
The VLDB Journal
DOI 10.1007/s00778-016-0449-y

REGULAR PAPER

A unified framework for string similarity search with edit-distance
constraint

Minghe Yu1 · Jin Wang1 · Guoliang Li1 · Yong Zhang1 ·
Dong Deng1 · Jianhua Feng1

Received: 10 February 2015 / Revised: 25 September 2016 / Accepted: 24 November 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract String similarity search is a fundamental opera-
tion in data cleaning and integration. It has two variants:
threshold-based string similarity search and top-k string sim-
ilarity search. Existing algorithms are efficient for either the
former or the latter; most of them cannot support both two
variants. To address this limitation, we propose a unified
framework. We first recursively partition strings into dis-
joint segments and build a hierarchical segment tree index
(HS-Tree) on top of the segments. Then, we utilize the
HS-Tree to support similarity search. For threshold-based
search, we identify appropriate tree nodes based on the
threshold to answer the query and devise an efficient algo-
rithm (HS-Search). For top-k search, we identify promising
strings with large possibility to be similar to the query,
utilize these strings to estimate an upper bound which is
used to prune dissimilar strings and propose an algorithm
(HS-Topk). We develop effective pruning techniques to fur-
ther improve the performance. To support large data sets,
we extend our techniques to support the disk-based setting.
Experimental results on real-world data sets show that our

B Guoliang Li
liguoliang@tsinghua.edu.cn

Minghe Yu
yumh12@mails.tsinghua.edu.cn

Jin Wang
wangjin12@mails.tsinghua.edu.cn

Yong Zhang
zhangyong05@tsinghua.edu.cn

Dong Deng
dd11@mails.tsinghua.edu.cn

Jianhua Feng
fengjh@tsinghua.edu.cn

1 Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China

method achieves high performance on the two problems and
outperforms state-of-the-art algorithms by 5–10 times.

Keywords Similarity search · Edit distance · Top-k ·
Disk-based method · Partition

1 Introduction

As an important operation in data cleaning and integration,
string similarity search has attracted significant attention
from the database community. It has a widespread real
applications such as web search, spell checking and DNA
sequence discovery in bio-informatics [2,20]. Given a set of
strings and a query, string similarity search aims to find all
the strings from the string set that are similar to the query.
There are many metrics to quantify the similarity between
strings, such as Jaccard, Cosine and edit distance. Among
them, edit distance is one of the most widely used metrics
to tolerate typographical errors [8,19,23,28]. In this paper,
we focus on using edit distance to quantify string similar-
ity.

Existing studies on the threshold-based similarity search
problem [20,21,28,37] employ a filter-verification frame-
work. In the filter step, they utilize the threshold to devise
effective filters in order to prune large numbers of dissimilar
strings and generate a set of candidates. In the verification
step, they verify the candidates by computing their real edit
distances to the query. These threshold-based algorithms are
rather expensive for top-k search, because to support top-k
search, they have to enumerate the threshold incrementally,
execute the search operation for each threshold, and thus
involve plenty of unnecessary computations. On the other
hand, existing studies on top-k similarity search [8,43,45]
are inefficient for threshold-based search because they can-
not make full use of the given threshold to do pruning. In

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-016-0449-y&domain=pdf


M. Yu et al.

addition, in the big data era, many data sets are rather large
and existing methods usually adopt an in-memory-based set-
ting and cannot support large data sets that cannot be loaded
into the memory. For example, all existing algorithms can-
not handle the PubMed data set (with 6 GB). To summarize,
existingmethods have two limitations. First, they are efficient
either for threshold-based search or for top-k search andmost
of them cannot efficiently support both of the two problems.
Second, they cannot support large data sets. Thus, it calls for
a unified framework to efficiently support the two variants
of string similarity search, which can be easily extended to
support the disk-based setting.

