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Motivation of Cloud Database
pMarket Trends: Databases are moving to Cloud

ØGrowth Speed
• 68% of the growth of the DBMS Market came from cloud.
• 38.2% annual growth rate from 2021 to 2026.

ØRevenue Rate
• $39.2 billion, 49% of all DBMS revenue from cloud(2021).

ØMarket Share
• 75% of Databases will be on Cloud in 2023 

Ø “The future of DBMS Market is Cloud.”

Cloud Database
Market Size 

2020 2025

USD
12.0

Billion

USD
24.8

Billion
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Motivation of Cloud Database
pAdvantages for Cloud Database Customers

Elasticity Availability

Flexibility Low Price

High Service Availability.
Ø The system maintains multiple 

replicas to support high service 
availability. 

Strong Data Durability.
Ø Replicas deployed in different 

locations guarantee data 
durability over extreme disasters.

Auto Scaling Service.
Ø Service can auto scale up 

or down based on workload. 

Infinite Capacity.
Ø The system can provide 

nearly infinite resources to 
users.

Pay-as-you-go Pricing Model.
Ø Converting capital expenses 

to operating expenses. Users 
only need to pay for usage, 
instead of the maximum 
capacity of the whole 
workload. 

Out-of-the-box Feature.
Ø Users can use the service 

without worrying about the
complex deployment process. 

Auto Tuning & Optimizing.
Ø Support auto tuning & 

optimizing.



Reduce
Costs

Improve
Resource
Utilization

Expand
Market

Customer
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Motivation of Cloud Database
pAdvantages for Cloud Database Providers

Scale Effect in Deployment.
Ø Wholesale price on hardware 

purchase.
Ø Hyperscale data centers.

Scale Effect in Operation.
Ø Unified management team.
Ø Low electricity price, benefits 

of data center locations. 

Demand Expansion.
Ø The era of big data, the 

demand of data processing 
is expanding rapidly.

New Target Customers.
Ø Flexibility of service attracts 

grand amount of small 
business or individual users 
without professional data 
management team.

Resource Utilization.
Ø Fixed-sized resource provisioning

meets dynamic workloads.
Ø Rent resources as cloud service

to improve utilization.

Rent Idle Resources
as Cloud Service



Outline of Tutorial
From Cloud-Hosting to Cloud-Native

Cloud-Native OLTP Architectures

Cloud-Native OLTP Techniques

Cloud-Native OLAP Architectures

Cloud-Native OLAP Techniques

Open Problems & Opportunities
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From Cloud-Hosting to Cloud-Native
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Disaggregation

Architecture
Shared Everything

Shared Storage

IO
Local Access

Network Access

Scaling
VM-level

Node-level

Data Update
Dirty Page Flush

Redo Log Replay

Disaggregation
for Elastic



Cloud-Native OLTP Architectures

7VLDB’22 Tutorial



An Overview of Cloud OLTP Architectures
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(1) Disaggregated Compute-Storage (2) Disaggregated Compute-Log-Storage
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An Overview of Cloud OLTP Architectures
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(3) Disaggregated Compute-Buffer-Storage
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(1) Disaggregated Compute-Storage Architecture
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§ Motivations:
• Elasticity. Compute and Storage 

can be scheduled individually
• Efficiency. Reduce write 

amplification.
• Availability. Multi-layer recovery 

mechanism to handle various 
exceptions.

§ Key Features:
• Disaggregation of Compute & 

Storage.
• Log is the database.

10



(1) Disaggregated Compute-Storage Architecture
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§ Data write path:
1. Primary node updates local page in 

cache and generates redo log.
2. Primary node writes redo log to 

majority nodes in the storage cloud.
3. Commit the write after the majority of 

data replicas finish the log writing 
process for durability.
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§ Data write path:
1. Primary node updates local page in 

cache and generates redo log.
2. Primary node writes redo log to 

majority nodes in the storage cloud.
3. Commit the write after the majority of 

data replicas finish the log writing 
process for durability.

§ Data sync path:
1. The consistency of replicas is 

maintained based on the log data.
2. Redo logs are replayed to the page

asynchronously in the storage node.
3. Directly transfer logs to secondary

nodes to reduce the update latency.
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(1) Disaggregated Compute-Storage Architecture
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§ Data read path:
1. First, compute node will check its local

cache. When data is in the local
cache and valid, it can directly load 
data from the local cache and return.

2. When the cache misses in①,
compute node will send read requests
to the storage layer.

3. For each node in the storage layer:
• When data in the page is new,

directly load data from the page.
• Else replay the page from redo 

logs.
4. Compute node receives data from

nodes in storage layer and runs cache 
replacement strategy in the local 
cache, then returns.

17
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§ Data read path:
1. First, compute node will check its local 

cache. When data is in the local cache
and valid, it can directly load data from
the local cache and return.

2. When the cache misses in①,
compute node will send read requests
to the storage layer.
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§ Data read path:
1. First, compute node will check its local 

cache. When data is in the local cache
and valid, it can directly load data from 
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to the storage layer.
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§ Data read path:
1. First, compute node will check its local 

cache. When data is in the local cache
and valid, it can directly load data from 
the local cache and return.

2. When the cache misses in①,
compute node will send read requests
to the storage layer.

3. For each node in the storage layer:
• When data in the page is new,

directly load data from the page.
• Else replay the newest page from 

redo logs.
4. Compute node receives data from

nodes in storage layer and runs cache 
replacement strategy in the local 
cache, then returns.



(1) Disaggregated Compute-Storage Architecture
p Advantages compared to Traditional Architecture:

Ø Low write latency.
Ø Write can be committed without waiting for updating pages in storage nodes.

Ø Reduce write amplification.
Ø Log replay is pushdown to the storage layer. Avoid dirty page flush during data writing. 
Ø Shared-storage architecture. Avoid that single instance maintains multiple storage replicas.

Ø Better elasticity. 
Ø Disaggregation of compute and storage resources, which can be scheduled independently.

pLimitations:
Ø High read latency when cache misses.

Ø The update data may not be replayed to the page, leading to extra read latency for log
replaying.

