
FACE: A Normalizing Flow based Cardinality Estimator
Jiayi Wang, Chengliang Chai, Jiabin Liu, Guoliang Li
Department of Computer Science, Tsinghua University, China

{jiayi-wa20@mails.,ccl@,liujb19@mails.,liguoliang@}tsinghua.edu.cn

ABSTRACT
Cardinality estimation is one of the most important problems in
query optimization. Recently, machine learning based techniques
have been proposed to effectively estimate cardinality, which can
be broadly classified into query-driven and data-driven approaches.
Query-driven approaches learn a regression model from a query to
its cardinality; while data-driven approaches learn a distribution of
tuples, select some samples that satisfy a SQL query, and use the
data distributions of these selected tuples to estimate the cardinality
of the SQL query. As query-driven methods rely on training queries,
the estimation quality is not reliable when there are no high-quality
training queries; while data-driven methods have no such limitation
and have high adaptivity.

In this work, we focus on data-driven methods. A good data-
driven model should achieve three optimization goals. First, the
model needs to capture data dependencies between columns and
support large domain sizes (achieving high accuracy). Second, the
model should achieve high inference efficiency, because many data
samples are needed to estimate the cardinality (achieving low infer-
ence latency). Third, the model should not be too large (achieving
a small model size). However, existing data-driven methods cannot
simultaneously optimize the three goals. To address the limitations,
we propose a novel cardinality estimator FACE, which leverages the
Normalizing Flow based model to learn a continuous joint distribu-
tion for relational data. FACE can transform a complex distribution
over continuous random variables into a simple distribution (e.g.,
multivariate normal distribution), and use the probability density to
estimate the cardinality. First, we design a dequantization method
to make data more “continuous”. Second, we propose encoding
and indexing techniques to handle Like predicates for string data.
Third, we propose a Monte Carlo method to efficiently estimate
the cardinality. Experimental results show that our method sig-
nificantly outperforms existing approaches in terms of estimation
accuracy while keeping similar latency and model size.

PVLDB Reference Format:
Jiayi Wang, Chengliang Chai, Jiabin Liu, Guoliang Li. FACE: A Normalizing
Flow based Cardinality Estimator. PVLDB, 15(1): XXX-XXX, 2022.
doi:10.14778/3485450.3485458

1 INTRODUCTION
Cardinality estimation (CE) is a fundamental and significant prob-
lem that has been widely studied for many years. It aims to estimate
the number of records that satisfy a given query in a database. CE

* Chengliang Chai and Guoliang Li are corresponding authors.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 1 ISSN 2150-8097.
doi:10.14778/3485450.3485458

Model Size

(MB)

CE methods

0.1

1

10

100

Q-error

(99th)

CE methods

1

10

100

1000

Latency

(ms)

CE methods

0.1

1

10

100

Sample

KDE

MSCN

NN

XGB

Learned

Data-driven

NeuroCard

DeepDB

FACE

Figure 1: Performance comparison of CE methods.

has widespread applications in the database community, such as
query optimization, approximate query processing, query profil-
ing, etc. Especially, a precise CE approach directly influences the
quality of the optimized query plan, leading to orders of magni-
tude performance improvement. Since traditional methods, e.g.,
histograms [35], sampling [21, 47] or kernel density based meth-
ods [10, 15], cannot capture the column correlations, recently ma-
chine learning (ML) based CE methods [6, 11, 17, 23–27, 37–39, 41,
44–46, 48] have been proposed, which can achieve superior per-
formance, because they have high representation capability and
strong learning ability.

Generally speaking, a good learning-based CE model should
achieve the following optimization objectives.
High accuracy (O1): The estimated cardinality should be close to
the real cardinality, so as to obtain an optimized query plan, and
the generalization ability is also important.
Low latency (O2): During a query plan generation, the CE module
has to be triggered multiple times, so its latency is very important
to generate an optimized plan efficiently.
Lightweight model size (O3): Considering the memory limitation,
the model should not be large [44, 49], because a database has many
schemas and requires to train a model for each schema. Moreover,
a lightweight model can achieve high inference efficiency.

To achieve these optimization goals, query-driven and data-driven
learned models have been proposed. The former [17, 37] learns a re-
gression model that learns a mapping from a query to its cardinality.
However, this approach relies on training queries and has a limited
generalization ability on query changes and data changes. For ex-
ample, if the training workload is different from the test workload,
the performance is not reliable. Data-driven [11, 44, 45] approaches
learn the joint distribution of data in a relational table without the
query workload, and use the distribution to infer the cardinality.
They do not need to know the query workload in advance and can
generalize to unseen queries, and thus the generalization ability of
data-driven methods is stronger than the query-driven ones (but
they cannot adapt to data changes).

https://doi.org/10.14778/3485450.3485458
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3485450.3485458

However, existing data-driven methods suffer from the following
limitations. (1) Sum-product-network-based method [11] assumes
different levels of independence between columns, based on which
they recursively split rows and columns and estimate the cardinality
using the sum-product network, but the accuracy is low due to the
assumption (cannot achieve O1). Therefore, the first challenge is
how to capture the dependencies between different columns (C1).
(2) Although Naru [44, 45] and DQM-D [9] can leverage the auto-
regressive model to capture dependencies by factorizing the joint
distribution into conditional probability distributions, they cannot
handle the table with a large domain size well, where the large
domain size means that in the table there exist attributes with a
large number of distinct cell values. Since the number of model
parameters scales with the domain size [9, 45], it leads to high
training cost and high storage overhead (cannot achieve O3). Even
if NeuroCard [44] can alleviate this problem by dividing the column
with the large domain size into multiple sub-columns, it sacrifices
the accuracy (cannot achieve O1).

Besides, existing data-driven methods cannot efficiently support
Like predicates on string data, because i) strings naturally have
large domain size, and ii) for inference, it is slow to find strings
satisfying the predicates (cannot achieve O2). Hence, how to sup-
port large domain size (including string data) while keeping high
accuracy is the second challenge (C2). (3) In the inference step, for
range queries, most data-driven methods [9, 44, 45] need to sample
data points from the ranges, feed them into the trained model and
use the inferred results to estimate the cardinality. This step is in-
efficient because it has to trigger the model inference many times
for estimation (cannot achieve O2). Therefore, how to reduce the
latency of the inference step is the third challenge (C3).

To address these challenges, we propose a Normalizing Flow
based Cardinality Estimator, FACE, which approximates the joint
distribution using the Normalizing Flow (NF) model. NF is a gen-
erative model that learns the joint probability distribution of data
points. It [19, 30] consists of a sequence of invertible and differen-
tiable transforms and can transform a complex distribution over
continuous random variables into a simple distribution (e.g., mul-
tivariate normal distribution), and vice versa. So the probability
density of each tuple can be computed. Intuitively, the term “Flow”
refers to the trajectory that the data is gradually transformed by the
sequence of transformations. The term “normalizing” refers to the
fact that these data points are mapped into a simple distribution,
usually multivariate normal distribution. As shown in Fig. 1, FACE
shows superiority on all dimensions, and the reasons are as follows.

In general, since NF regards all columns in the table as a whole
without any decomposition during training and inference, it can
capture the dependencies of columns (addressing C1, for O1). First,
as NF is adequate for modeling continuous data, it naturally can
be utilized to handle large domain size data without expensive em-
beddings (addressing C2, for O3). Second, for discrete data (e.g.,
categorical data), we propose a dequantization technique to make
them more “continuous”, so as to fit the NF model and obtain accu-
rate estimation (for O1). Third, we propose an effective method to
encode string data, transform Like predicates to range ones and
efficiently search qualified strings (for O2). Finally, we propose to
leverage the query similarity to accelerate the inference (addressing
C3, for O2). In summary, we make the following contributions.

(1) We propose a Normalizing Flow based framework that can
efficiently and effectively address the CE problem.

(2) We propose a dequantization technique to handle discrete
data, and design a string data encoding method to support strings.

(3) We leverage the query similarity to accelerate the inference.
(4) Experimental results showed that our method significantly

outperformed existing approaches.

2 PRELIMINARY
2.1 Problem Definition
Consider a relationT withN tuples andm attributes {A1,A2, · · ·Am }.
Each tuple t ∈ T is t = (a1,a2, · · · ,am), where ai is a cell value
in Ai , i = 1, · · · ,m. o(t) denotes the number of occurrences of t .
The task of cardinality estimation (CE) is to estimate the result
size without actually executing the query. The predicate θ of the
query can be viewed as a function that takes as input t , and outputs
θ (t) = 1 if t satisfies the predicate, otherwise θ (t) = 0. Hence, the
cardinality can be formally defined as car (θ) = |{t ∈ T : θ (t) = 1}|,
and the selectivity of θ is denoted by sel(θ) = car (θ)/N .

Note that sel(θ) can be computed using the joint data distribution
over the attribute domains in T [45]:

sel(θ) =
∑

t ∈A1×···×Am

θ (t) · P(t) (1)

where P(t) = o(t)/n denotes the probability of tuple t . Thus one
can estimate car (θ) by computing the probability distribution.
Supported Query Predicate. In this part, we show the predicates
of queries that we can support for CE. (1) Like previous works [9,
45], we support queries that are conjunctions of any number of
single-column predicates, while disjunctions can be transformed
to conjunctions using the inclusion-exclusion principle. (2) Any
single predicate forAi can be an equality predicate (e.g.,A = ai), an
open range predicate (e.g., A ≥ li) or a close range predicate (e.g.,
li ≤ A ≤ hi). Here, we use Ri to denote the range if Ai is a range
predicate. For instance, in the above examples, Ri = [li ,Ai .max] or
Ri = [li ,hi]. Since our method will transform the equality predicate
to range (see Section 3), we also abuse Ri to represent the equality
predicate for ease of representation. (3) We also support LIKE for
matching the prefix, suffix or substring of string attributes, like ab%,
%tion and %tri% respectively. As we also transfer LIKE predicates
to ranges, Equation 1 can be written as:

sel(θ) =
∑

t ∈R1×···×Rm

P(t) (2)

2.2 Normalizing Flow-based Model
The joint data distribution is modeled via generative models, where
GAN [7], VAE [16], Autoregressive [5] andNormalizing Flow (NF) [2,
34] are typical models. However, GAN and VAE perform well on
tasks like image generation, but cannot be applied to the CE prob-
lem. The reason is that these models directly generate the objects
during inference, but do not output the probability density, so it is
intractable for them to estimate the cardinality. Although the au-
toregressive model [5], a type of generative model, has been applied
in CE recently, it still suffers from the large domain size problem, as
discussed in Section 1. Therefore, we adopt the Normalizing Flow,
another representative generative model to solve the CE problem.

