
Cloud-Native Databases

Guoliang Li Haowen Dong Chao Zhang

Tsinghua University

2VLDB’22 Tutorial

Motivation of Cloud Database
pMarket Trends: Databases are moving to Cloud

ØGrowth Speed
• 68% of the growth of the DBMS Market came from cloud.
• 38.2% annual growth rate from 2021 to 2026.

ØRevenue Rate
• $39.2 billion, 49% of all DBMS revenue from cloud(2021).

ØMarket Share
• 75% of Databases will be on Cloud in 2023

Ø “The future of DBMS Market is Cloud.”

Cloud Database
Market Size

2020 2025

USD
12.0

Billion

USD
24.8

Billion

3

Motivation of Cloud Database
pAdvantages for Cloud Database Customers

Elasticity Availability

Flexibility Low Price

High Service Availability.
Ø The system maintains multiple

replicas to support high service
availability.

Strong Data Durability.
Ø Replicas deployed in different

locations guarantee data
durability over extreme disasters.

Auto Scaling Service.
Ø Service can auto scale up

or down based on workload.

Infinite Capacity.
Ø The system can provide

nearly infinite resources to
users.

Pay-as-you-go Pricing Model.
Ø Converting capital expenses

to operating expenses. Users
only need to pay for usage,
instead of the maximum
capacity of the whole
workload.

Out-of-the-box Feature.
Ø Users can use the service

without worrying about the
complex deployment process.

Auto Tuning & Optimizing.
Ø Support auto tuning &

optimizing.

Reduce
Costs

Improve
Resource
Utilization

Expand
Market

Customer

4

Motivation of Cloud Database
pAdvantages for Cloud Database Providers

Scale Effect in Deployment.
Ø Wholesale price on hardware

purchase.
Ø Hyperscale data centers.

Scale Effect in Operation.
Ø Unified management team.
Ø Low electricity price, benefits

of data center locations.

Demand Expansion.
Ø The era of big data, the

demand of data processing
is expanding rapidly.

New Target Customers.
Ø Flexibility of service attracts

grand amount of small
business or individual users
without professional data
management team.

Resource Utilization.
Ø Fixed-sized resource provisioning

meets dynamic workloads.
Ø Rent resources as cloud service

to improve utilization.

Rent Idle Resources
as Cloud Service

Outline of Tutorial
From Cloud-Hosting to Cloud-Native

Cloud-Native OLTP Architectures

Cloud-Native OLTP Techniques

Cloud-Native OLAP Architectures

Cloud-Native OLAP Techniques

Open Problems & Opportunities

5

From Cloud-Hosting to Cloud-Native

6

Disaggregation

Architecture
Shared Everything

Shared Storage

IO
Local Access

Network Access

Scaling
VM-level

Node-level

Data Update
Dirty Page Flush

Redo Log Replay

Disaggregation
for Elastic

Cloud-Native OLTP Architectures

7VLDB’22 Tutorial

An Overview of Cloud OLTP Architectures

VLDB’22 Tutorial

(1) Disaggregated Compute-Storage (2) Disaggregated Compute-Log-Storage

8

An Overview of Cloud OLTP Architectures

VLDB’22 Tutorial

(3) Disaggregated Compute-Buffer-Storage

9

(1) Disaggregated Compute-Storage Architecture

VLDB’22 Tutorial

§ Motivations:
• Elasticity. Compute and Storage

can be scheduled individually
• Efficiency. Reduce write

amplification.
• Availability. Multi-layer recovery

mechanism to handle various
exceptions.

§ Key Features:
• Disaggregation of Compute &

Storage.
• Log is the database.

10

(1) Disaggregated Compute-Storage Architecture

VLDB’22 Tutorial

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. Primary node writes redo log to

majority nodes in the storage cloud.
3. Commit the write after the majority of

data replicas finish the log writing
process for durability.

11

(1) Disaggregated Compute-Storage Architecture

VLDB’22 Tutorial

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. Primary node writes redo log to

majority nodes in the storage cloud.
3. Commit the write after the majority of

data replicas finish the log writing
process for durability.

12

(1) Disaggregated Compute-Storage Architecture

VLDB’22 Tutorial

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. Primary node writes redo log to

majority nodes in the storage cloud.
3. Commit the write after the majority of

data replicas finish the log writing
process for durability.

13

(1) Disaggregated Compute-Storage Architecture

VLDB’22 Tutorial

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. Primary node writes redo log to

majority nodes in the storage cloud.
3. Commit the write after the majority of

data replicas finish the log writing
process for durability.

§ Data sync path:
1. The consistency of replicas is

maintained based on the log data.
2. Redo logs are replayed to the page

asynchronously in the storage node.
3. Directly transfer logs to secondary

nodes to reduce the update latency.

14

(1) Disaggregated Compute-Storage Architecture

VLDB’22 Tutorial

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. Primary node writes redo log to

majority nodes in the storage cloud.
3. Commit the write after the majority of

data replicas finish the log writing
process for durability.

§ Data sync path:
1. The consistency of replicas is

maintained based on the log data.
2. Redo logs are replayed to the page

asynchronously in the storage node.
3. Directly transfer logs to secondary

nodes to reduce the update latency.

15

(1) Disaggregated Compute-Storage Architecture

VLDB’22 Tutorial

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. Primary node writes redo log to

majority nodes in the storage cloud.
3. Commit the write after the majority of

data replicas finish the log writing
process for durability.

§ Data sync path:
1. The consistency of replicas is

maintained based on the log data.
2. Redo logs are replayed to the page

asynchronously in the storage node.
3. Directly transfer logs to secondary

nodes to reduce the update latency.

16

(1) Disaggregated Compute-Storage Architecture

VLDB’22 Tutorial

§ Data read path:
1. First, compute node will check its local

cache. When data is in the local
cache and valid, it can directly load
data from the local cache and return.

2. When the cache misses in①,
compute node will send read requests
to the storage layer.

3. For each node in the storage layer:
• When data in the page is new,

directly load data from the page.
• Else replay the page from redo

logs.
4. Compute node receives data from

nodes in storage layer and runs cache
replacement strategy in the local
cache, then returns.

17

(1) Disaggregated Compute-Storage Architecture

VLDB’22 Tutorial 18

§ Data read path:
1. First, compute node will check its local

cache. When data is in the local cache
and valid, it can directly load data from
the local cache and return.

2. When the cache misses in①,
compute node will send read requests
to the storage layer.

3. For each node in the storage layer:
• When data in the page is new,

directly load data from the page.
• Else replay the page from redo

logs.
4. Compute node receives data from

nodes in storage layer and runs cache
replacement strategy in the local
cache, then returns.

(1) Disaggregated Compute-Storage Architecture

VLDB’22 Tutorial 19

§ Data read path:
1. First, compute node will check its local

cache. When data is in the local cache
and valid, it can directly load data from
the local cache and return.

2. When the cache misses in①,
compute node will send read requests
to the storage layer.

3. For each node in the storage layer:
• When data in the page is new,

directly load data from the page.
• Else replay the page from redo

logs.
4. Compute node receives data from

nodes in storage layer and runs cache
replacement strategy in the local
cache, then returns.

(1) Disaggregated Compute-Storage Architecture

VLDB’22 Tutorial 20

§ Data read path:
1. First, compute node will check its local

cache. When data is in the local cache
and valid, it can directly load data from
the local cache and return.

2. When the cache misses in①,
compute node will send read requests
to the storage layer.

3. For each node in the storage layer:
• When data in the page is new,

directly load data from the page.
• Else replay the newest page from

redo logs.
4. Compute node receives data from

nodes in storage layer and runs cache
replacement strategy in the local
cache, then returns.

(1) Disaggregated Compute-Storage Architecture
p Advantages compared to Traditional Architecture:

Ø Low write latency.
Ø Write can be committed without waiting for updating pages in storage nodes.