VLDB’22 Tutorial 21



(1) Disaggregated Compute-Storage Architecture
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§ Purpose:
• (Efficiency) Compute and Storage can 

be scheduled individually
• (Elasticity) Reduce write amplification

§ Features:
• Disaggregation of Compute & Storage
• Sync with log, instead of page

§ Examples:
• AWS Aurora

22
Verbitski, Alexandre, et al. Amazon aurora: Design considerations for high throughput cloud-native relational databases. SIGMOD, 2017.
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§ Purpose:
• (Efficiency) Compute and Storage can 

be scheduled individually
• (Elasticity) Reduce write amplification

§ Features:
• Disaggregation of Compute & Storage
• Sync with log, instead of page

§ Examples:
• AWS Aurora
• GCP AlloyDB

23
Figure from https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-columnar-engine



(2) Disaggregated Compute-Log-Storage Architecture
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§ Motivations:
• Efficiency. Better write 

performance with faster Log 
storage service.

• Elasticity. The scaling of Log &
Page Storage is independent of 
each other.

§ Key Features:
• Disaggregation of Log & Page 

Storage.
• Different features of Log & 

Storage services: fast Log Store & 
cheap Page Store.

24



(2) Disaggregated Compute-Log-Storage Architecture
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§ Data write path:
1. Primary node updates local page in 

cache and generates redo log.
2. Primary node writes redo log to 

majority nodes in the log storage 
cloud.

3. Commit the write after the majority of 
log replicas finish the log writing 
process for durability.
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§ Data write path:
1. Primary node updates local page in 

cache and generates redo log.
2. Primary node writes redo log to majority 

nodes in the log storage cloud.
3. Commit the write after the majority of log 

replicas finish the log writing process for 
durability.

§ Data sync path:
1. Read redo logs from the log storage and 

send them to the page storage.
2. Redo logs are replayed to page storage

nodes asynchronously.
3. Different page storage nodes maintain

consistency with the gossip protocol.
4. When redo logs are replayed in all page

storage nodes, the log storage can be 
truncated.

5. Directly transfer logs to secondary nodes
to reduce the update latency.
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§ Data read path:
1. First, compute node will check its 

local cache. When data is in the local
cache and valid, it can directly load 
data from the local cache and return.

2. When the cache misses in①,
compute node will send read 
requests to the page storage cloud.

3. For each node in the page storage 
cloud:
• When data in the page is new,

directly load data from the page.
• Else, wait for the sync process 

until the data is new.
4. Compute node receives data from

page storage cloud and runs cache 
replacement strategy in the local 
cache, then returns.
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§ Data read path:
1. First, compute node will check its 

local cache. When data is in the local
cache and valid, it can directly load 
data from the local cache and return.

2. When the cache misses in①,
compute node will send read 
requests to the page storage cloud.

3. For each node in the page storage 
cloud:
• When data in the page is new,

directly load data from the page.
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until the data is new.
4. Compute node receives data from
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replacement strategy in the local 
cache, then returns.



(2) Disaggregated Compute-Log-Storage Architecture
pAdvantages:

Ø Low write latency.
Ø With the fast log storage service, write can be committed faster compared with

disaggregated compute-storage architecture.

Ø Better elasticity. 
Ø The log and page storage can be scheduled independently, achieving a balance 

between the cost and the performance.

pLimitations:
Ø High read latency when cache misses.

Ø The queries in computing nodes must wait for the log replay when the cache misses.

Ø More complex recovery algorithm.
Ø Data may be recovered from log storage, which requires a complex mechanism.
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(2) Disaggregated Compute-Log-Storage Architecture
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§ Design Purpose:
• (Efficiency) Compute and Storage can 

be scheduled individually
• (Elasticity) Reduce write amplification

§ Key Features:
• Disaggregation of Compute & Storage
• Sync with log, instead of page

§ Examples:
• Azure HyperScale(Socrates)

38
Antonopoulos, Panagiotis, et al. Socrates: The new sql server in the cloud. SIGMOD, 2019.
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§ Design Purpose:
• (Efficiency) Compute and Storage can 

be scheduled individually
• (Elasticity) Reduce write amplification

§ Key Features:
• Disaggregation of Compute & Storage
• Sync with log, instead of page

§ Examples:
• Azure HyperScale
• HUAWEI Taurus

39
Depoutovitch, Alex, et al. Taurus database: How to be fast, available, and frugal in the cloud. SIGMOD, 2020.



(3) Disaggregated Compute-Buffer-Storage Architecture
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§ Motivations:
• Latency. Reduce read latency with 

shared remote memory.
• Throughput. Reduce duplicate

data loading process of different
compute nodes.

• Elasticity. The memory resources
can be dynamically allocated on
demand.

§ Key Features:
• Elastic shared remote buffer of all 

compute nodes(RW node & RO 
nodes)

40
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§ Data write path:
1. Primary node updates local page in 

cache and generates redo log.
2. The redo log writes to log

storage(multi-replicas) for durability.
3. Commit the write after the redo log is 

durable.
4. The corresponding page in the

shared buffer will be updated
simultaneously.
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§ Data write path:
1. Primary node updates local page in 

cache and generates redo log.
2. The redo log writes to log

storage(multi-replicas) for durability.
3. Commit the write after the redo log 

is durable.
4. The corresponding page in the

shared buffer will be updated
simultaneously.
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§ Data write path:
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§ Data write path:
1. Primary node updates local page in 

cache and generates redo log.
2. The redo log writes to log

storage(multi-replicas) for durability.
3. Commit the write after the redo log is 

durable.
4. The corresponding page in the

shared buffer will be updated
simultaneously.

§ Data sync path:
1. Page in the shared buffer will never

be written to storage nodes.
2. Redo logs are replayed to page

storage asynchronously.
3. Directly transfer logs to secondary

nodes to reduce the update latency.
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§ Data write path:
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§ Data read path:
1. First, compute node will check its local 

cache. When data is in the local cache
and valid, it can directly load data from 
the local cache and return.

2. If the local cache misses in①,
compute node will check the remote 
shared buffer. When data is in the
remote buffer and valid, it can load 
data from the remote buffer and return.

3. If the remote buffer misses in②, it will
read data from page storage nodes,
and run the cache replacement
algorithm in the remote buffer.

