»= VLDB

Cloud-Native Databases

Guoliang Li Haowen Dong Chao Zhang

Tsinghua University

Motivation of Cloud Database

OMarket Trends: Databases are moving to Cloud
> Growth Speed Cloud Database
* 68% of the growth of the DBMS Market came from cloud.

« 38.2% annual growth rate from 2021 to 2026.

» Revenue Rate
* $39.2 billion, 49% of all DBMS revenue from cloud(2021). =
» Market Share 2020 w2025

Cloud and On Premises DBMS Revenue

* 75% of Databases will be on Cloud in 2023

> “The future of DBMS Market is Cloud.” I I I II
.I il | |
mCloud mOnPremises 2

VLDB’22 Tutorial

Motivation of Cloud Database

OAdvantages for Cloud Database Customers

Auto Scaling Service.
» Service can auto scale up
or down based on workload.

Infinite Capacity.

» The system can provide
nearly infinite resources to
users.

Out-of-the-box Feature.

» Users can use the service
without worrying about the
complex deployment process.

Auto Tuning & Optimizing.
» Support auto tuning &
optimizing.

Q

Elasticity

~

.

Flexibility

N

Availability

Q

Low Price

L

>

N

High Service Availability.

» The system maintains multiple
replicas to support high service
availability.

Strong Data Durability.

> Replicas deployed in different
locations guarantee data
durability over extreme disasters.

Pay-as-you-go Pricing Model.

» Converting capital expenses
to operating expenses. Users
only need to pay for usage,
instead of the maximum
capacity of the whole
workload.

Motivation of Cloud Database
OAdvantages for Cloud Database Providers

Demand Expansion. Scale Effect in Deployment.
» The era of big data, the » Wholesale price on hardware
demand of data processing purchase.
is expanding rapidly. Expand Reduce » Hyperscale data centers.
Market
New Target Customers. Cusa’lcorger Costs Scale Effect in Operation.
> Flexibility of service attracts » Unified management team.
grand amount of small > Low electricity price, benefits
business or individual users of data center locations.
without professional data
management team. F\I’renSp(;(lj:’/Cee
Utilization

Rent Idle Resources
as Cloud Service

=

A

Resource Utilization. Capacity
» Fixed-sized resource provisioning
meets dynamic workloads. —>

[
, \/\/\/\ Workload
> Rent resources as cloud service

to improve utilization. >
Time

Resource

Outline of Tutorial

From Cloud-Hosting to Cloud-Native

Cloud-Native OLTP Architectures

Cloud-Native OLTP Techniques

Cloud-Native OLAP Architectures

Cloud-Native OLAP Techniques

Open Problems & Opportunities |

From Cloud-Hosting to Cloud-Native

Application

Application

Load Balance

Load Balance

Disaggregation
/—_—\ . ——T
Primary Instance Secondary Instance Secondary Instance f()]’ Elast]c Primary Node Secondary Node Secondary Node
Cloud VM 1 Cloud VM 2 Cloud VM 3 — Cloud Computing Service

Compute Compute Compute

Compute S| Compute Compute Engine —> Engine —> Engine
Engine Engine Engine /\

A A A @ ﬁ ﬁ
= jvt S :llt S jvt Cloud Storage Service

torage torage torage Stora

. ; ; ge Storage Storage

Engine Engine Engine =oe —> Srtic —> Engine

Cloud-Hosting Database Cloud-Native Database
<Disaggregation
I
| | | |
Architecture 10 Scaling Data Update
Shared Everything Local Access VM-level Dirty Page Flush
\ ¥ ¥ ¥
Shared Storage Network Access Node-level Redo Log Replay

Cloud-Native OLTP Architectures

VLDB’22 Tutorial

An Overview of Cloud OLTP Architectures

m

Compute 4' Load Balancer I—
Layer I
I
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache
Storage
Layer C Storag? Cloud
1
v ¥ ¥ ¥
Storage Node Storage Node Storage Node Backup
- - i
oo OO0 oo

D000

D000

0000

Cloud
Storage Service

VLDB’22 Tutorial

(1) Disaggregated Compute-Storage

Compute 4' Load Balancer |—
Layer I
I
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache
Storage Log Page
Layer Storage Cloud - -)—-& - » Storage Cloud
: ! ' : ! '
Log Store||Log Store| |Log Store| |Page Store | |Page Store | |Page Store

Cloud
Storage Service

(2) Disaggregated Compute-Log-Storage

An Overview of Cloud OLTP Architectures

m

Load Balancer

I
/ [
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache

Storage Storage CloudJ

1
_ 7 _) ¥
" " . Backup
Log Store Page Store Page Store

H DDDDH i

(3) Disaggregated Compute-Buffer-Storage

VLDB’22 Tutorial

(1) Disaggregated Compute-Storage Architecture

Secondary
RO Node

Cache JJ

]

Storage Node
i

0000
AR

VLDB’22 Tutorial

¥
Backup

Application
Compute Load Balancer
Layer
Primary
RW Node Compute Cloud
Cache
Storage
Layer - Storag? Cloud/
1
¥]
Storage Node Storage Node
i i
noon) | |(000D

Motivations:

Elasticity. Compute and Storage
can be scheduled individually
Efficiency. Reduce write
amplification.

Availability. Multi-layer recovery
mechanism to handle various
exceptions.

= Key Features:

Cloud ¢
Storage Service

Disaggregation of Compute &
Storage.
Log is the database.

10

(1) Disaggregated Compute-Storage Architecture

Data write path:
Primary node updates local page in
cache and generates redo log.

Application

J

Compute Load Balancer - -
Layer : 2. Primary node writes redo log to
Primary ' Secondary majority nodes in the storage cloud.
@) BW Node Compute Cloud RO Node 3. Commit the write after the majority of
Cache Cache . . . eqs
data replicas finish the log writing
"""""""""""""""""""" process for durability.
Storage Storage Cloud
Layer k' - %
1
f 7 1 ¥
Storage Node Storage Node Storage Node Backup
> S >
000 000 000 &
DDDD DDDD DDDD Storage Service
VLDB’22 Tutorial 11

(1) Disaggregated Compute-Storage Architecture

m = Data write path:
1. Primary node updates local page in

______________________________________ cache and generates redo log.
2. Primary node writes redo log to

Layer I
Primary ' Secondary majority nodes in the storage cloud.
RW Node Compute Cloud RO Node 3. Commit the write after the majority of
Cache Cache . . ey
data replicas finish the log writing
process for durability.

Compute Load Balancer

S

Storage
Layer C Storag? Cloud/

1
v v) L

Storage Node Storage Node Storage Node Backup

S -
oooo || |{oooo|| ||ooo o
noon || || oenn]| || Boon (B

VLDB’22 Tutorial 12

(1) Disaggregated Compute-Storage Architecture

m = Data write path:
. 1. Primary node updates local page in

______________________________________ cache and generates redo log.
2. Primary node writes redo log to

Layer I
Primary g majority nodes in the storage cloud.
RW Node Compute Cloud RO Node 3. Commit the write after the majority of
Cache Cache

data replicas finish the log writing

process for durability.
Storage //_\d

Layer C Storag? Clou =
1
¥ ¥] v

Storage Node Storage Node Storage Node Backup

S -
oooo || |{oooo|| ||ooo o
noon || || oenn]| || Boon (B

Compute Load Balancer

VLDB’22 Tutorial 13

(1) Disaggregated Compute-Storage Architecture

m

Data write path:

______________________________________ 1. Primary node updates local page in
cache and generates redo log.
Compute Load Balancer . .
Layer 2. Primary node writes redo log to
Primary Secondary majority nodes in the storage cloud.
RW Node Compute Cloud RO Node 3. Commit the write after the majority of
cache Cache data replicas finish the log writing
"""""""""""""""""""""" process for durability.
Storage Storage Cloud
Layer -
D ~ — 1 */ ' = Data sync path:
Storage Node Storage Node Storage Node Backup 1 . The Consistency Of reD“CaS iS
— | |~——| |[— maintained based on the log data.
BBBB BBBB BBBB sopoud 2. Redo logs are replayed to the page
: asynchronously in the storage node.

3. Directly transfer logs to secondary
nodes to reduce the update latency.

VLDB’22 Tutorial 14

(1) Disaggregated Compute-Storage Architecture

Data write path:
Primary node updates local page in
cache and generates redo log.

Application

J

Compute Load Balancer . .
Layer : 2. Primary node writes redo log to
Primary ' Secondary majority nodes_ in the storage _chud.
RW Node Compute Cloud RO Node 3. Commit the write after the majority of
Cache Cache . . ey
, data replicas finish the log writing
"""""""""""""""""""""" process for durability.
Storage
Layer

» Storage Cloud
. gi D

v

L]

]

L

Data sync path:

Storage Node | [Storage Node | [Storage Node Backup 1. The consistency of replicas is
— 23| |——| |[— maintained based on the log data.
BBBB BBBB BBBB @;@ 2. Redo logs are replayed to the page
asynchronously in the storage node.
3. Directly transfer logs to secondary
nodes to reduce the update latency.
VLDB’22 Tutorial 15

(1) Disaggregated Compute-Storage Architecture

m

Data write path:
Primary node updates local page in
cache and generates redo log.
Primary node writes redo log to
majority nodes in the storage cloud.
Commit the write after the majority of
data replicas finish the log writing
process for durability.

—_—

Load Balancer

Layer [2.
I
Primary Secondary
RW Node Compute Cloud RO Node 3.
Cache Cache

St /\ [;3)
orage
d

Layer - Storag? Clou)

Data sync path:

v

L]

]

Storage Node | [Storage Node | [Storage Node Backup 1. The consistency of replicas is
— | |~——3| |[— maintained based on the log data.
BBBB BBBB BBBB @;@ 2. Redo logs are replayed to the page
asynchronously in the storage node.
3. Directly transfer logs to secondary
nodes to reduce the update latency.
VLDB’22 Tutorial 16

(1) Disaggregated Compute-Storage Architecture

m

» Data read path:

Backup

Cloud 4.
Storage Service

Compute Load Balancer
Layer
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache
Storage
Layer - Storag? Cloud/
1
Y]] ¥
Storage Node Storage Node Storage Node
- i i
noon) | |(0o0o)| {(DooD
al

VLDB’22 Tutori

First, compute node will check its local

cache. When data is in the local

cache and valid, it can directly load

data from the local cache and return.

When the cache misses in (1),

compute node will send read requests

to the storage layer.

For each node in the storage layer:

« When data in the page is new,
directly load data from the page.

« Else replay the page from redo
logs.

Compute node receives data from

nodes in storage layer and runs cache

replacement strategy in the local

cache, then returns.

17

(1) Disaggregated Compute-Storage Architecture

» Data read path:
m 1. First, compute node will check its local

cache. When data is in the local cache

and valid, it can directly load data from

Compute Load Balancer
Layer .' the local cache and return.
Primary & Secondary 2. When the cache misses in (1),
RW Nod RO Nod .
o Fampiita Gl —— compute node will send read requests
_____________________________________ to the storage layer.
3. For each node in the storage layer:
Storage @ . .
Layer « When data in the page is new,

- Storag? Cloud/
1 directly load data from the page.

v

L]

]

« Else replay the page from redo

Storage Node Storage Node Storage Node Backup

s N e —— logs.

BBBB BBBB BBBD @;@ 4. Compute node receives data from
nodes in storage layer and runs cache
replacement strategy in the local
cache, then returns.

VLDB’22 Tutorial 18

(1) Disaggregated Compute-Storage Architecture

» Data read path:
m 1. First, compute node will check its local

cache. When data is in the local cache

and valid, it can directly load data from

Compute Load Balancer
Layer .' the local cache and return.
Primary & Secondary 2. When the cache misses in (1),
RW Nod RO Nod .
p— SN — compute node will send read requests
ache Cache
_____________________________________ to the storage layer.
/\ r 3. For each node in the storage layer:
Storage . .
Layer (" Storage Cloud — « When data in the page is new,

directly load data from the page.

Y

¥

=,

 Else replay the page from redo

Storage Node Storage Node Storage Node Backup

s e —— logs.

BBBB BBBB BBBD @;@ 4. Compute node receives data from
nodes in storage layer and runs cache
replacement strategy in the local
cache, then returns.