Ø Reduce write amplification.
Ø Log replay is pushdown to the storage layer. Avoid dirty page flush during data writing.
Ø Shared-storage architecture. Avoid that single instance maintains multiple storage replicas.

Ø Better elasticity.
Ø Disaggregation of compute and storage resources, which can be scheduled independently.

pLimitations:
Ø High read latency when cache misses.

Ø The update data may not be replayed to the page, leading to extra read latency for log
replaying.

VLDB’22 Tutorial 21

(1) Disaggregated Compute-Storage Architecture

VLDB’22 Tutorial

§ Purpose:
• (Efficiency) Compute and Storage can

be scheduled individually
• (Elasticity) Reduce write amplification

§ Features:
• Disaggregation of Compute & Storage
• Sync with log, instead of page

§ Examples:
• AWS Aurora

22
Verbitski, Alexandre, et al. Amazon aurora: Design considerations for high throughput cloud-native relational databases. SIGMOD, 2017.

(1) Disaggregated Compute-Storage Architecture

VLDB’22 Tutorial

§ Purpose:
• (Efficiency) Compute and Storage can

be scheduled individually
• (Elasticity) Reduce write amplification

§ Features:
• Disaggregation of Compute & Storage
• Sync with log, instead of page

§ Examples:
• AWS Aurora
• GCP AlloyDB

23
Figure from https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-columnar-engine

(2) Disaggregated Compute-Log-Storage Architecture

VLDB’22 Tutorial

§ Motivations:
• Efficiency. Better write

performance with faster Log
storage service.

• Elasticity. The scaling of Log &
Page Storage is independent of
each other.

§ Key Features:
• Disaggregation of Log & Page

Storage.
• Different features of Log &

Storage services: fast Log Store &
cheap Page Store.

24

(2) Disaggregated Compute-Log-Storage Architecture

VLDB’22 Tutorial 25

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. Primary node writes redo log to

majority nodes in the log storage
cloud.

3. Commit the write after the majority of
log replicas finish the log writing
process for durability.

(2) Disaggregated Compute-Log-Storage Architecture

VLDB’22 Tutorial 26

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. Primary node writes redo log to

majority nodes in the log storage
cloud.

3. Commit the write after the majority of
log replicas finish the log writing
process for durability.

(2) Disaggregated Compute-Log-Storage Architecture

VLDB’22 Tutorial 27

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. Primary node writes redo log to

majority nodes in the log storage
cloud.

3. Commit the write after the majority of
log replicas finish the log writing
process for durability.

(2) Disaggregated Compute-Log-Storage Architecture

VLDB’22 Tutorial 28

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. Primary node writes redo log to majority

nodes in the log storage cloud.
3. Commit the write after the majority of log

replicas finish the log writing process for
durability.

§ Data sync path:
1. Read redo logs from the log storage and

send them to the page storage.
2. Redo logs are replayed to page storage

nodes asynchronously.
3. Different page storage nodes maintain

consistency with the gossip protocol.
4. When redo logs are replayed in all page

storage nodes, the log storage can be
truncated.

5. Directly transfer logs to secondary nodes
to reduce the update latency.

(2) Disaggregated Compute-Log-Storage Architecture

VLDB’22 Tutorial 29

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. Primary node writes redo log to majority

nodes in the log storage cloud.
3. Commit the write after the majority of log

replicas finish the log writing process for
durability.

§ Data sync path:
1. Read redo logs from the log storage and

send them to the page storage.
2. Redo logs are replayed to page storage

nodes asynchronously.
3. Different page storage nodes maintain

consistency with the gossip protocol.
4. When redo logs are replayed in all page

storage nodes, the log storage can be
truncated.

5. Directly transfer logs to secondary nodes
to reduce the update latency.

(2) Disaggregated Compute-Log-Storage Architecture

VLDB’22 Tutorial 30

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. Primary node writes redo log to majority

nodes in the log storage cloud.
3. Commit the write after the majority of log

replicas finish the log writing process for
durability.

§ Data sync path:
1. Read redo logs from the log storage and

send them to the page storage.
2. Redo logs are replayed to page storage

nodes asynchronously.
3. Different page storage nodes maintain

consistency with the gossip protocol.
4. When redo logs are replayed in all page

storage nodes, the log storage can be
truncated.

5. Directly transfer logs to secondary nodes
to reduce the update latency.

(2) Disaggregated Compute-Log-Storage Architecture

VLDB’22 Tutorial 31

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. Primary node writes redo log to majority

nodes in the log storage cloud.
3. Commit the write after the majority of log

replicas finish the log writing process for
durability.

§ Data sync path:
1. Read redo logs from the log storage and

send them to the page storage.
2. Redo logs are replayed to page storage

nodes asynchronously.
3. Different page storage nodes maintain

consistency with the gossip protocol.
4. When redo logs are replayed in all page

storage nodes, the log storage can be
truncated.

5. Directly transfer logs to secondary nodes
to reduce the update latency.

(2) Disaggregated Compute-Log-Storage Architecture

VLDB’22 Tutorial 32

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. Primary node writes redo log to majority

nodes in the log storage cloud.
3. Commit the write after the majority of log

replicas finish the log writing process for
durability.

§ Data sync path:
1. Read redo logs from the log storage and

send them to the page storage.
2. Redo logs are replayed to page storage

nodes asynchronously.
3. Different page storage nodes maintain

consistency with the gossip protocol.
4. When redo logs are replayed in all page

storage nodes, the log storage can be
truncated.

5. Directly transfer logs to secondary nodes
to reduce the update latency.

(2) Disaggregated Compute-Log-Storage Architecture

VLDB’22 Tutorial 33

§ Data read path:
1. First, compute node will check its

local cache. When data is in the local
cache and valid, it can directly load
data from the local cache and return.

2. When the cache misses in①,
compute node will send read
requests to the page storage cloud.

3. For each node in the page storage
cloud:
• When data in the page is new,

directly load data from the page.
• Else, wait for the sync process

until the data is new.
4. Compute node receives data from

page storage cloud and runs cache
replacement strategy in the local
cache, then returns.

(2) Disaggregated Compute-Log-Storage Architecture

VLDB’22 Tutorial 34

§ Data read path:
1. First, compute node will check its

local cache. When data is in the local
cache and valid, it can directly load
data from the local cache and return.

2. When the cache misses in①,
compute node will send read
requests to the page storage cloud.

3. For each node in the page storage
cloud:
• When data in the page is new,

directly load data from the page.
• Else, wait for the sync process

until the data is new.
4. Compute node receives data from

page storage cloud and runs cache
replacement strategy in the local
cache, then returns.

(2) Disaggregated Compute-Log-Storage Architecture

VLDB’22 Tutorial 35

§ Data read path:
1. First, compute node will check its

local cache. When data is in the local
cache and valid, it can directly load
data from the local cache and return.

2. When the cache misses in①,
compute node will send read
requests to the page storage cloud.

3. For each node in the page storage
cloud:
• When data in the page is new,

directly load data from the page.
• Else, wait for the sync process

until the data is new.
4. Compute node receives data from

page storage cloud and runs cache
replacement strategy in the local
cache, then returns.

(2) Disaggregated Compute-Log-Storage Architecture

VLDB’22 Tutorial 36

§ Data read path:
1. First, compute node will check its

local cache. When data is in the local
cache and valid, it can directly load
data from the local cache and return.

2. When the cache misses in①,
compute node will send read
requests to the page storage cloud.

3. For each node in the page storage
cloud:
• When data in the page is new,

directly load data from the page.
• Else, wait for the sync process

until the data is new.
4. Compute node receives data from

page storage cloud and runs cache
replacement strategy in the local
cache, then returns.

(2) Disaggregated Compute-Log-Storage Architecture
pAdvantages:

Ø Low write latency.
Ø With the fast log storage service, write can be committed faster compared with

disaggregated compute-storage architecture.

Ø Better elasticity.
Ø The log and page storage can be scheduled independently, achieving a balance

between the cost and the performance.

pLimitations:
Ø High read latency when cache misses.