Generally speaking, NF provides a method for modeling flexi-
ble probability distributions over continuous random variables. It

p(x)

x′
1:m/2

x′
m/2+1:m

x1:m/2

xm/2+1:m

x
i=1 x′

θ = NN(x1:m/2)

gθ(xm/2+1:m)

permute(x′)

i ≤ τ?

i++

yes

no

Figure 2: An Example of Coupling-based Flow models.

can transform a complex probability distribution into a simpler
distribution (e.g., a standard normal) using a sequence of invert-
ible and differentiable transformations. These transformations can
be parameterized by neural networks. Formally, suppose x is an
m-dimensional dataset that we want to learn a joint distribution.
The basic idea of NF is to represent x as the output of a sequence of
transformations (uniformly denoted by f) of a real vector u sampled
from a simpler distribution π (u), i.e., x = f(u) where u ∼ π (u) [30].

Leveraging the transformation of the NF, the probability density
of x can be obtained using a change of variables,

p(x) = π (f−1(x)) |det(
∂f−1

∂x
)|. (3)

For example, given a data point after pre-processing, e.g., x =
(−1.05, 2.31, 0.27), as the input of the NF model. It infers the esti-
mated probability density of this point, e.g., p(x) = 3.18, based on
learned data distribution. Then the probability densities of multiple
data points can be utilized to compute the cardinality of a query.

Since we need to compute f−1 and its Jacobian matrix in the
above equation, f has to be invertible and differentiable. Intuitively,
the transformation not only maps between x and u, but also quan-
tifies the change of density by the Jacobian matrix. For efficiency,
π (u) is usually simple, e.g., standard normal distribution.

In NF, f should be carefully designed for invertible, differentiable
and efficient computation, so we adopt the coupling transforma-
tion [2, 28, 50] for f , which consists of a series of coupling layers,
denoted as a loop in Fig. 2. The number of layers cp is a hyper-
parameter, say 5. Each coupling layer has the same input/output
dimension, which is designed by the following steps:

• Divide the input x into two equal parts: [x1:d , xd+1:m], where
d = m

2 .
• Feed the former part into a lightweight neural network (e.g.,
MLP), θ =MLP(x1:d).

• Set x′1:d = x1:d directly.
• Set x′d+1:m = дθ (xd+1:m), where д is a differentiable and
invertible element-wise function parametrized by θ . Return
x′ = [x′1:d , x′d+1:m].

• x′ is permuted and fed into the next coupling layer. Note
that different coupling layers have different parameters for
capturing correlations of multiple columns.

Hence, f is invertible, i.e., given x′ in each layer, we can simply
restore x. The reason is that x1:d equals to x′1:d , and we can get
xd+1:m from x′d+1:m , x1:d and the invertible д. f is naturally differ-
entiable because д is differentiable. It is efficient as each coupling
layer has lightweight network structures. From the above steps,
we can see that the Jacobian matrix J of a coupling layer is lower

triangular, which means that the determinant of J can be computed
efficiently in O(m) as the product of the diagonal elements.

For training the NF, given a dataset D = {x(i)}Ni=1, a flow is
trained to maximize the total log likelihood

∑
i logp(xi). The CE

problem can be solved by transforming each tuple t to a data point
x(i) and modeling the joint probability distribution.

2.3 Related Work
Query-driven learned CE methods. They take CE as a regres-
sion problem. In the training step, they collect a pool of queries
with their real cardinalities as labels, extract the query features and
encode them as a vector, and then train a model to map a query
to its cardinality. For inference, a query is encoded to a feature
vector, fed into the regression model and the CE result is derived.
Different models are used, including fully connected neural net-
works [3, 29], convolutional neural networks [18], recurrent neural
networks [29, 37]. In general, query-driven CEmethods need a large
amount of training data, i.e., queries. If the distribution of queries
shifts, the model is not likely to behave well. Therefore, query-
driven approaches are expensive and not generalizable enough.
Data-driven learned CEmethods. Data-driven methods are pro-
posed to learn the joint distribution of data points in the relational
table in the training stage. When inference, they leverage the model
to infer the probability of tuples satisfying the query predicates.
There are mainly two categories of data-driven learned methods.

(1) Sum-Product network [11]. DeepDB uses sum-product net-
works to learn the joint distribution. The basic idea is to divide the
table into clusters of rows and columns recursively. Then it uses
sum nodes to combine different row clusters. For column clusters,
it assumes that they are independent and utilizes product nodes to
combine them. Although it can capture the joint distribution, it is
not accurate because the independence assumption is made.

(2) Autoregressive models [9, 44, 45]. The autoregressive model
factorizes the joint distribution into conditional distributions using
the multiplication principle. However, the methods cannot handle
large domain size data well. Specifically, Naru [45] and DQM-D [9]
require to compute the embeddings of each data point, so a large
domain size column induces a large number of parameters, leading
to high training cost and large model size. Although NeuroCard [44]
can alleviate this problem by factorizing the column into several sub-
columns, it sacrifices accuracy. Thus existing data-driven methods
cannot capture dependencies between columns and cannot handle
large domain size, and thus FACE is proposed to address this issue.

3 FACE FRAMEWORK
We propose FACE, a cardinality estimation framework using the NF
model. In this section, we first introduce the basic idea of using
NF (Section 3.1), and then the overall architecture (Fig. 3) of FACE
(including training (Section 3.2) and inference (Section 3.3)).

3.1 NF for Cardinality Estimation
We first present the overall framework of FACE, discuss the advan-
tages and summarize the challenges.
Overall Framework. FACE learns a continuous joint distribution of
the input data using NF. As Fig. 3 shows, it first takes as input
the original data. Then for different columns with different data
types, FACE uses appropriate encoding strategies and generates the
encoded data that can be fed into the NF model (see Section 3.2).

Job

!"#$%&

!'$%(

Name

)**+

)**+

Height

,%-.

,%/0

!"")**+,%/0

SELECT * FROM T

WHERE Job=Cook

AND Height>=1.6

AND Name LIKE ‘A%’

Category

Numeric

String

)**+
)**+
)**+

,%-.
,%/0
,%/0

!"#$%&
!'$%(

!""

Discretize Dequantize

Dequantize

Normalize

Normalize

Normal

Distribution

NF

Neural

Network

Learn x ->u

=Cook

>=1.6

Like

‘A%’

=Cook

>=1.7

Like

‘A%’Estimated after

0.312
0.668
0.996
1.123
2.886

!""%1 23456,%/7

8*'%9 !:;*4,%<=
!""%1
8*'%9

,%/7
,%<=

23456
!:;*4

Discrete
=
=
=
,
.

Dequantize

1.628
1.744
1.771
1.785
1.907

0.341
1.924
2.792
3.258
4.504

-0!""#

-0.594
-0.226
-0.083
1.897

-1.558
-0.258
0.045
0.202
1.569

-1.600
-0.461
0.164
0.499
1.397

Normalize

Training Data

Numeric

Dequantize

CategoryString

Discrete Continuous

Discretize

Trie

Encoding

Continuous

Original Data

SELECT * FROM T

WHERE Job=Cook

AND Height>=1.7

AND Name LIKE ‘A%’

Encoding outline

[0,1)

!"#$%&#'(

[0,4)

[0,1)

!"#)%&#'(

[0,4)

Normalize

[-1.345,-0.221)

!*"#+)&%&#$"&(

[-1.846,1.034)

[-1.345,-0.221)

!*'#),"%&#$"&(

[-1.846,1.034)

Initial Buckets

Uniform initialized

Initialized from Bi

Converge

After 10

Interactions

Converge

After 2

Interactions

Bi

B′
i

Integrate

Sampling

Points
Density

Update Buckets

NF

CE

3

2

Data Encoding

Query Encoding MC Integration

NF Training

Training

Inference

B1

B′
1

x u ∼ p(u)

Q’

Q’

Q

Q

Trie

Encoding

Discrete
=
,
.
0
>

Figure 3: The Framework of FACE.

After training, we can compute the probability density of each data
point using the NF model, i.e., p(x).

For inference, as the learned joint distributions are continuous,
we use Equation 4 to estimate the cardinality on range predicates:

sel(θ) =

∫
x∈R1×···×Rm

p(x) dx. (4)

Note that not all predicates are range predicates. Therefore, to
apply Equation 4, we transfer other predicates (including equal-
ity, Like predicates) to ranges (see Section 3.3). Afterwards, as the
inference part in Fig. 3 shows, we sample some data points from
these ranges (see Section 6), call NF model to estimate the probabil-
ity density of these data points and finally compute the estimated
cardinality using Monte Carlo (MC) integration [22].
Advantages. (1) FACE can capture the column dependencies be-
cause in each coupling layer as shown in Fig. 2, the former half part
of columns interact with the latter half part. Then the output is
permuted and the above step is repeated several times, and thus the
dependency between columns is likely to be fully captured. (2) NF
can naturally support continuous data well, which is a typical type
in large domain size data. It takes as input continuous data with
simple transformations (e.g., normalization) rather than embedding,
which leads to large model size and high training costs.
Challenges. (1) Besides continuous data, there are several common
data types (e.g., categorical, discrete and string data) in a relational
table, and thus using NF to support them is challenging. To address
this, we propose an effective dequantization method to make any
type of data continuous (see Section 4) and build an index to tackle
Like predicates with string data (see Section 5). (3) The repetitive
sampling is time-consuming in the inference step, so an acceleration
method is proposed in Section 6.

3.2 Training
The upper part of Fig. 3 outlines the training process of FACE. It
first takes as input batches of tuples inT and encodes them in order
to make them be well modeled by NF. Then the model is trained
using NF with maximum likelihood estimation.