To address this problem, we propose a unified framework
which can efficiently support these two variants. We first
recursively partition data strings in the string set into dis-
joint segments and build a hierarchical segment tree index
(HS-Tree) on top of the segments. Then, we utilize the
HS-Tree to answer a threshold-based query or top-k query.
For threshold-based similarity search, based on the pigeon-
hole principle, if a data string is similar to the query, the data
stringmust have enough segments matching some substrings
of the query. We can utilize the HS-Tree to identify such
strings and devise an efficient algorithm for threshold-based
similarity search. For top-k similarity search, we first access
the promising data strings that have large possibility to be
similar to the query (e.g., the strings sharing largest number
of common segmentswith the query).Basedon thepromising
strings, we can accurately estimate an upper bound of the edit
distances of top-k answers to the query and utilize the bound
to prune dissimilar strings.Weutilize theHS-Tree to identify
the promising data strings and devise an efficient algorithm
for top-k similarity search. Moreover, our method can be
easily extended to support the disk-based setting. We study
how to effectively organize the index on disks and utilize the
index to efficiently answer queries. Experimental results on
real data sets show our method achieves high performance
on both of the two problems and significantly outperforms
state-of-the-art algorithms.

In this paper, we make the following contributions.

– We propose a hierarchical segment indexHS-Treewhich
can be utilized to support both threshold-based similarity
search and top-k similarity search.

– We devise the HS-Search algorithm based on the
HS-Tree index to facilitate threshold-based similarity
search. We propose the HS-Topk algorithm based on
HS-Tree index to support top-k similarity search.

– We develop batch-based and greedy-match-based prun-
ing strategies to prune dissimilar strings.

– We extend our techniques to support disk-based setting
and propose disk-based indexes and algorithms.

– We have conducted an extensive set of experiments on
both in-memory and disk-based settings. Experimental

results show our method achieves high performance on
both threshold-based similarity search and top-k similar-
ity search and outperforms state-of-the-art algorithms by
5–10 times.

The rest of the paper is organized as follows. We formu-
late our problem and review related works in Sect. 2. We
introduce our hierarchical index in Sect. 3. The HS-Search
algorithm is proposed to support threshold-based similarity
search in Sect. 4, and the HS-Topk algorithm is presented to
support top-k similarity search in Sect. 5. We discuss disk-
based indexes and algorithms in Sect. 6. Experimental results
are reported in Sect. 7. We conclude in Sect. 8.

2 Preliminaries

In this section, we first formulate the problem in Sect. 2.1
and then review related works in Sect. 2.2.

2.1 Problem definition

Given two strings r and s, the edit distance between r and
s, denoted as ED(r, s), is the minimum number of edit oper-
ations (including substitution, insertion and deletion on a
single letter) needed to transform r to s. There are two vari-
ants in string similarity search. The first identifies the strings
from a string set whose edit distances to the query are not
larger than a given threshold. The second finds top-k strings
with the smallest edit distances to the query. Next we formu-
late the two problems.

Definition 1 (Threshold-based Similarity Search) Given a
string set S, a query q, and a threshold τ , threshold-based
similarity search finds all strings s ∈ S such that ED(s, q) ≤
τ .

Definition 2 (Top-k Similarity Search) Given a string set S,
a query q, and an integer k, top-k similarity search finds a
subset R ⊆ S, such that |R| = k and for any r ∈ R and
s ∈ S − R, ED(r, q) ≤ ED(s, q).

Example 1 Consider the string set in Table 1. Suppose the
query q=“brothor”, τ = 1 and k = 2. The threshold-
based similarity search returns {“brother”} since the edit
distance between “brother” and q=“brothor” is 1 and
the edit distances between other strings and q are larger
than 1. The top-2 similarity search returnsR={“brother”,
“brothel”}, because the edit distances between the two
strings and q are, respectively, 1 and 2, and the edit distances
for other strings to the query are not smaller than 2.

123



A unified framework for string similarity search with edit-distance constraint

Table 1 A string collection

ID String Length

s1 Brother 7

s2 Brothel 7

s3 Broathe 7

s4 Breathe 7

s5 Brecher 7

s6 Brachels 8

s7 Swingable 9

s8 Deduction 9

s9 Abna levina 11

s10 Christopher swenson 19

2.2 Related works

2.2.1 Threshold-based similarity search

There are many similarity search algorithms [6,21,28,37,
45]. Most of existing studies employ a filter-verification
framework to address the string similarity search problem,
and many effective filters have been devised to prune dis-
similar strings. Sarawagi et al. [29] proposed count filter
based on n-grams. Li et al. [20] extended the count filter
and developed several list-merge algorithms to improve the
performance. Wang et al. [37] proposed an adaptive prefix
filtering framework to improve the performance. Zhang et
al. [45] proposed Bed-tree which utilized B+-tree to index
strings. Li et al. [21] used variable length grams as signatures
to support string similarity search. Qin et al. [28] devised an
asymmetry signature. Hadjieleftheriou et al. [16] proposed a
hash-based method to estimate the number of results.