VLDB’22 Tutorial 19

(1) Disaggregated Compute-Storage Architecture

@

Compute Load Balancer
Layer
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache @
Layer - Storag? Cloud/
1
¥ v v ¥
Storage Node Storage Node Storage Node
- i i
noon)| {(ooon]| {(ooon
al

VLDB’22 Tutori

Backup

Cloud 4.
Storage Service

» Data read path:

First, compute node will check its local

cache. When data is in the local cache

and valid, it can directly load data from

the local cache and return.

When the cache misses in (1),

compute node will send read requests

to the storage layer.

For each node in the storage layer:

« When data in the page is new,
directly load data from the page.

» Else replay the newest page from
redo logs.

Compute node receives data from

nodes in storage layer and runs cache

replacement strateqgy in the local

cache, then returns.

20

(1) Disaggregated Compute-Storage Architecture

O Advantages compared to Traditional Architecture:

» Low write latency.

» Write can be committed without waiting for updating pages in storage nodes.
» Reduce write amplification.

» Log replay is pushdown to the storage layer. Avoid dirty page flush during data writing.

» Shared-storage architecture. Avoid that single instance maintains multiple storage replicas.
> Better elasticity.

» Disaggregation of compute and storage resources, which can be scheduled independently.

O Limitations:

» High read latency when cache misses.
» The update data may not be replayed to the page, leading to extra read latency for log
replaying.
VLDB’22 Tutorial 21

(1) Disaggregated Compute-Storage Architecture

Application

Q Application)

Customer VPC

Compute Load Balancer Primary RW DB Secondary RO DB
Layer I Aurora Aurora
[<: MySQL MySQL
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache Storage VPC
Storage ‘ T T ‘ T ‘
Layer - Storag? Cloud/ g | | . | | g | . |
1
f I ! } >
Storage Node Storage Node Storage Node Backup
> > >
0000 Examples:

0000
D000

D000

0000
AR

Verbitski, Alexandre, et al. Amazon aurora: Design considerations for high throughput cloud-native relational databases. SIGMOD, 2017.

VLDB’22 Tutori

al

[
Cloud
Storage Service

e AWS Aurora

(1) Disaggregated Compute-Storage Architecture

(ZONE ONE) C ZONE TWO) C ZONE <any>)
Application PRIMARY F::;‘EIVCT ” gfﬁ% "
______________________________________ OPTIMIZED POSTGRESQL OPTIMIZED POSTGRESQL OPTIMIZED POSTGRESQL
Compute Load Balancer 222Ieylteifastor Cache ﬁzizgfior Cache ﬁ?i'eylﬂfior ache
Layer I L
’ I] A]
Primary secondary @ ! Only Log Writes Il @ No BLOCK Writes
RW Node Compute Cloud RO Node . ,
Cache Cache

Storage
Layer \V Storag? ClOUd‘/ (Google’s Distributed File System - Colossus)
1
¥ v v ¥
Storage Node Storage Node Storage Node Backup
i > <
oooo || ||oooo|| ||oooo cloud = Examples:
DO00O || ((DODO || {000 || (storage service « AWS Aurora
- GCP AlloyDB

Figure from https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-columnar-engine

VLDB’22 Tutorial

(2) Disaggregated Compute-Log-Storage Architecture

= Motivations:
@ - Efficiency. Better write

______________________________________ performance with faster Log

Compute Load Balancer storage service.
Layer ! .' « Elasticity. The scaling of Log &
Primary & Secondary Page Storage is independent of
R\évar:::e Compute Cloud Rgar:::e JJ each other.

Storage Log Page u Key Features:
Layer Storage Cloud — =)—(= - » Storage Cloud « Disaggregation of Log & Page
l l 1] | | L | Storage.
Log Store||Log Store| [Log Store| |Page Store | |Page Store | |Page Store Backup * Dlﬁerent features Of LOg &

Gl (=] Sorageseios st Log Sor

VLDB’22 Tutorial 24

(2) Disaggregated Compute-Log-Storage Architecture
= Data write path:
m 1. Primary node updates local page in
Application cache and generates redo log.
---------------- | 2. Primary node writes redo log to
Compute Load Baancer majority nodes in the log storage

La
ver : = cloud.
Primary Secondary : : P
B Node T RO Node 3. Commlt. the write after the majority of
®| cache Cache log replicas finish the log writing

____________________________________ process for durability.

Storage Log Page
Layer Storage Cloud - =)—(= - » Storage Cloud
1 t
: { : » »
Log Store||Log Store| |Log Store| |Page Store | |Page Store | |Page Store Backup

@ @ @ Cloud
Storage Service

VLDB’22 Tutorial 25

(2) Disaggregated Compute-Log-Storage Architecture
= Data write path:

o 1. Primary node updates local page in
Application cache and generates redo log.

---------------- - 2. Primary node writes redo log to
Compute Load Balancer majority nodes in the log storage

La
ver : = cloud.
Primary Secondary : : P
B Node T RO Node 3. Commlt. the write after the majority of
Cache Cache log replicas finish the log writing

____________________________________ process for durability.

Storage @ e Page
Layer Storage Cloud - =)—(= - » Storage Cloud
I t
' ¢ R » »
Log Store||Log Store| |Log Store| |Page Store | |Page Store | |Page Store Backup

e— e—
@ m m m Cloud
Storage Service

VLDB’22 Tutorial 26

(2) Disaggregated Compute-Log-Storage Architecture
= Data write path:

o 1. Primary node updates local page in
® et cache and generates redo log.

———————————————————— - 2. Primary node writes redo log to
Compute Load Balancer majority nodes in the log storage

La
yor : L cloud.
Primary Secondary : : P
B Node T RO Node 3. Commit _the write after the majority of
Cache Cache log replicas finish the log writing

____________________________________ process for durability.

Storage Log Page
Layer Storage Cloud - =)—(= - » Storage Cloud
I~ t
' ¢ R » »
Log Store||Log Store| |Log Store| |Page Store | |Page Store | |Page Store Backup

e— e—
@ m m m Cloud
Storage Service

VLDB’22 Tutorial 27

(2) Disaggregated Compute-Log-Storage Architecture

1.
Application
2.
Compute Load Balancer 3
Layer L ['
A I
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache
———————————————————————————————————— .
Storage Log - 1.
Layer Storage Cloud — = DT Storage Cloud
t f 2
‘ ! : L &
Log Store||Log Store| [Log Store| |Page Store | |Page Store | |Page Store Backup 3.
e—— Fe— — e —— e—
EN
Storage Service 4.
5.

VLDB’22 Tutorial

Data write path:
Primary node updates local page in
cache and generates redo log.
Primary node writes redo log to majority
nodes in the log storage cloud.
Commit the write after the majority of log
replicas finish the log writing process for
durability.

Data sync path:
Read redo logs from the log storage and
send them to the page storage.
Redo logs are replayed to page storage
nodes asynchronously.
Different page storage nodes maintain
consistency with the gossip protocol.
When redo logs are replayed in all page
storage nodes, the log storage can be
truncated.
Directly transfer logs to secondary nodes
to reduce the update latency. 28

(2) Disaggregated Compute-Log-Storage Architecture

1.
Application
2.
Compute Load Balancer 3
Layer L ['
A I
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache
———————————————————————————————————— .
Storage Log - 1.
Layer Storage Cloud - -)—(~ - ~ Storage Cloud
t f 2
‘ ! ' P @ |
Log Store||Log Store| [Log Store| |Page Store | |Page Store | |Page Store Backup 3.
e—— Fe— — e —— e—
EN
Storage Service 4.
5.

VLDB’22 Tutorial

Data write path:
Primary node updates local page in
cache and generates redo log.
Primary node writes redo log to majority
nodes in the log storage cloud.
Commit the write after the majority of log
replicas finish the log writing process for
durability.

Data sync path:
Read redo logs from the log storage and
send them to the page storage.
Redo logs are replayed to page storage
nodes asynchronously.
Different page storage nodes maintain
consistency with the gossip protocol.
When redo logs are replayed in all page
storage nodes, the log storage can be
truncated.
Directly transfer logs to secondary nodes
to reduce the update latency. 29

(2) Disaggregated Compute-Log-Storage Architecture

1.
Application
2.
Compute Load Balancer 3
Layer L ['
A I
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache
———————————————————————————————————— .
Storage Log - 1.
Layer Storage Cloud - -)—(~ - ~ Storage Cloud
t ? 2
| ! ! ! R
Log Store||Log Store| [Log Store| |Page Store | |Page Store | |Page Store Backup 3.
e—— Fe— — e —— e—
EN
Storage Service 4.
5.

VLDB’22 Tutorial

Data write path:
Primary node updates local page in
cache and generates redo log.
Primary node writes redo log to majority
nodes in the log storage cloud.
Commit the write after the majority of log
replicas finish the log writing process for
durability.

Data sync path:
Read redo logs from the log storage and
send them to the page storage.
Redo logs are replayed to page storage
nodes asynchronously.
Different page storage nodes maintain
consistency with the gossip protocol.
When redo logs are replayed in all page
storage nodes, the log storage can be
truncated.
Directly transfer logs to secondary nodes
to reduce the update latency. 30

(2) Disaggregated Compute-Log-Storage Architecture

1.
Application
2.
Compute Load Balancer 3
Layer L ['
Y I
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache
———————————————————————————————————— .
Storage Log . 1.
Layer Storage Cloud - -)—(~ - ~ Storage Cloud
t ? 2
@ | ! } ! ! |
Log Store||Log Store| [Log Store| |Page Store | |Page Store | |Page Store Backup 3.
e—— Pe—— — e — e—e
EN
Storage Service 4.
5.

VLDB’22 Tuto

rial

Data write path:
Primary node updates local page in
cache and generates redo log.
Primary node writes redo log to majority
nodes in the log storage cloud.
Commit the write after the majority of log
replicas finish the log writing process for
durability.

Data sync path:
Read redo logs from the log storage and
send them to the page storage.
Redo logs are replayed to page storage
nodes asynchronously.
Different page storage nodes maintain
consistency with the gossip protocol.
When redo logs are replayed in all page
storage nodes, the log storage can be
truncated.
Directly transfer logs to secondary nodes
to reduce the update latency. 31

(2) Disaggregated Compute-Log-Storage Architecture

1.
Application
2.
Compute Load Balancer 3
Layer L ['
A I
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache
____________________________ J 4 . .
Storage Logm ~® (7 Page 1.
Layer Storage Cloud - =)—(~ - » Storage Cloud
t f 2
' ' . L :
Log Store||Log Store| [Log Store| |Page Store | |Page Store | |Page Store Backup 3.
~— Fe— ~—
En] |clf| =
Storage Service 4.
5.

VLDB’22 Tutorial

Data write path:
Primary node updates local page in
cache and generates redo log.
Primary node writes redo log to majority
nodes in the log storage cloud.
Commit the write after the majority of log
replicas finish the log writing process for
durability.

Data sync path:
Read redo logs from the log storage and
send them to the page storage.
Redo logs are replayed to page storage
nodes asynchronously.
Different page storage nodes maintain
consistency with the gossip protocol.
When redo logs are replayed in all page
storage nodes, the log storage can be
truncated.
Directly transfer logs to secondary nodes

to reduce the update latency. 32

(2) Disaggregated Compute-Log-Storage Architecture

» Data read path:

1.
Application
Compute Load Balancer 2
Layer [:
A [
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache 3.
Storage Log Page
Layer Storage Cloud - -)—(= - » Storage Cloud
t t
' ‘ ' L &
Log Store||Log Store| [Log Store| |Page Store | |Page Store | |Page Store Backup
——
] | G|] oo f s S
Cloud
VLDB'22 Tutorial

First, compute node will check its
local cache. When data is in the local

cache and valid, it can directly load
data from the local cache and return.

When the cache misses in (1),
compute node will send read
requests to the page storage cloud.
For each node in the page storage
cloud:
« When data in the page is new,
directly load data from the page.
» Else, wait for the sync process
until the data is new.
Compute node receives data from
page storage cloud and runs cache
replacement strategy in the local

cache, then returns. 33

(2) Disaggregated Compute-Log-Storage Architecture

» Data read path:

1.
Application
Compute Load Balancer 2
Layer [’
\ |
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache 3.
Storage Log Page ®
Layer Storage Cloud - -)—(= - » Storage Cloud
t t
' ‘ ' L &
Log Store||Log Store| [Log Store| |Page Store | |Page Store | |Page Store Backup
——
] | G|] oo f s S
Cloud
VLDB'22 Tutorial

First, compute node will check its
local cache. When data is in the local
cache and valid, it can directly load
data from the local cache and return.
When the cache misses in (1),
compute node will send read
requests to the page storage cloud.
For each node in the page storage
cloud:
« When data in the page is new,
directly load data from the page.
» Else, wait for the sync process
until the data is new.
Compute node receives data from
page storage cloud and runs cache
replacement strategy in the local
cache, then returns.