3.2.1 Encoding the Training Data. Generally, there are three com-
mon types of data in databases: numerical, categorical and string.
Since NF model naturally works on continuous data, we need to
conduct a preprocessing step on different types of data. As shown
in encoding outline of Fig. 3, numerical data can be classified into
continuous data and discrete data. The former one can be handled
directly by NF, and we propose a dequantization method to make
the discrete data continuous. For categorical data, we discretize
them as done by most existing works [9, 45], and then tackle them
as discrete data. For string data, we encode them using a tree index,
and use trie encoding to convert strings to discrete data. Next, we
introduce the above steps in detail using the example in Fig. 3.
Categorical data.We transform the categorical data into contin-
uous space. We first convert them into discrete data (E(ai) → w).
For example, E(Cook) → 0. However, if we fit discrete data directly
with a continuous density model, e.g. NF, it will produce a degen-
erate solution that places all probability mass on the discrete data
points. Therefore, we use the dequantization [13, 40] method that
adds noise to discrete data over the width of each discrete bin. Then
this method makes the data being continuous, and thus the prob-
ability of each discrete point can be converted to integration over a
range. For the Name attribute in the example, the values are encoded
to {0, 1, 2}, and they have the equal length of bins, i.e., bin = 1.
Then for each discrete point with valuev ∈ {0, 1, 2}, we add a noise

that follows a certain distribution in [0,bin], say uniform distribu-
tion. Then E(Job)={0, 0, 0, 1, 2} may become more continuous like
{0.312, 0.668, 0.996, 1.123, 2.886}, which is fed into NF for training
after normalizing. When we want to predict P(Job = Cook), i.e.,
P(0), hopefully, we can compute it by integration over [0, 1], i.e.,∫ 1
0 p(x)dx = 0.6, where p(x) is learned by NF. The dequantization
technique is significant in accuracy improvement for Flow models,
so in Section 4, we propose a more effective strategy considering
the continuity of noised data.
Numerical data. As discussed above, we encode categorical data
to discrete data and then dequantize it. Therefore, for discrete data
in numerical data, we can directly dequantize it using the above
method. For continuous data, intuitively, we feed it into NF without
any processing. However, any data in a computer is represented
by a finite number of bits, and continuous data requires an infinite
number, so there is no real sense of continuity. To make data more
continuous, we also apply dequantization on these seemingly “con-
tinuous” data, which makes a probability density much easier for
NF to learn. For example, in attribute Height, the length of bin is
1.78 − 1.73 = 0.05, so we add noise in [0, 0.05]. Then the two 1.73
become 1.744 and 1.771.
String data. Like predicates are widely used for string data in
database queries. To handle this, for Like predicates with patterns
ab%, %tion and %tri%, we build a trie-based index to encode each
string to discrete data so that the Like predicates can be converted
to range predicates. Then we can use the above method to further
encode these discrete data using dequantization and feed into NF.
Specifically, we initialize a global ID as 0, and then traverse the trie
in depth first search (DFS) order. For each leaf node (correspinding
to a full string), we assign the node with the current ID, and in-
crease ID by 1. For example, the DFS order of Name in Fig. 3 is
Amy.M→ Andy.G→ Ann→ Ann.S→ Tom.H, and they are encoded
as [0, 1, 2, 3, 4].

Normalization is applied after all the above transformations to
get the final training data, which is sent to the NFmodel for training.
Flow-model Training. Data encoding transforms each tuple in
tableT to xwith the same dimension. Then x is fed into NFmodel for
training iteratively. We also use the same loss (maximum likelihood
estimation) as introduced in Section 2.2.
3.3 Inference
Given a model and a query, we show how to utilize the NF model
to estimate the cardinality of the query. First, we introduce how
to encode queries for inference. Second, considering the query
similarities, we illustrate how to accelerate the inference step.

3.3.1 Query Encoding. In this paper, we do not distinguish between
point and range queries, since we convert every equality predicate
into a range. The reason is that the equality predicate is applied on
categorical and discrete data that are modeled as continuous data by
NF. In fact, in our scenario, query encoding is equivalent to encode
the predicates of the query, i.e., how to transfer the predicates
(including equality and Like predicates) to range predicates.
Equality predicates.We first encode the equality predicateA = ai
to a range. If ai is a categorical value, we encode it to the same
discrete value as the encoding in the training phase i.e., E(ai) → w .
Then the range is constructed by [w,w + bin), where bin is the
corresponding bin width of w . For example, the predicate Job =

Cook is encoded as [0, 1). Then the cardinality can be estimated by
integration over the range. If ai is a discrete value, we can directly
construct the range.
Range predicates. For predicates with a close range, we can com-
pute integration straightforwardly over the range. For open ranges,
we will simply find the MAX/MIN of the attribute and construct the
range. For example, the predicate Height ≥ 1.6 is encoded as
[1.6, 2.0) because 2.0 is the MAX of the Height attribute.
Like predicates. We also convert Like predicates to ranges based
on the trie-based index. For a prefix Like predicate (e.g., An%), we
search An on the tree, and the node is associated with the range
corresponding to An%, i.e., [1, 3]. For suffix predicates (e.g., %on),
we search on a suffix-based Trie. For substrings (e.g., %on%), we
construct multiple ranges based on prefix-based Trie (see Section 5).

All of the above ranges are normalized for online estimation.

3.3.2 Similarity-based CEAcceleration. Given the trainedNFmodel,
we compute the probability density of each data point. Together
with the given ranges, ideally, we want to obtain the cardinality
by computing the integration over these ranges using Equation 4.
Unfortunately, the integration is infeasible to compute, because it
has no closed-form solution. Thus, MC integration [31] is applied to
approximate this. The basic idea is to sample a number of data points
from the range, compute the probability density of them using NF
and integrate the results to estimate the cardinality. Thus, sampling
largely determines the efficiency and accuracy of inference.
Adaptive importance sampling. A simple sampling strategy is
uniformly sampling from the range Ri , but it degrades the accuracy
because data in Ri may not be uniformly distributed. Therefore, we
adopt the adaptive importance sampling [22, 31] strategy as shown
in Fig. 3. It samples from the range adaptively according to the
data distribution, described by buckets for different attributes. At
the beginning, we initialize equi-width buckets (B1 in the example)
as we know nothing about the distribution. Then we sample data
points from the buckets, use NF to compute the probability density
of them, and update the buckets. We repeat the above steps until
convergence, and use the buckets (Bi) that can accurately describe
the distribution of range data to conduct the MC integration. We
can observe that although the method can capture the data distri-
bution, the repetitive sampling leads to inefficiency, so we propose
to accelerate this process based on query similarities.
Accelerate subsequent queries. In real scenarios, queries can ar-
rive at any time. For example, in Fig. 3, Q ′ comes after Q and they
seem to be similar. We can measure the similarity of queries by
comparing each pair of ranges of two queries. We observe that
ranges of similar queries are mostly overlapped, and thus their
sampled data follow similar distributions. Therefore, we initialize
the buckets of the new arrival query using that of the most similar
one (Initialize B′

1 using Q). In this way, we can obtain B′
i in much

fewer iterations, making the inference more efficient.
In Section 6, we introduce how to compute the query similarity.

Based on that, we will also illustrate how to accelerate the inference
step using buckets in detail.

3.4 Joins
FACE can also support join queries in two ways: Single-Model and
Multi-models.

Single-Model follows existing solution [11, 44] that leverages one
cardinality estimator to learn the distribution of each table and
joins of multiple tables in the schema. We first generate a full-join
table by using full outer joins to join all tables. and then add some
columns to the full table. Note that it is expensive to generate all join
tuples, we sample some joined tuples [47] (can be seen as samples
of the full-join table). Next, it trains a single model for the full-join
table using our method and then uses the estimation method to
support both a single table and multiple tables (with join queries).
Note that the full-join table may contain duplicated tuples for a
query and NULL values. To address this issue, we add additional
columns and feed the table with additional columns into our model.
After training, given a query, we use the trained model to estimate
the cardinality. The difference is that we will further leverage the
values in additional columns to correct the probability densities
considering the join types, redundant tuples, and NULL values.

For the Single-model, the full-join table may be very sparse and
the trained model may not be effective for different queries. To
address this, we can train multiple models, i.e., training a model
for each possible join query, and then given a query, we use the
corresponding model to estimate the cardinality. However, it is
rather expensive to enumerate all possible joins and build a model
for each join. To alleviate this issue, we can generate all possible join
templates based on historical queries (a join template is a join query
by removing all predicates and only keeping the join structure),
train a model for each template, and then the number of models
to be trained can be reduced. To summarize, the advantage is that
it provides more fine-grained estimation than the Single-Model.
However, it needs additional join template information, and may
consume larger memory when the number of models is large.

4 DEQUANTIZATION
In this section, we will introduce the spline dequantization designed
by us for making data “more continuous”, which is inevitable if one
wants to encode data for feeding into NF. We first show the basic
idea of the dequantization and then how to implement it.
Basic Idea of dequantization.Webeginwith an example formod-
eling a continuous distribution of an attribute Ai with 5 categories.
If we encode them to discrete data (Section 3.2.1) and use NF to
fit them, we will derive a probability density function (PDF) as
shown in Fig. 4 (a). This method has two limitations. On the one
hand, fitting a continuous density model to discrete data will pro-
duce a degraded solution [12] because all the probability mass is
placed on discrete data points. On the other hand, while inference,
it is infeasible to compute the probability of a category using the
PDF p because the integral interval is unknown. Therefore, the
dequantization technique has to be applied.
Dequantization distribution. As discussed in Section 3.2.1, de-
quantization is utilized to add noise on discrete data so that NF can
learn the continuous probability distribution more easily. Formally,
given a discrete data point x , the noiseu can be generated following
a dequantizing distribution q(u |x),u ∈ [0,bin). Here bin is the width
of the discrete bin of x , which is the difference between x and the
smallest value bigger than x in Ai . After dequantizing all values
that equal to x , these values will all lie in the corresponding bin
[x ,x + bin), so the integration over the bin precisely captures the
probability of x .

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

(a)No Dequantization (b)Uniform Dequantization (c)Spline Dequantizaion

PDF PDF PDF

CDF

g0
g1

g2

g3
g4

0 1 2 3 4 5

CDF

5 5

0 1 2 3 4 5

(xj , P (a ≤ xj))

(x4 + bin, 1)(x4 + bin, 1)
p(v)

q(v)

g

1 1

00

Figure 4: Visualization of Dequantization Methods.