Ø The queries in computing nodes must wait for the log replay when the cache misses.

Ø More complex recovery algorithm.
Ø Data may be recovered from log storage, which requires a complex mechanism.

VLDB’22 Tutorial 37

(2) Disaggregated Compute-Log-Storage Architecture

VLDB’22 Tutorial

§ Design Purpose:
• (Efficiency) Compute and Storage can

be scheduled individually
• (Elasticity) Reduce write amplification

§ Key Features:
• Disaggregation of Compute & Storage
• Sync with log, instead of page

§ Examples:
• Azure HyperScale(Socrates)

38
Antonopoulos, Panagiotis, et al. Socrates: The new sql server in the cloud. SIGMOD, 2019.

(2) Disaggregated Compute-Log-Storage Architecture

VLDB’22 Tutorial

§ Design Purpose:
• (Efficiency) Compute and Storage can

be scheduled individually
• (Elasticity) Reduce write amplification

§ Key Features:
• Disaggregation of Compute & Storage
• Sync with log, instead of page

§ Examples:
• Azure HyperScale
• HUAWEI Taurus

39
Depoutovitch, Alex, et al. Taurus database: How to be fast, available, and frugal in the cloud. SIGMOD, 2020.

(3) Disaggregated Compute-Buffer-Storage Architecture

VLDB’22 Tutorial

§ Motivations:
• Latency. Reduce read latency with

shared remote memory.
• Throughput. Reduce duplicate

data loading process of different
compute nodes.

• Elasticity. The memory resources
can be dynamically allocated on
demand.

§ Key Features:
• Elastic shared remote buffer of all

compute nodes(RW node & RO
nodes)

40

Log Store Backup

Cloud
Storage Service

Page Store Page Store

Primary
RW Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache
Compute Cloud

Application

Storage Cloud

Load BalancerCompute
Layer

Storage
Layer

Buffer
Layer

Page Array Page Array Remote
Memory...

①

Log StoreLog Store Page StorePage Store Page StorePage Store

(3) Disaggregated Compute-Buffer-Storage Architecture

VLDB’22 Tutorial 41

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. The redo log writes to log

storage(multi-replicas) for durability.
3. Commit the write after the redo log is

durable.
4. The corresponding page in the

shared buffer will be updated
simultaneously.

Log Store Backup

Cloud
Storage Service

Page Store Page Store

Primary
RW Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache
Compute Cloud

Application

Storage Cloud

Load BalancerCompute
Layer

Storage
Layer

Buffer
Layer

Page Array Page Array Remote
Memory...

②

Log StoreLog Store Page StorePage Store Page StorePage Store

(3) Disaggregated Compute-Buffer-Storage Architecture

VLDB’22 Tutorial 42

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. The redo log writes to log

storage(multi-replicas) for durability.
3. Commit the write after the redo log is

durable.
4. The corresponding page in the

shared buffer will be updated
simultaneously.

Log Store Backup

Cloud
Storage Service

Page Store Page Store

Primary
RW Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache
Compute Cloud

Application

Storage Cloud

Load BalancerCompute
Layer

Storage
Layer

Buffer
Layer

Page Array Page Array Remote
Memory...

③

Log StoreLog Store Page StorePage Store Page StorePage Store

(3) Disaggregated Compute-Buffer-Storage Architecture

VLDB’22 Tutorial 43

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. The redo log writes to log

storage(multi-replicas) for durability.
3. Commit the write after the redo log

is durable.
4. The corresponding page in the

shared buffer will be updated
simultaneously.

Log Store Backup

Cloud
Storage Service

Page Store Page Store

Primary
RW Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache
Compute Cloud

Application

Storage Cloud

Load BalancerCompute
Layer

Storage
Layer

Buffer
Layer

Page Array Page Array Remote
Memory...④

Log StoreLog Store Page StorePage Store Page StorePage Store

(3) Disaggregated Compute-Buffer-Storage Architecture

VLDB’22 Tutorial 44

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. The redo log writes to log

storage(multi-replicas) for durability.
3. Commit the write after the redo log is

durable.
4. The corresponding page in the

shared buffer will be updated
simultaneously.

(3) Disaggregated Compute-Buffer-Storage Architecture

VLDB’22 Tutorial 45

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. The redo log writes to log

storage(multi-replicas) for durability.
3. Commit the write after the redo log is

durable.
4. The corresponding page in the

shared buffer will be updated
simultaneously.

§ Data sync path:
1. Page in the shared buffer will never

be written to storage nodes.
2. Redo logs are replayed to page

storage asynchronously.
3. Directly transfer logs to secondary

nodes to reduce the update latency.

Log Store Backup

Cloud
Storage Service

Page Store Page Store

Primary
RW Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache
Compute Cloud

Application

Storage Cloud

Load BalancerCompute
Layer

Storage
Layer

Buffer
Layer

Page Array Page Array Remote
Memory...

②

Log StoreLog Store Page StorePage Store Page StorePage Store

(3) Disaggregated Compute-Buffer-Storage Architecture

VLDB’22 Tutorial 46

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. The redo log writes to log

storage(multi-replicas) for durability.
3. Commit the write after the redo log is

durable.
4. The corresponding page in the

shared buffer will be updated
simultaneously.

§ Data sync path:
1. Page in the shared buffer will never

be written to storage nodes.
2. Redo logs are replayed to page

storage asynchronously.
3. Directly transfer logs to secondary

nodes to reduce the update latency.

Log Store Backup

Cloud
Storage Service

Page Store Page Store

Primary
RW Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache
Compute Cloud

Application

Storage Cloud

Load BalancerCompute
Layer

Storage
Layer

Buffer
Layer

Page Array Page Array Remote
Memory...

③

Log StoreLog Store Page StorePage Store Page StorePage StoreLog Store Backup

Cloud
Storage Service

Page Store Page Store

Primary
RW Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache
Compute Cloud

Application

Storage Cloud

Load BalancerCompute
Layer

Storage
Layer

Buffer
Layer

Page Array Page Array Remote
Memory...

③

(3) Disaggregated Compute-Buffer-Storage Architecture

VLDB’22 Tutorial 47

§ Data write path:
1. Primary node updates local page in

cache and generates redo log.
2. The redo log writes to log

storage(multi-replicas) for durability.
3. Commit the write after the redo log is

durable.
4. The corresponding page in the

shared buffer will be updated
simultaneously.

§ Data sync path:
1. Page in the shared buffer will never

be written to storage nodes.
2. Redo logs are replayed to page

storage asynchronously.
3. Directly transfer logs to secondary

nodes to reduce the update latency.

Log Store Backup

Cloud
Storage Service

Page Store Page Store

Primary
RW Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache
Compute Cloud

Application

Storage Cloud

Load BalancerCompute
Layer

Storage
Layer

Buffer
Layer

Page Array Page Array Remote
Memory...

①

Log StoreLog Store Page StorePage Store Page StorePage Store

(3) Disaggregated Compute-Buffer-Storage Architecture

VLDB’22 Tutorial 48

§ Data read path:
1. First, compute node will check its local

cache. When data is in the local cache
and valid, it can directly load data from
the local cache and return.

2. If the local cache misses in①,
compute node will check the remote
shared buffer. When data is in the
remote buffer and valid, it can load
data from the remote buffer and return.

3. If the remote buffer misses in②, it will
read data from page storage nodes,
and run the cache replacement
algorithm in the remote buffer.

4. Compute node receives data from the
remote buffer and runs cache
replacement strategy in the local
cache, then returns.

Log Store Backup

Cloud
Storage Service

Page Store Page Store

Primary
RW Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache
Compute Cloud

Application

Storage Cloud

Load BalancerCompute
Layer

Storage
Layer

Buffer
Layer

Page Array Page Array Remote
Memory... ②

Log StoreLog Store Page StorePage Store Page StorePage Store

(3) Disaggregated Compute-Buffer-Storage Architecture

VLDB’22 Tutorial 49

§ Data read path:
1. First, compute node will check its local

cache. When data is in the local cache
and valid, it can directly load data from
the local cache and return.