34

(2) Disaggregated Compute-Log-Storage Architecture

» Data read path:

1.
Application
Compute Load Balancer 2
Layer [’
\ |
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache 3.
Storage Log Page
Layer Storage Cloud - -)—(= - » Storage Cloud
1 t
' ! : L ® 3
Log Store||Log Store| [Log Store| |Page Store | |Page Store | |Page Store Backup
——
] | G| o oo | s S
Cloud
VLDB'22 Tutorial

First, compute node will check its
local cache. When data is in the local
cache and valid, it can directly load
data from the local cache and return.
When the cache misses in (1),
compute node will send read
requests to the page storage cloud.
For each node in the page storage
cloud:
« When data in the page is new,
directly load data from the page.
 Else, wait for the sync process
until the data is new.
Compute node receives data from
page storage cloud and runs cache
replacement strategy in the local
cache, then returns.

35

(2) Disaggregated Compute-Log-Storage Architecture

» Data read path:

1.
Application
Compute Load Balancer 2
Layer [:
A [
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache 3.
Storage Log Page
Layer Storage Cloud - -)—(= - » Storage Cloud
1 t
' ! : % »
Log Store||Log Store| [Log Store| |Page Store | |Page Store | |Page Store Backup
——
] | G| o oo | s S
Cloud
VLDB'22 Tutorial

First, compute node will check its
local cache. When data is in the local
cache and valid, it can directly load
data from the local cache and return.
When the cache misses in (1),
compute node will send read
requests to the page storage cloud.
For each node in the page storage
cloud:
« When data in the page is new,
directly load data from the page.
» Else, wait for the sync process
until the data is new.
Compute node receives data from
page storage cloud and runs cache
replacement strateqgy in the local
cache, then returns.

36

(2) Disaggregated Compute-Log-Storage Architecture
O Advantages:

» Low write latency.

» With the fast log storage service, write can be committed faster compared with
disaggregated compute-storage architecture.

> Better elasticity.

» The log and page storage can be scheduled independently, achieving a balance
between the cost and the performance.

O Limitations:
» High read latency when cache misses.
» The queries in computing nodes must wait for the log replay when the cache misses.

» More complex recovery algorithm.
» Data may be recovered from log storage, which requires a complex mechanism.

VLDB’22 Tutorial 37

(2) Disaggregated Compute-Log-Storage Architecture

‘ APPLICATION ‘
tRead/\’mte
. A Primary Secondary
Application
T —

A 4 —
.
Compute Load Balancer Rz:'cf:t GetPage@LN
Layer [" 4

| I ¢ ¢ ologApply
Primary Secondary o hoply e e e e e .
RW Node Compute Cloud RO Node : v v
Page Server #1 Page Server #2 Page Server #N
Cache Cache

SQL Server SQL Server SQL Server
see

Storage Log Page =
P, S . A
Layer ————— » Storage Cloud Y 28N \7'\‘ . Synchronous Async#onous
-'i- ®e e ’(}7 _ Azure Standard Storage (XStore) /><'Checkpoint/8ackup Interaction Interaction
L. e .

1
| | } » »

Log Store||Log Store| |Log Store| |Page Store | |Page Store | |Page Store Backup |m E Xxam ples .

< N < Fe— — e—e
* Azure HyperScale(Socrates)
Storage Service

Antonopoulos, Panagiotis, et al. Socrates: The new sql server in the cloud. SIGMOD, 2019.

VLDB’22 Tutorial 38

(2) Disaggregated Compute-Log-Storage Architecture

lication —
& DB master DB replica(s)

______________________________________ y (read-write) read-only
= Writing logs SAL SAL
—==> Readi

Compute Load Balancer eading pages t

Log head updates

Layer I <:
! |
Primary Secon dary Low-latency RDMA Storage Network
RW Node Compute Cloud RO Node TT ﬁ

Storage Log Page
Layer Storage Cloud — =)—(= - » Storage Cloud
t t
| ! | L & = Examples:
Log Store||Log Store| |Log Store| |Page Store | |Page Store | |Page Store Backup ° AZU re Hype rS Cale

< e—— e—— —
G~ * HUAWEI Taurus
Storage Service

Depoutovitch, Alex, et al. Taurus database: How to be fast, available, and frugal in the cloud. SIGMOD, 2020.

VLDB’22 Tutorial

39

(3) Disaggregated Compute-Buffer-Storage Architecture

Application

Compute Load Balancer
Layer
\ 4 I
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache
________ ! e .
Buffer o Page Array)| Page Arrayl Remote
Layer OO ™ (D0 Memo
_____________________ S e e e e e e e e e e e e e e - -
Storage &ﬁ‘ Storage CloudJ
Layer 1
_ 7 7 ¥
; ; ; Backup
Log Store Page Store Page Store

)

H

Cloud
Storage Service

VLDB’22 Tutorial

Motivations:

Latency. Reduce read latency with
shared remote memory.
Throughput. Reduce duplicate
data loading process of different
compute nodes.

Elasticity. The memory resources
can be dynamically allocated on
demand.

» Key Features:

Elastic shared remote buffer of all
compute nodes(RW node & RO
nodes)

40

(3) Disaggregated Compute-Buffer-Storage Architecture

Application

Compute

Layer

Load Balancer

Primary
RW Node

Cache

Compute Cloud

1
Secondary
RO Node
Cache

_______________ —

ge Array] Remote

Storage
Layer

R

» Storage Cloud
[o _)

1

Y

y

Y

L

Log Store

H Page Store
—

DOOD

H"

Page Store
—_—

0000

Cloud
Storage Service

Backup

VLDB’22 Tutorial

Data write path:
Primary node updates local page in
cache and generates redo log.
The redo log writes to log
storage(multi-replicas) for durability.
Commit the write after the redo log is
durable.
The corresponding page in the
shared buffer will be updated
simultaneously.

41

(3) Disaggregated Compute-Buffer-Storage Architecture

Application

Load Balancer

Compute Cloud

[
Secondary
RO Node
Cache

Compute
Layer
\
Primary
RW Node
Cache
a
Buffer
Layer

"""" S

Page Arra

oo

Page Arrayl Remote
D00 Ve

Storage
Layer

N

> Storage Cloud
& gA J

1

y

Y

Y

Log Store

0000

Page Store

D000

H D000

|

Backup

Cloud
Storage Service

VLDB’22 Tutorial

Data write path:
Primary node updates local page in
cache and generates redo log.
The redo log writes to log
storage(multi-replicas) for durability.

Commit the write after the redo log is
durable.

The corresponding page in the
shared buffer will be updated
simultaneously.

42

(3) Disaggregated Compute-Buffer-Storage Architecture

{\ Data write path:
® Application 1

Primary node updates local page in
““““““““““ | I cache and generates redo log.

Compute | oad Bal _
Layer oo moenee 2. Theredo Ioglwrltels to log -
C storage(multi-replicas) for durability.
Primary Secondary : :
RW Node Compute Cloud o Mot 3. F)ommlt the write after the redo log
Cache Cache IS durable.
e Y o _____ 4. The corresponding page in the
Buffer S——— Page AT3] Forcte shared buffer will be updated
Layer I) simultaneously.
Layer 1
. y] }
Log Store Page Store Backup

AR

H RANN

H

Cloud
Storage Service

VLDB’22 Tutorial

43

(3) Disaggregated Compute-Buffer-Storage Architecture

C/AB Data write path:
ppiication 1. Primary node updates local page in

‘ cache and generates redo log.
Compute

Layer Load Balancer 2. The redo log writes to log
v C storage(multi-replicas) for durability.
Primary Secondary i i i
ormary Compute Clood s 3. Commit the write after the redo log is
Cache Cache durable.
Y S r . 4. The corresponding page in the
Euffer @[[reorma] [Pegrma] nemre s.hared buffer will be updated
ayer [ODOO DD Memory simultaneously.
Storage C@j;c:b%
Layer 1
i ¥ . ¥ ¥

l Log Store H Page Store H Page Store “ Backup
— — —
Cloud
o000 || oo ||)|l e

VLDB’22 Tutorial 44

(3) Disaggregated Compute-Buffer-Storage Architecture

Application

Compute
Layer

Y

Load Balancer

Primary
RW Node

Compute Cloud

Storage
Layer

D00

Secondary
RO Node

Cache

Page Arrayl Remote

Y

Y

Log Store

=

Page Store

Page Store

Backup

VLDB’22 Tutorial

1.

2.

3.

4.

1.

2.

Cloud
Storage Service 3.

Data write path:

Primary node updates local page in
cache and generates redo log.

The redo log writes to log
storage(multi-replicas) for durability.
Commit the write after the redo log is
durable.

The corresponding page in the
shared buffer will be updated
simultaneously.

Data sync path:
Page in the shared buffer will never
be written to storage nodes.
Redo logs are replayed to page
storage asynchronously.
Directly transfer logs to secondary

nodes to reduce the update latency.
45

(3) Disaggregated Compute-Buffer-Storage Architecture

Application

Compute Load Balancer
Layer |
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache
Buffer | |Page Arra Page Array] Remote
Layer DDO (D00 Memey
Storage &¢ Storage CloudJ
Layer @ I
_ 7 7 }
) ' Backup
Log Store Page Store Page Store
— —_—

DOOD

BANE

VLDB’22 Tutorial

1.

2.

Cloud
Storage Service 3.

Data write path:
Primary node updates local page in
cache and generates redo log.
The redo log writes to log
storage(multi-replicas) for durability.
Commit the write after the redo log is
durable.
The corresponding page in the
shared buffer will be updated
simultaneously.

Data sync path:

Page in the shared buffer will never
be written to storage nodes.

Redo logs are replayed to page
storage asynchronously.

Directly transfer logs to secondary

nodes to reduce the update latency.
46

(3) Disaggregated Compute-Buffer-Storage Architecture

Application

____________________ -
Compute Load Balancer
Layer
A / I |
Primary Secondary
RW Node Compute Cloud RO Node
Cache Cache
a J 3
Buffer | |Page Arra Page Array] Remote
Layer ' InD0l T InD0O| vemey
’45;;&iﬁr\ 9
Storage L’)
Layer 1
v v Y v
Log Store Page Store Page Store Backup

AR

BAAN

VLDB’22 Tutorial

1.

2.

3.

4.

1.

2.

Cloud
Storage Service 3.

Data write path:

Primary node updates local page in
cache and generates redo log.

The redo log writes to log
storage(multi-replicas) for durability.
Commit the write after the redo log is
durable.

The corresponding page in the
shared buffer will be updated
simultaneously.

Data sync path:
Page in the shared buffer will never
be written to storage nodes.
Redo logs are replayed to page
storage asynchronously.
Directly transfer logs to secondary

nodes to reduce the update latency.
47

(3) Disaggregated Compute-Buffer-Storage Architecture

Application

Compute

Load Balancer

Layer

Primary
RW Node Compute Cloud
Cache

I
Secondary
RO Node
@

Cache n

Buffer | |Page Arra Page Arayl Remote
Layer DDD “es DDD Mermory

Storage C@j;()lo%
Layer T

L

{ 3 — 3

Log Store H Page Store H Page Store
——

000D ||| [DooD

Cloud
Storage Service

Backup

VLDB’22 Tutorial

» Data read path:

4.

First, compute node will check its local

cache. When data is in the local cache

and valid, it can directly load data from

the local cache and return.

If the local cache misses in (1),
compute node will check the remote
shared buffer. When data is in the
remote buffer and valid, it can load
data from the remote buffer and return.
If the remote buffer misses in (2), it will
read data from page storage nodes,
and run the cache replacement
algorithm in the remote buffer.
Compute node receives data from the
remote buffer and runs cache
replacement strategy in the local
cache, then returns.