Then the noise is generated based on distribution q, and each
discrete value becomes v = x + u, so v is the dequantized data
(Note that for explicit representation, we use v to denote data after
dequantization, while in other Sections, x is still used to denote the
data after all pre-processings). Recap from Section 3 that NF learns
the PDF p based on these dequantized data. Then the probability of
any discrete point, P(x), can be computed by integration. Ideally, we
hope that P(x) =

∫ x+bin
x p(v)dv , but in fact it cannot hold exactly

in real case, which can be well approximated by a sophisticated
dequantization distribution.
Motivation of spline dequantization. There exist many optional
dequantization distributions, and uniform dequantization [40] is a
representative one. Suppose that we use it to model q(v |x), which
generates noise uniformly for each discrete point. In our example,
these data points have bin = 1. Fig. 4 (b) visualizes the distribution
(green rectangles) of dequantized data, i.e., q(v) = Ex∼P [q(v |x)].
The objective of a well-performed dequantization method is to make
p learned by NF well fit the data dequantized by q. However, it is
hard for NF to fit the data dequantized by uniform dequantization.
The reason is that p is a continuous distribution that we want to
learn, but it is naturally difficult to learn from data obtained by a
discontinuous distribution q. Also, other existing works [12, 13]
cannot guarantee the continuity property.

Therefore, we propose a spline dequantization technique that
utilizes spline interpolation to construct a continuous dequantizing
distribution for each attribute.
Implementation of Spline Dequantization.Nextwe discuss how
to dequantize discrete data using the continuous spline dequanti-
zation distribution. The general solution consists of two steps. (1)
Construct a cumulative distribution function (CDF) of each attribute
using spline interpolation. (2) Use the CDF to generate dequantized
data v , which will be leveraged by NF for training. The basic idea
of the above steps is that, to derive a continuous dequantization dis-
tribution q, we construct a continuously differentiable CDF. Hence,
since q is the derivation of the CDF, q is naturally continuous.

For example, as shown in Fig. 4 (b), the CDF of the uniform
dequantization is not continuously differentiable, so q is not contin-
uous and the generated dequantized data is hard to fit. Therefore,
it requires to construct a high-quality CDF.
CDF construction. Considering a discrete attribute Ai with do-
main size s = |Ai |, we abuse a to denote the random variable that
Ai can take. For each x j ∈ Ai (x j denotes the j-th smallest value
in Ai), we can easily compute the probability that the attribute

will take a value less than x j , i.e., P(a < x j), which can be used
to construct a CDF. To be specific, first, we plot the points, i.e.,
(x1 = 0, P(a < x1)), (x2 = 1, P(a < x2)), ..., (x j , P(a < x j)),...,
(xs + bin, 1) on coordinates, as shown in Fig. 4 (c). Second, we use
Monotone Piecewise Cubic Spline Interpolation [4] to compute a
piecewise polynomial function, namely the CDF (denoted by д).
It consists of s polynomial pieces, each of which (дj) is a cubic
function corresponding to values in range [x j ,x j+1]. The reasons
why we use such a method to construct a CDF are three-fold. (1)
The spline interpolation holds monotonicity, which is necessary
to represent the naturally monotonic CDF. (2) The spline inter-
polation guarantees the continuously differentiable property, so
q is continuous because it is the derivative of the CDF. As shown
in Fig. 4 (c), NF can well fit the dequantized data generated from
such dequantization distribution. (3) The computation of spline
interpolation is efficient.
Generate dequantized data. Next we will generate dequantized
data using the CDF, which comprises two phases. Suppose that we
want to dequantize a discrete value x j . First, we sample a probability
pr from the range [дj (x j),дj (x j+1)]. Second, we compute the inverse
function д−1j , which maps each probability between дj (x j) and
дj (x j+1) to a value between x j and x j+1. д−1j can be calculated
fast and easily, because дj is a cubic function. Then we obtain
dequantized v = д−1j (pr).
Remark. One may wonder why we do not use q to infer the car-
dinality directly rather than the PDF p. The reason is that q is
the marginal distribution of each attribute in our example, but
what we want to learn (the PDF p) is a joint distribution. To ad-
dress this issue, we can extend spline dequantization to multiple
attributes by constructing continuously differentiable CDF onmulti-
dimensions [1, 8]. As it is prohibitively expensive to construct q on
all dimensions, we usually use small dimensions (1 or 2 dimensions).

5 STRING ENCODING AND INFERENCE
To support Like predicates in data-driven CE that suffers from
challenges of large domain size and inefficient inference, we build a
trie-based tree to index strings, encode each string to discrete data
based on the trie and convert Like predicates to range predicates.

5.1 Trie Encoding
Wefirst build a trie-based index and introduce how to encode strings
based on it. Given Ai = {art, ate, car, cat}, we can build a trie T
as shown in Fig.5 (a). The leaf nodes (green) denote strings in Ai ,
and the non-leaf nodes (yellow) represent the prefixes1.
Trie encoding.We aim to encode the strings in Ai , i.e., these leaf
nodes. Each node n in T records three kinds of information. (1)
The string (n.str) represented by the node. (2) Encoding ID (n.e)
of a leaf node, which is a unique ID of the node. We can assign
each leaf node an ID in DFS order. Note that non-leaf nodes do not
need encodings. (3) The encoding range (n.r) denotes the range
(n.min,n.max) of encodings among strings in the subtree rooted
at n, i.e., n.min(n.max) is respectively the minimal (maximal) ID
of leaf nodes under n. Now strings in Ai are encoded as discrete
values. After dequantizing, they can be fed into NF for training in

1If there are some strings in Ai that correspond to non-leaf nodes in the trie, we can
easily add dummy leaf nodes to represent them.

a

r

t

c

t a

tre

!!"##$%"%&#'
artn6

!""##$("(&#'
aten7

!#"##$)")&#'
carn8

!$"##$*"*&#'
catn9

$("(&#

n4 at

$%"(&

n1 a

$%"%&#

n3 ar

$)"*&

n5 ca

$)"*&#

n2 c

#$%"*&#
n0 str

ca e tr

r t t

u0{n0, · · · , n9}
str

u1{n1, n5}
a u2

{n2}
c u3

{n7}
e u4

{n3, n8}
r

{n4, n6, n9}
u5 t

{n3, n8}
u6 ar

{n4, n9}
u7 at

{n6}
u8 rt

e

!%"##$+"+&#'

aan10

a

teu9
{n7}

$%"(&,$+"+&#
n1 a

$%"+&
n0 str

(a) Trie Encoding Example

u1 a
{n1, n5, n10}

aau10{n10}

u0 str{n0, · · · , n10}

(b) Auxiliary Index Example
Figure 5: String Encoding Example.

the same way as aforementioned numerical data. Next, we discuss
how to conduct inference.
Inference of prefix-based predicates. For prefix-based predicates,
i.e., str%, if there exists a node with n.str =str, we will integrate
the learned p over the range n.r . For example, suppose that a predi-
cate is Ai Like c%. On the Trie, we match c with n2.str , fetch the
range ([2,3]) and estimate the cardinality.
Inference of suffix-based predicates. For suffix-based predicates,
i.e., %te, we also tackle them using trie as follows. For each string
attribute Ai , we add another column A′

i , where each string value
is the one-to-one reverse of that in Ai . In the above example, A′

i =

{tra, eta, rac, tac}. Then similar to prefix-based predicates, we
use A′

i to build another trie for training and inference.
Another Like pattern is substring, i.e., %str%. It is more chal-

lenging to estimate because we cannot directly locate which strings
contain str using the trie. Next, we discuss how to solve this case.

5.2 Inference of Substring Predicates
We discuss how to find qualified strings satisfying the substring
predicates and transform them to several ranges for efficient in-
ference. For example, for a predicate Like %at%, there are two
nodes (ranges) that should be considered in the inference step. To
this end, we build an auxiliary Trie Ta to index the nodes in T ,
i.e., pre-computing some nodes that have common strings. We first
introduce how to build Ta , and then use it to support inference.
Auxiliary index Ta . Ta tries to match all possible substrings with
nodes in T . Hence, given a substring, we efficiently find the match-
ing nodes as well as ranges, and CE is computed by their integra-
tions. Assuming that the character set size is C and the maximum
length of strings is M , theoretically, the number of possible sub-
strings is O(CM), which is prohibitively expensive to enumerate.
To address this, we build trie Ta layer by layer to prune the space.

Specifically, each node in Ta maintains two types of information.
One is the substring, denoted by u .str . The other one is a set u .s of
nodes in T , s.t., ∀n ∈ u .s ,n.str has the pattern %u.str. For example,
u7.str = at, and thus u7.s = {n4,n9} because n4.str = at and
n9.str = cat. To build Ta , we start with the root that u0.str =
NULL. Then for the second layer, we expand the root by generating
C children, each of which corresponds to a character. Then we fill
the u .s in the second layer by searching on T . Next, we repeat the

above steps iteratively. To make this efficient, we propose a simple
yet effective pruning strategy. We limit the height of the tree to H ,
say H = 3. In this way, the space and time complexity of the search
can be greatly reduced, but for inference, one has to explore T if
just the prefix of str matches a leaf node in Ta (see Case 2). Fig. 5
(b) shows the example with H = 3.
Inference for substrings. Given Ta , T , and a substring predicate,
we introduce how to estimate the cardinality for three cases of str.
Case 1: ∃u ∈ Ta ,u .str= str. Then ∀n ∈ u .s , we union all ranges,
i.e., n.r and integrate over them using the NF model. For example,
suppose that we have a predicate Like %a%. Since in Ta , u1.str =a,
and u1.s = {n1,n5}, we can then integrate over [0, 1] ∪ [2, 3], i.e.,
the union of n1.r and n5.r .
Case 2: ∀u ∈ Ta , u .str ,str, but ∃u ∈ Ta , u .str is the prefix of
str and u is a leaf node of Ta . In this case, ∀n ∈ u .s , we check the
descendants of n in T , and if there exist nodes that contain str , their
ranges will be used for estimation. Suppose a Like %art% predicate.
In Ta , we go to u6 and it is a leaf. Then we iterate descendants of
nodes in u6.s , i.e., n3 and n8 in T , and find that n6.str=art. Hence,
we return n6.r = [0, 0] for estimation. Note that [0, 0] is a discrete
point, we address this using the method as discussed in Section 3.2.1.
Case 3: If str does not satisfy the above two cases, we come to the
last one, which indicates that there is no string in Ai satisfying the
predicate. Given a Like %act% predicate, after coming to u1, there
is no edge c , indicating that act does not exist in Ai .
Complexity analysis. In the last layer of Ta , the number of nodes

is at most CH , and |u .s | of each leaf node is |T |

CH on average, where
|T | denotes the number of nodes in T . Thus, the complexity is
O(|T |

CH) because for ∀n ∈ u .s , it takes constant time to search on T .
Discussion of string updates. Our data structure supports data
updates by efficient incremental training. (1) Insert. For inserted
string str’, if it can be found in T , we do not change anything.
Otherwise, we insert it on T , assign a new encoding and update
the range of its ancestors. For example, suppose that str’=aa. We
insert a node n′ and encode it as n′.e = 4,n′.r = [4, 4]. Then its
ancestors combine with n′.r (the dotted red nodes in Fig. 5 (b)). Ta
also changes. If many strings are inserted, a training from scratch
is triggered. (2) Delete. Deletion does not have a large impact on
training. But for inference, similar to insert, we need to delete the
node and update the ranges of its ancestors and Ta .