2. If the local cache misses in①,
compute node will check the remote
shared buffer. When data is in the
remote buffer and valid, it can load
data from remote buffer and return.

3. If the remote buffer misses in②, it will
read data from page storage nodes,
and run the cache replacement
algorithm in the remote buffer.

4. Compute node receives data from the
remote buffer and runs cache
replacement strategy in the local
cache, then returns.

Log Store Backup

Cloud
Storage Service

Page Store Page Store

Primary
RW Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache
Compute Cloud

Application

Storage Cloud

Load BalancerCompute
Layer

Storage
Layer

Buffer
Layer

Page Array Page Array Remote
Memory...

③

Log StoreLog Store Page StorePage Store Page StorePage Store

(3) Disaggregated Compute-Buffer-Storage Architecture

VLDB’22 Tutorial 50

§ Data read path:
1. First, compute node will check its local

cache. When data is in the local cache
and valid, it can directly load data from
the local cache and return.

2. If the local cache misses in①,
compute node will check the remote
shared buffer. When data is in the
remote buffer and valid, it can load
data from the remote buffer and return.

3. If the remote buffer misses in②, it will
read data from page storage nodes,
and run the cache replacement
algorithm in the remote buffer.

4. Compute node receives data from the
remote buffer and runs cache
replacement strategy in the local
cache, then returns.

Log Store Backup

Cloud
Storage Service

Page Store Page Store

Primary
RW Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache

Secondary
RO Node

Cache
Compute Cloud

Application

Storage Cloud

Load BalancerCompute
Layer

Storage
Layer

Buffer
Layer

Page Array Page Array Remote
Memory...

④

Log StoreLog Store Page StorePage Store Page StorePage Store

(3) Disaggregated Compute-Buffer-Storage Architecture

VLDB’22 Tutorial 51

§ Data read path:
1. First, compute node will check its local

cache. When data is in the local cache
and valid, it can directly load data from
the local cache and return.

2. If the local cache misses in①,
compute node will check the remote
shared buffer. When data is in the
remote buffer and valid, it can load
data from the remote buffer and return.

3. If the remote buffer misses in②, it will
read data from page storage nodes,
and run the cache replacement
algorithm in the remote buffer.

4. Compute node receives data from the
remote buffer and runs cache
replacement strategy in the local
cache, then returns.

(3) Disaggregated Compute-Buffer-Storage Architecture
p Advantages:

Ø Low read latency.
Ø Compute nodes can read data from remote memory, which is faster than durable storage

services.

Ø High read throughput.
Ø Different compute nodes share the same remote buffer area, which reduces the duplicate data

read for the same read requests on different compute nodes.

Ø Better elasticity.
Ø Memory resources can be dynamically allocated on demand, which is independent of compute

and storage resources.

p Limitations:
Ø Network bottleneck of the buffer layer.

Ø Remote memory requires high network throughput and low latency at the same time. Therefore,
the network of remote memory may become the bottleneck of the database system.

VLDB’22 Tutorial 52

(3) Disaggregated Compute-Buffer-Storage Architecture

VLDB’22 Tutorial 53

§ Design Purpose:
• (Efficiency) Compute and Storage can

be scheduled individually
• (Elasticity) Reduce write amplification

§ Key Features:
• Disaggregation of Compute & Storage
• Sync with log, instead of page

§ Examples:
• Alibaba PolarDB Serverless

Cao, Wei, et al. Polardb serverless: A cloud native database for disaggregated data centers. SIGMOD, 2021.

Cloud-Native OLTP Techniques

54VLDB’22 Tutorial

Overview of Cloud-Native OLTP Techniques
1. Storage Management: Maintain the consistency of different data replicas.

2. Query Processing: Synchronize data updates between different computing nodes.

3. Recovery: Different-level recovery algorithms for various failures.

4. HTAP Supports: Handle OLAP workload on OLTP systems.

55

56

1. Storage Management in OLTP

1) Data Placement
a. Coupled Log & Page Storage
b. Disaggregated Log & Page Storage

2) Consistency Protocol
a. Quorum-based protocol: Aurora
b. Paxos-based protocol: PolarDB (PolarFS)

57

1. Storage Management in OLTP

1a) Coupled Log & Page Storage
• Log is the Database.
• Pages are never written from the

database tier(including background
writes, checkpointing, and cache
eviction).

• Read data from logs, and pages are a
cache of the log applications.

• Checkpointing & page materialization
are both governed by the length of the
log chain.

• All pages are replayed from logs.
• Cons: Extra time to analyze log chain

Storage Node

LOG_1001
XȾ���YȾ�

LOG_9009
XȾP

...

Page 1
A: 10001
B: 20002
C: 30003

Page k
X: 32001
Y: 23002
Z: 34003

...

Page k
X: 32001
Y: 23002
Z: 34003

L1001 LVerT...

Return X in Version T

L9009...

Request X in Version T

Update X to value n

Page k
X: 32001
Y: 23002
Z: 34003

L1001 L20x0... L9010...

{

Length L Notice write sucess

Page k
X: X_20x0
Y: Y_20x0
Z: Z_20x0

L20x1 ... L9010

Async Materializaed

1a) Coupled Log & Page Storage (e.g., Amazon Aurora)
• Compute layer will never transform page data to the storage layer. (Fig. 3)
• Log & page are stored in the same node, while log chains control page replay. (Fig. 4)

58

1. Storage Management in OLTP

Verbitski, Alexandre, et al. Amazon aurora: Design considerations for high throughput cloud-native relational databases. SIGMOD, 2017.

59

1. Storage Management in OLTP

1b) Disaggregated Log & Page Storage
• Disaggregation of Durability & Availability.
• Log storage for durability: reduce write

latency (Transaction commits after the logs
are durable).

• Page storage for availability: accelerate read
processing (Avoid analyzing log chain).

• Page storage nodes replay log data
asynchronously.

• Some pages receive logs from Log
Storage; others from the sync process.

• Cons: Sync latency when read from page
storage.

1b) Disaggregated Log & Page Storage
(e.g., Taurus Database)

• Log data for durability.
• Commit the writes after the log is persistent

(Step 1~3).

• Truncate the logs after the page is persistent
(Step 8).

• Page data for availability.
• Compute nodes only read from page storage.
• Storage nodes receive logs asynchronously

(Step 4~7).

• Log & Page are stored in different nodes
offered by different storage services.

60

1. Storage Management in OLTP

Depoutovitch, Alex, et al. Taurus database: How to be fast, available, and frugal in the cloud. SIGMOD, 2020.

61

1. Storage Management in OLTP

2a) Quorum-based Protocol
• High concurrency, low fault

tolerance.

• Simple & parallel procedure.
• Demand extra gossip process.

Case study: Aurora
• 6/4/3(N/W/R) for “AZ+1” failure toleration.
• Quorum membership for non-blocking

recovery.
• Gossip to fill the missing writes of replicas.

Quorum Membership Changes

Necessity of 6 Replicas in Quorum

Verbitski, Alexandre, et al. Amazon aurora: On avoiding distributed consensus for i/os, commits, and membership changes. SIGMOD, 2018.

62

1. Storage Management in OLTP

2b) Paxos-based Protocol
• Strong fault tolerance, low concurrency.
• Complex & linearized procedure.

• Demand concurrency optimization.

.

Case study: PolarFS
• Parallel Raft Protocol, Derived from Raft

and better support for high concurrent I/Os

• Allowing out-of-order log acknowledging,
committing, and applying.

• Optimized catch-up mechanism for lagging
followers.

Overall of Parallel Raft

Fast Catch Up Process in Parallel Raft

Cao, Wei, et al. PolarFS: an ultra-low latency and failure resilient distributed file system for shared storage cloud database. VLDB, 2018.