48

(3) Disaggregated Compute-Buffer-Storage Architecture

Application

» Data read path:

Compute Load Balancer
Layer
y [1
Primary Secondary 2.
RW Node Compute Cloud RO Node
Cache Cache
Buffer Page Arra Page Arrayl Remote @
Layer [][][] s [][] Memory
3.
Storage C@j?%
Layer 1
_ { !) 7 }
Log Store Page Store Page Store Backup 4.
—_— ——
Cloud
D I:I I:I I:I DDDD DDDD Storage Service
VLDB’22 Tutorial

First, compute node will check its local
cache. When data is in the local cache
and valid, it can directly load data from
the local cache and return.

If the local cache misses in (1),
compute node will check the remote
shared buffer. When data is in the
remote buffer and valid, it can load
data from remote buffer and return.

If the remote buffer misses in (2), it will
read data from page storage nodes,
and run the cache replacement
algorithm in the remote buffer.
Compute node receives data from the
remote buffer and runs cache
replacement strategy in the local
cache, then returns.

49

(3) Disaggregated Compute-Buffer-Storage Architecture

Application

» Data read path:

1.
____________________ Fr---—-—-—————————
Compute Load Balancer
Layer :
Primary Secondary 2 .
RW Node Compute Cloud RO Node
Cache Cache
Buffer | |Page Arra Page Array] Remote
Layer QOO (D00 Memer
_____________________ i 3'
/@em
Storage &)
Layer I &
v Li
Backup 4

. Log Store - Page Store i Page Store
H 0000 H 000D

Cloud
Storage Service

VLDB’22 Tutorial

First, compute node will check its local
cache. When data is in the local cache
and valid, it can directly load data from
the local cache and return.

If the local cache misses in (1),
compute node will check the remote
shared buffer. When data is in the
remote buffer and valid, it can load
data from the remote buffer and return.
If the remote buffer misses in 2), it will
read data from page storage nodes,
and run the cache replacement
algorithm in the remote buffer.
Compute node receives data from the
remote buffer and runs cache
replacement strategy in the local
cache, then returns.

50

(3) Disaggregated Compute-Buffer-Storage Architecture

» Data read path:
Application 1. First, compute node will check its local

______________________________________ cache. When data is in the local cache
Compute Load Balancer and valid, it can directly load data from
Layer ' 1 the local cache and return.
Primary Secondary 2. If the local cache misses in (1),
RW Node —fgnm— RO Node @ compute node will check the remote
Cache Cache shared buffer. When data is in the

- E‘ﬁ """"""""""""""""""" remote buffer and valid, it can load
urrer Page Arra Page Array] Remote
Layer ool - Inoo| vere data from the remote buffer and return.
_____________________ ———1 | 3. Ifthe remote buffer misses in (2), it will
read data from page storage nodes,
Storace £ Storage Cloni= page storag
L 9 -)) and run the cache replacement
aver ; — 7 . algorithm in the remote buffer.
' Log Store ' Page Store ' Page Store Backup 4. Compute node receives data from the
——— — o remote buffer and runs cache
noooj||(Do00 D000 Storage Service replacement strategy in the local

cache, then returns.
VLDB’22 Tutorial 51

(3) Disaggregated Compute-Buffer-Storage Architecture

O Advantages:

» Low read latency.

» Compute nodes can read data from remote memory, which is faster than durable storage
services.

» High read throughput.

» Different compute nodes share the same remote buffer area, which reduces the duplicate data
read for the same read requests on different compute nodes.

> Better elasticity.

» Memory resources can be dynamically allocated on demand, which is independent of compute
and storage resources.

O Limitations:
> Network bottleneck of the buffer layer.

» Remote memory requires high network throughput and low latency at the same time. Therefore,
the network of remote memory may become the bottleneck of the database system.

VLDB’22 Tutorial

52

(3) Disaggregated Compute-Buffer-Storage Architecture

Application

—————————————————————————————————————— CPU Coordination CPU

Compute Load Balancer I Local Memory] B e [LocalMemory |
Layer [Compute Node Compute Node
— ' <:) Network $
Primary Secondary 3 t
RW Node Compute Cloud RO Node '
Cache Cache
. S T Storage Memory
Buffer Storage Node Memory Node
L Page Array)| Page ArrayI Remote
ayer — e Memory
DDD DDD Storage Pool Memory Pool
""""""""""" t:;;;:""‘“““"
Storage &; Storag? CloudJ
Layer * : | :) = Examples:
- -' Backup » Alibaba PolarDB Serverless
Log Store Page Store Page Store

Cao, WEei, et al. Polardb serverless: A cloud native database for disaggregated data centers. SIGMOD, 2021.

VLDB’22 Tutorial 53

VLDB’22 Tutorial

Cloud-Native OLTP Techniques

54

Overview of Cloud-Native OLTP Techniques

T

Storage Management: Maintain the consistency of different data replicas.
Query Processing: Synchronize data updates between different computing nodes.

Recovery: Different-level recovery algorithms for various failures.

HTAP Supports: Handle OLAP workload on OLTP systems.

OLTP Workload + OLAP Workload [+
* ? * ? HTAP

2. Query Processing

f’ 1 Primary Secondary Secondary
R@ Instance Instance Instance

\ 4

3. Recovery :> (:: 4. HTAP Supports

1. Storage Management

O [[|

55

1. Storage Management in OLTP

1) Data Placement
a. Coupled Log & Page Storage
b. Disaggregated Log & Page Storage

2) Consistency Protocol
a. Quorum-based protocol: Aurora

b. Paxos-based protocol: PolarDB (PolarFS)

56

1. Storage Management in OLTP

1a) Coupled Log & Page Storage

Log is the Database.

Pages are never written from the
database tier(including background
writes, checkpointing, and cache
eviction).

Read data from logs, and pages are a
cache of the log applications.

Checkpointing & page materialization
are both governed by the length of the
log chain.

All pages are replayed from logs.

Cons: Extra time to analyze log chain

Request X in Version T

Storage Node

LOG_1001

X—1,v—2 |

LOG_9009
X—m

Page 1

A: 10001 | ..
B: 20002

C: 30003

Page k

X: 32001
Y: 23002
Z: 34003

I:> Return X in Version T

L1001 |- LVerT |+*L9009 .
Page k
X: 32001
Y: 23002
Z: 34003

[Update X to value n

L1001 | -] L20x0 |---| L9010
Page k)
X: 32001 Length L ; i
Y: 23002 I:> Notice write sucess
Z: 34003

@ Async Materializaed

L20x7 | =

L9010

Page k

X: X_20x0
Y: Y_20x0
Z: Z_20x0

57

1. Storage Management in OLTP

1a) Coupled Log & Page Storage (e.g., Amazon Aurora)

« Compute layer will never transform page data to the storage layer. (Fig. 3)
* Log & page are stored in the same node, while log chains control page replay. (Fig. 4)

AZ 1 I AZ 2 1 AZ3
ATy | fel : PITIee oyl OPNNP : Pttt btelsd SIS ‘
: : 1 : : (I : { a ;
] : : : : : © INCOMING QUEUE]
: Primary f+’: Replica 5—*—»5 Replica) LOG RECORDS ; - a :
:| [Instance |: ! :| [Instance | [:| Instance | Primary |, ACK e]
e ;) . e 1 b ClieCr 5 < | 1
: UPDATE - :
ey I ; QUEUE coaLesCE, ENSE
| | : B @XE=] SCRUB e
1 1 4
! ! f SORT le e l :
| 1 : GROUP]
........................... frormeeMeeeeen M YL :
:] -
: . v B . ! e . : Peer |, PeerTOPEERGOssIP, [T
........................... :.....‘........ ...slé+.R;éQ+é6..:.......................... StOrage ; > LOG 4
| WRITES | Nodes o] POINT IN TIME :
) I 3 SNAPSHOT |
| | e L e N
' - o
I I A 4
1 |
| Amazon S3 | [S3 BACKUP
Figure 3: Network 10 in Amazon Aurora Figure 4: 10 Traffic in Aurora Storage Nodes

Verbitski, Alexandre, et al. Amazon aurora: Design considerations for high throughput cloud-native relational databases. SIGMOD, 2017.

58

1. Storage Management in OLTP

1b) Disaggregated Log & Page Storage

Disaggregation of Durability & Availability.

Log storage for durability: reduce write
latency (Transaction commits after the logs
are durable).

Page storage for availability: accelerate read
processing (Avoid analyzing log chain).
Page storage nodes replay log data
asynchronously.

Some pages receive logs from Log
Storage; others from the sync process.

Cons: Sync latency when read from page
storage.

Write into Log Storage

Compute Cloud

Write Log U

Log Storage

7

Page Storage

Read from Page Storage

Compute Cloud

550

Background Sync
Log Stores—Page Stores

V

ﬁ Read Page

Log Storage

77

Page Storage

NN

Sync Process in Storage Layer
One Page Store Sync by Log Replaying

Log Storage

T

—

Page Storage

0O

Other Page Stores Sync by Consistency Protocol

Log Storage

|

K——

Page Storage

EXS

59

1. Storage Management in OLTP

1b) Disaggregated Log & Page Storage
(e.g., Taurus Database) S e

succeeds with 3 in data changes
replicas before write is
acknowledged to user

Log Store nodes
3 Write acknowledged

to user

» Log data for durability.

« Commit the writes after the log is persistent
(Step 1~3). i

slices have replicas

Computation%l node

‘ SQL Database

» Truncate the logs after the page is persistent saL |
5 When a replica
acknowledge, 7 eriodically asks
(Step 8)' database doegs not i:;epStor:s fcl)lrythekir
need to keep logs in 4 Data sent to Persistent LSN

Slice Page
store replicas

« Page data for availability. s | I

I Page Store replica #1 | | Page Store replica #3 ‘

« Compute nodes only read from page storage. 6 Gossip protocol

—-{ Page Store replica #2 ’47

» Storage nodes receive logs asynchronously
(Step 4~7).
* Log & Page are stored in different nodes

offered by different storage services.
Depoutovitch, Alex, et al. Taurus database: How to be fast, available, and frugal in the cloud. SIGMOD, 2020.

Figure 3: Taurus write path

60

1. Storage Management in OLTP

2a) Quorum-based Protocol Azt | Azz | Az3 o oAz1 | az2 | Az :
& st Rl T

 High concurrency, low fault X 416 write

| X | |

tolerance. — - m— Qv g N M survives |

: X Azfailure | : X X AZfailure |

° S|mp|e & para”el procedure. R IV, :
Necessity of 6 Replicas in Quorum

©

 Demand extra gossip process.
Case study: Aurora
» 6/4/3(N/W/R) for “AZ+1” failure toleration.

* Quorum membership for non-blocking
recovery.

Node Fis in suspect state; second
quorum group is formed with node G; both

quorums are active

O® OO

» Gossip to fill the missing writes of replicas. Node F i confirmed unhealthy; new

quorum group with node G is active.

Quorum Membership Changes

Verbitski, Alexandre, et al. Amazon aurora: On avoiding distributed consensus for i/os, commits, and membership changes. SIGMOD, 2018.

61

1. Storage Management in OLTP

2b) Paxos-based Protocol " e

 Strong fault tolerance, low concurrency.
Newbie Candidate Candidate
« Complex & linearized procedure. (3)commit

« Demand concurrency optimization. Overall of Parallel Raft

Case study: PolarFS B = | e
» Parallel Raft Protocol, Derived from Raft . . —
and better support for high concurrent I/Os .

- Allowing out-of-order log acknowledging, rase? .ﬂ_ﬂ idx: rﬁ rotower
committing, and applying. case 3 . § § L | o

» Optimized catch-up mechanism for lagging
followers.

Fast Catch Up Process in Parallel Raft

Cao, WEei, et al. PolarFS: an ultra-low latency and failure resilient distributed file system for shared storage cloud database. VLDB, 2018.

62

2. Query Processing in OLTP

1) Synchronization for Secondary Nodes
a. Read from Persistent Storage Services
b. Local Cache Synchronization with Redo Log

c. Read from Shared Remote Buffer

1 . 1 . 1 .
Primary Secondary “ Primary Secondary “ Primary Secondary
Cache Cache Cache Cache Cache Cache

| 1 |

EPersistent Storage EPersstent Storagej EPersmtent Storagej

() Sync with Persistent Storage b) Sync with Local Cache c) Sync with Shared Buffer

2. Query Processing in OLTP

1a) Read from persistent storage services

« The most fundamental guarantee of data
consistency.

* One primary RW node with multiple RO
secondary nodes. To achieve high
concurrency, data updates in the primary
node will not wait for buffer synchronization
of secondary nodes.