4. Compute node receives data from the 
remote buffer and runs cache 
replacement strategy in the local 
cache, then returns.
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§ Data read path:
1. First, compute node will check its local 

cache. When data is in the local cache
and valid, it can directly load data from 
the local cache and return.
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shared buffer. When data is in the
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read data from page storage nodes,
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§ Data read path:
1. First, compute node will check its local 

cache. When data is in the local cache
and valid, it can directly load data from 
the local cache and return.

2. If the local cache misses in①,
compute node will check the remote 
shared buffer. When data is in the
remote buffer and valid, it can load 
data from the remote buffer and return.

3. If the remote buffer misses in②, it will
read data from page storage nodes,
and run the cache replacement
algorithm in the remote buffer.

4. Compute node receives data from the 
remote buffer and runs cache 
replacement strategy in the local 
cache, then returns.
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§ Data read path:
1. First, compute node will check its local 

cache. When data is in the local cache
and valid, it can directly load data from 
the local cache and return.

2. If the local cache misses in①,
compute node will check the remote 
shared buffer. When data is in the
remote buffer and valid, it can load 
data from the remote buffer and return.

3. If the remote buffer misses in②, it will
read data from page storage nodes,
and run the cache replacement
algorithm in the remote buffer.

4. Compute node receives data from the 
remote buffer and runs cache 
replacement strategy in the local 
cache, then returns.



(3) Disaggregated Compute-Buffer-Storage Architecture
p Advantages:

Ø Low read latency.
Ø Compute nodes can read data from remote memory, which is faster than durable storage

services.

Ø High read throughput.
Ø Different compute nodes share the same remote buffer area, which reduces the duplicate data

read for the same read requests on different compute nodes.

Ø Better elasticity. 
Ø Memory resources can be dynamically allocated on demand, which is independent of compute

and storage resources.

p Limitations:
Ø Network bottleneck of the buffer layer.

Ø Remote memory requires high network throughput and low latency at the same time. Therefore,
the network of remote memory may become the bottleneck of the database system.
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(3) Disaggregated Compute-Buffer-Storage Architecture
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§ Design Purpose:
• (Efficiency) Compute and Storage can 

be scheduled individually
• (Elasticity) Reduce write amplification

§ Key Features:
• Disaggregation of Compute & Storage
• Sync with log, instead of page

§ Examples:
• Alibaba PolarDB Serverless

Cao, Wei, et al. Polardb serverless: A cloud native database for disaggregated data centers. SIGMOD, 2021.
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Overview of Cloud-Native OLTP Techniques
1. Storage Management: Maintain the consistency of different data replicas.

2. Query Processing: Synchronize data updates between different computing nodes.

3. Recovery: Different-level recovery algorithms for various failures.

4. HTAP Supports: Handle OLAP workload on OLTP systems.
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1. Storage Management in OLTP

1) Data Placement
a. Coupled Log & Page Storage
b. Disaggregated Log & Page Storage

2) Consistency Protocol
a. Quorum-based protocol: Aurora
b. Paxos-based protocol: PolarDB (PolarFS)
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1. Storage Management in OLTP

1a) Coupled Log & Page Storage
• Log is the Database.
• Pages are never written from the 

database tier(including background 
writes, checkpointing, and cache 
eviction).

• Read data from logs, and pages are a
cache of the log applications.

• Checkpointing & page materialization 
are both governed by the length of the
log chain.

• All pages are replayed from logs. 
• Cons: Extra time to analyze log chain

Storage Node
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XȾ���YȾ�

LOG_9009  
XȾP

...

Page 1
A: 10001
B: 20002
C: 30003

Page k
X: 32001
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L1001 LVerT...
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Request X in Version T 

Update X to value n  

Page k
X: 32001
Y: 23002
Z: 34003

L1001 L20x0... L9010...

{

Length L Notice write sucess 

Page k
X: X_20x0
Y: Y_20x0
Z: Z_20x0

L20x1 ... L9010
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1a) Coupled Log & Page Storage (e.g., Amazon Aurora)
• Compute layer will never transform page data to the storage layer. (Fig. 3)
• Log & page are stored in the same node, while log chains control page replay. (Fig. 4)
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1. Storage Management in OLTP

Verbitski, Alexandre, et al. Amazon aurora: Design considerations for high throughput cloud-native relational databases. SIGMOD, 2017.



59

1. Storage Management in OLTP

1b) Disaggregated Log & Page Storage
• Disaggregation of Durability & Availability.
• Log storage for durability: reduce write 

latency (Transaction commits after the logs 
are durable).

• Page storage for availability: accelerate read 
processing (Avoid analyzing log chain).

• Page storage nodes replay log data
asynchronously.

• Some pages receive logs from Log
Storage; others from the sync process.  

• Cons: Sync latency when read from page 
storage. 



1b) Disaggregated Log & Page Storage
(e.g., Taurus Database)

• Log data for durability.
• Commit the writes after the log is persistent

(Step 1~3).

• Truncate the logs after the page is persistent
(Step 8).

• Page data for availability.
• Compute nodes only read from page storage.
• Storage nodes receive logs asynchronously

(Step 4~7).

• Log & Page are stored in different nodes
offered by different storage services.
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1. Storage Management in OLTP

Depoutovitch, Alex, et al. Taurus database: How to be fast, available, and frugal in the cloud. SIGMOD, 2020.
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1. Storage Management in OLTP

2a) Quorum-based Protocol
• High concurrency, low fault

tolerance.

• Simple & parallel procedure.
• Demand extra gossip process.

Case study: Aurora
• 6/4/3(N/W/R) for “AZ+1” failure toleration.
• Quorum membership for non-blocking

recovery.
• Gossip to fill the missing writes of replicas.

Quorum Membership Changes

Necessity of 6 Replicas in Quorum 

Verbitski, Alexandre, et al. Amazon aurora: On avoiding distributed consensus for i/os, commits, and membership changes. SIGMOD, 2018.
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1. Storage Management in OLTP

2b) Paxos-based Protocol
• Strong fault tolerance, low concurrency.
• Complex & linearized procedure.

• Demand concurrency optimization.

.

Case study: PolarFS
• Parallel Raft Protocol, Derived from Raft 

and better support for high concurrent I/Os

• Allowing out-of-order log acknowledging, 
committing, and applying.