These methods have two limitations. First, the n-gram-
based signature has lower pruning than our segment-based
signature, because to avoid missing results n cannot be large;
but a small n has limited pruning power. Second, althoughwe
can extend such methods to support top-k similarity search
by enumerating different thresholds, they are expensive as
they require to perform the search algorithms many times.

2.2.2 Top-k similarity search

There have already been some studies focusing on top-k
similarity search. Yang et al. [43] proposed a n-gram-based
method to support top-k similarity search. It dynamically
tuned the length of grams according to different thresholds.
However, it needed to build duplicate indexes for each n and
led to low efficiency. Deng et al. [8] proposed a range-based
algorithm by grouping specific entries to avoid duplicated
computations in the dynamic-programming matrix when the
edit distance is computed. This algorithm used a trie index

to share the common prefixes of strings. But for long strings,
there are fewer common prefixes and the efficiency will be
limited. Bed-tree [45] can also be used to support top-k simi-
larity search. However, thismethod utilized n-grams to group
“similar” strings together, which needed to enumerate many
different thresholds and thus led to low efficiency. Wang et
al. [39] designed a novel filter-and-refine pipeline approach
that utilized approximate n-gram matchings to compute top-
k results.

Compared with these algorithms, our method has two
advantages. First, we can utilize the HS-Tree to identify
promising strings so as to estimate a tighter upper bound
and use the bound to eliminate dissimilar strings. Thus,
our method achieves higher performance on top-k similar-
ity search. Second, our method can also efficiently support
the threshold-based search, because our method can select
appropriate nodes in the HS-Tree based on the given thresh-
old and utilize these nodes to efficiently identify the answer.

Different from our conference version [34], we make the
following new contributions. First, we extend our techniques
to support disk-based setting and propose new disk-based
indexes and algorithms. Section 6 is newly added. Second,we
implement our disk-based methods and compare with state-
of-the-art techniques. Section 7.4 is newly added. Third, we
formally prove all the lemmas.

2.2.3 Similarity join

There are many studies on string similarity join [2,4,9–
12,23,25,35,36,41,42]. Given two string sets, similarity join
finds all similar string pairs. An experimental survey is made
in [18]. Yu et al. provided a survey [44]. Bayardo et al. [2]
proposed the prefix filter-based method for similarity join.
Xiao et al. proposed the position filter [42] and mismatch
filter [41] to improve the prefix filter. Wang et al. [35] pro-
posed a trie-based method to support similarity join. Li et
al. [23] proposed the segment filter with efficient substring
selection and verification methods to perform similarity join.
Although Adapt [37] and QChunk [28] extended join tech-
niques to support search, they perform much worse than our
method (see Sect. 7). Wandelt et al. [33] reported the results
of EDBTcompetition. In this competition, therewere 9 teams
from different fields turning their algorithms for threshold-
based similarity search and joins, including PassJoin [23],
Masai [31] and WallBreaker [13] et al, which used differ-
ent techniques such as the pigeonhole principle, approximate
partition and directed acyclic word graph to solve these prob-
lems.

In this paper, we extend the segment-based filter in [23]
to support similarity search. Different from PassJoin which
requires to first specify a threshold and then build the index
based on the threshold, we can build an HS-Tree index in an
offline step and utilize the index to answer similarity search

123



M. Yu et al.

queries with arbitrary thresholds. For top-k similarity search,
since it is rather hard to predefine an appropriate threshold,
PassJoin has to enumerate the threshold and thus achieves
low performance. Our HS-Tree addresses the limitations of
PassJoin and can efficiently support top-k and threshold-
based similarity search. Different from QChunk [28], our
algorithm only generates the valid substrings and eliminates
the invalid substrings based on the position filtering. QChunk
generates all q-grams and then uses a dynamic-programming
method to remove the invalid matching.