* Reading data from storage services will
suffer from much longer latency than
reading from the cache.

Primary Secondary

Cache Cache

E Persistent Storage

Sync with Persistent Storage

64

2. Query Processing in OLTP

1b) Local Cache Synchronization with Log

* Low sync latency, transmit redo log from the

primary node to secondary nodes for cache
status sync.

* High concurrency with lossy protocol, the
primary does not require sync confirmation
from secondaries.

» Offload log transmission from the primary
node to log storage. Avoid network
bottleneck at the primary node.

Primary

Cache

Secondary

Cache

1

E Persistent Storagej

Sync with Local Cache

65

2. Query Processing in OLTP

1b) Local Cache Synchronization with
Log (e.g., HyperScale)

Disaggregated Compute-Log-Storage
Architecture, independent log storage service.

Motivation: Reduce the update delay between
the primary node and secondary nodes.

Lossy Protocol: Asynchronous and possibly
unreliable (in a fire-and-forget style). Avoid
blocking the data write process.
Techniques:

« Pending area: transaction caching for atomicity.

« Destaging: Log truncation to save space.

Primary

[SQL Server Engine J

Virtualized 10

XLOG Service |

XLOG Process

 Pending |

LOG

\/

Blocks

2

Destaging
! o
ﬁ Landing Zone
U

Azure Standard Storage (XStore)

BSN:150, —

Length: 5,

Filter:0x3} ——

Not Yet
Received

BSN:110, | og Bloc
Length: 13, [;5&.118

Filter:0x51}

'____,d-/
\R__/_d/

LocalCache

Figure 3: XLOG Service

Antonopoulos, Panagiotis, et al. Socrates: The new sql server in the cloud. SIGMOD, 2019.

66

2. Query Processing in OLTP

2 Read replica queries master for
1b) Local Cache Synchronization with Log e et Lo oo

LSN that might be used

Read replica

SAL

Master replica

(e.g., Taurus Database) saL

3 Read replica
reads log records
to update its

buffer pool

Network offloading: Secondary nodes get logs
from Log Storage instead of the Primary node.

Log Store nodes
4 Read replica

« Two types of consistency: physical & logical. 1 Master writes log reacs page from
records to Log and Page Store age stores
° H H .1 H _ Page Stores
Physical consistency: internal structures like b-tree. Network offloading to Log Storage
» Primary node: Locking pages (only inside a node).
B-tree Split Redo Logs
« Secondary nodes: Log records group boundary. NodeO | [=> |Node0 | [=> [Log0]Logt]Log2] -
: : : : H ! PR —— Compute
» Logical consistency: transaction isolation. Node 1 Node 1 | | Node 2 Log Group Layer
* Primary node: Generate commit log. "~ Redo ——— [Logo| Redo ————_ Storage
. . w Storage Log1 |:> Layer
« Secondary nodes: Receive logs from primary to Node o Node
update active transaction list & Buffer. Buffer stores B-tree crash. Apply entire log group.
Not allowed. Allowed.

multi-version pages. . . .
Physical Consistency with Log Group

Depoutovitch, Alex, et al. Taurus database: How to be fast, available, and frugal in the cloud. SIGMOD, 2020. 67

2. Query Processing in OLTP

1c) Read from Shared Remote Buffer

* High memory resource utilization, allowing
remote memory access across different
machines.

» Benefits from low page access latency of
shared remote memory; reduce sync latency.

» Offloading log replaying from shared buffer
to the storage layer. Avoid network
bottlenecks at the shared buffer area.

Primary

Seconary

Cache

Cache

I..

Shared
Buffer

E Persistent Storagej

Sync with Shared Buffer

68

2. Query Processing in OLTP

1c) Shared Remote Buffer: OS-level

 Motivations:

» High resource utilization: Expose unused memory across different machines.

» General-purpose proposals: transparently to unmodified applications.

* Methods:
» Exposing remote memory paging systems. (e.g., Infiniswap[1])
» New OS architecture for hardware disaggregation. (e.g., LegoOS[2])
 Limitations:
» Full I/0 stack: Each remote page access must go through the full I/O stack, causing the
|O latency to be much longer than network latency.

» High cache miss ratio: Unique data access patterns of database workloads, causing a

high cache miss ratio in general purpose design.

[1] Gu, Juncheng, et al. Efficient memory disaggregation with infiniswap. NSDI, 2017.
[2] Shan, Yizhou, et al. LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation. OSDI, 2018.

2. Query Processing in OLTP

1c) Shared Remote Buffer: DB-level(e.g., LegoBase)

» Database layer memory management & remote memory access.
» Motivations of database layer design:
» Bypass the time-consuming kernel data path, and reduce access latency.
» Retain the sophisticated design of the LRU mechanism used in the conventional database.

» Explore database-specific optimizations(e.g., clever metadata caching).

° Key Components Compute Node (cNode) Global Memory Cluster
« Persistent Shared Storage(pStorage): Storing (: —— .- EEEE
Read .
WAL, checkpoints and database tables. lw"‘e ;"a"f'f' EEEE
. Light Fault = Remote Buffer Pool
« Compute Node(cNode): Performing SQL oo Fush
. . Agent aonion Heavy Faalg’tn 'gzlerance
queries by consuming data from pStorage. 2
: I
* Global Memory Cluster(gmCluster): Allocating R'!;, Read@mg Flis.h
I

remote memory to cNode.

Persistent Shared Storage

Zhang, Yinggiang, et al. Towards cost-effective and elastic cloud database deployment via memory disaggregation. VLDB, 2021.

70

2. Query Processing in OLTP

1c) Shared Remote Buffer Area: DB-level (e.g., LegoBase)

* Three page access paths:
» Dotted Arrows: Page accesses from local buffer pool.
» Solid Arrows: Page accesses from locally cached remote address pointers.

» Dashed Arrows: Page accesses from persistent shared storage.

Local A A A A ‘
page [B| page [page

Page Allocator
S A A A

PagelD Location

............ »| Table1-p2 p2_ptr

SQL Execution

Engine Table1-p1 oo [N . .
______ : PID:Table1-p2 Remote Buffer Pool (RBP,
it | Ee e i REPy
PHASH_LBP 1 i PagelD Location
1
R PID : Table1-p1 Table1-p2 p2_ptr
N LDP:0XFD . I Remote
OxFD OxFF OxBA O0xCB ROPRO:BA Page Allocator
PHASH_RBP

Local Buffer Pool (LBP)

Persistent Shared Storage

Zhang, Yinggiang, et al. Towards cost-effective and elastic cloud database deployment via memory disaggregation. VLDB, 2021.

71

2. Query Processing in OLTP

1c) Challenges of DB-level Shared Remote Buffer(e.g., PolarDB Serverless)

C1: Consistency of shared remote buffer & local buffer of the primary node.
S1: Cache invalidation mechanism: Page Invalidation Bitmap(PIB, page update status) and Page

Reference Directory(PRD, page user list) in the home node to achieve cache coherency.

C2: A large amount of network transmission of Shared Memory is caused by cache flush.

S2: Page materialization offloading: Pages can be evicted without flushing back.

RO node 1 RO node 2 RO node 3

Local Cache

e @ :

Page
Page

PIB
=

RW node Home Node Slab Nodes

Figure 6: Cache Invalidation

RW node

Log chunk

Local
Memory
.0g recoras -

RO node

— 3
Local
Memory

Page chunk

partition 0

Page chunk

partition 1

Storaae nodes

Figure 7: Page Materialization Offloading

Cao, WEei, et al. Polardb serverless: A cloud native database for disaggregated data centers. SIGMOD, 2021.

72

3. Recovery Mechanism in OLTP

1) Non-persistent Layer Recovery (Compute & Buffer)
a. Mechanism based on Disaggregation of Compute & Storage
b. Mechanism based on Disaggregation of Compute & Buffer
2) Persistent Layer Backup & Recovery (Log & Page Storage)

a. Mechanism based on Coupled Log & Page Storage

b. Mechanism based on Disaggregation of Log & Page Storage

73

3. Recovery Mechanism in OLTP

1) Traditional Database Recovery Algorithm (ARIES)
 Algorithm Workflow (3 Phases):

« Analysis Phase: Determine the start point of the redo phase. Find the not persisted
dirty pages for Redo Phase and uncommitted transactions for Undo Phase.

 Redo Phase: Redo from the start point, replaying the transaction updates to pages in

the local cache, and re-establishing a stable runtime state. Monolithic
« Undo Phase: Roll back the uncommitted transactions, async. Query
Engine
* Features: Local
: - : Cache
« Shared-Everything(Monolithic) Architecture. Mo 1ty Page
« Updates by Pages Flush: Dirty pages in local cache @ Flush
flush to persistent storage and updates old pages. Esmragej
Engine

74

3. Recovery Mechanism in OLTP

1a) Mechanism based on Disaggregation of Compute & Storage

 Differences in disaggregation:

« Shared Storage Architectures.
« Updates by Logs Replay: Page updates are replayed from log data.

* Influences on recovery:

* No Redo Phase in Compute Layer: Compute layer does not need to re-
establish the local cache state. The storage layer will guarantee durability
after crashes & asynchronously consuming redo logs. Significantly
reduce recovery time.

» Cold Cache Issue: Under the shared storage architecture, cache in the
storage layer & shared buffer of all compute nodes will not lose together
with compute nodes, diluting the negative influence of the cold cache

issue.

Compute Nodes

Query
Engine
Local
Cache

Write
Redo Log

Storage Nodes

Persistent
Logs

Async
Replay

Persistent
Pages

75

3. Recovery Mechanism in OLTP

1b) Mechanism based on Disaggregation of Compute & Buffer
* Precondition: Compute nodes & remote buffer are unlikely to fail simultaneously.
» Motivation: Reduce the recovery time of compute node failure.

» Two-tier ARIES Fault Tolerance Protocol (e.g., LegoBase):

1. Compute Node & Remote Buffer: High frequency with low recovery time, light fault tolerance.

2. Remote Buffer & Persistent Storage: Ensuring worst-case data persistency, heavy fault tolerance.

* Protocol Procedure: { e e)
@ modification @ ack

1. Query Execution (Step 1~4).

2. Remote Buffer Checkpoint (Step 5,6,8).

3. Persistent Storage Checkpoint (Step 7,9~11).
4. Log Truncation (Step 12~13).

WAL ‘ Checkpoints ‘ ‘ Data |

Persistent Shared Storage

Zhang, Yinggiang, et al. Towards cost-effective and elastic cloud database deployment via memory disaggregation. VLDB, 2021.

3. Recovery Mechanism in OLTP

2a) Persistent Storage Recovery with Coupled Log & Page Storage

1 H . 100 101 102 103 104 105 106 107
* Motivations: egment AL

Segment B1

* Avoid heavyweight distributed commit process, e.g., 2-phase commit. re cemec

Segment D1
Segment E1

* Avoid complex recovery situations in the multi-replica situation. Segment F1
Segment A2

b MethOdS. Segment B2
PG2 Segment C2

= = Segment D2

+ Storage Consistency Points: The lower bound of LSN has met Segment 2
Segment F2

Quorum in a protection group. Gaps inside a node can be eliminated
by gossiping with other peers inside the group. System Commit

Figure 3: Storage Consistency Points

Log records Gaps
Number should not exceed Volume Complete LSN(minimum
Consistency Point). f? -
» Log Truncation during Recovery: The existence of gaps inside i

nodes will generate complex recovery situations. To avoid these
situations, the storage node will ignore the log after VCL.

Figure 4: Log truncation during crash recovery

Verbitski, Alexandre, et al. Amazon aurora: On avoiding distributed consensus for i/os, commits, and membership changes. SIGMOD, 2018.

77

3. Recovery Mechanism in OLTP

2b) Persistent Storage Recovery with Disaggregated Log & Page Storage

 Motivations:

* Reduce the data transfers for the Log Storage.
) . Log Storage Page Node 1 Page Node 2 Page Node 3
» Recovery from any type of failures in Page Storage. [[5T3 T il

 Methods:

+ Gossip in Page Storage: Page storage nodes that R REREE

. . .. Log Storage | . X
suffer short-term failure receive missing logs from — ——r——o | :NewPageNode 1| PageNode2 || PageNoded
) L2 | L3 (- ‘L1 | L2]|L3 L1] L2 | L3
the Gossip of the others. I e % .
.) l Full Copy

* Full Copy in Page Storage: Allocating new page |

. . . |
storage node when original node is down. Full copy Log storage ! | _Page Node 1 Page Node 2 Page Node 3
data from other normal node. [L2]L3 [L3 L1 L3 L1 L3

Re-send '

* Log re-send from Log Storage: When the log is
completely lost in the page store, the Log Storage
will re-send the log to the Page Storage.