• Optimized catch-up mechanism for lagging 
followers.

Overall of Parallel Raft

Fast Catch Up Process in Parallel Raft 

Cao, Wei, et al. PolarFS: an ultra-low latency and failure resilient distributed file system for shared storage cloud database. VLDB, 2018.
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2. Query Processing in OLTP

1) Synchronization for Secondary Nodes
a. Read from Persistent Storage Services
b. Local Cache Synchronization with Redo Log 
c. Read from Shared Remote Buffer
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2. Query Processing in OLTP

1a) Read from persistent storage services
• The most fundamental guarantee of data 

consistency.

• One primary RW node with multiple RO
secondary nodes. To achieve high
concurrency, data updates in the primary
node will not wait for buffer synchronization 
of secondary nodes.

• Reading data from storage services will
suffer from much longer latency than
reading from the cache.

Sync with Persistent Storage
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2. Query Processing in OLTP

1b) Local Cache Synchronization with Log
• Low sync latency, transmit redo log from the

primary node to secondary nodes for cache
status sync.

• High concurrency with lossy protocol, the
primary does not require sync confirmation
from secondaries.

• Offload log transmission from the primary
node to log storage. Avoid network
bottleneck at the primary node.

Sync with Local Cache
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2. Query Processing in OLTP

1b) Local Cache Synchronization with 
Log (e.g., HyperScale)

• Disaggregated Compute-Log-Storage
Architecture, independent log storage service.

• Motivation: Reduce the update delay between
the primary node and secondary nodes.

• Lossy Protocol: Asynchronous and possibly
unreliable (in a fire-and-forget style). Avoid
blocking the data write process.

• Techniques:
• Pending area: transaction caching for atomicity.

• Destaging: Log truncation to save space.

Antonopoulos, Panagiotis, et al. Socrates: The new sql server in the cloud. SIGMOD, 2019.
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2. Query Processing in OLTP

1b) Local Cache Synchronization with Log 
(e.g., Taurus Database)

• Network offloading: Secondary nodes get logs
from Log Storage instead of the Primary node.

• Two types of consistency: physical & logical.
• Physical consistency: internal structures like b-tree.

• Primary node: Locking pages (only inside a node).

• Secondary nodes: Log records group boundary.

• Logical consistency: transaction isolation.
• Primary node: Generate commit log.

• Secondary nodes: Receive logs from primary to
update active transaction list & Buffer. Buffer stores
multi-version pages.

Depoutovitch, Alex, et al. Taurus database: How to be fast, available, and frugal in the cloud. SIGMOD, 2020.

Network offloading to Log Storage

Physical Consistency with Log Group
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2. Query Processing in OLTP

1c) Read from Shared Remote Buffer
• High memory resource utilization, allowing

remote memory access across different
machines.

• Benefits from low page access latency of
shared remote memory; reduce sync latency.

• Offloading log replaying from shared buffer
to the storage layer. Avoid network
bottlenecks at the shared buffer area.

Sync with Shared Buffer
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2. Query Processing in OLTP
1c) Shared Remote Buffer: OS-level

• Motivations:
• High resource utilization: Expose unused memory across different machines.
• General-purpose proposals: transparently to unmodified applications.

• Methods:
• Exposing remote memory paging systems. (e.g., Infiniswap[1])
• New OS architecture for hardware disaggregation. (e.g., LegoOS[2])

• Limitations:
• Full I/O stack: Each remote page access must go through the full I/O stack, causing the

IO latency to be much longer than network latency.

• High cache miss ratio: Unique data access patterns of database workloads, causing a
high cache miss ratio in general purpose design.

[1] Gu, Juncheng, et al. Efficient memory disaggregation with infiniswap. NSDI, 2017.
[2] Shan, Yizhou, et al. LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation. OSDI, 2018.
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2. Query Processing in OLTP

1c) Shared Remote Buffer: DB-level(e.g., LegoBase)
• Database layer memory management & remote memory access.
• Motivations of database layer design:

• Bypass the time-consuming kernel data path, and reduce access latency.

• Retain the sophisticated design of the LRU mechanism used in the conventional database.

• Explore database-specific optimizations(e.g., clever metadata caching).

Zhang, Yingqiang, et al. Towards cost-effective and elastic cloud database deployment via memory disaggregation. VLDB, 2021.

• Key components:
• Persistent Shared Storage(pStorage): Storing

WAL, checkpoints and database tables.

• Compute Node(cNode): Performing SQL 
queries by consuming data from pStorage.

• Global Memory Cluster(gmCluster): Allocating
remote memory to cNode.
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2. Query Processing in OLTP

1c) Shared Remote Buffer Area: DB-level (e.g., LegoBase)
• Three page access paths:

• Dotted Arrows: Page accesses from local buffer pool.
• Solid Arrows: Page accesses from locally cached remote address pointers.

• Dashed Arrows: Page accesses from persistent shared storage.

Zhang, Yingqiang, et al. Towards cost-effective and elastic cloud database deployment via memory disaggregation. VLDB, 2021.
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2. Query Processing in OLTP
1c) Challenges of DB-level Shared Remote Buffer(e.g., PolarDB Serverless)

• C1: Consistency of shared remote buffer & local buffer of the primary node.
• S1: Cache invalidation mechanism: Page Invalidation Bitmap(PIB, page update status) and Page 

Reference Directory(PRD, page user list) in the home node to achieve cache coherency.

• C2: A large amount of network transmission of Shared Memory is caused by cache flush.
• S2: Page materialization offloading: Pages can be evicted without flushing back.

Cao, Wei, et al. Polardb serverless: A cloud native database for disaggregated data centers. SIGMOD, 2021.
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3. Recovery Mechanism in OLTP

1) Non-persistent Layer Recovery (Compute & Buffer)
a. Mechanism based on Disaggregation of Compute & Storage
b. Mechanism based on Disaggregation of Compute & Buffer

2) Persistent Layer Backup & Recovery (Log & Page Storage)
a. Mechanism based on Coupled Log & Page Storage
b. Mechanism based on Disaggregation of Log & Page Storage
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3. Recovery Mechanism in OLTP

1) Traditional Database Recovery Algorithm (ARIES)
• Algorithm Workflow (3 Phases):

• Analysis Phase: Determine the start point of the redo phase. Find the not persisted 
dirty pages for Redo Phase and uncommitted transactions for Undo Phase.

