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ABSTRACT
We study the classical kNN queries on road networks. Existing so-
lutions mostly focus on reducing query processing time. In many
applications, however, system throughput is a more important mea-
sure. We devise a mathematical model that describes throughput in
terms of a number of system characteristics. We show that query
time is only one of the many parameters that impact throughput.
Others include update time and query/update arrival rates. We
show that the traditional approach of improving query time alone is
generally inadequate in optimizing throughput. Moreover, existing
solutions lack flexibility in adapting to environments of different
characteristics. We propose TOAIN, which is a very flexible algo-
rithm that can be easily trained to adapt to a given environment for
maximizing query throughput. We conduct extensive experiments
on both real and synthetic data and show that TOAIN gives signifi-
cantly higher throughput compared with existing solutions.
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1. INTRODUCTION
With the advances in mobile technologies and GPS-equipped

devices, location-based services are becoming increasingly popu-
lar. Examples include taxi-hailing services such as Uber [5] and
Lyft [4], and location-based games, such as Pokémon GO. Among
all the operations supported by location-based systems, k-nearest-
neighbor (or kNN) search on road networks is an important funda-
mental operation. For example, Uber needs to locate the cars in its
fleet that are the closest to a customer’s location who has issued a
taxi request; A game server needs to find the Pokémons that are the
closest to a player in the Pokémon GO game.

In these applications, distance is often measured by the traveling
distance or traveling time between two locations on a road network.
Typically, a road network is modeled as a graph such that each node
represents a road junction and each edge represents a road segment
connecting two road junctions. For the kNN problem, we consider
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a setM of m objects, each is located at a point in a road segment.
(For example, an object can represent a taxi in Uber or a Pokémon
in the game.) Given a query q, which is represented as a point in
the road network (e.g., the location of a commuter who has issued a
taxi request, or the location of a Pokémon player), the problem is to
locate the k nearest objects of q inM in terms of network distance.

The kNN problem on road networks has been studied extensively
and many sophisticated data structures and algorithms have been
proposed. Previous works, however, mostly focus on improving the
query processing time (or query time for short). Query time, as we
argue, is a microscopic view of the overall system performance. In
the context of applications like taxi-hailing services and location-
based games, other performance indicators, such as the end-to-end
query response time and system throughput, are even more impor-
tant. The objective of this paper is to provide a macroscopic view
of the performance of a system that supports location-based ser-
vices. In particular, we propose a mathematical model for optimiz-
ing system throughput subject to certain quality-of-service (QoS)
constraints. We also propose a new flexible indexing scheme that
allows such optimization to be realized in practice.

To facilitate our discussion, let us first explain some key concepts
and system characteristics that are related to system performance.
[Queries and updates] We assume that kNN queries come from
an extensive user base and that query arrivals are stochastic. For
example, Didi, which is a taxi-hailing service in China, receives
more than a thousand taxi-hailing requests per second during peak
hours [6], and that it served about 7 million requests per day coun-
trywide in 2015. Each such request generates a kNN query to lo-
cate the closest servicing taxis to a commuter. As another example,
in the US, there were around 20 million daily active Pokémon GO
players in 2016, each spent roughly 25 minutes playing each day on
average. A player can activate the “nearby tracking” feature in the
game, which helps the player locate the nearest Pokémons. We note
that kNN queries generated in these applications are stochastic, in
particular, their arrival times are not pre-determined.

We assume that the set of objects M is dynamic, and consider
the following two modes of changes: (1) The location of an object
is changed. (2) An object is added to or removed fromM. Changes
of the first kind model movements of cars (whose locations are con-
tinuously changing), while changes of the second kind model the
Pokémon game in which the presence of a Pokémon at a location
is transient (it shows up for a period of time and then disappears).
Since a location-based service has to keep track of the whereabouts
of objects, any changes made to the objects would trigger updates
to the system. The number of updates generated in the system de-
pends on the number of objects inM and the frequency at which
the objects change. The update load could be substantial in large-
scale systems. For example, there are about 4 million active drivers
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in China providing Didi services. Each vehicle typically reports its
location periodically with a periodicity of 3∼5 seconds.
[Query time] We use the term query time to refer to the amount
of time taken by a system to process an isolated kNN query. With
the state-of-the-art data structures and algorithms, one can achieve
sub-millisecond and even down to tens of micro-second query time.
[Query Response time] The response time of a query q refers to
the amount of time taken between q’s arriving at the system and the
time at which q’s answer is computed. Queries and updates com-
pete among themselves on data accesses and CPU cycles. These
data and CPU contentions impose major delay in query processing,
especially under high query and update arrival rates. In a high load
situation, the server serializes the executions of queries and updates
via a queuing policy. The response time of a query is the queuing
delay plus its query (processing) time.
[Throughput] We define throughput as the number of queries that
the system answers per unit time interval. Due to the stochastic na-
ture of query arrivals and the variations of query and update times,
throughput varies from one unit time interval to another. In the fol-
lowing discussion, the term throughput is used to refer to the aver-
age throughput of the system over an extensive period of time. For
location-based services, throughput is an important performance
measure. For example, Didi receives more than a thousand requests
per second during peak hours, and yet it is reported that Didi has
tapped into only about 1% of the potential market in China. As
another example, Pokémon GO used to provide the “nearby track-
ing” feature. The feature was removed in July 2016 due to server
overload [3]. In order to expand market share and to improve user
experience in these applications, the system should be designed to
maximize its throughput.
[Quality of Service (QoS)] The throughput of a system can be in-
creased by admitting more queries. Doing so, however, would gen-
erally lower the quality of the service. As more queries are admitted
to the system, queues start building up, which causes longer delays
to queries and updates. This results in longer query response times
and worse data freshness. In this paper we consider two QoS indi-
cators: the average query response time Rq and the average update
response time Ru. In particular, we assume that certain tolerance
levels are given that serve as bounding constraints on Rq and Ru.

Existing solutions. There is an extensive number of previous
works done on improving the query time of kNN search on road
networks. However, query time is a microscopic view of system
performance. From the perspective of users, the end-to-end query
response time, which takes into account the queuing delay, is a
more important measure of user experience. From the perspective
of the service provider, throughput is a more important measure
of the cost effectiveness of the system. It is a misconception that
a smaller query time naturally translates into a higher throughput;
After all, if each query is answered faster, more can be done. The
fallacy is due to the oversight of the update load. Behind the inge-
nuity of a query-optimized algorithm often do we see an elaborate
indexing scheme. Hence, a reduction in query time is often ac-
companied by a higher update cost. Given the contentions among
queries and updates, response times and throughput can be inadver-
tently worsened. As an example, we compare the performance of
a number of kNN algorithms in this paper. Our experiment shows
that in some extreme but not unrealistic cases, G-tree [34], which is
a state-of-the-art algorithm, is outperformed by the simple Dijkstra
algorithm (which builds no indexes) in terms of throughput. As we
will show later in this paper, we can mathematically model through-
put with respect to a number of variables, including query/update
times and their arrivals. These variables, in turns, depend on the
algorithm (which induces an intricate tradeoff between query and

update times) and the physical characteristics of a road network.
Existing algorithms, however, provide little flexibility in the ad-
justment of the query/update tradeoff. This inflexibility leads to
poor throughput and in-adaptability of the algorithms when they
are applied to road networks of different physical characteristics.

Contributions. We summarize our contributions as follows:
• (Modeling) We consider different models concerning queries or
updates arrivals and the queuing discipline that describe the oper-
ations of location-based services. We put forward a mathematical
model that expresses the maximum throughput in terms of a num-
ber of key variables, subject to certain QoS constraints.
• (Data structure and algorithm) We propose the algorithm TOAIN,
which considers the various variables and the mathematical model
to estimate the maximum throughput. TOAIN uses a shortcut-based
index called SCOB to speed up query processing. SCOB is a highly
tunable structure that allows the query/update tradeoff to be ad-
justed adaptively. Given an application and its characteristics, TOAIN
auto-tunes SCOB in order to achieve the best throughput.
• (Experimental evaluation) We evaluate the performance of TOAIN,
comparing it against other state-of-the-art solutions. Our results
show that TOAIN significantly outperforms the competitors over a
wide spectrum of scenarios.