63

2. Query Processing in OLTP

1) Synchronization for Secondary Nodes
a. Read from Persistent Storage Services
b. Local Cache Synchronization with Redo Log
c. Read from Shared Remote Buffer

Primary

Cache

Persistent Storage

Secondary

Cache
Secondary

Cache
Secondary

Cache

64

2. Query Processing in OLTP

1a) Read from persistent storage services
• The most fundamental guarantee of data

consistency.

• One primary RW node with multiple RO
secondary nodes. To achieve high
concurrency, data updates in the primary
node will not wait for buffer synchronization
of secondary nodes.

• Reading data from storage services will
suffer from much longer latency than
reading from the cache.

Sync with Persistent Storage

Primary

Cache

Persistent Storage

Secondary

Cache
Secondary

Cache
Secondary

Cache

65

2. Query Processing in OLTP

1b) Local Cache Synchronization with Log
• Low sync latency, transmit redo log from the

primary node to secondary nodes for cache
status sync.

• High concurrency with lossy protocol, the
primary does not require sync confirmation
from secondaries.

• Offload log transmission from the primary
node to log storage. Avoid network
bottleneck at the primary node.

Sync with Local Cache

66

2. Query Processing in OLTP

1b) Local Cache Synchronization with
Log (e.g., HyperScale)

• Disaggregated Compute-Log-Storage
Architecture, independent log storage service.

• Motivation: Reduce the update delay between
the primary node and secondary nodes.

• Lossy Protocol: Asynchronous and possibly
unreliable (in a fire-and-forget style). Avoid
blocking the data write process.

• Techniques:
• Pending area: transaction caching for atomicity.

• Destaging: Log truncation to save space.

Antonopoulos, Panagiotis, et al. Socrates: The new sql server in the cloud. SIGMOD, 2019.

67

2. Query Processing in OLTP

1b) Local Cache Synchronization with Log
(e.g., Taurus Database)

• Network offloading: Secondary nodes get logs
from Log Storage instead of the Primary node.

• Two types of consistency: physical & logical.
• Physical consistency: internal structures like b-tree.

• Primary node: Locking pages (only inside a node).

• Secondary nodes: Log records group boundary.

• Logical consistency: transaction isolation.
• Primary node: Generate commit log.

• Secondary nodes: Receive logs from primary to
update active transaction list & Buffer. Buffer stores
multi-version pages.

Depoutovitch, Alex, et al. Taurus database: How to be fast, available, and frugal in the cloud. SIGMOD, 2020.

Network offloading to Log Storage

Physical Consistency with Log Group

Primary

Cache

Persistent Storage

Seconary

Cache
Seconary

Cache
Seconary

Cache

Shared
Buffer

68

2. Query Processing in OLTP

1c) Read from Shared Remote Buffer
• High memory resource utilization, allowing

remote memory access across different
machines.

• Benefits from low page access latency of
shared remote memory; reduce sync latency.

• Offloading log replaying from shared buffer
to the storage layer. Avoid network
bottlenecks at the shared buffer area.

Sync with Shared Buffer

69

2. Query Processing in OLTP
1c) Shared Remote Buffer: OS-level

• Motivations:
• High resource utilization: Expose unused memory across different machines.
• General-purpose proposals: transparently to unmodified applications.

• Methods:
• Exposing remote memory paging systems. (e.g., Infiniswap[1])
• New OS architecture for hardware disaggregation. (e.g., LegoOS[2])

• Limitations:
• Full I/O stack: Each remote page access must go through the full I/O stack, causing the

IO latency to be much longer than network latency.

• High cache miss ratio: Unique data access patterns of database workloads, causing a
high cache miss ratio in general purpose design.

[1] Gu, Juncheng, et al. Efficient memory disaggregation with infiniswap. NSDI, 2017.
[2] Shan, Yizhou, et al. LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation. OSDI, 2018.

70

2. Query Processing in OLTP

1c) Shared Remote Buffer: DB-level(e.g., LegoBase)
• Database layer memory management & remote memory access.
• Motivations of database layer design:

• Bypass the time-consuming kernel data path, and reduce access latency.

• Retain the sophisticated design of the LRU mechanism used in the conventional database.

• Explore database-specific optimizations(e.g., clever metadata caching).

Zhang, Yingqiang, et al. Towards cost-effective and elastic cloud database deployment via memory disaggregation. VLDB, 2021.

• Key components:
• Persistent Shared Storage(pStorage): Storing

WAL, checkpoints and database tables.

• Compute Node(cNode): Performing SQL
queries by consuming data from pStorage.

• Global Memory Cluster(gmCluster): Allocating
remote memory to cNode.

71

2. Query Processing in OLTP

1c) Shared Remote Buffer Area: DB-level (e.g., LegoBase)
• Three page access paths:

• Dotted Arrows: Page accesses from local buffer pool.
• Solid Arrows: Page accesses from locally cached remote address pointers.

• Dashed Arrows: Page accesses from persistent shared storage.

Zhang, Yingqiang, et al. Towards cost-effective and elastic cloud database deployment via memory disaggregation. VLDB, 2021.

72

2. Query Processing in OLTP
1c) Challenges of DB-level Shared Remote Buffer(e.g., PolarDB Serverless)

• C1: Consistency of shared remote buffer & local buffer of the primary node.
• S1: Cache invalidation mechanism: Page Invalidation Bitmap(PIB, page update status) and Page

Reference Directory(PRD, page user list) in the home node to achieve cache coherency.

• C2: A large amount of network transmission of Shared Memory is caused by cache flush.
• S2: Page materialization offloading: Pages can be evicted without flushing back.

Cao, Wei, et al. Polardb serverless: A cloud native database for disaggregated data centers. SIGMOD, 2021.

73

3. Recovery Mechanism in OLTP

1) Non-persistent Layer Recovery (Compute & Buffer)
a. Mechanism based on Disaggregation of Compute & Storage
b. Mechanism based on Disaggregation of Compute & Buffer

2) Persistent Layer Backup & Recovery (Log & Page Storage)
a. Mechanism based on Coupled Log & Page Storage
b. Mechanism based on Disaggregation of Log & Page Storage

74

3. Recovery Mechanism in OLTP

1) Traditional Database Recovery Algorithm (ARIES)
• Algorithm Workflow (3 Phases):

• Analysis Phase: Determine the start point of the redo phase. Find the not persisted
dirty pages for Redo Phase and uncommitted transactions for Undo Phase.

• Redo Phase: Redo from the start point, replaying the transaction updates to pages in
the local cache, and re-establishing a stable runtime state.

• Undo Phase: Roll back the uncommitted transactions, async.

• Features:
• Shared-Everything(Monolithic) Architecture.
• Updates by Pages Flush: Dirty pages in local cache

flush to persistent storage and updates old pages.

75

3. Recovery Mechanism in OLTP

1a) Mechanism based on Disaggregation of Compute & Storage
• Differences in disaggregation:

• Shared Storage Architectures.
• Updates by Logs Replay: Page updates are replayed from log data.

• Influences on recovery:
• No Redo Phase in Compute Layer: Compute layer does not need to re-

establish the local cache state. The storage layer will guarantee durability
after crashes & asynchronously consuming redo logs. Significantly
reduce recovery time.

• Cold Cache Issue: Under the shared storage architecture, cache in the
storage layer & shared buffer of all compute nodes will not lose together
with compute nodes, diluting the negative influence of the cold cache
issue.

76

3. Recovery Mechanism in OLTP

1b) Mechanism based on Disaggregation of Compute & Buffer
• Precondition: Compute nodes & remote buffer are unlikely to fail simultaneously.
• Motivation: Reduce the recovery time of compute node failure.

• Two-tier ARIES Fault Tolerance Protocol (e.g., LegoBase):
1. Compute Node & Remote Buffer: High frequency with low recovery time, light fault tolerance.
2. Remote Buffer & Persistent Storage: Ensuring worst-case data persistency, heavy fault tolerance.