• Redo Phase: Redo from the start point, replaying the transaction updates to pages in
the local cache, and re-establishing a stable runtime state.

• Undo Phase: Roll back the uncommitted transactions, async.

• Features:
• Shared-Everything(Monolithic) Architecture.
• Updates by Pages Flush: Dirty pages in local cache

flush to persistent storage and updates old pages.
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3. Recovery Mechanism in OLTP

1a) Mechanism based on Disaggregation of Compute & Storage
• Differences in disaggregation:

• Shared Storage Architectures.
• Updates by Logs Replay: Page updates are replayed from log data.

• Influences on recovery:
• No Redo Phase in Compute Layer: Compute layer does not need to re-

establish the local cache state. The storage layer will guarantee durability
after crashes & asynchronously consuming redo logs. Significantly 
reduce recovery time.

• Cold Cache Issue: Under the shared storage architecture, cache in the
storage layer & shared buffer of all compute nodes will not lose together
with compute nodes, diluting the negative influence of the cold cache
issue.
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3. Recovery Mechanism in OLTP

1b) Mechanism based on Disaggregation of Compute & Buffer
• Precondition: Compute nodes & remote buffer are unlikely to fail simultaneously.
• Motivation: Reduce the recovery time of compute node failure. 

• Two-tier ARIES Fault Tolerance Protocol (e.g., LegoBase):
1. Compute Node & Remote Buffer: High frequency with low recovery time, light fault tolerance.
2. Remote Buffer & Persistent Storage: Ensuring worst-case data persistency, heavy fault tolerance.

Zhang, Yingqiang, et al. Towards cost-effective and elastic cloud database deployment via memory disaggregation. VLDB, 2021.

• Protocol Procedure:
1. Query Execution (Step 1~4).
2. Remote Buffer Checkpoint (Step 5,6,8).

3. Persistent Storage Checkpoint (Step 7,9~11).
4. Log Truncation (Step 12~13).
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3. Recovery Mechanism in OLTP
2a) Persistent Storage Recovery with Coupled Log & Page Storage

Verbitski, Alexandre, et al. Amazon aurora: On avoiding distributed consensus for i/os, commits, and membership changes. SIGMOD, 2018.

• Motivations:
• Avoid heavyweight distributed commit process, e.g., 2-phase commit.
• Avoid complex recovery situations in the multi-replica situation.

• Methods:
• Storage Consistency Points: The lower bound of LSN has met 

Quorum in a protection group. Gaps inside a node can be eliminated 
by gossiping with other peers inside the group. System Commit 
Number should not exceed Volume Complete LSN(minimum 
Consistency Point).

• Log Truncation during Recovery: The existence of gaps inside 
nodes will generate complex recovery situations. To avoid these 
situations, the storage node will ignore the log after VCL.
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3. Recovery Mechanism in OLTP

2b) Persistent Storage Recovery with Disaggregated Log & Page Storage

Depoutovitch, Alex, et al. Taurus database: How to be fast, available, and frugal in the cloud. SIGMOD, 2020.

• Motivations:
• Reduce the data transfers for the Log Storage.
• Recovery from any type of failures in Page Storage.

• Methods:
• Gossip in Page Storage: Page storage nodes that 

suffer short-term failure receive missing logs from 
the Gossip of the others.

• Full Copy in Page Storage: Allocating new page
storage node when original node is down. Full copy
data from other normal node.

• Log re-send from Log Storage: When the log is 
completely lost in the page store, the Log Storage
will re-send the log to the Page Storage.

Three types of Recovery Method
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4. HTAP Supports in OLTP

1) HTAP on Disaggregation Architecture
a. Compute Layer Transformation.
b. Storage Layer Heterogeneous Replicas.
c. Unified Table Storage Structure.
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4. HTAP Supports in OLTP

1a) Compute Layer Transformation(e.g., Google AlloyDB)
• Data is stored in row format in persistent storage.
• Processing as row format under OLTP workload.

• Automatically converting row to columnar format to support OLAP queries.
• Support hybrid scan on columnar and row-oriented data simultaneously.

Hybrid Scans in AlloyDB
Hybrid Scans in AlloyDB

Figure from https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-columnar-engine
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4. HTAP Supports in OLTP

1b) Storage Layer Heterogeneous Replicas(e.g., TiDB)
• Heterogeneous storage replicas(TiKV for row format, TiFlash for columnar format)
• TiKV supports OLTP workload & maintains consistency under Raft Protocol.

• TiFlash async receives logs from TiKV for updates & not participate in Raft Protocol.
• Columnar Delta Tree structure to support efficient read and write, appends delta updates

immediately and later merges to stable columnar chunks.

Huang, Dongxu, et al. TiDB: a Raft-based HTAP database. VLDB, 2020.
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4. HTAP Supports in OLTP

1c) Unified Table Storage Structure(e.g., SingleStoreDB)
• Row format storage in memory & Columnar storage in persistent storage.
• Combining scan performance of column store & seek performance of row store.

• Columnar LSM tree structure for OLAP + Secondary hash indexes for OLTP
• Two-level secondary indexes: Data Segments (immutable) & Global Index (mutable).

Two-level secondary indexes in S2DB

Prout, Adam, et al. Cloud-Native Transactions and Analytics in SingleStore. SIGMOD, 2022.
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An Overview of Cloud OLAP Architectures

VLDB’22 Tutorial 84



(1) Disaggregated Compute-Storage Architecture

VLDB’22 Tutorial

§ Motivation:
§ Elasticity: Storage and compute 

resources need to be scaled 
independently

§ Availability: Tolerate cluster and 
node failures

§ Heterogeneous workloads: high 
I/O bandwidth or heavy compute

§ Key Features:
• Disaggregation of Compute and 

Storage
• Multi-tenancy and Serverless
• Elastic Data Warehouses
• Local SSDs Caching
• Cloud Storage Service, e.g., AWS 

S3, Google Cloud Storage, Azure 
Blob Storage
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(1) Disaggregated Compute-Storage Architecture
p Advantages compared to On-Premise Share-Nothing OLAP Architectures:

Ø Higher availability
Ø Cluster and node failures can be recovered quickly because of (1) the data replication 

across many availability zones and (2) the scalable cloud service.