6 INFERENCE ACCELERATION
In this paper, we propose to use adaptive importance sampling
(AIS) [22, 31] to conduct the inference. We first introduce its mo-
tivation and the basic solution in Section 6.1. Since AIS is time-
consuming and we observe that similar queries can be accelerated
through sharing sampled data, we discuss how to leverage this
property to make the inference more efficient (Section 6.2).

6.1 Adaptive Importance Sampling
Basic Idea. For inference, as discussed in Section 3.3, given the
trained model p and predicates of a query Q , we need to first con-
vert the predicates to ranges and integrate over them (Equation 4).
However, as shown in Fig. 6, the probability density function p is
always too complicated to integrate, so MC integration [22, 31] is
always applied to approximate the result.

B1

Bi Di

D1

B′
1

D′
1

B1

Bi−1 Di−1

D1

Bi

AIS

30

30

76

76

76 8035

38

38

53 58

53 58

Q :

Q′ :

……

Figure 6: An Example of Adaptive Importance Sampling.

Naive solution. The basic idea is to sampleK data points uniformly
for each range Ri (corresponding to each attribute), concatenate
them to K tuples, compute their probability densities, and use them
to get the integration. However, as shown in Fig. 6 (the first line, B1),
this sampling method fails to generate enough data points (dark
points in the Figure) in high-probability-density areas, leading to
an inaccurate approximation.
AIS. AIS [22, 31] is proposed to split each range Ri 2 into a sequence
of successive buckets B = [b1,b2, ...,b |B |], and then sample uni-
formly in each bucket, in order to make sampling points following
the distribution of p as exactly as possible. The bucket number |B |
(e.g., 10) and the ranges are given, and the AIS task is to adjust
the length of each bucket. Intuitively, the shorter a bucket is, the
higher the probability densities of the corresponding points in the
bucket are, i.e.,more important. We adjust the length of each bucket
adaptively until converge, i.e., adjacent buckets differ a little.

In the first iteration, AIS initializes a bucket sequence B1, where
each bucket has the same length, and then samples K

|B |
points (de-

noted by a set D1) uniformly in each bucket (this step is equivalent
to the naive solution). Next, based on D1, AIS computes a new se-
quence B2 with the objective that ∀b ∈ B2, they have the same total
probability, which is computed by data points of D1 lying in each
b. Then we use B2 to sample D2 using the same sampling strategy.
We repeat this until Bi+1 (generated from Di) differs a little with Bi ,
i.e., convergence. As Fig. 6 shows, using AIS, more data are sampled
in high-density areas. Finally, we use D1,D1, ...Di to compute a
weightedMC integration [22, 31], whereDi will have a large weight
because we think that points in Di are sampled mainly based on p.
Observation. AIS is time-consuming because it always needs mul-
tiple sampling iterations to converge. However, we observe that
similar queries always generate similar samples, so we can share
these samples to reduce the number of samples, so that similar
queries take less time to converge. Next, we first define how to mea-
sure the query similarity and then show how to do acceleration.

6.2 Sampled Data Sharing
Query similarity. Supposing the table hasm attributes, we con-
structm ranges for a query Q , i.e., R1, R2, ..., Rm , and each range
is denoted by Ri = [li , ri] (see Section 2.1). Given another query
Q ′, we define sim(Q,Q ′) = 1

m
∑m
i=1

|Ri∩R′
i |

|Ri∪R′
i |
. The similarity score is

between [0, 1]. The higher sim(Q,Q ′) is, the more similarQ andQ ′

are. For substring-based Like predicate, we use the union of ranges
to compute the similarity.
Share with subsequent queries. In many cases, queries come in
the form of streaming data. If the CE of each query requires to

2Substring-based predicates are likely to generate multiple ranges. Our solution can
sample them simultaneously.

Table 1: Real Datasets.

Dataset Size (MB) Rows Cols/Cate Dom Joint
Power 95 2.05M 6/0 ≈2M 1037
IMDB 123 4.74M 6/5 [2, 1M] 1016
BJAQ 15 380K 5/0 [1K , 2K] 1015

sample iteratively for many times until convergence, the perfor-
mance of the system will be greatly reduced. Fortunately, a query
can leverage the information of the previous most similar query
to accelerate the convergence. To be specific, given a new coming
query (e.g., Q ′ in Fig. 6), we find the most similar query among all
queries that have been estimated, say Q . Then we share Di to ini-
tialize the first bucket sequence ofQ ′, i.e., B′

1, because the ranges in
both queries have similar distributions. However, as shown in Fig. 6
(c), their corresponding ranges, i.e., Ri and R′

i are a little different,
so we have to slightly adjust Di to fix the difference. Specifically,
on the one hand, if there exist data points of Di that do not lie in
range R′

i (e.g., range [30,35] in Fig. 6), we directly drop them from
Di . On the other hand, if R = Ri ∪ R′

i − Ri is not NULL (e.g., range
[76,80] in Fig. 6), we sample K

|B |
points from R and add them to Di .

The reason is that these added points do not appear in origin Di ,
but they are required in R′

i .
In this way, the number of iterations of Q ′ can be reduced, and

thus the inference will be accelerated. This method will improve
the efficiency without sacrificing the accuracy because after the ini-
tialization, the following sampling iterations ofQ ′ can still navigate
the bucket sequence to further approximate the true distribution p.
Note that we cannot store all the sampled data points of all previous
queries in reality due to the storage overhead. To address this, we
set a storage limit, count the number of times that each query is
shared and maintain a priority queue of queries. We discard queries
that are not commonly shared when the storage limit is achieved.

7 EXPERIMENT
We have conducted extensive experiments to show the superiority
of our proposed FACE framework. We first introduced the experi-
mental settings, and the overall performance of FACE comparing
with existing works in Sections 7.1 - 7.5. Then we evaluated our
proposed techniques in Sections 7.6 - 7.7.

7.1 Experimental Settings
Dataset. We used three real-world datasets which were widely
adopted by existing works [3, 9, 20], and TPC-H, a widely used
benchmark. Table 1 showed the information of the datasets. The
Cols/Cate meant that the overall number of columns/the number
of categorical columns. Dom denoted per-column domain size. Joint
referred to the number of entries in the exact joint distribution.

Our datasets covered different properties of data, including differ-
ent sizes, data types, domain sizes, etc. (1)Power [14] is a household
electric power consumption data gathered in 47 months. It has large
domain sizes in all columns (each ≈ 2M) and all columns are numeri-
cal data. (2)IMDB [20] is a movie dataset that originally consists of 21
tables. We selected three tables, Company_name, Movie_companies,
Title and joined them to evaluate. Since the join result was too
large, we sampled [47] 4,740,297 tuples from the final result fol-
lowing the original distribution. The domain size of IMDB varies a
lot, from 2 to 1M. (3)BJAQ [36] includes hourly air pollutants data
from 12 air-quality monitoring sites, which has medium domain

sizes (1K-2K). (4)TPC-H is a commonly used synthetic benchmark
dataset, which contains 22 query templates. Specifically, we used
the query templates to generate 2000 different queries, and reported
the average estimation results of these queries.
Baselines. We compared FACE with a variety of typical CE algo-
rithms, including:
(1) PG [33]: Postgres, using histograms with the independence as-
sumption.
(2) Sample [21, 47]: the method sampled a number of records to do
CE. The sampled size was set to 1% of each dataset.
(3) MHIST [32]: the method stored all entries in the PDF using a
compression technique.
(4) KDE [10, 15]: used kernel density estimation for CE.
(5) lw-nn [3]: a query-driven method that trained a neural network
to estimate the cardinality.
(6) lw-xgb [3]: a query-driven method that trained a gradient boost
tree to estimate the cardinality.
(7) MSCN [17]: a query-driven method that used multi-set convolu-
tional network.
(8) DeepDB [11]: the method used sum-product network.
(9) Naru [45]: the method used the Autoregressive model.
(10) NeuroCard [44]: the method also used the Autoregressive
model, but it could handle large domain size data by splitting
columns. It also extended Naru to support multi-table.

We obtained codes of baselines from the authors and an experi-
mental work [43]. For hyper-parameters, we set to default values.
Workloads for testing. For each dataset except TPC-H, we gen-
erated 2000 queries for testing in a similar way as [45]. Multidi-
mensional queries containing both range and equality predicates
were generated using the following steps: (1) We randomly selected
the number of predicates f in a reasonable interval considering
the number of columns in the dataset, e.g. [3, 6] for Power. (2) We
randomly selected f distinct columns to place the predicates. For nu-
merical columns, the predicate was drawn uniformly from {=, ≤, ≥}.
For categorical columns, we only generated equality predicates, be-
cause range predicates on categorical attributes were not practical.
We only generated Like predicates on IMDB in Section 7.4. (3) We
randomly selected a tuple from the table, and used the attributes of
the tuple as the literals. For TPC-H, we used the TPC-H benchmark
query templates to generate 2000 queries.
Hyper-parameter Setting. For Power, IMDB, BJAQ, TPC-H, we set
the number of coupling layers as τ = 6, 6, 6, 5. In each coupling
layer, the MLP consisted of two hidden layers with 108, 108, 56, 48
hidden units respectively. We set the number of buckets |B | = 100
and adaptively sample until converge.
Evaluation Metrics.We evaluated different methods from three
perspectives: accuracy, latency and model size. For accuracy, we
adopted the Q-error metric [18]. It was defined as Q − error =

max{ car (θ)�car (θ) , �car (θ)car (θ) }, where
�car (θ) was the estimated cardinality.