The rest of the paper is organized as follows. Section 2 discusses
related works. Section 3 formally describes our models. Section 4
gives a mathematical analysis of throughput. Section 5 describes
the TOAIN algorithm and the SCOB index. Section 6 presents ex-
perimental results. Finally, Section 7 concludes the paper.

2. RELATED WORKS
The problem of answering kNN queries on road networks have

been extensively studied. In this section we briefly mention a few
representative solutions. These include Dijkstra [14], IER [24],
DisBrw [27], ROAD [20, 19], G-tree [34], and V-tree [30].

Dijkstra’s algorithm [14] (or Dijkstra) is one of the best-known
algorithms. The algorithm can be used to determine the shortest
distances of all the nodes in a graph from a source node. Given
a source node q, the algorithm expands the graph (which initially
consists of only the node q) and visits other nodes in the order of
their distances from q. Dijkstra can be used to answer kNN queries
by expanding the graph just enough to locate the k closest objects
to node q. Dijkstra is a simple baseline solution. In particular, it
does not use an index and so object update costs are very low.

ROAD [20] is based on Dijkstra. It speeds up kNN query pro-
cessing for cases where objects are sparsely located in a network.
Specifically, ROAD partitions a graph into many subgraphs (called
Rnets). These Rnets are merged to form larger Rnets in a hierar-
chical fashion. An indicator is associated with each Rnet signaling
whether the Rnet contains any objects. During a Dijkstra expan-
sion, if an Rnet with no objects is to be explored, the search inside
the Rnet is skipped. Compared to Dijkstra, ROAD gives a faster
query time at the expense of an update cost; when an object is up-
dated, the indicators of some Rnets have to be updated accordingly.

G-tree [34] builds a similar subgraphs hierarchy like ROAD,
but instead of an indicator, each subgraph is associated with an
Occurrence-List (OL). G-tree records the objects that are located in
each leaf sub-graph; The OL of each non-leaf subgraph is a col-
lection of the lists of IDs of its descendants in the hierarchy. An
efficient assembly method using the OLs to answer kNN queries is
given in [34]. The algorithm is further improved in [8]. We remark
that the OLs store more object information than the indicators used
in ROAD. Thus, G-tree is generally faster than ROAD in terms of
query time but slower in update time.
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V-tree [30] employs a similar hierarchical structure as G-tree. V-
tree identifies border nodes that are at the boundaries of subgraphs.
By maintaining the lists of nearest objects to these border nodes,
efficient techniques are devised to answer kNN queries.

In this paper we evaluate Dijkstra, ROAD, G-tree, and V-tree
against our proposed solution TOAIN. There are other existing so-
lutions, such as IER [24] and DisBrw [28, 27]. Since these solu-
tions have been shown to be generally outperformed by the other
algorithms we mentioned, we do not consider them in this paper.

There are also previous works that tackle the continuous kNN
query problem on road networks [29, 11, 10, 18, 23, 13, 33, 17].
Many of these studies (e.g., [29, 11, 10, 18, 33, 17]) assume moving
query points and stationary objects. These studies are thus orthogo-
nal to ours. The moving-objects model is studied in [23, 13]. Their
focus, however, is efficient maintenance of kNN results of static
standing queries. Under our model, queries are one-shots and they
arrive in random fashion. Our model follows more closely applica-
tions like taxi-hailing and location-based gaming.

Finally, our solution is based on the Contraction Hierarchy (CH)
algorithm [15], which was designed for efficient shortest distance
queries. We will introduce the CH algorithm in Section 5.1.

3. MODELS
In this section we present the models that describe a location-

based system that answers kNN queries on a road network.

3.1 Road Network Model
Following previous studies (e.g., [34, 22, 31, 35]), we model a

road network as a directed graph G(V,E), where a node u ∈ V
represents a road junction and a directed edge (u, v) ∈ E repre-
sents a road segment from junction u to junction v. Each edge is
associated with a weight w(u, v) which indicates the distance of
the road segment (edge) (u, v). We consider a set of objects M.
Each object o ∈M is located at a point on a road segment. Objects
inM are dynamic in that their presence/absence inM as well as
their locations could change. Given two nodes s, t ∈ V , we use
s ; t to denote a shortest path from s to t in the graph G. We
use dG(s, t) to denote the distance of the corresponding path in G.
Given an object o located on a road segment (uo, vo) such that o is
at a distance of wo from the node uo, we map o to node uo with the
offset wo registered. Given a query q, which is located on a road
segment (uq, vq) such that q is at a distance ofwq from node vq , we
map q to node vq with an offset wq . We extend the distance func-
tion dG so that it measures the network distance between points on
road segments. Specifically, the distance from query q to object o
is defined as dG(q, o) = dG(vq, uo) + wq + wo.

DEFINITION 1 (kNN). Given a query q, a set of objects M
on a road network G, and a constant k, the kNN query returns k
objects o1, . . . , ok ∈ M such that dG(q, oi) 1 ≤ i ≤ k are the k
smallest ones among all objects inM.

We assume that queries/objects are mapped to network nodes
and that distances are computed with the offsets properly taken into
account as discussed above. In the following discussion, for sim-
plicity, we ignore these offsets and assume that queries and objects
are located at network nodes. This saves us from the minor details
of distance computation and greatly simplifies our discussion.

3.2 System Models
Figure 1 illustrates a system serving kNN queries. There are two

sources of tasks, namely queries and updates. Tasks that arrive at
the system are first put into a queue, and they are served by the
system under certain queuing policy.

Query

Update Task queue Server

Queuing policy

Query arrival model

Update arrival model

Figure 1: System model.

Arrival models. We assume that queries arrive at the system as a
Poisson process. For updates, we consider two scenarios:

[Batch Update Arrival (BUA)] Note that in the taxi-hailing ap-
plication, each object inM reports its location periodically (a.k.a.
heartbeat protocol). In this scenario, we divide time into periods,
each of a duration of T seconds. We assume thatm = |M| updates
are collected at the beginning of each period, one from each object.
If an update collected in a period is not installed in the database by
the end of that period, the update is dropped because the update is
superseded by the one of the same object in the next period.

[Random Update Arrival (RUA)] This corresponds to the location-
based game scenario in which objects appear/disappear/relocated
in a random fashion. In this scenario we model update arrivals as
another Poisson process.
Queuing models. We consider two queuing policies:

[First-come-first-served (FCFS)] Queries and updates are served
in the order of their arrival times.

[Query-first (QF)] Queries have higher priorities over updates.
In particular, all queries in the queue are placed in front of all up-
dates, and queries are served FCFS among themselves. Moreover,
when a query reaches the head of the queue and if the system is cur-
rently serving an update, the update will be preempted by the query.
QF is often employed in real-time databases for applications such
as programmed stock trading [16] and for prioritizing query/update
in web databases [25].

Note that the QF policy favors queries over updates. It thus re-
duces query queuing delay but extends that of updates. In some ap-
plications, QF is justifiable because reducing query response time is
more important than update timeliness. Take taxi-hailing applica-
tion as an example. Query response time delay has a direct impact
on the user experience in the responsiveness of the system. Even
seconds of delay can be directly felt. On the other hand, a few sec-
ond delay in installing an update means the system is computing
a shortest distance based on data that is a few second stale. The
estimated distance (e.g., in terms of traveling time) is generally off
by an insignificant amount (e.g., a few seconds of inaccuracy in
estimating a 5-minute ride is relatively insignificant).

In this paper we study two specific system models, namely, (1)
BUA+QF and (2) RUA+FCFS to illustrate our idea of a flexible and
adaptive kNN algorithm. As we have explained, the first combina-
tion closely models the taxi-hailing application. We also chose to
study the second model because it is quite general. We remark that
other arrival/queuing models are possible. Due to space limitations,
we confine this study to combinations (1) and (2).

4. THROUGHPUT ANALYSIS
In this section we present a mathematical model that expresses

throughput in terms of the arrivals and computations of queries and
updates under the two system models. Table 1 lists the symbols we
use.

4.1 BUA+QF model
Under this model, time is divided into periods, each of length

T seconds. Within each period, m = |M| updates are collected
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Table 1: Notations.
Notation Description
(tq , Vq) expected/variance-of query time
(tu, Vu) expected/variance-of update time
λq , λu query/update arrive rate

Rq average query response time
R∗q average query response time bound, a QoS measure
λ∗q largest average throughput subject to an R∗q constraint
T update periodicity (under the QF model)

m = |M| number of objects
G = (V,E) graph representing a road network
dG(u, v) shortest distance between u and v in G
u; v a shortest path from u to v
uy v a shortcut from u to v

u↓ the set of downhill objects of u

at the beginning of the period. Let λq be the query arrival rate
(in number per second). Furthermore, let tq , Vq be the average
and the variance of query (processing) time, respectively; and tu,
Vu be those of updates. If the queuing system is stable, i.e, the
workload arrival rate does not exceed the system’s servicing rate,
the expected response time of queries,Rq , is given by the following
lemma.