2.2.4 Other related works

Some previous studies focus on approximate entity extrac-
tion, which gives a dictionary of entities and a document,
finds all substrings in the document that are similar to
some entities [7]. Wang et al. [38] proposed a neighborhood
deletion-based method to solve this problem. Li et al. [22]
proposed a unified framework to support approximate entity
extraction under various similarity functions. Recently Kim
et al. [19] proposed efficient algorithms to solve the prob-
lem of substring top-k similarity search, which finds the
top-k approximate substrings matching with a given query,
which is different from our top-k similarity search problem.
Another related topic is query autocompletion. Ji et al. [17]
proposed a trie-based structure to support fuzzy prefix search,
and Li et al. [24,26] improved it by removing unnecessary
nodes. Chaudhuri et al. [5] proposed a similar solution. Xiao
et al. [40] extended the neighborhood deletion method to
improve the performance of query autocompletion. Ahmadi
et al. [1] provided an algorithm Hobbes for aligning short
string set which utilized bitvector filter and optimized gram-
based method for candidate pruning. Gusfield [15] proposed
suffix contraction techniques, Mansour et al. [27] provided a
suffix tree construction method to support long strings stor-
age, and they constructed suffix tree to effectively organize
the strings. Our method is different from the techniques in
[15,27]. Firstly, Gusfield [27] utilizes the suffix tree to com-
press the strings (or segments) while our method does not
compress the segments and we reduce the size of the inverted
lists. The basic idea is that each lower-level inverted list is
a sublist of the upper-level inverted list, and we utilize this
idea to reduce the space. Secondly, Mansour et al. [27] focus
on constructing the suffix tree, while our method emphasizes
on compressing the inverted lists and reducing the number
of disk IOs. Thirdly, they only focus on reducing the space
but do not discuss how to use the index to efficiency support
queries. Our objective is to improve the query performance
by organizing the inverted lists.

3 The hierarchical segment tree

This section introduces ahierarchical segment tree (HS-Tree)
to index the data strings. We first group the strings by length,

Algorithm 1: HS-Tree Construction (S)
Input: S: The string set
Output: The HS-Tree index
begin1

Group strings in S by length;2
for l = lmin to lmax do3

Calculate the maximum level L = �log2 l�;4

Generate sets S1,1
l , S1,2

l , nodes n1,1l , n1,2l , indexes L1,1
l ,5

L1,2
l ;

for i = 2 to L do6

for j = 1 to 2i do7

Generate sets S i,2 j−1
l , S i,2 j

l , nodes ni,2 j−1
l , ni,2 jl ,8

indexes Li,2 j−1
l , Li,2 j

l ;

end9

and let Sl denote the group of strings with length l. For each
group Sl , we build a complete binary tree, where the root is
a dummy node. We partition each string s ∈ Sl into two dis-
joint segments where the first segment is the prefix of s with
length � |s|

2 � and the second segment is the suffix of s with

length � |s|
2 �, where |s| is the length of s. Let S1,1

l and S1,2
l ,

respectively, denote the set of the first segments and that of
the second segments for the strings in Sl . Based on these two
sets, we generate two children of the root, i.e., two nodes in
the first level, ni=1, j=1

l and ni=1, j=2
l , where i denotes the

level and j denotes the sibling. (The level of the root is 0.)
For each tree node ni, jl , we build an inverted index, where

entries are segments in S i, j
l and each segment with segment

id j is associated with an inverted list Li, j
l which is a list of

strings that contain the segment.
Next we recursively construct the tree. For each node

ni, jl , we partition each segment in S i, j
l into two segments

(using the same partition method above) and let S i+1,2 j−1
l

and S i+1,2 j
l , respectively, denote the set of the first segments

and that of the second segments. Then, node ni, jl has two

children ni+1,2 j−1
l and ni+1,2 j

l with respect to S i+1,2 j−1
l and

S i+1,2 j
l . We also build the inverted indexes Li+1,2 j−1

l and

Li+1,2 j
l . The procedure is terminated if there exists a segment

in the level with length of 1. In other words, the maximum
level is �log2 l�. Figure 1 illustrates the index structure.

Algorithm 1 shows the algorithm to build the HS-Tree
index. It first groups strings by length (line 2). For each
group Sl , it builds a hierarchical tree with L levels, where
L = �log2 l� (line 4). In level i , it iteratively partitions the
segments in level i − 1 into 2 segments and constructs invert
indexes Li, j

l for the j th segment in level i (lines 6–8).