We reported the whole q-error distribution (50% (Median), 95%,
99% and 100% (Max) quantile) of each workload. For latency, we
reported the average query latency. We also reported model size.
Environment. All experiments were in Python, performed on a
server with 32-core CPU, a Nvidia 2080ti GPU, and 128GB RAM.

Table 2: Q-errors, Latency (ms) and Model Size (MB) on 4 Datasets.
(a) Power

Estimator 50th 95th 99th Max Latency Model Size

PG 1.38 15.6 118 3e5 1.25 0.92
Sample 1.04 1.97 150 722 2.07 -
MHIST 5.10 135 383 2e5 2070 11
KDE 1.36 18.2 119 1599 0.33 -
lw-nn 1.07 4.70 26.8 455 0.59 4.7
lw-xgb 1.04 3.28 8.10 501 0.35 0.94
MSCN 1.13 17.1 176 488 0.76 4.3
DeepDB 1.06 1.91 5.33 537 16.35 3.2
Naru - - - - - -

NeuroCard 1.03 1.51 5.09 158 71 9.9
FACE 1.02 1.16 1.60 3.00 10.74 1.2

(b) IMDB
50th 95th 99th Max Latency Model Size

2.92 47.3 2768 1e4 0.15 0.16
1.03 1.38 5.00 260 1.06 -
1.20 3.36 10.4 386 902 9.8
1.57 9.45 842 1084 0.32 -
1.23 8.89 35.0 405 0.63 4.7
1.16 11.1 36.8 1198 0.3 0.99
1.18 5.04 64.0 2189 0.85 4.2
1.08 1.89 3.39 62.2 1.68 2.64
- - - - - -

1.02 1.51 2.76 14.9 64 6.2
1.02 1.21 1.54 2.85 11.6 1.2

(c) BJAQ
Estimator 50th 95th 99th Max Latency Model Size

PG 1.46 9.94 30.4 1502 0.37 0.12
Sample 1.04 1.33 2.51 271 1.06 -
MHIST 1.89 27 209 579 480 8.5
KDE 1.04 1.69 3.91 219 0.51 -
lw-nn 1.12 5.46 14.1 77.4 0.67 1.5
lw-xgb 1.06 4.38 18.2 106 0.39 1.9
MSCN 1.17 2.39 10.5 164 1.03 1.4

DeepDB 1.06 1.91 5.33 472 4.59 0.53
Naru 1.03 1.26 1.54 8.00 12.4 9.2

NeuroCard - - - - - -
FACE 1.03 1.16 1.30 2.55 11.8 0.37

(d) TPC-H
50th 95th 99th Max Latency Model Size

1.29 21.2 161 489 0.26 0.01
1.04 82 228 524 1.67 -
1.03 1.18 1.45 6.60 365 5.6
1.04 2.79 5.44 43.9 0.48 -
1.09 1.55 2.25 11.0 0.85 0.52
1.05 1.51 2.01 13.5 0.42 0.81
1.05 3.72 10.7 445 0.93 0.25
1.04 1.16 1.33 5.00 6.35 0.45
1.04 1.22 1.39 5.00 8.89 9.80
- - - - - -

1.03 1.15 1.29 1.56 7.90 0.22

7.2 Overall Evaluation
7.2.1 Comparison of Accuracy. Table 2 showed the Q-errors of
different CE algorithms. Methods are grouped as traditional, query-
driven, and data-driven. The results could be ranked as FACE >
Naru/NeuroCard > DeepDB >> lw-nn/lw-xgb/MSCN/Sample > KDE
> MHIST/PG in summary. Next, we explained the results.

Generally speaking, the accuracy of FACE was very high on all
datasets with different characteristics. We could see from the table
that FACE outperformed all the baseline methods on the entire
distribution of Q-error for all datasets. For example, the medians
(1.02 or 1.03) on these datasets were close to the optimum. Especially,
FACE also performed well on errors at the tail (99th, Max). For
example, at the Max-quantile in Power dataset, FACE outperformed
the second best solution by 50×. As a consensus [45], errors at
the tail should be taken more attention because they represent the
worst performance of estimators. Unfortunately, they are harder to
optimize than the median, and indicate the stability of estimators.
Therefore, the results further demonstrated that our solution was a
well-performed yet stable estimator. This is because our framework
could well model the joint distribution of data with different types.

FACE performed better than Naru and NeuroCard. Since Power
and IMDB are datasets with large domain size, it was intractable for
Naru to train. Hence, we just reported the results of NeuroCard,
which alleviated this problem by factorizing columns. For BJAQ
and TPC-H with median domain size, we reported the results of
Naru because NeuroCard used the same method. On Power and
IMDB, FACE outperformed NeuroCard by more than 50× and 5×
at the Max-quantile respectively, because FACE used NF to model

the joint distribution, which was adequate for large domain size
data. Although NeuroCard could handle large domain size data, the
accuracy decreased because of the column factorization. For BJAQ
and TPC-H, we observed that our method still outperformed Naru
by 3×. The reason was that our dequantization technique could
make our method support data without a large domain size well.

FACE outperformed DeepDB in accuracy by 1-2 orders of mag-
nitude. For example, on IMDB, at the Max-quantile, FACE was 2.85
while that of DeepDB was 62.2, because DeepDB failed to capture
the correlations between all columns. FACE performed well because
it can address this problem through coupling layers in NF model.

FACE also outperformed these query-driven methods a lot.For
example, on Power at the 99%-quantile, FACE had a Q-error of 1.60,
but lw-nn, lw-xgb, MSCN were 26.8, 8.10 and 176 respectively. The
reason was that query-driven methods relied on the consistence of
training and test workload, which was not generalizable enough.
For other baselines, FACE outperformed them by 1-3 orders of mag-
nitude because PG assumes independence between columns. Sample
could not handle errors at the tail because of 0-tuple problem [37].
MHIST loses information because of the compression and KDE cannot
handle multi-dimensional data well by kernel functions.

7.2.2 Comparison of Latency. We also reported the average latency
on 2000 testing queries in Table 2. We could see that the latency
of FACE (around 10ms on 4 datasets) was applicable in practice.
FACE was faster than Naru/NeuroCard, especially on large domain
sizes. For example, on Power, FACE was 7 × faster than NeuroCard.
The reason was that Naru had to compute all the probabilities of

qualified entries in each domain. Also, the autoregressive model
had to be triggered multiple times for computing the conditional
probabilities. FACE was fast because it used the data sharing tech-
nique to conduct acceleration. Moreover, DeepDB was faster than
FACE on most datasets because it does not use deep neural networks
to model the data distribution. That was the reason why it could
not completely capture the complex correlations between columns.
The query-driven methods had higher efficiency because they did
not need to sample from range predicates, but purely conducted
inference through queries, which was also the reason why the accu-
racy was low. Most traditional methods were naturally fast because
they were very simple, but suffered from low accuracy.

7.2.3 Comparison of Model Size. In this part, we compared the
model size with baselines. In fact, the size of each model could be
adjusted by changing the network architecture or hyper-parameters.
We obtained themodel size from the default settings of each baseline
or the experimental work [43]. As shown in Table 2, PG had the
smallest model size because PG was just related to the number of
attributes. Among learning-based methods, FACE almost performed
one of the best. The query-driven methods and DeepDB also had a
relatively small model size because the former ones did not need to
model the complicated data distribution, and the latter one used a
lightweight model. For FACE, although the coupling layer used in
our model incorporates neural networks, it was still lightweight
because of the compact architecture. While for Naru, large domain
size led to prohibitively large model size due to the large number
of parameters. Therefore, to summarize, FACE used the NF model
with high representation ability yet compact size.

7.3 Synthetic Dataset Evaluation
In this section, we evaluated how the accuracy of our models would
be affected by two important factors, i.e., domain size and column
correlation. To this end, two synthetic datasets were generated in
the same way as [43] corresponding to these two factors. Each
dataset contained 1 million rows and two columns. The testing
queries were generated based on the same method as Section 7.1.
7.3.1 Evaluation of Domain Size. We varied the domain size on
the synthetic dataset from 10 to 100,000 on both columns and com-
pared the Q-errors with Naru3 and DeepDB, two representative
data-driven methods. The results in Fig. 7 (a) showed that the Max-
quantile of FACE increased from about 1 to 100 along with the
domain size increasing. However, the Q-error of DeepDB and Naru
have achieved nearly 104 and 105 respectively. That was, FACE out-
performed them by 2-3 orders of magnitude. This indicated that
domain size had a much smaller impact on FACE compared with
Naru and DeepDB, and more importantly, we could perform well on
large domain size data because of the NF model.
7.3.2 Evaluation of Correlations. We varied the correlation be-
tween two columns on the synthetic dataset from 0 to 1. When the
correlation approached 1, it meant that the columns had strong cor-
relation (dependence), while 0 meant that they were independent.
We could see from Fig. 7 (b) that FACE performed the best and was
not sensitive to the column correlation. The reason was that the
coupling layer in the NF model captured the column correlations.
For Naru, the correlation also had little impact on it because the

3When the domain size was large, we applied NeuroCard by factorizing the column.

101 102 103 104 105

Domain Size

100

101

102

103

104

105

Q-
er

ro
r

(a) Top 1% Q-error of Domain Size

FACE
Naru
DeepDB

0 0.25 0.5 0.75 1
Correlation

100

101

102

103

Q-
er

ro
r

(b) Top 1% Q-error of Correlation

FACE
Naru
DeepDB

Figure 7: Evaluation of Synthetic Datasets.

Table 3: Evaluation of Like Predicates.