Ø More cost-efficient
Ø Resources are virtualized and shared by multiple tenants.
Ø Serverless computing provides the pay-as-you-go model in a query-level granularity.

Ø Better elasticity
Ø The compute and storage resources can be scheduled on demand individually.

pLimitation:
Ø Network traffic becomes the bottleneck when the local cache is not hit

Ø Need to design efficient and effective caching and computation pushdown strategies.
VLDB’22 Tutorial 86



(1a) Case Study: Snowflake

VLDB’22 Tutorial
Dageville, Benoit, et al. “The snowflake elastic data warehouse.” In SIGMOD. 2016.

§ Feature Highlight
§ Cloud Services to manage VWs, 

workload, security, and metadata
§ Multiple Virtual Warehouses (Elastic 

Clusters of EC2 instances)
§ Cloud Storage, e.g., AWS S3 to store 

data as immutable table files
§ Overview of Query Processing

1. Parse the query using the cloud service,
and generate and optimize query plan

2. Execute the query in a virtual warehouse
3. If the local cache is not hit, load the data 

from the cloud storage with pruning and 
computation pushdown 
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(1b) Case Study: Redshift

VLDB’22 Tutorial
Nikos Armenatzoglou, et al. “Amazon Redshift Re-invented.” In SIGMOD. 2022.

Multiple Compute Clusters

Querying semi-
structured data 
using PartiQL FPGA 

Execution Generated 
code caching

Remote SSD 
Caching (up to 
16 PBs)

88



(1b) Case Study: Redshift Query Flow

VLDB’22 Tutorial
Nikos Armenatzoglou, et al. “Amazon Redshift Re-invented.” In SIGMOD. 2022.

1. The leader node accepts a query
2. The query is parsed, rewritten, and optimized with the catalog statistics
3. The query plan is further optimized with the co-located join selection
4. The optimized plan is generated to C++ code, compiled and sent to compute nodes for execution
5. The columnar data is scanned from locally attached SSDs or is scanned from the cloud storage
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Comparison of Cloud Databases with Architecture (1)

Databases Computation Storage Query 
Processing

Serverless

Snowflake Isolated Virtual 
Warehouses

(EC2 instances)

S3+Local 
Storage

Columnar Scan 
with Vectorized 

Engine

Instance-level
Serverless
Computing

Redshift Isolated & Shared 
Compute Clusters

+
Acceleration Layer
(Spectrum, AQUA)

S3+Redshift 
Managed 
Storage 
(RMS)

Columnar Scan 
with Code 
Generation

Instance-level
Serverless
Computing
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(2) Disaggregated Compute-Memory-Storage Architecture

VLDB’22 Tutorial 91

§ Motivation:
§ Elasticity: Storage and compute resources 

need to be scaled independently
§ Centralized Scheduling: schedule the 

resources for better utilization
§ Complex workloads: cope with the large 

intermediate results
§ Key Features:

• Disaggregation of Compute and Storage
• Shuffle Memory Layer for speeding up joins
• Multi-tenancy and Serverless computing
• Local SSDs Caching
• Cloud Storage Service, e.g., AWS S3, 

Google Cloud Storage, Azure Blob Storage



(2) Disaggregated Compute-Memory-Storage Architecture
p Advantages compared to On-Premise Share-Nothing OLAP Architectures:

Ø Higher throughput.
Ø Shuffle memory tier reduces I/O cost by avoiding writing intermediate results to the disks.

Ø Higher resource utilization.
Ø Compute resources are virtualized and scheduled on demand.

Ø Better elasticity. 
Ø The compute, memory, and storage resources can be scheduled individually.

pLimitations:
Ø Shuffle memory tier could incur a high cost

Ø Need to design efficient and effective pushdown and scheduling algorithms to reduce the 
data loaded to memory.
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(2) Case Study: BigQuery

VLDB’22 Tutorial

Sergey Melnik et al. Dremel: A Decade of Interactive SQL Analysis at Web Scale. PVLDB, 
2020, 13(12):3461-3472.

§ Compute (Clusters + Memory 
Shuffle Tier) and Storage

§ Dremel Query Engine with 
the support of semi-structured 
data querying

§ Distributed Memory Shuffle
Tier for Query Optimization

§ Colossus Storage Clusters
with Capacitor format
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(2) Case Study: BigQuery Shuffle Workflow

VLDB’22 Tutorial
Sergey Melnik et al. Dremel: A Decade of Interactive SQL Analysis at Web Scale. PVLDB, 2020, 13(12):3461-3472.

§ Producer in each worker 
generates partitions and sends 
them to the in-memory nodes 
for shuffling

§ Consumer combines the 
received partitions and 
performs the operations locally

§ Large intermediate results can 
be spilled to the local disks

94



Cloud-Native OLAP Techniques
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Overview of Cloud-Native OLAP Techniques
1. Storage Management: Data organization in the cloud
2. Query Processing: Querying data with the local cache and cloud storage 
3. Serverless Computing: Automated provisioning and scaling of resources
4. Security: Protect data from stealing and tampering in the cloud
5. Machine Learning: AI for cloud-native DBMS and cloud-native DBMS for AI

VLDB’22 Tutorial



1) Data Organization
a. Metadata management
b. Tabular data management
c. Semi-structured data management

2) Data Placement
a. Data partitioning in the cloud
b. Data reshuffling in the cloud 

3) Data Updates
a. Recreate objects with transaction updates
b. In-place update with internal table

1. Storage Management in the Cloud
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1a) Metadata Management
§ Metadata is stored in the layer of cloud service
§ Contains information for schema, data version, location, statistics, logs, etc.
§ Techniques: pruning, zero-copy cloning, and time traveling (MVCC)

1. Storage Management in the Cloud
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1b) Data organization for tabular data
§ Tables are partitioned into immutable files, i.e., micro-partitions
§ Micro-partitions are replicated across multiple availability zones
§ Tables are organized in columnar format, e.g., Parquet, and can be 

compressed to reduce the storage cost, e.g., run length encoding

1. Storage Management in the Cloud

99VLDB’22 Tutorial Figure from https://cloud.google.com/blog/topics/developers-practitioners/bigquery-admin-reference-guide-storage



1c) Data organization for semi-structured data
a. encoding the documents with length (len) and presence (p)
b. encoding the documents with repetition levels (r) and definition levels (d)

1. Storage Management in the Cloud

100VLDB’22 Tutorial
Sergey Melnik et al. Dremel: A Decade of Interactive SQL Analysis at Web Scale. PVLDB, 2020, 13(12):3461-3472.