Example 2 Consider the string set in Table 1. We first group
them by length and then iteratively build HS-Tree for each
length l. Take group S7 in Fig. 2 as an example. The group
length is 7. The maximal level is L = �log2 7� = 2. Con-
sider string s1 =“brother”. In level 1, s1 is partitioned

123



A unified framework for string similarity search with edit-distance constraint

Fig. 1 The HS-Tree index

4,5 1 3,42

bre ther thel athe

b

1,2,3

re

4,5

th

1,2

at

3,4

er el he

1,5 2 3,4

1,2,3

bro

5

cher

ro

1,2,3

ch

5

Fig. 2 An HS-Tree example for S7

into two segments {“bro”,“ther”}. Then, in level 2, these
two segments are iteratively partitioned into 2 segments
{“b”,“ro”}, and {“th”,“er”}. Similarly, we can iteratively
partition strings s2 to s5 to build the index.

Space complexity We analyze the space complexity of the
HS-Tree. Suppose lmin and lmax are the minimum and
maximum string length, respectively. And nmin and nmax,
respectively, denote the minimum and maximum number
of strings in the groups. For each group Sl , the HS-Tree
index includes segments and the inverted index. Sl contains
�log l� levels. In the i th level, there are 2i segments. Thus
each string is partitioned into at most

∑log l
j=1 2

j = O(l)
segments. For the inverted lists in the HS-Tree, as each
internal segment set contains n segments, where n is the
total number of strings in Sl , and the size of inverted lists
in the Sl is nl + nl ∗ 2 + · · · + n ∗ 2�log l� = O(nl ∗ l).
Obviously, each string is contained in at most O(l) inverted
lists, and thus the space complexity of the HS-Tree is
O(

∑l=lmax
l=lmin

∑n=nmax
n=nmin

l ∗ (|Sl |+n)), which is exactly the total
number of characters in all input strings.

From Sects. 3 to 5, we focus on in-memory setting. Our
method can also be extended to support disk-based setting,
and the details are shown in Sect. 6.

4 Threshold-based similarity search

In this section, we devise an efficient algorithm HS-
Search to efficiently answer threshold-based similarity
search queries using the HS-Tree index (see Sect. 4.1).
We first introduce a filter-verification framework and then
develop novel techniques to improve both the filter step (see
Sect. 4.2) and the verification step (see Sect. 4.3).

4.1 The HS-Search algorithm

Consider a query q with a threshold τ . Based on the length
filter, two strings cannot be similar if their length difference
is larger than τ , we only need to access the HS-Tree with
lengths between |q| − τ and |q| + τ . Consider the HS-Tree
with length l ∈ [|q| − τ, |q| + τ ]. In the i th level, the strings
are partitioned into 2i segments. For 2i ≥ τ + 1, any string
s in Sl cannot be similar to q if q has no substring matching
a segment of s based on the pigeonhole principle. Moreover,
it is easy to prove that if s is similar to q, q must contain at
least 2i − τ segments of s. On the contrary, if 2i < τ + 1,
any string in Sl may be similar to q even if q has no substring
matching a segment of the string.

Example 3 Consider a query q={“swaingbe”}, the data
string s7 = {swingable}, s8 = {deduction}, and τ = 2.
In level 2, the 4 segments of s7 are {“sw”,“in”,“ga”,“ble”},
and q has 22 − 2 = 2 common substrings “sw” and “in”
with s7, and thus, s8 is a candidate for query q and τ = 2.
On the contrary, the 4 segments of s8 = {deduction} are
{“de”,“du”,“ct”,“ion” }.And s8 has nomatched segments
with q. So we can safely prune s8.

Generally, consider the level i ≥ log2(τ + 1). If a string
has less than 2i − τ segments that match substrings of the
query, we can prune it. In other words, we only need to check
the candidate strings which share at least 2i − τ common
segments with q. To facilitate the checking, we can utilize
the inverted index on each node to identify the candidates,
which will be discussed in detail later. As there are many
levels i such that i ≥ log2(τ + 1), we can use any of such
levels to identify candidates. Obviously, the deeper the level
is, the shorter the segment is, and thus the lower pruning
power is. Thus, we use the minimal level �log2(τ + 1)� with
longest segments.