Estimator 50th 95th 99th Max Latency Model Size
PG 2.31 35.3 207 3118 2.5ms 0.13MB
E2E 1.51 12.1 54.8 242 5.4ms 43.7MB
FACE 1.20 4.21 10.5 21.4 45ms 67.8MB

autoregressive model could capture the dependency. DeepDB per-
formed the worst because it had the independence assumption, so
when the correlation became 1, the Q-error of DeepDB was 103.
7.4 Like Predicates Evaluation
We evaluated the queries with Like predicates generated in IMDB.
Similar to Section 7.1, we first randomly selected f columns, among
which we set that at least one column must be a string attribute.
Then we randomly selected the pattern among prefix, suffix and
substring. Next, a string str should be generated. Specifically, we
can sample strings from queries in the benchmark (JOB). However,
the number of queries was limited, so we also generated some n-
grams with different lengths in the attribute and sampled from
them. Totally, we also generated 2000 queries with Like predicates.

We compared with two baselines that supported Like predicates,
where E2E [37] was a query-driven cost estimator. We could see
from Table 3 that for accuracy, FACE outperformed E2E by one order
of magnitude, because E2E was not as generalizable as data-driven
methods. FACE outperformed PG by 2 orders of magnitude, because
PG cannot capture column correlations.

For model size, we could see that PG only used some simple
statistics and thus consumed only 0.13MB storage. E2E and FACE
had competitive storage usage, because E2E had to store a large
number of string embeddings and FACE needed to maintain the
trie and auxiliary index structure. For latency, PG and E2E were
faster, because the former used the simple statistical technique and
the latter used the query-driven method that directly estimated
the cardinality using the encoding of queries. FACE was relatively
slower, because the data-driven methods needed to sample the data
points to estimate the cardinality and searching on the trie index
also incurred some overheads.

7.5 Multi-Table Evaluation
In this section, we evaluated the cardinality estimation methods on
multiple tables using the widely-used benchmark JOB-light [17].
The results of different methods were shown in Table 4 (results of
the baselines are quoted from [44]). The Single-Model and Multi-
Models methods that have been introduced in Section 3.4 were
evaluated here respectively, and were represented as FACE-Single
and FACE-Multiple.

Table 4: Q-errors and Model Size on JOB-light.
JOB-light 50th 95th 99th Max Model Size

PG 7.97 797 3e3 3e3 70KB
MSCN 3.01 136 1e3 1e3 2.7MB
E2E 3.51 139 244 272 -

DeepDB 1.32 4.90 33.7 72 3.7MB
NeuroCard 1.57 5.91 8.48 8.51 3.8MB
FACE-Single 1.22 4.84 8.03 8.25 10.5MB
FACE-Multiple 1.15 4.49 7.41 7.83 1.73MB

As shown in Table 4, we could see that FACE-Multiple performed
the best on accuracy because our model captured the joint distribu-
tion of different join templates well, which was more fine-grained.
We could also observe that for FACE-Multiple, even if we trained
a model for each join template, the model size was smaller than
the baselines. The reasons were two-fold. (1) Our model size was
small because of the compact architecture. (2) Training a model
for each join template avoided adding many additional columns to
support joins, which might lead to a large model size and higher
latency. With a smaller model size and without additional columns,
FACE-Multiple achieved an average latency of 11 ms.

Besides, FACE-Single achieved better performance than DeepDB
and NeuroCard, because the dataset had some attributes with large
domain sizes. But the added columns contained many discrete val-
ues, which limited the superiority of the NF model. Using similar
methods to learn full outer join distribution resulted in similar
model sizes for different data-driven methods. However, the addi-
tional columns resulted in higher latency. On average, FACE-Single
estimated each query using 60 ms. Comparing FACE-Single and
FACE-Multiple, we could see that FACE-Multiple outperformed the
FACE-Single and other baselines because it provided more fine-
grained models and did not need additional columns with discrete
values.

7.6 Variance Evaluation
In this section, we evaluated our proposed techniques including
dequantization and sampled data sharing.
7.6.1 Dequantization. We compared our spline dequantization
(Deq-Spline, proposed in Section 4) with three baselines: uni-
form dequantization [42], variational dequantization [12] and 2-
dimensional continuity dequantization. The first one (Uniform) has
been discussed in Section 4. The second one (Var) used a learning-
based method to dequantize data, aiming to minimize the distance
between q and p, but still could not achieve continuity. The last one
(Deq-2D) was implemented by us, constructing a continuous PDF
on 2-dimensional data.

As shown in Fig.8 (a), on BJAQ, FACE outperformed Uniform and
Var because it could generate more continuous dequantized data
and make it easier for the NF model to fit. Besides, we could see
that the accuracy of FACE is comparable to Deq-2D, which indicated
that merely ensuring the continuity of marginal distribution was
enough for the NF model to fit.
7.6.2 Sampled Data Sharing. We evaluated the sampled data shar-
ing proposed in Section 6. FACE-noShare denoted the method with-
out sampled data sharing, i.e., sampling iteratively for each query
from scratch. We reported the average latency of FACE-noShare

Deq-Spline Deq-2D Var Uniform
Dequantization Method

100

101

Q-
er

ro
r

(a) Top 1% Q-error Distribution
BJAQ

Power BJAQ IMDB TPC-H
Datasets

0

5

10

15

20

25

30

Ti
m

e(
m

s)

(b)Evaluation of Sampled Data Sharing
FACE
FACE-noShare

Figure 8: Variance Evaluation.

Table 5: Evaluation of Data Updates.

20% Training +20% +20% +20% +20%

NoModelUpdate Max 24.5 24.0 21 21.37
95th 2.06 1.92 1.74 1.81

Inc-Training Max 2.55 3.23 3.43 3.20
95th 1.18 1.17 1.19 1.16

Retraining Max 2.50 3.00 2.85 3.00
95th 1.16 1.15 1.18 1.16

and FACE on 3 real-world datasets. As shown in Fig.8 (b), we im-
proved the efficiency two times because FACE shared the sampled
data with similar queries, and thus the convergence was fast.

7.7 Data Updates Evaluation
In this section, we studied the impact of data updates on FACE.
Following [45], we partitioned Power into 5 parts on a time attribute,
and then each partition came in order, i.e., each time we added
20% data into the training set. Given a query workload, we first
trained on the first 20% data. The row of NoModelUpdate denoted
that we trained on current arrived data, and directly estimate the
cardinality of the workload when 20% data was added, without
any model update. The row of Inc-Training denoted that when
the 20% new data was added, we incrementally trained the model
and estimated the query workload. Retraining denoted that we
retrained the model from scratch when each partition came.

As shown in Table 5, for NoModelUpdate, the 95% and Max-
quantiles were stable, indicating that FACE had a good generaliza-
tion ability. Besides, by comparing Inc-Trainingwith Retraining,
we could see that FACE can adapt to data updates effectively.

8 CONCLUSION
In this paper, we propose FACE, a Flow-based novel cardinality es-
timator, which supports accurate estimation on different types of
data. We design a spline dequantization method and utilize normal-
izing flow based model to learn the joint distribution of data. We
also build an index to handle Like predicates for string attributes.
For inference, we apply Monte Carlo integration to compute the
cardinality and propose an acceleration algorithm. The results show
that our method gains 50× performance improvement on accuracy.

ACKNOWLEDGMENTS
This work is supported by NSF of China (61925205, 61632016,
62102215), Huawei, TAL education. Chengliang is supported by
National Postdoctoral Program for Innovative Talents (BX2021155),
China Postdoctoral Science Foundation(2021M691784), and Zhe-
jiang Lab’s International Talent Fund for Young Professionals.

REFERENCES
[1] Gleb Beliakov. 2005. Monotonicity Preserving Approximation of Multivariate

Scattered Data. BIT Numerical Mathematics 45 (01 2005), 653–677. https://doi.
org/10.1007/s10543-005-0028-x

[2] Laurent Dinh, David Krueger, and Yoshua Bengio. 2015. NICE: Non-linear In-
dependent Components Estimation. In ICLR, Yoshua Bengio and Yann LeCun
(Eds.). http://arxiv.org/abs/1410.8516

[3] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya,
and Surajit Chaudhuri. 2019. Selectivity estimation for range predicates using
lightweight models. Proceedings of the VLDB Endowment 12, 9 (2019), 1044–1057.

[4] Frederick N Fritsch and Ralph E Carlson. 1980. Monotone piecewise cubic
interpolation. SIAM J. Numer. Anal. 17, 2 (1980), 238–246.

[5] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. 2015. MADE:
Masked Autoencoder for Distribution Estimation. In ICML (JMLR Workshop
and Conference Proceedings), Francis R. Bach and David M. Blei (Eds.), Vol. 37.
JMLR.org, 881–889. http://proceedings.mlr.press/v37/germain15.html

[6] Zhabiz Gharibshah, Xingquan Zhu, Arthur Hainline, and Michael Conway. 2020.
Deep Learning for User Interest and Response Prediction in Online Display
Advertising. Data Science and Engineering 5, 1 (2020), 12–26. https://doi.org/10.
1007/s41019-019-00115-y

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. NIPS 27 (2014), 2672–2680.

[8] LU Han and Larry L Schumaker. 1997. Fitting monotone surfaces to scattered
data using C1 piecewise cubics. SIAM journal on numerical analysis 34, 2 (1997),
569–585.

[9] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2020. Deep Learning Models for Selectivity Estimation of
Multi-Attribute Queries. In SIGMOD. ACM, 1035–1050. https://doi.org/10.1145/
3318464.3389741

[10] MaxHeimel, Martin Kiefer, and VolkerMarkl. 2015. Self-Tuning, GPU-Accelerated
Kernel Density Models for Multidimensional Selectivity Estimation. In SIGMOD,
Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives (Eds.). ACM, 1477–1492.
https://doi.org/10.1145/2723372.2749438

[11] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian
Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from Queries!
VLDB 13, 7 (2020), 992–1005. http://www.vldb.org/pvldb/vol13/p992-hilprecht.
pdf

[12] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. 2019.
Flow++: Improving Flow-Based Generative Models with Variational Dequan-
tization and Architecture Design. In ICML, Kamalika Chaudhuri and Ruslan
Salakhutdinov (Eds.), Vol. 97. PMLR, 2722–2730. http://proceedings.mlr.press/
v97/ho19a.html

[13] Emiel Hoogeboom, Taco S Cohen, and Jakub M Tomczak. 2020. Learning discrete
distributions by dequantization. arXiv preprint arXiv:2001.11235 (2020).