LEMMA 1. Under the BUA+QF model, Rq =
λq(t

2
q+Vq)

2(1−λqtq)
+ tq ,

if the queuing system is stable.

PROOF. Since queries always preempt updates under BUA+QF,
the response times of queries are unaffected by the presence of up-
dates. If one considers only the queuing and execution of queries,
the system is an M/G/1 queue. By the Pollaczek-Khinchine for-
mula [12], we have, Rq =

ρ+λqµVq

2(µ−λq)
+ tq , where µ is the service

rate and ρ = λq/µ is the utilization of system. The lemma imme-
diately follows by substituting µ = 1/tq .

From Lemma 1, we see that Rq increases with λq . In other
words, as throughput (i.e., λq) increases, so is the average query
response time. From our discussion in the introduction, to ensure
a good QoS, one option is to limit how large Rq gets. Specifically,
we assume a QoS requirement that Rq is not more than an average
response time bound R∗q . Hence, the maximum average through-
put (i.e., largest query arrival rate), denoted by λ∗q , supported by the
system under the QoS requirement is given by,(

λ∗q(t2q + Vq)

2(1− λ∗qtq)
+ tq ≤ R∗q

)
⇒
(
λ∗q ≤

2(R∗q − tq)
Vq + 2R∗q tq − t2q

)
(1)

Moreover, as the system admits more queries, less time is left for
installing updates. To avoid dropping too many updates, the system
should reserve enough time in a period to process updates that are
collected in that period. Hence, T − T · λ∗q · tq ≥ m · tu, and so:

λ∗q ≤ (T −mtu)/(T · tq). (2)

Combining Equations 1 and 2, we have,

λ∗q ≤ min

{
2(R∗q − tq)

Vq + 2R∗qtq − t2q
, (T −mtu)/(T · tq)

}
. (3)

Let us simplify Equation 3 for an easier interpretation of the for-
mulae. Let

α = R∗q/tq; β = mtu/T ; γ = Vq/t
2
q.

α gives the ratio between the response time tolerance (R∗q ) and
the average query time (tq). For example, if tq = 1ms and users
accept a query response time of within 1s, then α = 1s/1ms = 1,000.

β gives the fraction of time that the system is processing updates. γ
is the squared coefficient of variation of query time. For the various
index structures and algorithms we tested, γ ranges from 0.1 to 0.9.
Equation 3 can be rewritten as:

λ∗q ≤

{
1
tq
· 2α−2
γ+2α−1

, if (γ + 2α− 1)β < γ + 1;

(1− β)/tq, if (γ + 2α− 1)β ≥ γ + 1.
(4)

For typical cases where 2α � 1 � γ, Equation 4 can be ap-
proximated by,

λ∗q ≤

{
1/tq, if αβ < 1/2 (QoS-bound mode)
(1− β)/tq, if αβ ≥ 1/2 (Update-bound mode)

(5)

From Equation 5, we see that the system can be operating in either
one of two modes: (1) If the update load is small (small β) and/or
the response time QoS requirement is stringent (small R∗q , leading
to a relatively small α) such that αβ < 1/2, the system is essen-
tially constrained by the response-time QoS requirement and it is
operating as if it is serving only queries. In this case, the maxi-
mum average throughput is limited by the servicing rate (1/tq) of
queries. We call this the QoS-bound mode. On the other hand, if
update load is high (large β) and/or the QoS requirement is loose
such that αβ ≥ 1/2, the effect of update processing kicks in. The
system is left with only 1−β of its capacity to process queries and
so λ∗q is limited by (1−β)/tq . We call this the update-bound mode.

An interesting observation is that if a system is operating in the
QoS-bound mode, we should opt for a query-efficient algorithm (so
that tq is small) in order to achieve a large maximum throughput.
However, if we scale the system up to serve more objects (e.g.,
more taxis, thus a larger m), β will become larger, and at some
point, αβ will exceed 1/2 and the system will switch to the update-
bound mode. In this case, the maximum throughput is also limited
by the update cost. In other words, a system that is engineered only
towards fast query time may not scale well.

4.2 RUA+FCFS model
Under this model, updates arrive as a Poisson process with ar-

rival rate λu. The system can be described by a 2-class (corre-
sponding to queries and updates) FIFO queue. The average query
response time is given by the following lemma (A proof of the
lemma is given in our technical report [1].):

LEMMA 2. Under the RUA+FCFS model,

Rq =
λu(Vu + t2u) + λq(Vq + t2q)

2(1− λqtq − λutu)
+ tq (6)

if the queuing system is stable.

In order for the system to be stable, the input workload cannot
exceed the system’s servicing capacity. Therefore,

λqtq + λutu ≤ 1. (7)

Again, Rq (Equation 6) is an increasing function of λq . Bound-
ing Rq by R∗q and considering Equation 7, the maximum average
throughput λ∗q under the RUA+FCFS model is given by,

λ∗q ≤ min

{
2(R∗q − tq)(1− λutu)− λu(Vu + t2u)

Vq + 2R∗qtq − t2q
,

1− λutu
tq

}
.

(8)
In addition to the query response time QoS, one can also impose

an update response time QoS. Let Ru denote the average update
response time, by symmetry, we have, similar to Equation 6:

Ru =
λu(Vu + t2u) + λq(Vq + t2q)

2(1− λqtq − λutu)
+ tu. (9)
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We can bound the quantity in Equation 9 by a maximum toler-
able value R∗u as an update response time QoS requirement. This
will further restrain λ∗q with a quantity similar to the one shown
in Equation 8. For simplicity, we do not consider this update QoS
requirement in the rest of this paper.

From Equations 3 and 8, we see that λ∗q depends not only on
the query time tq , but on a number of other variables, in particular
tu. As we have discussed, there is generally a tradeoff between tq
and tu. A smaller query time tq is likely achieved at the expense
of a longer update time tu (e.g., due to a more elaborate indexing
scheme). Take the last quantity, (1−λutu)/tq , shown in Equation 8
as an example. This term shows that if updates arrive at a high
rate, λ∗q will be significantly suppressed due to a large λu. In this
case, a lower update cost (smaller tu) is preferable to a lower query
time (smaller tq). From the equations, it can be seen that a flexible
algorithm that can fine tune its performance in terms of tu and tq is
very desirable in achieving the highest throughput possible.

5. ALGORITHMS
In this section we describe our algorithm TOAIN, which answers

kNN queries with an objective of maximizing throughput. TOAIN
is inspired by the shortcut-based Contraction-Hierachy algorithm
(or CH for short) [15], which is designed for answering shortest-
path distance queries. Based on shortcuts, we propose an adap-
tive index called SCOB, which is operated on by TOAIN to answer
kNN queries. An important feature of SCOB is that it is highly tun-
able in that we can tilt it towards more query-efficient or towards
more update-efficient. As we will see later, adjusting SCOB allows
TOAIN to adapt to different application environments while push-
ing for a higher throughput. In the following, we first describe our
adaptation of the CH search (Section 5.1). Then, we introduce our
SCOB index, explaining how it is constructed and maintained (Sec-
tion 5.2). After that, we describe how TOAIN adjusts SCOB given
an application environment (Section 5.3).

5.1 CH Search
The CH search enables an efficient shortest distance computation

with the help of shortcuts. A shortcut, denoted by u y v, is an
edge derived from graphG that connects nodes u, v ∈ V . Shortcut
u y v is given a weight dG(u, v), which is the shortest distance
from u to v in G. The shortest-distance query of a u-v pair can be
answered immediately if uy v and its weight is computed. There
are O(|V |2) possible shortcuts. To limit the number, we define a
ranking function r(u),∀u ∈ V , and define the shortcut set, SC<.

DEFINITION 2 (SHORTCUT SET SC<). Given a graph G =
(V,E) and a ranking function r on V , a shortcut u y v ∈ SC<

iff (1) u, v ∈ V , (2) r(u) < r(v), and (3) r(z) < r(u) for any
intermediate node z in a shortest path u; v from u to v.