Zhang, Yingqiang, et al. Towards cost-effective and elastic cloud database deployment via memory disaggregation. VLDB, 2021.

• Protocol Procedure:
1. Query Execution (Step 1~4).
2. Remote Buffer Checkpoint (Step 5,6,8).

3. Persistent Storage Checkpoint (Step 7,9~11).
4. Log Truncation (Step 12~13).

77

3. Recovery Mechanism in OLTP
2a) Persistent Storage Recovery with Coupled Log & Page Storage

Verbitski, Alexandre, et al. Amazon aurora: On avoiding distributed consensus for i/os, commits, and membership changes. SIGMOD, 2018.

• Motivations:
• Avoid heavyweight distributed commit process, e.g., 2-phase commit.
• Avoid complex recovery situations in the multi-replica situation.

• Methods:
• Storage Consistency Points: The lower bound of LSN has met

Quorum in a protection group. Gaps inside a node can be eliminated
by gossiping with other peers inside the group. System Commit
Number should not exceed Volume Complete LSN(minimum
Consistency Point).

• Log Truncation during Recovery: The existence of gaps inside
nodes will generate complex recovery situations. To avoid these
situations, the storage node will ignore the log after VCL.

78

3. Recovery Mechanism in OLTP

2b) Persistent Storage Recovery with Disaggregated Log & Page Storage

Depoutovitch, Alex, et al. Taurus database: How to be fast, available, and frugal in the cloud. SIGMOD, 2020.

• Motivations:
• Reduce the data transfers for the Log Storage.
• Recovery from any type of failures in Page Storage.

• Methods:
• Gossip in Page Storage: Page storage nodes that

suffer short-term failure receive missing logs from
the Gossip of the others.

• Full Copy in Page Storage: Allocating new page
storage node when original node is down. Full copy
data from other normal node.

• Log re-send from Log Storage: When the log is
completely lost in the page store, the Log Storage
will re-send the log to the Page Storage.

Three types of Recovery Method

79

4. HTAP Supports in OLTP

1) HTAP on Disaggregation Architecture
a. Compute Layer Transformation.
b. Storage Layer Heterogeneous Replicas.
c. Unified Table Storage Structure.

80

4. HTAP Supports in OLTP

1a) Compute Layer Transformation(e.g., Google AlloyDB)
• Data is stored in row format in persistent storage.
• Processing as row format under OLTP workload.

• Automatically converting row to columnar format to support OLAP queries.
• Support hybrid scan on columnar and row-oriented data simultaneously.

Hybrid Scans in AlloyDB
Hybrid Scans in AlloyDB

Figure from https://cloud.google.com/blog/products/databases/alloydb-for-postgresql-columnar-engine

81

4. HTAP Supports in OLTP

1b) Storage Layer Heterogeneous Replicas(e.g., TiDB)
• Heterogeneous storage replicas(TiKV for row format, TiFlash for columnar format)
• TiKV supports OLTP workload & maintains consistency under Raft Protocol.

• TiFlash async receives logs from TiKV for updates & not participate in Raft Protocol.
• Columnar Delta Tree structure to support efficient read and write, appends delta updates

immediately and later merges to stable columnar chunks.

Huang, Dongxu, et al. TiDB: a Raft-based HTAP database. VLDB, 2020.

82

4. HTAP Supports in OLTP

1c) Unified Table Storage Structure(e.g., SingleStoreDB)
• Row format storage in memory & Columnar storage in persistent storage.
• Combining scan performance of column store & seek performance of row store.

• Columnar LSM tree structure for OLAP + Secondary hash indexes for OLTP
• Two-level secondary indexes: Data Segments (immutable) & Global Index (mutable).

Two-level secondary indexes in S2DB

Prout, Adam, et al. Cloud-Native Transactions and Analytics in SingleStore. SIGMOD, 2022.

Cloud-Native OLAP Architectures

83VLDB’22 Tutorial

An Overview of Cloud OLAP Architectures

VLDB’22 Tutorial 84

(1) Disaggregated Compute-Storage Architecture

VLDB’22 Tutorial

§ Motivation:
§ Elasticity: Storage and compute

resources need to be scaled
independently

§ Availability: Tolerate cluster and
node failures

§ Heterogeneous workloads: high
I/O bandwidth or heavy compute

§ Key Features:
• Disaggregation of Compute and

Storage
• Multi-tenancy and Serverless
• Elastic Data Warehouses
• Local SSDs Caching
• Cloud Storage Service, e.g., AWS

S3, Google Cloud Storage, Azure
Blob Storage

85

(1) Disaggregated Compute-Storage Architecture
p Advantages compared to On-Premise Share-Nothing OLAP Architectures:

Ø Higher availability
Ø Cluster and node failures can be recovered quickly because of (1) the data replication

across many availability zones and (2) the scalable cloud service.

Ø More cost-efficient
Ø Resources are virtualized and shared by multiple tenants.
Ø Serverless computing provides the pay-as-you-go model in a query-level granularity.

Ø Better elasticity
Ø The compute and storage resources can be scheduled on demand individually.

pLimitation:
Ø Network traffic becomes the bottleneck when the local cache is not hit

Ø Need to design efficient and effective caching and computation pushdown strategies.
VLDB’22 Tutorial 86

(1a) Case Study: Snowflake

VLDB’22 Tutorial
Dageville, Benoit, et al. “The snowflake elastic data warehouse.” In SIGMOD. 2016.

§ Feature Highlight
§ Cloud Services to manage VWs,

workload, security, and metadata
§ Multiple Virtual Warehouses (Elastic

Clusters of EC2 instances)
§ Cloud Storage, e.g., AWS S3 to store

data as immutable table files
§ Overview of Query Processing

1. Parse the query using the cloud service,
and generate and optimize query plan

2. Execute the query in a virtual warehouse
3. If the local cache is not hit, load the data

from the cloud storage with pruning and
computation pushdown

87

(1b) Case Study: Redshift

VLDB’22 Tutorial
Nikos Armenatzoglou, et al. “Amazon Redshift Re-invented.” In SIGMOD. 2022.

Multiple Compute Clusters

Querying semi-
structured data
using PartiQL FPGA

Execution Generated
code caching

Remote SSD
Caching (up to
16 PBs)

88

(1b) Case Study: Redshift Query Flow

VLDB’22 Tutorial
Nikos Armenatzoglou, et al. “Amazon Redshift Re-invented.” In SIGMOD. 2022.

1. The leader node accepts a query
2. The query is parsed, rewritten, and optimized with the catalog statistics
3. The query plan is further optimized with the co-located join selection
4. The optimized plan is generated to C++ code, compiled and sent to compute nodes for execution
5. The columnar data is scanned from locally attached SSDs or is scanned from the cloud storage

89

90

Comparison of Cloud Databases with Architecture (1)

Databases Computation Storage Query
Processing

Serverless

Snowflake Isolated Virtual
Warehouses

(EC2 instances)

S3+Local
Storage

Columnar Scan
with Vectorized

Engine

Instance-level
Serverless
Computing

Redshift Isolated & Shared
Compute Clusters

+
Acceleration Layer
(Spectrum, AQUA)

S3+Redshift
Managed
Storage
(RMS)

Columnar Scan
with Code
Generation

Instance-level
Serverless
Computing

VLDB’22 Tutorial

(2) Disaggregated Compute-Memory-Storage Architecture

VLDB’22 Tutorial 91

§ Motivation:
§ Elasticity: Storage and compute resources

need to be scaled independently
§ Centralized Scheduling: schedule the

resources for better utilization
§ Complex workloads: cope with the large

intermediate results
§ Key Features:

• Disaggregation of Compute and Storage
• Shuffle Memory Layer for speeding up joins
• Multi-tenancy and Serverless computing
• Local SSDs Caching
• Cloud Storage Service, e.g., AWS S3,

Google Cloud Storage, Azure Blob Storage

(2) Disaggregated Compute-Memory-Storage Architecture
p Advantages compared to On-Premise Share-Nothing OLAP Architectures:

Ø Higher throughput.
Ø Shuffle memory tier reduces I/O cost by avoiding writing intermediate results to the disks.