[14] Individual household electric power consumption data set. 2021. https://github.
com/gpapamak/maf. Last accessed: 2021-09-14.

[15] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. 2017. Estimating
Join Selectivities using Bandwidth-Optimized Kernel Density Models. VLDB 10,
13 (2017), 2085–2096. https://doi.org/10.14778/3151106.3151112

[16] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
ICLR, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1312.6114

[17] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Cardinalities: Estimating Correlated Joins with Deep
Learning. In CIDR. www.cidrdb.org.

[18] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In CIDR.

[19] Ivan Kobyzev, Simon Prince, and Marcus Brubaker. 2020. Normalizing flows:
An introduction and review of current methods. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2020).

[20] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? VLDB 9,
3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[21] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas
Neumann. 2017. Cardinality Estimation Done Right: Index-Based Join Sampling.
In CIDR. www.cidrdb.org.

[22] G Peter Lepage. 2021. Adaptive multidimensional integration: vegas enhanced.
J. Comput. Phys. 439 (2021), 110386.

[23] Guoliang Li, Xuanhe Zhou, and Lei Cao. 2021. AI Meets Database: AI4DB and
DB4AI. In SIGMOD. 2859–2866. https://doi.org/10.1145/3448016.3457542

[24] Guoliang Li, Xuanhe Zhou, and Lei Cao. 2021. Machine Learning for Databases.
Proc. VLDB Endow. 14, 12 (2021), 3190–3193. http://www.vldb.org/pvldb/vol14/
p3190-li.pdf

[25] Guoliang Li, Xuanhe Zhou, and Chengliang Chai. 2021. AI Meets Database: A
Survey. In TKDE.

[26] Guoliang Li, Xuanhe Zhou, Ji Sun, Xiang Yu, Yue Han, Lianyuan Jin, Wenbo
Li, Tianqing Wang, and Shifu Li. 2021. openGauss: An Autonomous Database
System. Proc. VLDB Endow. 14, 12 (2021), 3028–3041. http://www.vldb.org/pvldb/
vol14/p3028-li.pdf

[27] Mingda Li, HongzhiWang, and Jianzhong Li. 2020. Mining Conditional Functional
Dependency Rules on Big Data. Big Data Mining and Analytics 03, 01, Article 68
(2020), 16 pages.

[28] Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan
Novák. 2019. Neural Importance Sampling. ACM Trans. Graph. 38, 5 (2019),
145:1–145:19. https://doi.org/10.1145/3341156

[29] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S Sathiya Keerthi.
2019. An empirical analysis of deep learning for cardinality estimation. arXiv
preprint arXiv:1905.06425 (2019).

[30] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed,
and Balaji Lakshminarayanan. 2021. Normalizing flows for probabilistic modeling
and inference. Journal of Machine Learning Research 22, 57 (2021), 1–64.

[31] G Peter Lepage. 1978. A new algorithm for adaptive multidimensional integration.
J. Comput. Phys. 27, 2 (1978), 192–203.

[32] Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas, and Eugene J. Shekita.
1996. Improved Histograms for Selectivity Estimation of Range Predicates. In
SIGMOD, H. V. Jagadish and Inderpal Singh Mumick (Eds.). ACM Press, 294–305.

[33] PostgreSQL. 2021. https://www.postgresql.org/. Accessed: 2021-09-14.
[34] Danilo Jimenez Rezende and Shakir Mohamed. 2015. Variational Inference with

Normalizing Flows. In ICML (JMLRWorkshop and Conference Proceedings), Vol. 37.
JMLR.org, 1530–1538.

[35] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. 1979. Access Path Selection in a Relational Database
Management System. In SIGMOD, Philip A. Bernstein (Ed.). ACM, 23–34. https:
//doi.org/10.1145/582095.582099

[36] Beijing Multi-Site Air-Quality Data Data Set. 2021. https://archive.ics.uci.edu/
ml/datasets/Beijing+Multi-Site+Air-Quality+Data. Last accessed: 2021-09-14.

[37] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator.
VLDB 13, 3 (2019), 307–319. http://www.vldb.org/pvldb/vol13/p307-sun.pdf

[38] Ji Sun, Guoliang Li, and Nan Tang. 2021. Learned Cardinality Estimation for
Similarity Queries. In SIGMOD. 1745–1757. https://doi.org/10.1145/3448016.
3452790

[39] Ji Sun, Jintao Zhang, Zhaoyan Sun, Guoliang Li, and Nan Tang. 2021. Learned Car-
dinality Estimation: A Design Space Exploration and A Comparative Evaluation.
VLDB (2021).

[40] Lucas Theis, Aäron van den Oord, and Matthias Bethge. 2016. A note on the
evaluation of generative models. In ICLR, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1511.01844

[41] Shan Tian, Songsong Mo, Liwei Wang, and Zhiyong Peng. 2020. Deep Reinforce-
ment Learning-Based Approach to Tackle Topic-Aware Influence Maximization.
Data Science and Engineering 5, 1 (2020), 1–11. https://doi.org/10.1007/s41019-
020-00117-1

[42] Benigno Uria, Iain Murray, and Hugo Larochelle. 2013. RNADE: The
real-valued neural autoregressive density-estimator. In NIPS, Christopher
J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Wein-
berger (Eds.). 2175–2183. https://proceedings.neurips.cc/paper/2013/hash/
53adaf494dc89ef7196d73636eb2451b-Abstract.html

[43] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2021. Are We Ready For Learned Cardinality Estimation? Proc. VLDB Endow. 14,
9 (2021), 1640–1654. http://www.vldb.org/pvldb/vol14/p1640-wang.pdf

[44] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and
Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61–73. https://doi.org/10.14778/3421424.3421432

[45] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Peter
Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica.
2019. Deep Unsupervised Cardinality Estimation. VLDB 13, 3 (2019), 279–292.
https://doi.org/10.14778/3368289.3368294

[46] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement
Learning with Tree-LSTM for Join Order Selection. In ICDE. IEEE, 1297–1308.
https://doi.org/10.1109/ICDE48307.2020.00116

[47] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random
Sampling over Joins Revisited. In SIGMOD, Gautam Das, Christopher M. Jermaine,
and Philip A. Bernstein (Eds.). ACM, 1525–1539. https://doi.org/10.1145/3183713.
3183739

[48] Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. 2020. Query Performance
Prediction for Concurrent Queries using Graph Embedding. Proc. VLDB Endow.
13, 9 (2020), 1416–1428. https://doi.org/10.14778/3397230.3397238

[49] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method
for Cardinality Estimation. VLDB 14, 9 (2021), 1489–1502. http://www.vldb.org/
pvldb/vol14/p1489-zhu.pdf

[50] Zachary M. Ziegler and Alexander M. Rush. 2019. Latent Normalizing Flows for
Discrete Sequences. In ICML (Proceedings ofMachine Learning Research), Kamalika
Chaudhuri and Ruslan Salakhutdinov (Eds.), Vol. 97. PMLR, 7673–7682.

https://doi.org/10.1007/s10543-005-0028-x
https://doi.org/10.1007/s10543-005-0028-x
http://arxiv.org/abs/1410.8516
http://proceedings.mlr.press/v37/germain15.html
https://doi.org/10.1007/s41019-019-00115-y
https://doi.org/10.1007/s41019-019-00115-y
https://doi.org/10.1145/3318464.3389741
https://doi.org/10.1145/3318464.3389741
https://doi.org/10.1145/2723372.2749438
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf
http://www.vldb.org/pvldb/vol13/p992-hilprecht.pdf
http://proceedings.mlr.press/v97/ho19a.html
http://proceedings.mlr.press/v97/ho19a.html
https://github.com/gpapamak/maf
https://github.com/gpapamak/maf
https://doi.org/10.14778/3151106.3151112
http://arxiv.org/abs/1312.6114
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/3448016.3457542
http://www.vldb.org/pvldb/vol14/p3190-li.pdf
http://www.vldb.org/pvldb/vol14/p3190-li.pdf
http://www.vldb.org/pvldb/vol14/p3028-li.pdf
http://www.vldb.org/pvldb/vol14/p3028-li.pdf
https://doi.org/10.1145/3341156
https://www.postgresql.org/
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
http://www.vldb.org/pvldb/vol13/p307-sun.pdf
https://doi.org/10.1145/3448016.3452790
https://doi.org/10.1145/3448016.3452790
http://arxiv.org/abs/1511.01844
https://doi.org/10.1007/s41019-020-00117-1
https://doi.org/10.1007/s41019-020-00117-1
https://proceedings.neurips.cc/paper/2013/hash/53adaf494dc89ef7196d73636eb2451b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/53adaf494dc89ef7196d73636eb2451b-Abstract.html
http://www.vldb.org/pvldb/vol14/p1640-wang.pdf
https://doi.org/10.14778/3421424.3421432
https://doi.org/10.14778/3368289.3368294
https://doi.org/10.1109/ICDE48307.2020.00116
https://doi.org/10.1145/3183713.3183739
https://doi.org/10.1145/3183713.3183739
https://doi.org/10.14778/3397230.3397238
http://www.vldb.org/pvldb/vol14/p1489-zhu.pdf
http://www.vldb.org/pvldb/vol14/p1489-zhu.pdf

	Abstract
	1 introduction
	2 Preliminary
	2.1 Problem Definition
	2.2 Normalizing Flow-based Model
	2.3 Related Work

	3 FACE Framework
	3.1 NF for Cardinality Estimation
	3.2 Training
	3.3 Inference
	3.4 Joins

	4 Dequantization
	5 String Encoding and Inference
	5.1 Trie Encoding
	5.2 Inference of Substring Predicates

	6 Inference Acceleration
	6.1 Adaptive Importance Sampling
	6.2 Sampled Data Sharing

	7 Experiment
	7.1 Experimental Settings
	7.2 Overall Evaluation
	7.3 Synthetic Dataset Evaluation
	7.4 Like Predicates Evaluation
	7.5 Multi-Table Evaluation
	7.6 Variance Evaluation
	7.7 Data Updates Evaluation

	8 Conclusion
	Acknowledgments
	References