Three types of Recovery Method

Depoutovitch, Alex, et al. Taurus database: How to be fast, available, and frugal in the cloud. SIGMOD, 2020. 78

4. HTAP Supports in OLTP

1) HTAP on Disaggregation Architecture
a. Compute Layer Transformation.
b. Storage Layer Heterogeneous Replicas.

c. Unified Table Storage Structure.

Compute Nodes Compute Nodes Compute Nodes
Memory Memory Memory Memory Memory
Row Column Row Column Row Column

=HH = |’|HH = |0
I e | R

orage Nodes orage Nodes orage Nodes
Row Store Row Store Columnar Store - Unified Table Storage _

|Columnar Store Extra Indexes :

LI T T 1] [(T1] 0= ! + !
EEEEER [T | H H /\ !
SN— ‘_/ v v -'
(@) Compute Layer Transformation (b) Storage Layer Heterogeneous Replicas (c) Unified TabIeStorage Structure

4. HTAP Supports in OLTP

1a) Compute Layer Transformation(e.g., Google AlloyDB)
« Data is stored in row format in persistent storage.
* Processing as row format under OLTP workload.
« Automatically converting row to columnar format to support OLAP queries.
« Support hybrid scan on columnar and row-oriented data simultaneously.

Columnar Table 1
Hybrid

AI/ML Driven S Ultra-fast U Scale out
... Auto Cache AlloyDB Storage y

Columnarization Row-store

Columnar
Format

Row Format

Hybrid Scans in AlloyDB
Hybrid Scans in AlloyDB
Figure from https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-columnar-engine 80

4. HTAP Supports in OLTP

1b) Storage Layer Heterogeneous Replicas(e.g., TiDB)
» Heterogeneous storage replicas(TiKV for row format, TiFlash for columnar format)
» TiKV supports OLTP workload & maintains consistency under Raft Protocol.
» TiFlash async receives logs from TiKV for updates & not participate in Raft Protocol.

« Columnar Delta Tree structure to support efficient read and write, appends delta updates
immediately and later merges to stable columnar chunks.

| Append updates)i D D ' Memory
Engine i(SQL engine)(TiSpark) i “““““ ===

___ ED HEEK DeltalHDeltao\-Dlsk
| | PD i
: TiKV (I‘OW) T1Flash (column) i 'F:'_':'_':'_':‘_':‘_'_p'_gl'tg'ge_z'i_gg_':'_':-_':-_':'_':1
Storage ! ! i
. Leaders : b B
' i

Log »| Tearners | || Chunk 0 | | Chunk 1 |

rephcat10n i
Huang, Dongxu, et al. TiDB: a Raft-based HTAP database. VLDB, 2020. 81

T R e deeitabit (DT | Stable space

e o s o —— —— — - ———— ————————— o—

Figure 2: TiDB architecture Figure 4: The columnar delta tree

4. HTAP Supports in OLTP

1c) Unified Table Storage Structure(e.g., SingleStoreDB)
« Row format storage in memory & Columnar storage in persistent storage.
« Combining scan performance of column store & seek performance of row store.
* Columnar LSM tree structure for OLAP + Secondary hash indexes for OLTP
» Two-level secondary indexes: Data Segments (immutable) & Global Index (mutable).

Data segments Global index
LSM LSM

P caomentsl @ § Hash table
v d : ? i |0x01|sl: offset 7| s2: ...
i Inverted | o, 1,3|.. |bar: 2,99,100] ... | | -
1 index :
H A 5
H 1 2 3 99 100 !
Vo i |0x24 |sl: offset 1|s3: ...
' index foo|bar|foo bar(bar| !
i column |
i other 5
column 100/101{105 199200

Two-level secondary indexes in S2DB

Prout, Adam, et al. Cloud-Native Transactions and Analytics in SingleStore. SIGMOD, 2022.

VLDB’22 Tutorial

Cloud-Native OLAP Architectures

83

An Overview of Cloud OLAP Architectures

Service Manager

Metadata —
Storage @ B @ Resource Manager| Query Optimizer

Security
Compute Compute Cloud
Layer :
Compute Cluster Compute Cluster Compute Cluster
Node Node Node Node Node Node Node

SSD

SSD SSD SSD SSD SSD SSD
Cache Cache Cache Cache Cache Cache
———— e

Cache
e ———

Storage
Layer

Storage Cloud

e, Ej mimle

(1) Disaggregated Compute-Storage OLAP Architecture

VLDB’22 Tutorial

Compute

Layer

Shuffle
Memory
Layer

Storage
Layer

Service Manager

Storage (] (]

@ Resource Manager|Query Optimizer | Security

Compute Cloud

Compute Cluster

Node I_l Node |

|NodeUNode| | Node ” Node ” Node |

SSD SSD SSD SSD SSD SSD SSD
Cache Cache Cache Cache Cache

Cache Cache

Partitions P
—

—1
4 N 4

artitions Partitions Partitions| Remote
[— = | Memory

—1
N 4 N 4 X

Partitions Partitions

1l
[

Partitions Partitions Partitions
 I—
—

[
[

Storage Cloud

Cloud

@O 00000

(2) Disaggregated Compute-Memory-Storage OLAP Architecture

84

(1) Disaggregated Compute-Storage Architecture

Service Manager = Motivation:
'\g?;arggéa @ @ B Resource Manager| Query Optimizer | Security - EIaStICIty: Storage and CompLIte
resources need to be scaled

C te Cloud independently
Compute m = Availability: Tolerate cluster and

Layer : :
Compute Cluster Compute Cluster Compute Cluster nOde fallures .
= Heterogeneous workloads: high
Tode] [T tode] Mo oo] Toce] Tede /0 bandwidth or heavy compute
T B SIS - KeyFeatues
Cache Cache Cache Cache Cache Cache Cache '

_____________________________________ » Disaggregation of Compute and

Storage
Storageh * Multi-tenancy and Serverless

' « Elastic Data Warehouses
Cloud » Local SSDs Caching
Storage @ @ @ @ @ @ « Cloud Storage Service, e.g., AWS

S3, Google Cloud Storage, Azure
Blob Storage
VLDB’22 Tutorial 85

Storage
Layer

(1) Disaggregated Compute-Storage OLAP Architecture

(1) Disaggregated Compute-Storage Architecture

O Advantages compared to On-Premise Share-Nothing OLAP Architectures:
» Higher availability

» Cluster and node failures can be recovered quickly because of (1) the data replication
across many availability zones and (2) the scalable cloud service.

> More cost-efficient

» Resources are virtualized and shared by multiple tenants.

» Serverless computing provides the pay-as-you-go model in a query-level granularity.
> Better elasticity
» The compute and storage resources can be scheduled on demand individually.
O Limitation:
» Network traffic becomes the bottleneck when the local cache is not hit

» Need to design efficient and effective caching and computation pushdown strategies.
VLDB’22 Tutorial 86

(1a) Case Study: Snowflake

~/

- Feature Highlight

Cloud Services to manage VWs,
workload, security, and metadata
Multiple Virtual Warehouses (Elastic
Clusters of EC2 instances)

Cloud Storage, e.g., AWS S3 to store

data as immutable table files

= QOverview of Query Processing

1.

2.
3

Parse the query using the cloud service,
and generate and optimize query plan
Execute the query in a virtual warehouse
If the local cache is not hit, load the data
from the cloud storage with pruning and
computation pushdown

Dageville, Benoit, et al. “The snowflake elastic data warehouse.” In SIGMOD. 2016.

-
Authentication and Access Control
Cloud Infrastructure . Transaction)
Services Manager Optimizer Manager Security
B85 Metadata Storage
1\

Virtual | (Virtual) (Virtual) Virtual
Warehouse Warehouse Warehouse Warehouse
L1000 (1] 00 00O

Cache \ Cache Cache Cache

Data

Storage
VLDB’22 Tutorial

87

(1b) Case Study: Redshift

Multiple Compute Clusters

Querying semi-
structured data
using PartiQL

VLDB’22 Tutorial

JDBC/ODBC Data API
Compute Redshift Auto-scaling
Isolation Compute clusters .
Clusters Cluster Query Live Data
(] Leader | — Amazon RDS
5 Node !C ‘ O Incrementalqy)0 2tional
£ O | MVs P
cE) ;\‘ P L« _ Databases
S 28| cn1| | onz| | ona| | ona @
¥ SZlan | [am | |as | |um Redshift ML
__ Amazon
CaasS Sagemaker
Spectrum a
C
N FPGA . External
g Spectrum Spectrum Execution Cache (*.0) enerated
o Node Node AWS-) AWS- = .
9 i pogned Compilation code caching
< Service
v AmazonS3 Redshift Managed Storage i
& i Caching (up to
16 PBs)
Nikos Armenatzoglou, et al. “Amazon Redshift Re-invented.” In SIGMOD. 2022.
88

(1b) Case Study: Redshift Query Flow

Redshift Parser ’
Compute v Catalog/
Cluster -‘ Rewriter ,_//’," Statistics
— SORT +
. queryl. {cpp, 0} Optimizer LII:IT
AGG
A
‘ JOIN
AN
i
Min/max pruning ; L —— .
SIMD scans from i :

) local-attached SSDs i F HASH JOIN 3
Redshift AZ64 encoding i i i
Managed | [Cortocted i
Storage i :

| | | [| SCAN +

1. The leader node accepts a query

2. The query is parsed, rewritten, and optimized with the catalog statistics

3. The query plan is further optimized with the co-located join selection

4. The optimized plan is generated to C++ code, compiled and sent to compute nodes for execution
5. The columnar data is scanned from locally attached SSDs or is scanned from the cloud storage

Nikos Armenatzoglou, et al. “Amazon Redshift Re-invented.” In SIGMOD. 2022.
VLDB’22 Tutorial

Comparison of Cloud Databases with Architecture (1)

Databases Computation Storage Query Serverless
Processing

Snowflake |solated Virtual S3+Local Columnar Scan Instance-level
Warehouses Storage with Vectorized Serverless
(EC2 instances) Engine Computing

Redshift Isolated & Shared S3+Redshift Columnar Scan Instance-level
Compute Clusters Managed with Code Serverless
+ Storage Generation Computing
Acceleration Layer (RMS)
(Spectrum, AQUA)

VLDB’22 Tutorial 90

(2) Disaggregated Compute-Memory-Storage Architecture

Compute
Layer

Shuffle
Memory
Layer

Storage
Layer

Service Manager = Motivation:

Metadata - .
Storage @ @ B Resource Manager | Query Optimizer | Security -

{ Computem

Node Node

Compute Cluster

Node Node Node Node Node

Partitions Partitions Partitions Partitons | Remote
— = | = | | = | Memory *
4 N 4 N 4 N 4 N °
Partitions Partitions Partitions Partitions Partitions
— — — — —l]
__________________ e —————— °
C—/ Storage M

Al nlnln

(2) Disaggregated Compute-Memory-Storage OLAP Architecture

Elasticity: Storage and compute resources
need to be scaled independently
Centralized Scheduling: schedule the
resources for better utilization

Complex workloads: cope with the large
intermediate results

Cache || Cache Cache]| Cache Cache]| Cache || Cache ||m Key Fe atu res:

__________________ .I.__________________.

Disaggregation of Compute and Storage

Shuffle Memory Layer for speeding up joins

Multi-tenancy and Serverless computing

Local SSDs Caching

Cloud Storage Service, e.g., AWS S3,
Google Cloud Storage, Azure Blob Storage

91

(2) Disaggregated Compute-Memory-Storage Architecture

O Advantages compared to On-Premise Share-Nothing OLAP Architectures:
» Higher throughput.
» Shuffle memory tier reduces I/O cost by avoiding writing intermediate results to the disks.

» Higher resource utilization.

» Compute resources are virtualized and scheduled on demand.
> Better elasticity.
» The compute, memory, and storage resources can be scheduled individually.
O Limitations:
» Shuffle memory tier could incur a high cost

> Need to design efficient and effective pushdown and scheduling algorithms to reduce the
data loaded to memory.