Verbally, Condition (3) in Defintion 2 means that as one traverses
from u en route to v via a shortest path in G, all nodes encountered
other than the terminal ones are of lower ranks than that of u. In the
following discussion, we will also use SC< to denote the shortcut
graph, which is one that consists of only shortcut edges. In par-
ticular, we write dSC<(u, v) as the shortest path length from u to
v in the shortcut graph. The subscript (<) in SC< indicates that
a shortcut links a node u to another node v that is of a straightly
higher rank (see Condition 2 of Definition 2). Since the weights of
shortcuts are derived directly from G, we have,

LEMMA 3. dG(u, v) ≤ dSC<(u, v) ∀u, v ∈ V .

Before we describe how the CH algorithm works with the short-
cut set, we make two simplifying assumptions (to be relaxed in
Section 5.2.2):

A1: G is undirected. A2: Ranks of nodes are all distinct.
These assumptions will greatly simplify our discussions and allow
us to stay focused on the main idea of TOAIN and SCOB. We will
present the technical details of relaxing the assumptions in later
sections of the paper. We will also discuss how to design the rank-
ing function r() in Section 5.3.

As an illustration, Figure 2 shows a shortest path s ; t =
(s, a, b, x, c, d, t) from a node s to a node t. The numbers in brack-
ets give the ranks of the nodes. In the figure, nodes of higher ranks
are drawn closer to the top; lower-rank ones are closer to the bot-
tom. The figure illustrates 4 shortcuts: (sy a), (ay x), (ty d),
and (d y x). (We assume that the graph is undirected and so are
paths. Hence, we have the shortcuts such as dy x.) Note that node
b is bypassed by the shortcut ay x because r(b) = 4 < 5 = r(a).

To see how shortcuts help determine shortest path distances, we
consider the following definition of a summit node.

DEFINITION 3 (SUMMIT NODE). Given a shortest path s ;

t from a node s to a node t, the summit node x of s; t is the node
with the highest rank in s; t.

By Assumption A2, all ranks are distinct, and hence the summit
node x is unique. The shortest path s ; t thus consists of two
segments, s ; x and x ; t. The fact that x has the highest rank
in s ; t implies that one can reach x from s via only shortcuts.
For example, referring to Figure 2, s is connected to x by shortcuts
(s y a) and (a y x). Likewise, one can reach x from t via
shortcuts. We have the following lemma on summit nodes (see [1]
for a proof):

LEMMA 4. If x is the summit node of a shortest path s ; t in
graph G, then dG(s, t) = dSC<(s, x) + dSC<(t, x).

Given two nodes s and t, to compute their shortest distance,
dG(s, t), the CH algorithm performs two Dijkstra explorations on
the shortcut graph SC<, one originates from s and another from t.
The two Dijkstra searches are executed concurrently in alternating
lockstep fashion. The idea is to “discover” the shortcut path from
s to the summit x and the one from t to x. Once the two Dijkstra
searches meet at the summit, the path length dG(s, t) is obtained
by the sum of the shortcut weights as given by Lemma 4. From
Figure 2, we see that the two Dijkstra searches are figuratively like
climbing a hill. We thus call the Dijkstra search that originates
from the source (destination) to the summit an s-climb (t-climb).

Readers are referred to [15] for the details of the CH algorithm
and [1] for our shortcut creation algorithm.

t (1)

c (3)

b (4)

a (5) d (6)

x (7)

s (2)

Figure 2: Shortcuts and CH search illustration.

5.2 The SCOB Index
The CH algorithm is designed to answer shortest-distance queries.

A straightforward way to apply CH to find the kNN of a given
query node q is to determine dG(q, oi) using CH for every object
oi ∈ M, and return the k objects with the shortest distances. This
amounts to doing m = |M| s-climbs from node q and m t-climbs,
one from each node where an object oi resides. This approach re-
quires 2m Dijkstra searches and is inefficient.
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To improve query time, we should reduce the number of climbs
done. We observe that all s-climbs originate from q and hence they
can be combined into one single Dijkstra search. To avoid the m t-
climbs, we propose the SCOB index. The idea of the SCOB index is
to store at each summit node (e.g., node x in Figure 2) the id’s and
distances of some objects that are located downhill of the summit in
the shortcut graph (e.g., an object located at node t and its distance
from node x). By doing so, as the s-climb from q reaches a summit
node, say x, the downhill objects of x can be retrieved and their
distances from q can be computed. As we will see shortly, only k
downhill objects need to be kept at each summit node in SCOB.

DEFINITION 4 (DOWNHILL OBJECTS). An object o located
at a node v is a downhill object of a node u if there is a path from
v to u in the shortcut graph SC<. We use u↓ to represent the set
of downhill objects of u.

We further define top-k downhill nearest neighbors (kDNNs)
and a lemma concerning them:

DEFINITION 5 (kDNNS). Given a node u ∈ G, the top-k
downhill nearest neighbors (kDNNs) of u, denoted by kDNN(u),
is a set of objects such that (1) if the number of downhill objects of
u is less than or equal to k, then kDNN(u) contains all the down-
hill objects of u; (2) otherwise, kDNN(u) contains the k downhill
objects oi’s of u that give the smallest dSC<(oi, u).1

LEMMA 5. Given a node s and an object o located at a node t,
if object o is one of the kNNs of node s, then o ∈ kDNN(x), where
x is the summit node on a shortest path s; t.

PROOF. First, since x is the summit node of s ; t, t is con-
nected to x via only shortcuts (see, e.g., Figure 2). Hence, o, which
is located at node t, is a downhill object of x. We assume by
contradiction that o 6∈ kDNN(x). Then, there are at least k ob-
jects o1, ..., ok, such that dSC<(oi, x) < dSC<(o, x), ∀i ∈ [1, k].
Based on Lemmas 3 and 4, we have,

dG(s, oi) ≤ dG(s, x) + dG(x, oi) ≤ dSC<(s, x) + dSC<(oi, x)

< dSC<(s, x) + dSC<(o, x) = dG(s, o).

Hence, the k oi’s are all closer to s than o is. So, object o cannot
be one of the kNNs of s. Contradiction ensues.

Our SCOB index stores for each node u its kDNN(u). For our
target applications, such as taxi-hailing and location-based games,
where k is typically small, kDNN(u) is implemented as a vector of
object-distance pairs [(o1, dSC<(o1, u)), . . . , (ok, dSC<(ok, u))]
sorted in ascending order of distances. We remark that for applica-
tions where k is large, kDNN(u) can be implemented with more ef-
ficient priority queue structures, such as a binary max-heap. From
Lemma 5, we know that the kNNs of a query q can be obtained
from the kDNNs of certain summit nodes. As a result, we only
need to perform one s-climb (from q) and no t-climbs are needed.
Algorithm 1 outlines the procedure for answering a kNN query us-
ing the SCOB index. Specifically, we maintain a result setR, which
contains the best-known kNN objects found so far. As we perform
Dijkstra search from q on the shortcut graph SC<, when a node
p is visited, if dSC<(q, p) is larger than the k-th longest distance
of the objects in R, no further exploration through p will be done;
otherwise, we retrieve kDNN(p) and check if any objects in there
let us refine the best-known results.
1In case there are multiple objects that are tie as the k-th smallest-
distance objects, we break the tie, for example, by their object id’s.
For simplicity, we do not explicitly mention the tie-breaking in the
rest of the paper but assume that it is done.

Algorithm 1: Query(SC<, q, k)

1 R← ∅; d0 ← longest distance of an object inR from q, initially∞;
/* Conduct Dijkstra search from q on SC<, with

the following operations. */
2 for each node p being visited in the Dijkstra search do
3 if ‖R‖ ≥ k and dSC< (q, p) > d0 then
4 break ;

5 for object o ∈ kDNN(p) do
6 add [o, dSC< (q, p) + dSC< (o, p)] intoR;
7 if ‖R‖ > k then
8 remove fromR the object with longest distance from q.

9 update d0;

10 returnR;

5.2.1 SCOB Construction and Updates
We next show how objects are inserted to and deleted from SCOB.

SCOB construction can be considered as a sequence of inserts. An
object update can be treated as a delete followed by an insert.