Ø Higher resource utilization.
Ø Compute resources are virtualized and scheduled on demand.

Ø Better elasticity.
Ø The compute, memory, and storage resources can be scheduled individually.

pLimitations:
Ø Shuffle memory tier could incur a high cost

Ø Need to design efficient and effective pushdown and scheduling algorithms to reduce the
data loaded to memory.

VLDB’22 Tutorial 92

(2) Case Study: BigQuery

VLDB’22 Tutorial

Sergey Melnik et al. Dremel: A Decade of Interactive SQL Analysis at Web Scale. PVLDB,
2020, 13(12):3461-3472.

§ Compute (Clusters + Memory
Shuffle Tier) and Storage

§ Dremel Query Engine with
the support of semi-structured
data querying

§ Distributed Memory Shuffle
Tier for Query Optimization

§ Colossus Storage Clusters
with Capacitor format

93

(2) Case Study: BigQuery Shuffle Workflow

VLDB’22 Tutorial
Sergey Melnik et al. Dremel: A Decade of Interactive SQL Analysis at Web Scale. PVLDB, 2020, 13(12):3461-3472.

§ Producer in each worker
generates partitions and sends
them to the in-memory nodes
for shuffling

§ Consumer combines the
received partitions and
performs the operations locally

§ Large intermediate results can
be spilled to the local disks

94

Cloud-Native OLAP Techniques

95VLDB’22 Tutorial

96

Overview of Cloud-Native OLAP Techniques
1. Storage Management: Data organization in the cloud
2. Query Processing: Querying data with the local cache and cloud storage
3. Serverless Computing: Automated provisioning and scaling of resources
4. Security: Protect data from stealing and tampering in the cloud
5. Machine Learning: AI for cloud-native DBMS and cloud-native DBMS for AI

VLDB’22 Tutorial

1) Data Organization
a. Metadata management
b. Tabular data management
c. Semi-structured data management

2) Data Placement
a. Data partitioning in the cloud
b. Data reshuffling in the cloud

3) Data Updates
a. Recreate objects with transaction updates
b. In-place update with internal table

1. Storage Management in the Cloud

97VLDB’22 Tutorial

1a) Metadata Management
§ Metadata is stored in the layer of cloud service
§ Contains information for schema, data version, location, statistics, logs, etc.
§ Techniques: pruning, zero-copy cloning, and time traveling (MVCC)

1. Storage Management in the Cloud

98VLDB’22 Tutorial

1b) Data organization for tabular data
§ Tables are partitioned into immutable files, i.e., micro-partitions
§ Micro-partitions are replicated across multiple availability zones
§ Tables are organized in columnar format, e.g., Parquet, and can be

compressed to reduce the storage cost, e.g., run length encoding

1. Storage Management in the Cloud

99VLDB’22 Tutorial Figure from https://cloud.google.com/blog/topics/developers-practitioners/bigquery-admin-reference-guide-storage

1c) Data organization for semi-structured data
a. encoding the documents with length (len) and presence (p)
b. encoding the documents with repetition levels (r) and definition levels (d)

1. Storage Management in the Cloud

100VLDB’22 Tutorial
Sergey Melnik et al. Dremel: A Decade of Interactive SQL Analysis at Web Scale. PVLDB, 2020, 13(12):3461-3472.

(a) Documents with a schema (b) Encoding with length and presence (c) Encoding with repetition and definition

2a) The join graph approach for partition-key selection
§ Select the collocated join keys to minimize network communication
§ Build a join multi-graph based on a query workload
§ Use graph matching techniques and heuristics to select partition keys

(iii)

1. Storage Management in the Cloud

101VLDB’22 Tutorial

Parchas, Panos, et al. "Fast and effective distribution-key recommendation
for amazon redshift." PVLDB Endowment 13.12 (2020): 2411-2423.

(c) The Join Graph Approach

2b) Lazy consistent hashing during scaling of the ephemeral storage
§ To achieve smooth scaling for the cloud databases
§ When a new node is added to a VW, the consistent hashing is deferred
§ When a related task is scheduled, the data is read and cached

1. Storage Management in the Cloud

102VLDB’22 Tutorial

(a) A Cloud Warehouse Architecture (b) Lazy Consistent Hashing

Vuppalapati, Midhul, et al. "Building an elastic query engine on disaggregated storage." In NSDI 2020.

3) Data Update
a) For blob storage, an update results in a creation of a new file due to the

immutable table

b) mutable table with in-place updates, e.g., Snowflake’s hybrid table in Unistore,
supporting indexing, single-row retrieval, loading data from immutable tables

1. Storage Management in the Cloud

103VLDB’22 Tutorial

(a) Creation of a new object file (b) In-place updates

1. Columnar Scan with Caching/Pushdown
q Caching: Snowflake, Redshift
q Pushdown Computation: PushdownDB
q Caching and Pushdown : FlexPushdownDB (FPDB)

2. Columnar Scan with Shuffle Memory Tier
q Multi-stage parallel columnar scan with a shuffle memory tier.
q E.g., BigQuery

2. Query Processing in the Cloud

104VLDB’22 Tutorial

1a) Columnar Scan with Caching
i. Given a query, it searches for the query

results in the cache
ii. If the cache is not hit, it searches for the

results from the local SSD cache and
processes the query with columnar scans in
the local cluster

iii. If the local cache is not hit, it processes the
data loading from cloud blob storage

iv. File stealing from neighbors for load balance

2. Query Processing in the Cloud

105VLDB’22 Tutorial

1b) Columnar Scan with Pushdown
§ Pushdown computation to the cloud storage, e.g., Amazon S3 Select, Select

API can be extended to support index scan, hash-join, group by, top-k

§ Pushdown to the computational storage drive, e.g., FPGA-enabled table scan

2. Query Processing in the Cloud

106VLDB’22 Tutorial

(a) Pushdown to the cloud storage (b) Pushdown to the computational storage

Yu, Xiangyao, et al. "PushdownDB: Accelerating a DBMS using S3 computation." 2020 ICDE, 2020.
Cao, Wei, et al. "POLARDB Meets Computational Storage: Efficiently Support Analytical Workloads in Cloud-Native
Relational Database." FAST, 2020.

1c) Columnar Scan with Caching and Pushdown
§ Process the query with caching and computation pushdown simultaneously
§ Enhance the cache replacement strategy, e.g., weighted LFU

2. Query Processing in the Cloud

107VLDB’22 Tutorial

Yang, Yifei, et al. "Flexpushdowndb: Hybrid pushdown and caching in a cloud DBMS." PVLDB, 14.11 (2021): 2101-2113.

1c) Columnar Scan with Caching and Pushdown
§ Hybrid Query Execution : (1) Local Cache is more efficient than Pushdown;

(2) Pushdown is more efficient than loading all data from the cloud storage

§ Two relations R(A,B) and S(C,D), each attribute has two partitions

2. Query Processing in the Cloud

108VLDB’22 Tutorial

SELECT R.B, Sum(S.D)
FROM R, S
WHERE R.A=S.C and R.B>10

and S.D>20
GROUP BY R.B

2. Columnar Scan with Shuffle Memory Tier
§ Use a shuffle memory tier without writing the intermediate results to disks
§ The query is executed by multiple workers with multiple stages

2. Query Processing in the Cloud

109VLDB’22 Tutorial Melnik, Sergey, et al. "Dremel: A decade of interactive SQL analysis at web scale." PVLDB, 13.12 (2020): 3461-3472.