VLDB’22 Tutorial 92

(2) Case Study: BigQuery

Compute (Clusters + Memory
Shuffle Tier) and Storage

Replicated, Distributed

Storage

(high durability) Dremel Query Engine with

the support of semi-structured

=== = gmﬂfﬁf_,bé’ﬁi%eé {aF {aF {2f {2 data querying

EEEE ™ gﬁ}ﬁ}ﬁ}ﬁ}ﬁ I -
| = o g o E : = Distributed Memory Shuffle
____mﬁ}mﬂ Tier for Query Optimization

» Colossus Storage Clusters
with Capacitor format

Sergey Melnik et al. Dremel: A Decade of Interactive SQL Analysis at Web Scale. PVLDB,
2020, 13(12):3461-3472.

VLDB’22 Tutorial 93

(2) Case Study: BigQuery Shuffle Workflow

Workers In-memory values
Local RAM

Workers = Producer in each worker
generates partitions and sends
them to the in-memory nodes

[Jawnsuo)]
l J9onpoid

J180npoid I

An for shuffling
R § g
shuffle (n-1) [U | 3 | Shuffle (n+1)
_ Distributed i| |i = Consumer combines the
_ I3] Disk__ received partitions and
3 S ocal Dis .
) G 8 E [performs the operations locally
s] Local Disk = Large intermediate results can
L @ be spilled to the local disks

Shuffle n

Sergey Melnik et al. Dremel: A Decade of Interactive SQL Analysis at Web Scale. PVLDB, 2020, 13(12):3461-3472.
VLDB’22 Tutorial 94

VLDB’22 Tutorial

Cloud-Native OLAP Techniques

95

Overview of Cloud-Native OLAP Techniques

Storage Management: Data organization in the cloud

Query Processing: Querying data with the local cache and cloud storage
Serverless Computing: Automated provisioning and scaling of resources
Security: Protect data from stealing and tampering in the cloud

Machine Learning: Al for cloud-native DBMS and cloud-native DBMS for Al

a ~ 0O bdD =

SQL SQL SQL ML with SQL

EE T

I% 3. Serveless Computing
\4
4. Security [{~—15. Machine
I% 2. Query Processing Al4DB| Learning

& C@SW
VLDB’22 Tutorial — — 96

1. Storage Management in the Cloud

1) Data Organization

a. Metadata management

rganization : = B= :
b. Tabular data management Yot at°> ;EE = 2 2
c. Semi-structured data management ’"‘T??'éeg5;32?35&;3}555(""""

2) Data Placement

a. Data partitioning in the cloud

. . minln Storage Node Storage Node Storage Node
b. Data reshuffling in the cloud ﬁ Fj ——
3) Data Updates ooo oo

3) Data Updates ‘

a. Recreate objects with transaction updates

b. In-place update with internal table

VLDB’22 Tutorial 97

1. Storage Management in the Cloud

1a) Metadata Management
» Metadata is stored in the layer of cloud service
= Contains information for schema, data version, location, statistics, logs, etc.

» Techniques: pruning, zero-copy cloning, and time traveling (MVCC)

Customer Table T Metadata
M1 M2 Absolute Timestamp
: Added: File 1, File 2 Added: File 1, File 2 Select * from T AT (TIMESTAMP=>
1 Alice ’Mon, 01 May 2022’:: timestamp)
Deleted: Deleted: File 2
2 Max | File1 <: |:>
3 Bob Stats: Stats: Relative Timestamp — 5 min ago
o -uid: 1-3, 4-6 -uid: 1-3, 4-6 " ot
- — -name: A-M, F-T _name: A-M, F-T Select * from T AT (OFFSET=> -60*5)
5 |Thomas| File2 saL ﬁ DDL ﬁ Specified Statement ID
Flori Select * from T BEFORE (STATEMENT=>
6 ornan Select * from T where uid=2 Create table T2 clone table T ‘8e5d0ca9-005e-44e6-b858-a8f5b37¢5726')
(a) Pruning (b) Zero-cloning (c) Time-Traveling

VLDB’22 Tutorial 08

1. Storage Management in the Cloud

1b) Data organization for tabular data

» Tables are partitioned into immutable files, i.e., micro-partitions
= Micro-partitions are replicated across multiple availability zones

» Tables are organized in columnar format, e.g., Parquet, and can be
compressed to reduce the storage cost, e.g., run length encoding

Table 1 Table 2 Table 3
1
|]
us-northeast -1 Us-wegt-2
[Zone
' T L] AR
N N NN N N NN
- 8 - - oo —

VLDB’22 Tutorial

Figure from https://cloud.google.com/blog/topics/developers-practitioners/bigquery-admin-reference-guide-storage

1. Storage Management in the Cloud

1c) Data organization for semi-structured data
a. encoding the documents with length (len) and presence (p)

b. encoding the documents with repetition levels (r) and definition levels (d)

DocId: 10 r message Document { m Name Name.Url m m
. 1 required inté64 DocId; value p value r d value r d

Name
repeated group Name { 10 | tue 3 hitp://A | true 1o oo http://A

Language 0 2
. tap—iie ! repeated group Language { : % - 5 .
g:‘,:; ‘.an.z:. required string Code; 20 true 1 http://B | true http://B 1 f
Y optional string Country; false
hanguage } http://C true http://C) 2

Code: 'en optional string Url;

Url: 'http://A'
Name } Name.Language Name.Language.Code Name.Language.Country Name.Language.Code Name.Language.Country
Url: 'http://B' }

Name 2 en-us true us true en-us 0 2 us 0 3
Language DocId: 20 r 0 en true false en 2 2 2 2
Code: 'en-gb' Name 2 1 5 gb true 1 1 1 1
Country: 'gb! Url: 'http://C' 0 oo | e engb | 1 | 2 gb 1 3
0 1 0 1

(a) Documents with a schema (b) Encoding with length and presence (c) Encoding with repetition and definition

Sergey Melnik et al. Dremel: A Decade of Interactive SQL Analysis at Web Scale. PVLDB, 2020, 13(12):3461-3472.
VLDB’22 Tutorial 100

1. Storage Management in the Cloud

2a) The join graph approach for partition-key selection

= Select the collocated join keys to minimize network communication

= Build a join multi-graph based on a query workload

» Use graph matching techniques and heuristics to select partition keys

Customer] (Branch

c_ID b_ID
c_Name | |b_City
c_State b_State

(a) Schema.

VLDB’22 Tutorial

< Q| < < < Q|
(_},& g}é (_)\.'8\' (,)\.’g' (_}.'g' (_)\.’g'
(974 Q7 (494 o7/ o/ Q7
CA |[CA | [CA NE
CA |l ||cA [|INE NE
WY || CA CA CA
NE ||NE | ||NY || CA CA || NY
NY NY || NE WY || NY
Node1l Node?2 Node m

(b) “Fven” distribution.

—: weight =2
—:weight=1

- |
~ \‘G
—: collocated a

——:non collocated

(c) The Join Graph Approach

Parchas, Panos, et al. "Fast and effective distribution-key recommendation

for amazon redshift." PVLDB Endowment 13.12 (2020): 2411-2423.

101

1. Storage Management in the Cloud

2b) Lazy consistent hashing during scaling of the ephemeral storage
* To achieve smooth scaling for the cloud databases
* When a new node is added to a VW, the consistent hashing is deferred

= \When a related task is scheduled, the data is read and cached

Snowflake Cloud Services

N, Ts T T3 n Ts
000 | [0 [y [| [
00| [000| [000 {000 | [006 o o [|
Runtime Runtime Runtime Run time Runtime ' |
o8 o8 08 08 08 No cache-locality
_______ '_____--______'__—___________I
: Distributed Ephemeral Storage : T 7 T T, Ts Ty
L ——-- roc—— - - — IFIr - — — - I T = I 1T -—=-——==-==1 1 v v Hr At A rTmE~-
L
S N AU (N U N (R N Y N
Persistent Storage | _ L _ _____ | _) I 0 O I
Elastic scaling
(a) A Cloud Warehouse Architecture (b) Lazy Consistent Hashing

) Vuppalapati, Midhul, et al. "Building an elastic query engine on disaggregated storage." In NSDI 2020.
VLDB’22 Tutorial 102

1. Storage Management in the Cloud

3) Data Update
a) For blob storage, an update results in a creation of a new file due to the
immutable table

b) mutable table with in-place updates, e.g., Snowflake’s hybrid table in Unistore,
supporting indexing, single-row retrieval, loading data from immutable tables

1
L]
ood I 000 BN e
) |- —) (I Update
Data Updates . New File Data Updates L |
(a) Creation of a new object file (b) In-place updates

VLDB’22 Tutorial 103

2. Query Processing in the Cloud

1. Columnar Scan with Caching/Pushdown
O Caching: Snowflake, Redshift
O Pushdown Computation: PushdownDB
U Caching and Pushdown : FlexPushdownDB (FPDB)

2. Columnar Scan with Shuffle Memory Tier
U Multi-stage parallel columnar scan with a shuffle memory tier.
4 E.g., BigQuery

VLDB’22 Tutorial 104

2. Query Processing in the Cloud

1a) Columnar Scan with Caching

i. Given a query, it searches for the query
results in the cache

ii. If the cache is not hit, it searches for the
results from the local SSD cache and
processes the query with columnar scans in
the local cluster

iii. If the local cache is not hit, it processes the
data loading from cloud blob storage

iv. File stealing from neighbors for load balance

VLDB’22 Tutorial

@ Results
: —

*

Cloud Data Service

y EEE
Result Caching
' f o
Local SSD Caching
v $ A

Cloud Blob Storage

105

2. Query Processing in the Cloud

1b) Columnar Scan with Pushdown

= Pushdown computation to the cloud storage, e.g., Amazon S3 Select, Select
APl can be extended to support index scan, hash-join, group by, top-k

= Pushdown to the computational storage drive, e.g., FPGA-enabled table scan

SQL Results
v) CPU & DRAM
Cloud Data Service r:::%::::::::::_:::_::__:_______—_____T_________"A_—___u___::_—:__:___f:::-_::::
A . \ Low data
v PCle Root Complex & Switch traffic
Compute Layer I | - Distributed
A ,\»—FI'aSh control [~ Ffa_s_ﬁ _Cb_ﬁt_r-O]_ 11" Fiash control- L Computing
Computation Filtered \‘&tab-'em_ “““““““ &tab‘le‘sca'n‘_'“ _&tabie_st-a-n_—- l
Pushdown Results
v No compute
Cloud Storage Layer (e.g., Amazon S3) NAND Flash ’ NAND Flash NAND Flash hot-spot
(a) Pushdown to the cloud storage (b) Pushdown to the computational storage

Yu, Xiangyao, et al. "PushdownDB: Accelerating a DBMS using S3 computation." 2020 ICDE, 2020.

Cao, Wei, et al. "POLARDB Meets Computational Storage: Efficiently Support Analytical Workloads in Cloud-Native
VLDB'22 Tutorial Relational Database." FAST, 2020. 106

2. Query Processing in the Cloud

1c) Columnar Scan with Caching and Pushdown
= Process the query with caching and computation pushdown simultaneously

» Enhance the cache replacement strategy, e.g., weighted LFU

‘ ‘ Merge Hybrid Executor Cache Manager
Query plan (géction 4) (Section 5)
Admission
Scan S * Eviction
can
— . 4} Caching
Scan request
Local Cache

Local Cache Local Cache %ﬁ}
EEE 0o0o |) |

(a) Original Query Plan (b) Separable Query Plan

Yang, Yifei, et al. "Flexpushdowndb: Hybrid pushdown and caching in a cloud DBMS." PVLDB, 14.11 (2021): 2101-2113.

VLDB’22 Tutorial 107

2. Query Processing in the Cloud

1c) Columnar Scan with Caching and Pushdown

= Hybrid Query Execution : (1) Local Cache is more efficient than Pushdown;
(2) Pushdown is more efficient than loading all data from the cloud storage

= Two relations R(A,B) and S(C,D), each attribute has two partitions

SELECT R.B, Sum(S.D)

FROM R, S
WHERE RA=S.C and R.B>10 C——
and S.D>20
GROUP BY R.B
@ Bl """ Relation R Relation S
LI
Local Cache
OO o0

VLDB’22 TUtOFIa| Cloud Storage 108

2. Query Processing in the Cloud

2. Columnar Scan with Shuffle Memory Tier
= Use a shuffle memory tier without writing the intermediate results to disks

= The query is executed by multiple workers with multiple stages

SELECT language, MAX(views) as views
FROM "wikipedia_benchmark.WikilB"
WHERE title LIKE "GX%o0%"

. GROUP BY language
ORDER BY views DESC LIMIT 100
Woker o Stage 3: SORT, LIMIT
w m @ w ' Stage 2: GROUP BY, SORT, LIMIT

|] Stage 1: Filter, partial GROUP BY

VLDB’22 Tutorial Melnik, Sergey, et al. "Dremel: A decade of interactive SQL analysis at web scale." PVLDB, 13.12 (2020): 3461-3472.