Formally, consider a query q and group Sl . We first locate
the i = �log2(τ + 1)�th level. For each node ni, jl (1 ≤ j ≤
2i ), we compute the length of segments in this node Leni, jl .
(It is worth noting that the segments in each node have the
same length.) To check whether q has a substring matching
a segment in node ni, jl , we only need to enumerate the set

of substrings of q with length Leni, jl , denote asW(q,Li, j
l ).

We will discuss how to reduce the size of W(q,Li, j
l ) in

123



M. Yu et al.

Algorithm 2: HS-Search (S, q, τ )

Input: S: The string set; q: The query string
τ : The given edit-distance threshold

Output: R = {(s ∈ S) | ED(s, q) ≤ τ}
begin1

Calculate the maximum level i = �log2 (τ + 1)�;2
for l = |q| − τ to |q| + τ do3

for j = 1 to 2i do4

Generate substrings set W(q,Li, j
l ) ;5

for w ∈ W(q,Li, j
l ) do6

for s ∈ Li, j
l [w] do7

Ni (s, q) = Ni (s, q) + 1;8

for s where Ni (s, q) ≥ 2i − τ do9
if ED(s, q)≤τ then R=R∪{s};10

end11

Sect. 4.2. Next we find the strings which have at least 2i − τ

segments matching the query. To this end, for each substring
in W(q,Li, j

l ), we identify the substring from the inverted
indexof the node and retrieve the inverted list of the substring.
Next we compute the strings that appear more than 2i − τ

times on the invited lists. Such strings will be regarded as
candidates, and then we will verify them and get the results.

Wedevise theHS-Search algorithm to support threshold-
based string similarity search, and the pseudo-code is shown
in Algorithm 2. HS-Search first calculates the level i =
�log2(τ + 1)�. Then, HS-Search utilizes length filter to
reduce the number of visited HS-Tree: For a query string
q and threshold τ , only groups Sl(|q|− τ ≤ l ≤ |q|+ τ) are
visited. Next HS-Search generates the set of substrings of
q,W(q,Li, j

l ), for j = 1 to 2i (line 4). If a string s is similar
to q, s should appear at least 2i − τ times in the inverted lists
Li, j
l [w] for 1 ≤ j ≤ 2i and w ∈ W(q,Li, j

l ). To this end,

HS-Search checks whether w ∈ W(q,Li, j
l ) is in Li, j

l . If

so, for any string s in the inverted list Li, j
l [w], s and q shares

a common segment w and we increaseNi (s, q) by 1, where
Ni (s, q) denotes the number of matched segments between
s and q in level i(line 8). If Ni (s, q) exceeds 2i − τ , s is
a candidate and HS-Search verifies candidate s (line 10).
To improve the performance, we design efficient techniques
to reduce the substring-set size W(q,Li, j

l ) in Sect. 4.2 and
improve the verification cost in Sect. 4.3.

Example 4 Consider the string set in Table 1. Suppose we
have built the HS-Tree index as shown in Fig. 2. Assume the
query string is q =“brethor” and the threshold is τ = 2.
First, i = �log2(τ +1)� = 2. In level 2, there are 4 segments.
If ED(s, q) ≤ 2, s and q must have at least 22 − 2 = 2
common segments. As |q| = 7 and lmin = 7, we only need
to visit the strings with length between 7 and 9 for τ = 2.
First we check L2,1

7 , which contains segments {“b”}. String

q has a matched substring “b” in L2,1
7 . As strings s1 to s5 in

the inverted list of “b” share a common segment with q, we

increase all of their common segment number by 1. Then, we
check L2,2

7 and string q matches one of them, “re”, which
inverted list contains s4 and s5. We increase N2(s4, q) and
N2(s5, q) by 1. Similarly, we check L2,3

7 and L2,4
7 . As q has

a matched substring “th” in L2,3
7 with invited list of {s1, s2},

we increase N2(s1, q) and N2(s2, q) by 1. Now strings s1,
s2, s4 and s5 have twomatched segments with q, so we verify
them and get ED(q, s1) = 2, ED(q, s2) = 3, ED(q, s4) = 3
and ED(q, s5) = 2. We put s1 and s5 into the result. As
N2(s3, q) = 1 < 2, we safely prune s3. Then, we perform
similar procedure on Li, j

8 ,Li, j
9 .