(a) Documents with a schema (b) Encoding with length and presence (c) Encoding with repetition and definition



2a) The join graph approach for partition-key selection
§ Select the collocated join keys to minimize network communication
§ Build a join multi-graph based on a query workload
§ Use graph matching techniques and heuristics to select partition keys

(iii)

1. Storage Management in the Cloud

101VLDB’22 Tutorial

Parchas, Panos, et al. "Fast and effective distribution-key recommendation 
for amazon redshift." PVLDB Endowment 13.12 (2020): 2411-2423.

(c) The Join Graph Approach



2b) Lazy consistent hashing during scaling of the ephemeral storage
§ To achieve smooth scaling for the cloud databases
§ When a new node is added to a VW, the consistent hashing is deferred
§ When a related task is scheduled, the data is read and cached  

1. Storage Management in the Cloud

102VLDB’22 Tutorial

(a) A Cloud Warehouse Architecture (b) Lazy Consistent Hashing

Vuppalapati, Midhul, et al. "Building an elastic query engine on disaggregated storage." In NSDI 2020.



3) Data Update 
a) For blob storage, an update results in a creation of a new file due to the 

immutable table

b) mutable table with in-place updates, e.g., Snowflake’s hybrid table in Unistore, 
supporting indexing, single-row retrieval, loading data from immutable tables

1. Storage Management in the Cloud
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(a)  Creation of a new object file (b) In-place updates



1. Columnar Scan with Caching/Pushdown
q Caching: Snowflake, Redshift
q Pushdown Computation: PushdownDB
q Caching and Pushdown : FlexPushdownDB (FPDB)

2. Columnar Scan with Shuffle Memory Tier 
q Multi-stage parallel columnar scan with a shuffle memory tier.
q E.g., BigQuery

2. Query Processing in the Cloud
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1a) Columnar Scan with Caching
i. Given a query, it searches for the query 

results in the cache 
ii. If the cache is not hit, it searches for the 

results from the local SSD cache and 
processes the query with columnar scans in 
the local cluster

iii. If the local cache is not hit, it processes the 
data loading from cloud blob storage 

iv. File stealing from neighbors for load balance

2. Query Processing in the Cloud
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1b) Columnar Scan with Pushdown
§ Pushdown computation to the cloud storage, e.g., Amazon S3 Select, Select 

API can be extended to support index scan, hash-join, group by, top-k

§ Pushdown to the computational storage drive, e.g., FPGA-enabled table scan

2. Query Processing in the Cloud
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(a)  Pushdown to the cloud storage (b)  Pushdown to the computational storage

Yu, Xiangyao, et al. "PushdownDB: Accelerating a DBMS using S3 computation." 2020 ICDE, 2020.
Cao, Wei, et al. "POLARDB Meets Computational Storage: Efficiently Support Analytical Workloads in Cloud-Native 
Relational Database." FAST, 2020.



1c) Columnar Scan with Caching and Pushdown
§ Process the query with caching and computation pushdown simultaneously
§ Enhance the cache replacement strategy, e.g., weighted LFU

2. Query Processing in the Cloud
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Yang, Yifei, et al. "Flexpushdowndb: Hybrid pushdown and caching in a cloud DBMS." PVLDB, 14.11 (2021): 2101-2113.



1c) Columnar Scan with Caching and Pushdown
§ Hybrid Query Execution : (1) Local Cache is more efficient than Pushdown; 

(2) Pushdown is more efficient than loading all data from the cloud storage

§ Two relations R(A,B) and S(C,D), each attribute has two partitions

2. Query Processing in the Cloud
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SELECT R.B, Sum(S.D)
FROM R, S
WHERE R.A=S.C and R.B>10

and S.D>20
GROUP BY R.B



2. Columnar Scan with Shuffle Memory Tier
§ Use a shuffle memory tier without writing the intermediate results to disks
§ The query is executed by multiple workers with multiple stages

2. Query Processing in the Cloud

109VLDB’22 Tutorial Melnik, Sergey, et al. "Dremel: A decade of interactive SQL analysis at web scale." PVLDB, 13.12 (2020): 3461-3472.



3. Serverless Computing for Queries
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Motivation: tenants issue the queries in the cloud without caring about the 
resource provisioning and can pay for the resources in the query granularity
Two main approaches are as follows:
1. Serverless Databases: rely on the cloud SQL engine and storage to execute 

the queries with dynamic resource provisioning; the database service can 
pause for the idle period and resume when a query comes in

2. Serverless Functions + Cloud Storage: rely on Function-as-a-Service (Faas) 
and the cloud storage to perform the queries with on-demand resources

AWS Lambda

…



3. Serverless Computing for Queries
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1. Serverless Database with Dynamic Resource Scheduling
§ Challenge: starting a database is expensive after a pause period 
§ Solution: predict the pause/resume patterns and proactively resume 

the resources for each database 

Poppe, Olga, et al. "Moneyball: proactive auto-scaling in Microsoft Azure SQL 
database serverless." Proceedings of the VLDB Endowment 15.6 (2022): 1279-1287.



3. Serverless Computing for Queries
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2. Serverless Functions + Cloud Storage
§ Two Challenges: (1) functions are stateless; (2) stragglers increase the 

overall latency of the parallel query processing
§ Solutions: use cloud storage to exchange states; use tuned models to 

detect stragglers and invoke functions with duplicate computation; 

Perron, Matthew, et al. "Starling: A scalable query engine on cloud functions." In SIGMOD. 2020.



3. Serverless Computing for Queries
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2. Query Processing based on Serverless 
Functions and Cloud Storage

§ Invoke many tasks in each stage
§ Each task writes the intermediate 

results to a single object file
§ Combiners can be used to reduce
the read cost of the large shuffle
§ Trade-off between the number of 
invoked tasks (performance) and cost

Perron, Matthew, et al. "Starling: A scalable query engine on cloud functions." In SIGMOD. 2020.

