOD Conference.
743–754.

T. BOCEK, E. HUNT, B. S. 2007. Fast Similarity Search in Large Dictionaries. Tech. Rep. ifi-2007.02, De-
partment of Informatics, University of Zurich. April. http://fastss.csg.uzh.ch/.

VERNICA, R., CAREY, M. J., AND LI, C. 2010. Efficient parallel set-similarity joins using mapreduce. In
SIGMOD Conference. 495–506.

WANG, J., LI, G., AND FENG, J. 2010. Trie-Join: Efficient trie-based string similarity joins with edit-distance
constraints. PVLDB 3, 1, 1219–1230.

WANG, J., LI, G., AND FENG, J. 2011a. Fast-join: An efficient method for fuzzy token matching based string
similarity join. In ICDE. 458–469.

WANG, J., LI, G., AND FENG, J. 2012. Can we beat the prefix filtering?: an adaptive framework for similarity
join and search. In SIGMOD Conference. 85–96.

WANG, J., LI, G., YU, J. X., AND FENG, J. 2011b. Entity matching: How similar is similar. PVLDB 4, 10,
622–633.

WANG, W., XIAO, C., LIN, X., AND ZHANG, C. 2009. Efficient approximate entity extraction with edit dis-
tance constraints. In SIGMOD Conference. 759–770.

XIAO, C., WANG, W., AND LIN, X. 2008a. Ed-join: an efficient algorithm for similarity joins with edit distance
constraints. PVLDB 1, 1, 933–944.

XIAO, C., WANG, W., LIN, X., AND SHANG, H. 2009. Top-k set similarity joins. In ICDE. 916–927.
XIAO, C., WANG, W., LIN, X., AND YU, J. X. 2008b. Efficient similarity joins for near duplicate detection. In

WWW. 131–140.
ZHANG, Z., HADJIELEFTHERIOU, M., OOI, B. C., AND SRIVASTAVA, D. 2010. Bed-tree: an all-purpose index

structure for string similarity search based on edit distance. In SIGMOD Conference. 915–926.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.