Algorithm 2: Insert(SC<, o, k)

/* Suppose o is located at node t; Conduct
Dijkstra search from t on SC<, with the
following operations. */

1 for each node p being visited in the Dijkstra search do
2 add [o, dSC< (t, p)] into kDNN(p);
3 if ‖kDNN(p)‖ > k then
4 delete from kDNN(p) the object with longest distance from

p;

[Insert] To insert an object o that is located at a node t, we need
to update kDNN(u) for all nodes u of which o is a downhill ob-
ject. By Definition 4, u is reachable from t in the shortcut graph
SC<. The insert can thus be achieved by a Dijkstra search from t
on SC<. Specifically, when a node u is visited in the search, we
compute dSC<(t, u). If dSC<(t, u) cracks top k in kDNN(u), ob-
ject o and its distance dSC<(t, u) is added to kDNN(u), ousting
another object if appropriate.

[Delete] We first consider two properties of downhill objects.

PROPERTY 1. An object o located at a node u is a downhill
object of u.

PROPERTY 2. Given a node u, u↓ = (
⋃

(vyu)∈SC<
v↓)∪ {all

objects located at u}.

Property 1 follows immediately from Defintion 4 by considering
the (null) path from node u to itself. For Property 2, if an object o
located at a node t is a downhill object of a node v (i.e., o ∈ v↓),
then by Definition 4, there is a path from t to v in SC<. Concate-
nate that path with (v y u) gives us a path from t to u in SC<.
Hence, o ∈ u↓. Combine this with Property 1, Property 2 follows.

Property 2 says that the downhill objects of u are given by the
objects located at u plus all the downhill objects of those nodes
v’s, where each v is linked to u by a shortcut v y u. Hence,
kDNN(u) can be determined directly from kDNN(v)’s and the ob-
jects located at u. Considering that the v’s are of lower ranks than
u (by the fact that they are linked to u by shortcuts), this suggests
that the kDNNs of nodes can be updated recursively in a node-rank
order. The object delete procedure makes use of this observation.
Specifically, to delete an object o originally located at a node t, if
o 6∈ kDNN(t), no updates to SCOB is needed. Otherwise, o is re-
moved from kDNN(t) and we perform an (uphill) Dijkstra search
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Algorithm 3: Delete(SC<, o, k)

/* Suppose o is located at node t; */
1 if o ∈ kDNN(t) then
2 F ← ∅;

/* Conduct Dijkstra search from t; lines 3∼6
show the operations done in the search */

3 for each node u being visited in the Dijkstra search do
4 if o ∈ kDNN(u) then
5 remove o from kDNN(u);
6 F ← F ∪ {u};

7 F∗ ←sort nodes of F in increasing ranks;
8 while F∗ is not empty do
9 p← lowest ranked node in F∗;

10 kDNN(p)← at most k objects located at p;
11 for (v y p) ∈ SC< do
12 for object o∗ ∈ kDNN(v) do
13 add [o∗, dSC< (o∗, v) + dSC< (v, p)] to

kDNN(p);
14 if ‖kDNN(p)‖ > k then
15 delete from kDNN(p) the object with longest

distance from p;

16 remove p from F∗;

on SC< to locate all the kDNN lists that contain o, and remove o
from them. Let p be a node whose kDNN list is so updated. The
vacancy made by the removal of o from kDNN(p) is re-filled by
finding p↓ and determining the object in p↓ that is the top-k near-
est to p. To find p↓, we perform a Dijkstra search from p on SC<

going only downhill. That is, we follow the shortcuts in SC< in a
reverse manner. By Property 2, the downhill searches from the p’s
can be integrated and ordered according to the p’s ranks.

Algorithms 2 and 3 summarize the insert and delete procedures,
respectively. We remark that with SCOB, the Dijkstra searches on
the shortcut graph SC< required in query, object insert and ob-
ject delete are generally much more efficient compared with doing
Dijkstra searches on the original graph G.

5.2.2 Relaxing Assumptions
In this section we relax assumptions A1 and A2.
Relaxing A2: ranks are distinct. The CH algorithm determines

the shortest distance dG(s, t) from a node s to a node t by perform-
ing an s-climb and a t-climb. In our discussion, we assumed that
the summit node x of the shortest path s ; t is unique. This al-
lows the two climbs to meet at x. If nodes are allowed to have equal
ranks, then there could be more than one summit node on s ; t.
In this case, the two climbs will be disconnected, and the shortest
distance cannot be determined. Figure 3(a) shows an example. In
the figure, both nodes x and y are summits of the path s; t.

This issue can be resolved by a modification to the definition
of shortcuts. Specifically, we change the second requirement of a
shortcut u y v in Defintion 2 from “r(u) < r(v)” to “r(u) ≤
r(v)”. We use SC≤ to denote the set of shortcuts so defined. Fig-
ure 3(d) shows such shortcuts along the path s ; t. We make
two observations: (1) Climbs based on SC≤ are slower than those
based on SC<. For example, the climb from s to x in Figure 3(d)
takes 3 hops while that in Figure 3(a) takes 2. (2) Only one climb
needs to be based on SC≤, the other can be based on SC<. For
example, in Figure 3(b), the s-climb uses shortcuts in SC< and the
t-climb uses those in SC≤; Figure 3(c) shows the other way round.
For description purpose, we call a climb that uses SC< a “straight
climb”, while a climb that uses SC≤ a “gentle climb”.

With SCOB, one can consider the Dijkstra search executed for a

query q as an s-climb from node q, while the search for executing
an object insert/delete as a t-climb from the node that the object is
located. We therefore can adjust the relative efficiency of queries
vs. updates by making one climb gentle and the other one straight.
Figures 5 illustrates this tradeoff.

The construction and maintenance of the SCOB index will have
to be modified if we make t-climbs gentle. For example, all men-
tioning of SC< in Definitions 4 and 5, Property 2, Algorithm 2
(Insert) and Algorithm 3 (Delete) are replaced by SC≤. Moreover,
if s-climbs are made gentle instead, then in Algorithm 1 (Query),
dSC<(q, p) is replaced by dSC≤(q, p). (See [1] for more details.)

Relaxing A1: G is undirected. Road networks are generally
represented by directed graphs. If G is directed, then the shortcuts
used in t-climbs should be based on the reversed edges in G. The
shortcut graph used for performing t-climbs (either SC< or SC≤)
should therefore be constructed based on the reversed version ofG.

5.3 TOAIN
In this section we present TOAIN. We propose an interesting

strategy of designing the ranking function r(). We also show
how TOAIN adjusts the ranking function in search for the best
query/update tradeoff, and hence achieves the best throughput.

In [15], where the CH algorithm is studied, it is hinted that struc-
turally more important nodes in a graph should be given higher
ranks. It is claimed that such rank assignments would generally
make CH more efficient. A choice of a node-importance measure
is betweenness centrality, which is defined as the number of short-
est paths that pass through a given node. Computing betweenness
for all the nodes, however, takes O(|V ||E|) time [9], which is ex-
pensive. One could consider applying a more efficient algorithm
for computing approximate betweenness, such as [26, 32]. In this
paper we propose an alternative way of measuring node importance
(and hence to derive r()) based on the concepts of cover nodes and
cover dimension [21]. There are two advantages of our cover-node-
based method: First, it is efficient. Second, our experiments show
that constructing the shortcut set using cover-node-based ranking is
more efficient than doing so using betweenness-based ranking.

DEFINITION 6 (COVER NODE, COVER DIMENSION). Con-
sider a road network on a spatial map. Let us superimpose aK×K
grid on it partitioning the map into K2 cells. Given a cell C, con-
sider its 3 × 3 and 5 × 5 neighborhoods as illustrated in Figure 4.
Now, consider any node u in C and any node v outside the 5 × 5
region. The shortest path u ; v must cross the perimeter of the 3
× 3 region. Let (x, y) be the edge in u ; v that crosses the 3 × 3
boundary. We call node x a cover node of cell C. The number of
cover nodes of a cell is called the cover dimension ζ of the cell.