Multi-Stage Shuffling based on Functions
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Summary of Serverless Computing for Queries

Category Database/
Prototype

Main Approach Scaling Pricing
Model

Serverless 
Database

Azure 
SQL,

Athena,
BigQuery

Stateful SQL 
Engine +

Auto-pausing 
and resuming 
mechanism

Scaling the 
resources with 

more CPU, 
memory, or 

stand-by nodes

Pay for active 
service with 

min-max 
bound

Function as a 
Service (FaaS)

Starling Stateless 
Functions +

Stateful Cloud 
Storage

Scaling the 
resources by 
invoking more 
function tasks

Pay for used 
functions

and storage

VLDB’22 Tutorial



4. Security in the Cloud
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1. Software-based Data Protection
q E.g., Snowflake, Redshift
q Pros: high scalability and throughput, low cost 
q Cons: decryption for query processing

2. Hardware-based Data Protection
q E.g., Azure SQL
q Pros: high end-to-end security
q Cons: low scalability and throughput, high cost



4. Security in the Cloud
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1. Software-based Data Protection
§ Core Idea: encryption keys are automatically rotated and re-encrypted
§ Challenges: data is decrypted for query processing; the cloud vendors may be untrusted

(a) Encryption Key Hierarchy (b) Key Life Cycle
Dageville, Benoit, et al. “The snowflake elastic data warehouse.” In SIGMOD. 2016.



4. Security in the Cloud
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2. Hardware-based Data Protection
§ Core Idea: database systems and cloud providers are untrusted; leverage 

customized hardware, e.g., Enclave, for data protection; bring-your-own-keys 
§ Challenges: computation over ciphertext directly; improve the efficiency of enclave

Antonopoulos, Panagiotis, et al. "Azure SQL database always encrypted." In SIGMOD. 2020.

the design of Enclave-based protection in Azure SQL

Step 1: Application issues a query “select 
* from T where value = @v”

Step 2: Driver encrypts the parameter @v 
and sent to the DBMS with attestation service
Step 3: DBMS fetches the data and invokes 
the enclave for evaluation  
Step 4: Enclave decrypts the data to 
plaintext and evaluates the filter



1. ML-Enabled Cloud-Native Databases
q ML-Enabled Workload Management
q RL-Enabled Partition-Key Advisor
q And many more: knob tuning, index tuning, root cause diagnose, etc.

2. Cloud-Native Database for ML
q SQL-enabled ML pipeline
q Cloud Database with AutoML

5. Cloud-Native Databases with Machine Learning
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ML-Enabled Cloud-Native Databases: Redshift Workload Management
§ Core Idea: tune the workload concurrency by predicting the memory consumption 

and execution time for the workload
§ Challenges: schedule the workload; migrate to new access pattern
§ Solution: Redshift AutoWLM; trains an XGBOOST model for each cluster

5. Cloud-Native Databases with Machine Learning

119VLDB’22 Tutorial Nikos Armenatzoglou, et al. “Amazon Redshift Re-invented.” In SIGMOD. 2022.



Partition-Key Advisor for Cloud Databases
§ Core Idea: exploring column combinations as partition keys and learning with RL
§ Challenges: characterize partition features; migrate models to new workloads 
§ Solution: (1) extract partition features as [tables, query frequencies, foreign keys] 

and use DQN to partition the tables for a workload; (2) train a cluster of DQN 
models on typical workloads and pick one with the most similar features;

5. Cloud-Native Databases with Machine Learning

120VLDB’22 Tutorial Hilprecht, Benjamin, Carsten Binnig, and Uwe Röhm. "Learning a partitioning advisor for cloud databases." SIGMOD. 2020.



2.  Cloud-Native Database for ML
§ Core Idea: (1) SQL-enabled machine learning in cloud databases; (2) bring the model to 

the data; (3) AutoML by the cloud providers, e.g., model selection, training and tuning
§ Challenges: SLA-aware in-database ML; flexibility of SQL-based ML pipeline

5. Cloud-Native Databases with Machine Learning
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(b) Redshift with SageMaker

CREATE MODEL demo_ml.customer_churn_model
FROM
(SELECT state, area_code,
average_daily_spend,
average_daily_cases,
churn 
FROM demo_ml.customer_activity
WHERE record_date < ‘2022-01-01’ )

TARGET churn FUNCTION predict_customer_churn

(a) CREATE MODEL for predicting customer churn
Nikos Armenatzoglou, et al. “Amazon Redshift Re-invented.” In SIGMOD. 2022.



Open Problems and Opportunities
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Multi-Write Architecture in the Cloud
p Call for Multi-Write Solutions for Cloud-Native Databases

Ø Multi-Write Protocol (How to handle write conflicts in the cloud)
Ø Data Consistency (How to keep data consistency for dirty caches)
Ø Log Management (How to replay and update the logs)

Write WriteMulti-Write Protocol?

Data Consistency?

Log Management? Paxos Protocol? 

CRDT Protocol? 

Memory Disaggregation? 
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Fine-grained Serverless
pServerless Computing

Ø Stateful Function Service (How to exchange the intermediate results)
Ø Adaptive Provisioning and Scaling (How to schedule the resources adaptively)

Stateful Function Service?Adaptive Provisioning and Scaling?
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Cloud-Native HTAP Database
pCall for Cloud-Native HTAP databases

Ø SLA-aware HTAP service (How to balance performance, freshness, cost)
Ø Data Organization for HTAP (How to organize the cloud data for HTAP)
Ø Pushdown Strategy for HTAP (Pushdown operators to row or column nodes)

HTAP HTAP

SLA-aware HTAP 
Service?

Data Organiztion?

Pushdown Strategy? Row or Column Nodes? 

Learned Prediction Model? 

Unified Memory Structure? 
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Multi-Cloud Database
pCall for Multi-Cloud Databases

Ø High Availability (How to handle the failures and migrate data in multi-cloud)
Ø Storage Management (How to organize and store the data in multi-cloud)
Ø Query Processing (How to perform the query in multi-cloud)

High Availability? Storage Management? Query Processing?

…
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Q & A

Thanks for your listening!