109

3. Serverless Computing for Queries

Motivation: tenants issue the queries in the cloud without caring about the
resource provisioning and can pay for the resources in the query granularity

Two main approaches are as follows:

1. Serverless Databases: rely on the cloud SQL engine and storage to execute
the queries with dynamic resource provisioning; the database service can
pause for the idle period and resume when a query comes in

2. Serverless Functions + Cloud Storage: rely on Function-as-a-Service (Faas)
and the cloud storage to perform the queries with on-demand resources

N <P

Azure Functions Google Cloud Functions
VLDB'22 Tutorial ~ AWS Lambda . 110

3. Serverless Computing for Queries

1. Serverless Database with Dynamic Resource Scheduling
= Challenge: starting a database is expensive after a pause period

= Solution: predict the pause/resume patterns and proactively resume
the resources for each database

Resumed === s isresumed —— Resume workflow
=== gispaused — Pause workflow
Paused ® login(s)

Unavailable resources due to reactive resume
|dle resources due to proactive resume

Window w

Poppe, Olga, et al. "Moneyball: proactive auto-scaling in Microsoft Azure SQL

,) database serverless." Proceedings of the VLDB Endowment 15.6 (2022): 1279-1287.
VLDB’22 Tutorial 111

3. Serverless Computing for Queries

2. Serverless Functions + Cloud Storage

= Two Challenges: (1) functions are stateless; (2) stragglers increase the
overall latency of the parallel query processing

= Solutions: use cloud storage to exchange states; use tuned models to
detect stragglers and invoke functions with duplicate computation;

@—

_Source Code Upload ds From ———
/ ~~ \wbs | Base Table Data
—) . (Cloud Object
Query Plan __ Parameterized Execution > : T Storage)
Coordinator — invocation 2 Environment N~ Write
"~ | requests Cloud Function Prlo visioning - Intermedlate
_— Service & Invocation Objects
(Query Compilation
<Q | &Scheduling) <~ Response | .
uery Response t:on Invocation | unc !on .

Completion ' | Worker Read Communication

—_ | e Intermediates Medium

\ Invocation)

Read Query Result

Perron, Matthew, et al. "Starling: A scalable query engine on cloud functions." In SIGMOD. 2020.

VLDB’22 Tutorial 112

3. Serverless Computing for Queries

2. Query Processing based on Serverless
Functions and Cloud Storage

Producers

A A A A A A A A
= Invoke many tasks in each stage
= Each task writes the intermediate Pag)g;g;:d é é a a é EL é
results to a single object file W
A A A A

Combiners

= Combiners can be used to reduce

the read cost of the large shuffle Combined
Objects

= Trade-off between the number of

invoked tasks (performance) and cost “"™'™e" AEEBEBE

Multi-Stage Shuffling based on Functions

Perron, Matthew, et al. "Starling: A scalable query engine on cloud functions." In SIGMOD. 2020.
VLDB’22 Tutorial 113

Summary of Serverless Computing for Queries

Category Database/ | Main Approach Scaling Pricing
Prototype Model

Serverless Azure Stateful SQL Scaling the Pay for active
Database SQL, Engine + resources with service with
Athena, Auto-pausing more CPU, min-max
BigQuery and resuming memory, or bound
mechanism stand-by nodes
Functionas a Starling Stateless Scaling the Pay for used
Service (FaaS) Functions + resources by functions
Stateful Cloud invoking more and storage
Storage function tasks

VLDB’22 Tutorial 114

4. Security in the Cloud

1. Software-based Data Protection
4 E.g., Snowflake, Redshift
U Pros: high scalability and throughput, low cost

0 Cons: decryption for query processing

2. Hardware-based Data Protection
4 E.g., Azure SQL
O Pros: high end-to-end security
U Cons: low scalability and throughput, high cost

VLDB’22 Tutorial 115

4. Security in the Cloud

1. Software-based Data Protection

= Core Ildea: encryption keys are automatically rotated and re-encrypted

= Challenges: data is decrypted for query processing; the cloud vendors may be untrusted

Root Time rotate rotate
Keys Cﬁ Table kv 7 Nan /. M
_ \ Keys C= C= (b
Account | Account A Cﬁ &(— Account B 2014 ‘/ \ l
Keys N N Fie = = = Q; ’;’
Table 2 Keys |Table| |Table Table Table Table
Table Table 1 / N \ Table 3) File 1 File 2 File 3 Flle 4 Flle 5
Keys C C

SN N] /\ ™ ™ /

File k2v1 NN k2v3
b => (= (’ﬁ F h Table
Keys Keys
Table | | Table | | Table Table Table | | Table
File File File File File File 2015
Flle Flle 2 Flle 3 Flle 4 Flle 5

ﬁ

Time April June
(a) Encryption Key Hierarchy (b) Key Llfe Cycle
VLDB’22 Tutorial Dageville, Benoit, et al. “The snowflake elastic data warehouse.” In SIGMOD. 2016.

116

4. Security in the Cloud

2. Hardware-based Data Protection

Core Idea: database systems and cloud providers are untrusted; leverage
customized hardware, e.g., Enclave, for data protection; bring-your-own-keys

Challenges: computation over ciphertext directly; improve the efficiency of enclave

Step 1: Application issues a query “select

Application

* from T where value = @V~

sQL Server [g===)| Enclave
{CEK}

Driver

{CEK}

Step 2: Driver encrypts the parameter @v

I and sent to the DBMS with attestation service
ID Value .
ﬁ Step 3: DBMS fetches the data and invokes
Key Provider) 1 OxO1FF... .
{ (e] Autestation 2 — the enclave for evaluation
3 Ox7e4g...

the design of Enclave-based protection in Azure SQL

Step 4: Enclave decrypts the data to
plaintext and evaluates the filter

Antonopoulos, Panagiotis, et al. "Azure SQL database always encrypted." In SIGMOD. 2020.

VLDB’22 Tutorial 117

5. Cloud-Native Databases with Machine Learning

1. ML-Enabled Cloud-Native Databases
U ML-Enabled Workload Management
U RL-Enabled Partition-Key Advisor

U And many more: knob tuning, index tuning, root cause diagnose, etc.
2. Cloud-Native Database for ML

U SQL-enabled ML pipeline
U Cloud Database with AutoML

VLDB’22 Tutorial 118

5. Cloud-Native Databases with Machine Learning

ML-Enabled Cloud-Native Databases: Redshift Workload Management

= Core ldea: tune the workload concurrency by predicting the memory consumption
and execution time for the workload

= Challenges: schedule the workload; migrate to new access pattern
= Solution: Redshift AutoWLM; trains an XGBOOST model for each cluster

35
30 |
25 |
20 {1l
15 {1

Concurrency = Queued queries 9O Queued + Running queries —+

Count

400 450 500 550 600
Timeline
VLDB’22 Tutorial Nikos Armenatzoglou, et al. “Amazon Redshift Re-invented.” In SIGMOD. 2022. 119

5. Cloud-Native Databases with Machine Learning

Partition-Key Advisor for Cloud Databases
= Core ldea: exploring column combinations as partition keys and learning with RL
= Challenges: characterize partition features; migrate models to new workloads

= Solution: (1) extract partition features as [tables, query frequencies, foreign keys]
and use DQN to partition the tables for a workload; (2) train a cluster of DQN
models on typical workloads and pick one with the most similar features;

1)Offline Training 2) Online Training 3)Inference
[Environment: Simulation } ~ [Environment: Sampled Database]ir\ Observed Workload
' Simulated Partitioning Sampled Workload) " Sampled Database Sampled Workload |
Custome | — ALTER TABLE Q4.SELECT ...
" ate B
Partitioned Q1.SELECT ... Customer_Samp|e ‘//"/ T Q4-SELECT ... l
by c_key Replicated DIHSATSRFliI(BCUEEyI)B'Y ~—
\ I - L ‘ Trained RL Agent J
N\ /// AN S — /
Action 4 Reward Action A Reward l Optimized Partitioning
W Estimated Costs I . - A
Change Partitioning (Custom Cost Model) Change Partitioning Runtime on sampled DB ~ ~
\ 4) 4 I~ ALTER TABLE Customer
DISTRIBUTE BY HASH(c_key);
RL Agent RL Agent Q)

VLDB’22 Tutorial Hilprecht, Benjamin, Carsten Binnig, and Uwe R6hm. "Learning a partitioning advisor for cloud databases." SIGMOD. 2020. 120

5. Cloud-Native Databases with Machine Learning

2. Cloud-Native Database for ML

= Core ldea: (1) SQL-enabled machine learning in cloud databases; (2) bring the model to
the data; (3) AutoML by the cloud providers, e.g., model selection, training and tuning

= Challenges: SLA-aware in-database ML; flexibility of SQL-based ML pipeline

CREATE MODEL demo_ml.customer_churn_model ®) polling for status
FROM (3 train model API
(SELECT state, area_code, (D CREATE - @ PUT @ GET Xk
ave r‘age_d ai ly_S pe nd , MODEL ’ P> training set training set i
average daily cases, |:> () « oy -JJ = e
churn oo Neo artifact Neo artifact

. . r Amazon Redshift Amazon S3 Amazon SageMaker
FROM demo_ml.customer_activity t s &

(® Neo compilation API

WHERE record date < €2022-01-01°)

®) polling for status

TARGET churn FUNCTION predict customer_churn
(a) CREATE MODEL for predicting customer churn (b) Redshift with SageMaker

Nikos Armenatzoglou, et al. “Amazon Redshift Re-invented.” In SIGMOD. 2022.
VLDB’22 Tutorial 121

Open Problems and Opportunities

VLDB’22 Tutorial 122

Multi-Write Architecture in the Cloud

O Call for Multi-Write Solutions for Cloud-Native Databases
» Multi-Write Protocol (How to handle write conflicts in the cloud)
» Data Consistency (How to keep data consistency for dirty caches)

» Log Management (How to replay and update the logs)

Application

Load Balance
Multi-Write ProtocoI?I:> Write ‘ —— | Write CRDT Protocol?

Cloud Computing Service

Compute Compute Compute . .
Data Consistency? |::> Engne || Engne || Engine Memory Disaggregation?

/\

¢ il i

Cloud Storage Service
Storage —> Storage —> Storage
Log Management? I:> Engine Engine Engine Paxos Protocol?

Cloud-Native Database 123

Fine-grained Serverless

O Serverless Computing
» Stateful Function Service (How to exchange the intermediate results)

» Adaptive Provisioning and Scaling (How to schedule the resources adaptively)

Adaptive Provisioning and Scaling? Stateful Function Service?

Function Cloud Function /

Invocation . .
- Service

Cloud i
Coordinator Storage :

Results o

~

T~A
Pause/ Serverless Database
Resume

124

Cloud-Native HTAP Database

0 Call for Cloud-Native HTAP databases

» SLA-aware HTAP service (How to balance performance, freshness, cost)
» Data Organization for HTAP (How to organize the cloud data for HTAP)

» Pushdown Strategy for HTAP (Pushdown operators to row or column nodes)

Compute

Nodes

Row

or

SLA-aware HTAP [
Service?

Column

a8

[L]

[L]
/&
N~

Storage Nodes
Row Store

(L] ¢
[LT]

N—

Data Organiztion? |:>

dh

Pushdown Strategy? |:>

Storage Nodes
Columnar Store

S

Learned Prediction Model?

Unified Memory Structure?

Row or Column Nodes?

125

Multi-Cloud Database

[Call for Multi-Cloud Databases

» High Availability (How to handle the failures and migrate data in multi-cloud)
» Storage Management (How to organize and store the data in multi-cloud)

» Query Processing (How to perform the query in multi-cloud)

High Availability? Query Processing?

> - & Q)
Alibaba Cloud HUAWEI

CLOUD

:I

im=’

i1
IEIGZOI'I

services

Google Cloud

126

Q&A

Thanks for your listening!

127