For example, in Figure 4, the cover nodes of cell C are {d, i, o}
and the cover dimension of the cell is 3. Intuitively, if one travels
from any node within C to somewhere outside the 5 × 5 neigh-
borhood (i.e., for a non-trivial distance), the shortest path taken
must pass through at least one of the cover nodes. In [21], some
interesting empirical observations about cover nodes are made. In
particular, it is found in many road networks: (1) the cover dimen-
sions of cells are very small and they vary over a very small range
of values; (2) the cover dimensions of cells stay relatively the same
regardless of the grid resolution (K). For example, there are about
264,346 road junctions in the New York road network. If we put
a 50 × 50 grid on it, each cell contains about 106 nodes on aver-
age. The cover dimensions, ζ, of the 2,500 cells have an average of
around 10. That means, on average, a shortest path that connects
any of (an average of) 106 nodes in a cell to somewhere outside the
node’s 5 × 5 vicinity has to pass through one of 10 specific cover
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nodes. This shows that the cover nodes of a cell act like a small
number of gateways to the outside world for all the nodes inside
the cell. Cover nodes are thus very important. Moreover, we found
that if we change the grid resolution (e.g., to 25 × 25 and so mak-
ing each cell 4 times larger), the average cover dimension remains
close to 10. Since a larger cell (due to a smaller grid resolution K)
contains more nodes than a smaller cell, we argue that cover nodes
of larger cells (smallerK) are more important than the cover nodes
of smaller cells (larger K).

With the above discussion, we design the ranking function r()
based on cover nodes and grid resolutions using the following pro-
cedure: First, we pick an integer h such that the range of r() is
[0...h], and a high-resolution K1 ×K1 grid (i.e., large K1). Each
node is initially given a rank of 0. With respect to the K1 grid, all
cover nodes of all the cells are collected into a set Υ1. The ranks of
these nodes are promoted to 1. Then, we iterate the following steps:
During the i-th iteration (2 ≤ i ≤ h), (1) lower the grid resolution
by half, i.e., set Ki = Ki−1/2. (2) For each cell C in the Ki×Ki

grid, find all the rank-(i-1) nodes in C and consider the shortest
paths that originate from them. (3) Determine the cover nodes of
C from those shortest paths. (4) The cover nodes of all the cells
found in the iteration are collected in Υi; these nodes are promoted
to rank i. Algorithm 4 gives the pseudo code of the procedure.

Algorithm 4: ComputeRank(G,h)
1 initialize r(u) to 0 for every node u ∈ G;
2 S ← V /* V is the node set of G. */
3 for grid level i from 1 to h do
4 impose Ki ×Ki grid on G;

/* Refer to text for the value of Ki */
5 Υi ← ∅;
6 for node v ∈ S do
7 conduct Dijkstra search from v within the 5× 5 sub-grid,

whose central cell contains v;
8 Υi,v ← cover nodes found during the Dijkstra search;
9 Υi ← Υi ∪Υi,v ;

10 update r(z) to i for every node z ∈ Υi;
11 S ← Υi;

In Section 5.2.2 we mentioned that TOAIN can control the trade-
off between query and update times by making either the s-climbs
or the t-climbs straight and the other gentle. Another way to con-
trol the tradeoff is by adjusting h. To see this, recall that node ranks
range from 0 to h. Figuratively, h is the height of the hill (see Fig-
ure 5 for an illustration). We see that a short hill (small h) favors a
straight climb (because it takes few steps to reach the top of the hill)
and disfavors a gentle climb (because the hill is flat and so there is
much level-wise exploration). These two controls provide us with
a wide configuration space of SCOB. For example, very fast query
processing can be achieved by straight s-climbs and small h (see
Figure 5(a)), while comparable query/update times can be achieved
by using a large h (see Figures 5(c) and (d)).

5.3.1 Picking a Configuration
TOAIN determines a SCOB configuration based on the objective

of maximizing throughput. From Section 4, Equations 3 and 8, the
maximum throughput attainable (λ∗q ) is dependent on a number of
variables, among which (tq, Vq) and (tu, Vu) are the (processing
time average, variance) of queries and updates, respectively. The
relative values of these variables can be controlled by adjusting
the SCOB configuration. Given an application environment (ab-
stracted by e.g., a road network G, a set of moving objectsM, a
query/update arrival model or a real workload of them, the value
of k, etc.), TOAIN constructs the SCOB index under various con-
figurations and evaluates (tq , Vq , tu, Vu) for each configuration by
performing a simulation analysis. These values are then substituted
into Equations 3 and 8 to determine the maximum throughputs of
the SCOB configurations2. Finally, the configuration that gives the
highest throughput will be picked for deployment.

5.3.2 Complexity Analysis
We end this section with a summary of a complexity analysis

on TOAIN, using the maximum cover dimension ζ∗. Due to space
limitations, readers are referred to [1] for the proofs.

LEMMA 6 (COMPUTING RANKS). ComputeRank (Algo-
rithm 4) costs O(hζ∗|V | log |V |) time.

LEMMA 7 (CREATING SHORTCUTS). Creating the shortcut
set SC< (or SC≤) costs O(hζ∗|V | log |V |) time.

LEMMA 8 (SIZE OF SHORTCUT SET). Given a grid hierarchy,
the number of shortcuts created in SC< (or SC≤) isO(ζ∗|V |), re-
gardless of h.

As shown in [21], the maximum cover dimension ζ∗ is small.
Therefore, the number of shortcuts created is approximately linear
to |V |, i.e., O(ζ∗|V |) ≈ O(|V |). We also note that the height h
is small in real datasets. For example, in all of our tested datasets,
2 We remark that throughput can also be estimated using simula-
tion. However, that would require multiple simulation runs, each
testing one specific λq , in order to find the maximum throughput
(λ∗q ) that does not cause system overloading. Instead, TOAIN ap-
plies Equations 3 and 8 so that λ∗q can be directly estimated.
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Figure 5: Adjusting the relative costs of queries and updates.

h ≤ 12. Consequently, the preprocessing, i.e., computing ranks
and creating shortcuts, can be done in close toO(|V | log |V |) time.

6. EXPERIMENT
In this section we present experiment results evaluating the per-

formances of various algorithms under a wide spectrum of applica-
tion settings. Our objectives are twofold. First, existing algorithms
were typically evaluated on their query processing efficiency. As
we have argued, from the perspective of service providers, through-
put is a more relevant measure. We thus re-evaluate existing algo-
rithms based on their abilities in supporting large throughput sys-
tems. Second, our algorithm TOAIN is designed to adapt to differ-
ent application characteristics, such as system model, query/update
arrival rates, and network scale. We thus evaluate TOAIN’s adapt-
ability to a wide range of scenarios as compared with existing tech-
niques. In Section 6.1 we first describe our experiment setups.
These include the real/synthetic datasets used, the query/update
generators, algorithm implementations, and performance measure-
ments. In Section 6.2 we discuss two case studies analyzing the
algorithms under two illustrative scenarios. Finally, in Section 6.3,
we show the performances of the algorithms under a wide range of
application settings to evaluate their adaptabilities.

6.1 Setup
Data. We conduct our experiments on three real road networks,
namely, Beijing (BJ), North West America (NW), and New York
City (NY). Table 2 shows the characteristics of these networks. For
BJ, we obtained from UCAR [2], which is a popular taxi hailing
service in Beijing, trajectories of 3,000 taxis. These trajectories are
given as a single stream of location updates. There are 8.74 mil-
lion updates in the stream. For NW, we obtained a real dataset of
points of interests (POIs) in NW, such as restaurants, hospitals, and
schools. These POIs help us model location-based games in which
the occurrences of objects are usually clustered at POIs. Moreover,
to evaluate the impact of a road network’s size on the algorithms’
performances, we extract sub-networks from BJ. Specifically, we
start with a center node in BJ that is located closest to the geo-
graphical center of Beijing city. We gradually expand the network
from the center node until certain number of nodes are collected
in the expansion. These sub-networks are named BJz in Table 2,
where z indicates the network size in multiples of 10,000 nodes.

For each road network, we model two applications: taxi hail-
ing (i.e., the BUA+QF model) and location-based game (i.e., the
RUA+FCFS model). We refer to a scenario by X-Y , where X is
a road network and Y is either BUA or RUA indicating the update
model. For each scenario, we need to generate (1) queries and (2)

Table 2: Road networks.
Symbol Network #Edges #Nodes Additional info.