3. Serverless Computing for Queries

110VLDB’22 Tutorial

Motivation: tenants issue the queries in the cloud without caring about the
resource provisioning and can pay for the resources in the query granularity
Two main approaches are as follows:
1. Serverless Databases: rely on the cloud SQL engine and storage to execute

the queries with dynamic resource provisioning; the database service can
pause for the idle period and resume when a query comes in

2. Serverless Functions + Cloud Storage: rely on Function-as-a-Service (Faas)
and the cloud storage to perform the queries with on-demand resources

AWS Lambda

…

3. Serverless Computing for Queries

111VLDB’22 Tutorial

1. Serverless Database with Dynamic Resource Scheduling
§ Challenge: starting a database is expensive after a pause period
§ Solution: predict the pause/resume patterns and proactively resume

the resources for each database

Poppe, Olga, et al. "Moneyball: proactive auto-scaling in Microsoft Azure SQL
database serverless." Proceedings of the VLDB Endowment 15.6 (2022): 1279-1287.

3. Serverless Computing for Queries

112VLDB’22 Tutorial

2. Serverless Functions + Cloud Storage
§ Two Challenges: (1) functions are stateless; (2) stragglers increase the

overall latency of the parallel query processing
§ Solutions: use cloud storage to exchange states; use tuned models to

detect stragglers and invoke functions with duplicate computation;

Perron, Matthew, et al. "Starling: A scalable query engine on cloud functions." In SIGMOD. 2020.

3. Serverless Computing for Queries

113VLDB’22 Tutorial

2. Query Processing based on Serverless
Functions and Cloud Storage

§ Invoke many tasks in each stage
§ Each task writes the intermediate

results to a single object file
§ Combiners can be used to reduce
the read cost of the large shuffle
§ Trade-off between the number of
invoked tasks (performance) and cost

Perron, Matthew, et al. "Starling: A scalable query engine on cloud functions." In SIGMOD. 2020.

Multi-Stage Shuffling based on Functions

114

Summary of Serverless Computing for Queries

Category Database/
Prototype

Main Approach Scaling Pricing
Model

Serverless
Database

Azure
SQL,

Athena,
BigQuery

Stateful SQL
Engine +

Auto-pausing
and resuming
mechanism

Scaling the
resources with

more CPU,
memory, or

stand-by nodes

Pay for active
service with

min-max
bound

Function as a
Service (FaaS)

Starling Stateless
Functions +

Stateful Cloud
Storage

Scaling the
resources by
invoking more
function tasks

Pay for used
functions

and storage

VLDB’22 Tutorial

4. Security in the Cloud

115VLDB’22 Tutorial

1. Software-based Data Protection
q E.g., Snowflake, Redshift
q Pros: high scalability and throughput, low cost
q Cons: decryption for query processing

2. Hardware-based Data Protection
q E.g., Azure SQL
q Pros: high end-to-end security
q Cons: low scalability and throughput, high cost

4. Security in the Cloud

116VLDB’22 Tutorial

1. Software-based Data Protection
§ Core Idea: encryption keys are automatically rotated and re-encrypted
§ Challenges: data is decrypted for query processing; the cloud vendors may be untrusted

(a) Encryption Key Hierarchy (b) Key Life Cycle
Dageville, Benoit, et al. “The snowflake elastic data warehouse.” In SIGMOD. 2016.

4. Security in the Cloud

117VLDB’22 Tutorial

2. Hardware-based Data Protection
§ Core Idea: database systems and cloud providers are untrusted; leverage

customized hardware, e.g., Enclave, for data protection; bring-your-own-keys
§ Challenges: computation over ciphertext directly; improve the efficiency of enclave

Antonopoulos, Panagiotis, et al. "Azure SQL database always encrypted." In SIGMOD. 2020.

the design of Enclave-based protection in Azure SQL

Step 1: Application issues a query “select
* from T where value = @v”

Step 2: Driver encrypts the parameter @v
and sent to the DBMS with attestation service
Step 3: DBMS fetches the data and invokes
the enclave for evaluation
Step 4: Enclave decrypts the data to
plaintext and evaluates the filter

1. ML-Enabled Cloud-Native Databases
q ML-Enabled Workload Management
q RL-Enabled Partition-Key Advisor
q And many more: knob tuning, index tuning, root cause diagnose, etc.

2. Cloud-Native Database for ML
q SQL-enabled ML pipeline
q Cloud Database with AutoML

5. Cloud-Native Databases with Machine Learning

118VLDB’22 Tutorial

ML-Enabled Cloud-Native Databases: Redshift Workload Management
§ Core Idea: tune the workload concurrency by predicting the memory consumption

and execution time for the workload
§ Challenges: schedule the workload; migrate to new access pattern
§ Solution: Redshift AutoWLM; trains an XGBOOST model for each cluster

5. Cloud-Native Databases with Machine Learning

119VLDB’22 Tutorial Nikos Armenatzoglou, et al. “Amazon Redshift Re-invented.” In SIGMOD. 2022.

Partition-Key Advisor for Cloud Databases
§ Core Idea: exploring column combinations as partition keys and learning with RL
§ Challenges: characterize partition features; migrate models to new workloads
§ Solution: (1) extract partition features as [tables, query frequencies, foreign keys]

and use DQN to partition the tables for a workload; (2) train a cluster of DQN
models on typical workloads and pick one with the most similar features;

5. Cloud-Native Databases with Machine Learning

120VLDB’22 Tutorial Hilprecht, Benjamin, Carsten Binnig, and Uwe Röhm. "Learning a partitioning advisor for cloud databases." SIGMOD. 2020.

2. Cloud-Native Database for ML
§ Core Idea: (1) SQL-enabled machine learning in cloud databases; (2) bring the model to

the data; (3) AutoML by the cloud providers, e.g., model selection, training and tuning
§ Challenges: SLA-aware in-database ML; flexibility of SQL-based ML pipeline

5. Cloud-Native Databases with Machine Learning

121VLDB’22 Tutorial

(b) Redshift with SageMaker

CREATE MODEL demo_ml.customer_churn_model
FROM
(SELECT state, area_code,
average_daily_spend,
average_daily_cases,
churn
FROM demo_ml.customer_activity
WHERE record_date < ‘2022-01-01’)

TARGET churn FUNCTION predict_customer_churn

(a) CREATE MODEL for predicting customer churn
Nikos Armenatzoglou, et al. “Amazon Redshift Re-invented.” In SIGMOD. 2022.

Open Problems and Opportunities

122VLDB’22 Tutorial

123

Multi-Write Architecture in the Cloud
p Call for Multi-Write Solutions for Cloud-Native Databases

Ø Multi-Write Protocol (How to handle write conflicts in the cloud)
Ø Data Consistency (How to keep data consistency for dirty caches)
Ø Log Management (How to replay and update the logs)

Write WriteMulti-Write Protocol?

Data Consistency?

Log Management? Paxos Protocol?

CRDT Protocol?

Memory Disaggregation?

124

Fine-grained Serverless
pServerless Computing

Ø Stateful Function Service (How to exchange the intermediate results)
Ø Adaptive Provisioning and Scaling (How to schedule the resources adaptively)

Stateful Function Service?Adaptive Provisioning and Scaling?

125

Cloud-Native HTAP Database
pCall for Cloud-Native HTAP databases

Ø SLA-aware HTAP service (How to balance performance, freshness, cost)
Ø Data Organization for HTAP (How to organize the cloud data for HTAP)
Ø Pushdown Strategy for HTAP (Pushdown operators to row or column nodes)

HTAP HTAP

SLA-aware HTAP
Service?

Data Organiztion?

Pushdown Strategy? Row or Column Nodes?

Learned Prediction Model?

Unified Memory Structure?

126

Multi-Cloud Database
pCall for Multi-Cloud Databases

Ø High Availability (How to handle the failures and migrate data in multi-cloud)
Ø Storage Management (How to organize and store the data in multi-cloud)
Ø Query Processing (How to perform the query in multi-cloud)

High Availability? Storage Management? Query Processing?

…

127

Q & A

Thanks for your listening!