BJ Beijing 2,690,296 1,285,215 3,000 taxi trajectories
NW US North West 2,840,208 1,207,945 13,132 POIs
NY New York City 733,846 264,346
BJ8

Beijing
sub-networks

170,236 80,000
BJ16 341,352 160,000
BJ32 682,152 320,000
BJ64 1,358,564 640,000

BJ128 2,677,984 1,280,000

an object set and object updates. Queries are generated as a Poisson
process at an arrival rate of λq . Given a size m, an object setM
is generated by randomly selecting m nodes in the network at each
of which an object is created and placed. With the BUA model, we
divide time into periods, each of T seconds long. At the start of
each period, an object o located at a node u updates its location to
another node v, where v is randomly picked from u’s immediate
neighbors. With the RUA model, updates are generated as another
Poisson process with arrival rate λu. Each update is either an insert
or a delete with equal probability. For an insert, a new object o is
created and a node is randomly pick at which o is placed; For a
delete, an object is randomly picked and removed.

Update generations for the scenarios BJ-BUA and NW-RUA are
exceptions to the above rules because we have real data to help us
better generate the updates. Specifically, for BJ-BUA, updates are
given by the real UCAR trajectory data. For NW-RUA, an insert
update will only place a newly created object at one of the POIs.

We vary other parameters to model various application charac-
teristics. These parameters are summarized in Table 3. In partic-
ular, we define object density θ = m/|V | to control the scale of
the object set M normalized against the road network size. We
also vary λu/m as the update rate of objects. Default values of the
parameters are highlighted in boldface.

Table 3: Parameters (default values in bold).
Parameter Description Values

k Number of NNs returned 1, 10, 20, 30, 40
R∗

q Response time QoS (ms) 0.2, 0.4, 0.8, 1.6, 3.2, 6.4
θ Object density (m/|V |) 0.1, 0.01, 0.001
T Update periodicity (secs) 1, 2, 4, 8, 16

λu/m Object update rate (s−1) 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, 16

Implementation. We conduct experiments on TOAIN and four
other representative algorithms, namely, Dijkstra [14], ROAD [20],
G-tree [34], and V-tree [30]. These algorithms are described in
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Section 2. We use the codes provided by [8] for the implementa-
tions of ROAD and G-tree. G-tree in [8] is an optimized version of
the original algorithm, and we refer to it as G-tree∗ in this section.
The V-tree implementation is based on the source code provided by
the authors of V-tree. We implemented Dijkstra and TOAIN using
C++. Experiments are conducted on an Intel i7-4870HQ 2.5GHz
CPU with 16GB RAM running Mac OS X (10.10.4).
Measurements. We measure the maximum average throughput
(λ∗q ) for the system under various road networks, models, and pa-
rameter settings. In each case, λ∗q is estimated as follows. We run
the system for 200 seconds with a certain query arrival rate λq . We
gradually increase λq and repeat the run until one of two conditions
is met: (Query QoS violation): If the average query response time
exceeds the QoS requirement R∗q . (Overloading): If the system is
overloaded. We distinguish two cases. (1) Under the BUA model,
each object generates an update every T seconds. If an update can-
not be installed in the system within T seconds, the update loses
its value (because another update of the same object would have
arrived). We consider the system overloaded. (2) Under the RUA
model, we compute the total servicing time of all queries and up-
dates generated in the 200s period. If the amount exceeds 200s, we
consider the system overloaded. The largest λq in a run that does
not trigger any of the above conditions is registered. This process
is repeated 20 times. The average of the largest λq’s obtained is
taken as a measurement of λ∗q .

6.2 Case Studies
In this section we report the results of two illustrative cases.

Case Study 1. [Location-based game with high update rates] We
model a location-based game setting such as Pokémon GO. We use
the Beijing road network (BJ). We setm = 5,000 objects (Pokémons),
k = 9 (the nearby search in Pokémon GO shows 9 nearest Pokémons),
a high update arrival rate at λu = 100,000 per second, R∗q = 0.8ms,
and the system model is RUA+FCFS.

Table 4 shows the results of the five algorithms. For each algo-
rithm, we show the query time (tq), update time (tu) and the max-
imum average throughput (λ∗q ). First, let us consider the four ex-
isting methods. As discussed in Section 2, Dijkstra does not build
an index, while the others use elaborate indexes. From Table 4, we
see that in terms of query time, the index-based methods (i.e., V-
tree, G-tree∗ and ROAD) are faster. Update efficiency is in general
higher if more elaborate index is used. In particular, the update cost
of Dijkstra is negligible. In this update-heavy case, the update cost
plays an important role in determining the throughput. As shown
in Table 4, the basic Dijkstra algorithm gives a higher throughput
than G-tree∗ and V-tree because of a very small update cost. At
an update arrival rate of λu = 100,000 per second, G-tree∗ spends
8.3µs × 100,000 = 0.83s, or 83% of its time processing updates,
leaving only 17% of its capacity in answering queries. This leads
to a small throughput. Interestingly, although V-tree gives a much
better tq than Dijkstra, it takes 10µs × 100,000 = 1s to process all
the updates generated in a second. This results in 0 throughput.

It is interesting to see that TOAIN is able to achieve a higher
throughput than others. In particular, TOAIN’s throughput is about
8 times higher than that of G-tree∗. Recall that TOAIN intelligently
chooses the best performing SCOB configuration. In this case study,
TOAIN considers a total of 24 SCOB configurations. Four examples
of such configurations are shown in Table 5. To understand these
configurations, let us summarize our discussion in Section 5.2: (1)
A query involves an s-climb, while an update involves a t-climb.
(2) A straight climb is faster than a gentle climb. (3) A shorter hill
(smaller h) favors straight climbs, while a higher hill favors gentle
climbs. (4) TOAIN tunes query/update costs by adjusting h and the

Table 4: Algorithms’ performance (Case Study 1).
Algo. Query time tq (µs) Update time tu (µs) Throughput λ∗

q

Dijkstra 338.1 ≈ 0 2,049
ROAD 135.6 2.9 4,650
G-tree∗ 140.4 8.3 936
V-tree 200.9 10.0 0
TOAIN 44.2 5.8 7,743

Table 5: Example configurations of TOAIN (Case Study 1).
Configuration tq (µs) tu (µs) λ∗

q h s-climb t-climb
1 (selected) 44.2 5.8 7,743 6 gentle straight

2 34.6 30.0 0 8 gentle straight
3 105.8 3.2 5,540 4 gentle straight
4 14.0 3,948.9 0 10 straight gentle

steepness of the climbs. From Table 5, we see that TOAIN picks
the configuration which employs a 6-level SCOB index with gentle
s-climb and straight t-climb. In this update-heavy case, straight
t-climb gives small update costs (as evidenced by the relatively
small tu = 5.8µs of Configuration 1 in the table). Increasing the
hill height to 8 (Configuration 2) disfavors straight-climbs and as
a result, tu increases to 30µs in Configuration 2. The update cost
is too high and that leaves the system with no capacity to handle
queries, resulting in a 0 throughput. Shortening the hill to h = 4
(Configuration 3) favors straight-climbs. This makes update faster
(3.2µs) at the expense of a larger query time (105µs). The over-
all result is a smaller throughput (5,540). Finally, in Configuration
4, t-climbs are gentle. This makes updates very slow (≈4,000µs).
The system cannot handle the heavy stream of updates leading to 0
throughput.
Case Study 2. [Taxi hailing] We model a taxi hailing service. We
use the New York road network (NY). We set m = 15,000 (taxis),
k = 1 (only the closest taxi is located), T = 4s, R∗q = 0.8ms, and the
system model is BUA+QF.

Table 6 shows the result of the algorithms. (The row labeled
“Config. A” refers to one particular SCOB configuration considered
but not picked by TOAIN. We will discuss more on that shortly.)
Comparing against the first case study, in our second case study,
we have more objects (15,000 vs. 5,000). However, each object
updates its location only once in every T = 4 seconds. This gives
an update arrival rate of λu = 3,750 per second, which is a small
rate. The case is thus update-light. In such a setting, one would
expect G-tree∗ and V-tree, which favor fast query processing, to
excel. Contrary to our intuition, Table 6 shows that G-tree∗ and
V-tree are dominated by Dijkstra and ROAD on all tq , tu, and λ∗q .
In particular, Dijkstra is the best performing algorithm among the
four existing methods.

Table 6: Algorithms’ performance (Case Study 2).
Algo. tq (µs) tu (µs) λ∗q

Dijkstra 4.3 ≈ 0 222,655
ROAD 8.3 1.0 112,100
G-tree∗ 28.7 2.1 30,305
V-tree 22.8 4.9 36,883
TOAIN 0.8 44.1 1,027,712

Config. A 5.6 0.9 176,141

Dijkstra has a very small update cost because it does not build
elaborate indices like ROAD, G-tree∗ or V-tree. The reason why
Dijkstra also gives a very small query time is because the object
density in this case study is relatively large — there are relatively
many objects (15K) over a relatively small network (264K nodes).
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Figure 8: Throughput (NY, BUA+QF).
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Figure 9: Throughput (NY, RUA+FCFS).
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Figure 7: SCOB configurations (Case Study 2).

For example, if objects were uniformly distributed across the net-
work nodes, then given a query, we expect that, on average, the
closest object can be located within a neighborhood of 264K/15K
= 17.6 nodes. The very localized search gives Dijkstra a very fast
query time. G-tree∗ and V-tree, on the other hand, need to inspect
sophisticated index structures in answering queries. The cost out-
weighs the benefit of using the index, giving them a relatively long
query time. For TOAIN, although its update cost is high, it has a
very small query time. The result is a higher throughput than the
other algorithms. For example, TOAIN’s throughput is 27 times
larger than V-tree, 34 times larger than G-tree∗.

In this case study, TOAIN considers 14 SCOB configurations.
Figure 7 gives a 3-d illustration of them displaying their (tq , tu,
λ∗q ) values. As an example, the row marked “Config. A” in Table 6
shows the values of the configuration marked “A” in Figure 7. From
the data, we make a few interesting observations. (1) The SCOB
index is very flexible. It covers a wide spectrum of query/update
tradeoff. (2) TOAIN is successful in picking the configuration with
the highest throughput. (3) From Table 6, we see that the perfor-
mance with configuration A, in terms of tq and tu, straightly dom-
inates those of ROAD, G-tree∗, and V-tree. Yet, TOAIN opts for
another configuration that is not clearly dominating the others in
both (tq , tu), but is the best performer in throughput. This shows
that a straightforward comparisons of algorithms based on tq and
tu is inadequate in identifying the highest-throughput solution.

6.3 Adaptability
To evaluate the adaptability of the algorithms, we evaluate them

over a wide spectrum of system settings and environments. Specifi-
cally, for each road network and system model, we vary the param-
eters shown in Table 3 over the ranges of values shown in the table.
For example, with the NY network, we evaluated the algorithms
over the combinations of (k, R∗q , θ, T ) under the BUA+QF model,
and other combinations of (k,R∗q , θ, λu/m) under the RUA+FCFS
model. Due to space limitations, we summarize the representative
results in this section. Our observations are generally applicable to
other cases, and some of these results can be found in [1].

In Figure 8 (Figure 9), we show the algorithms’ throughputs with
the NY road network under the BUA+QF (RUA+FCFS) model. We
vary 4 parameters, one at a time. When we vary a parameter, other
parameters assume their default values shown in Table 3. We dis-
play, in total, the results of 42 cases in 8 sub-figures. Note that:
(1) If an algorithm gives 0 throughput, its corresponding bar is not
displayed in the figures. (2) The y-axis (throughput) is in log scale.

From the figures, we see that TOAIN is highly adaptable to chang-
ing system settings and environments. It significantly outperforms
the other algorithms in throughput for all the cases. Let us say that
an algorithm is “applicable” in a certain case if it produces a non-
zero throughput for the case. We see that TOAIN is much more
applicable than others. In particular, TOAIN is applicable to all the
cases. Moreover, there are two cases (at R∗q = 0.2 in Figures 8(c)
and 9(c)) in which the response time requirement is so stringent
that only TOAIN can adjust to the most query-efficient SCOB index
and it is the only applicable solution.

In general, a smaller object density θ and a larger k require the
algorithms to explore a larger neighborhood of a query q in or-
der to locate all kNN objects of q. Also, a smaller R∗q means a
more stringent query QoS requirement. These situations thus re-
quire more sophisticated index structures to facilitate fast query
processing and to sustain a high throughput. This explains why
the throughputs of Dijkstra and ROAD (which use no or simple
indices) drop drastically as θ decreases, k increases, and R∗q de-
creases (see Figures 8(a)(b)(c) and 9(a)(b)(c)).

To further illustrate TOAIN’s adaptability, we investigate the
450 cases (all 450 combinations of (k, R∗q , θ, T ) in Table 3) of
(NY, BUA+QF) experiment. We found that TOAIN considered 14
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Table 7: Percentage of cases in which a configuration is picked by TOAIN (NY, BUA+QF).
Configurations 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Frequency 0% 6.7% 13.3% 16.2% 21.5% 9.3% 5.1% 0.8% 2.3% 6.5% 3.8% 2.6% 5.1% 6.6%

Zipf(1.0) Zipf(1.5) Zipf(2.0) Zipf(2.5)
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Figure 12: Throughput under Zipfian object/query distributions (NY, BUA+QF).

SCOB configurations corresponding to h = 1 to 7 combined with
straight/gentle s-climb and t-climb. Table 7 shows the relative fre-
quencies that these 14 configurations are picked over the 450 cases.
We see that, except for 1 configuration, the selection of the config-
urations is very spread-out. This again highlights the importance of
an adaptive and configurable algorithm. Figures 10(a) and (b) show
the algorithms’ throughputs for the networks NY, NW and BJ un-
der the models BUA+QF and RUA+FCFS, respectively. Figure 11
shows the results for the BUA+QF model as we vary the size of the
BJ network from |V | = 80,000 nodes (BJ8) to |V | = 128,000 nodes
(BJ128) (see Table 2). In these experiments, parameters are set to
their default values (Table 3), except that for Figure 11, we keep
the number of objects m = 5,000. From the results, we draw sim-
ilar conclusions as those mentioned in the previous experiments:
TOAIN outperforms the other algorithms and it is highly adaptable
to different road networks.
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Figure 10: Throughput on different road networks.

BJ8 BJ16 BJ32 BJ64 BJ128
0100

101
102
103
104
105
106

th
ro

ug
hp

ut

TOAIN G-tree * V-tree ROAD Dijkstra

Figure 11: Throughput vs. network size (BJ, BUA+QF).

In our previous experiments, objects and queries are distributed
to the network nodes uniformly. Our last set of experiments
study the effect of skewed distributions of objects and queries.
From [7], we obtain yellow-cab pickup locations in NY. We com-
pute a popularity rank for each node in NY based on the nodes’
pickup frequencies. (The most popular node is ranked 1st.) We
model object/query locations as Zipfian distributions. Specifically,
the node with the r-th popularity rank is given a probability of

f(r;α, |V |) = (1/rα)/(
∑|V |
n=1 1/nα) for being an object or query

location, where α is a parameter that controls the skewness of the
distribution (a larger α gives a skewer distribution). Figure 12
shows the algorithms’ performances under the BUA+QF model for
(a) Zipfian query, uniform object distributions, (b) uniform query,
Zipfian object distributions, and (c) Zipfian query and object dis-
tributions. From the figure, we again see that TOAIN is applicable
to all the scenarios, while other algorithms register 0 throughputs
in many cases. TOAIN is thus highly adaptable and it significantly
outperforms other algorithms. The experiment is repeated for the
RUA+FCFS model for which we draw similar conclusions.

Finally, the indexing process of TOAIN takes about 2 minutes
for a small network like NY to 20 minutes for a large network like
NW. The amount of memory consumption depends on the network
size as well as k. (A larger k implies bigger kDNN lists.) As an
example, the memory consumption for the NY network with k = 10
is 228MB. The largest case is the NW network with k = 50, which
requires 1.13GB of memory.

7. CONCLUSION
In this paper we study the problem of optimizing the throughput

of processing kNN queries on road networks. We consider differ-
ent query/update arrival models and queuing models that describe
the operations of location-based services. We propose a mathemat-
ical model that expresses the maximum throughput in terms of a
number of key variables, subject to certain QoS constraints. We
propose TOAIN, which employs a highly tunable index structure
called SCOB to achieve throughput maximization. The salient fea-
ture of SCOB is that it is highly auto-configurable, making it possi-
ble to adapt to different environments and settings that require del-
icate adjustments in query/update tradeoffs. We evaluate the per-
formance of TOAIN, comparing it against other state-of-the-art so-
lutions. We conduct experiments and simulations on real road net-
works and real/synthetic workloads. Our results show that TOAIN
outperforms the competitors over a wide spectrum of cases.
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