ComplexityWe analyze the time complexity of Algorithm 2.
It consists of two parts: the filtering time and the verifica-
tion time. Before performing Algorithm 2, we need to group
strings by length, which is O(

∑lmax
l=lmin

|Sl |). This can be
regarded as offline time and not included in the search time.
The time to generate set W(q,Li, j

l ) is O(τ ) as discussed
in Sect. 4.2. The total time of selecting substrings for l ∈
[|q| − τ, |q| + τ and j ∈ [1, 2i ] isO(lτ 2). The filtering cost
is to visit the inverted listswhich is

∑
l∈[|q|−τ,|q|+τ ] |Li, j

l [w ∈
W(q,Li, j

l )]|. The verification cost of q and s for threshold
τ is O(τ ∗ min(|q|, |s|)) [23], and we will further improve
the verification cost in Sect. 4.3.

4.2 Improving the filtering step

To find the candidate of a given query q, we need to first
generate the set of substrings W(q,Li, j

l ) and then count
how many common segments between strings in Sl and q.
To reach such goal efficiently, we reduce the filtering cost
through two directions: (1) reduce the size ofW(q,Li, j

l ) for
1 ≤ j ≤ 2i ; and (2) remove invalid segment matchings.
Reduce W(q,Li, j

l ). It is obvious smaller W(q,Li, j
l ) will

lead to higher performance. Based on the position filter,
a segment in s cannot be matched with the substrings
of q with large position difference. For example, for
s7=“swingable”, query q=“blending” and threshold
τ = 2. The segments of s in the second level is corre-
spondingly {“sw”,“in”,“ga”,“ble”}. The substring “ble”
cannot be matched with the fourth segment because their
position difference is larger than τ . The position filter could
be strengthened by considering the length difference of s and
q, denoted as Δ. Thus, suppose the start position of segment
w ∈ Li, j

l is Posi, jl and its length is Leni, jl . We can easily get
the lower bound of start positions of substrings in q, denoted
as LB = max(1,Posi, jl − �τ − Δ�), and the upper bound,

denoted as UB = min(|q|−Leni, jl +1,Posi, jl +�τ +Δ�).
We only need to check the substrings starting within the
range [LB, UB]. Moreover, by looking both from the left-
side and right-side perspective [23], we can further reduce
the value of LB and UB to LB = max(1,Posi, jl − ( j −

123



A unified framework for string similarity search with edit-distance constraint

1),Posi, jl +Δ− (τ +1− j)) and UB = min(|s|−Leni, jl +
1,Posi, jl + ( j − 1),Posi, jl + Δ + (τ + 1 − j)). Thus

W(q,Li, j
l ) = {q[Posi, jl ,Leni, jl ]}where q[Posi, jl ,Leni, jl ]

is the substring of q with start position Posi, jl ∈ [LB, UB]
and length Leni, jl . The correctness is stated in Lemma 1.

Lemma 1 Given a query string q and a threshold τ , using
the set W(q,Li, j

l ) = {q[Posi, jl ∈ [LB, UB],Leni, jl ]} to
findmatching candidates, ourmethodwill notmiss any result.

Proof For a string s that is similar to q, any transformation T
from q to s satisfies |T | ≤ τ . q must have at least x = 2i − τ

common substringswith s in the transformation. Suppose the
last segment in s which matches a substring of q is sk in T ,
and the start point of thematched substring inq is pk .Without
loss of generality, we only need to prove that pk ∈ [LB, UB].
To this end,weneed toprove pk ∈ [Posi, jl −(k−1),Posi, jl +
(k − 1)] and pk ∈ [Posi, jl +Δ− (τ + 1− k),Posi, jl +Δ+
(τ + 1 − k)].

First we prove pk ∈ [Posi, jl − (k − 1),Posi, jl + (k − 1)]
by contradiction. Suppose pk /∈ [Posi, jl − (k−1),Posi, jl +
(k − 1)]. The set of matched segments is Mi (s, q) =
{m1,m2, · · · ,mx }, and the set of unmatched segments
of query q (string s) is Q = {q1, q2, · · · , qx+1} (S =
{s1, s2, · · · , sx+1}), where qu(su) is the substring between
mu and mu+1 for u ∈ [1, x] and qx+1(sx+1) is the substring
after px (sx ). We have

∑x
u=1 ED(su, qu) ≥ |pk −Posi, jl | ≥

k. As T transforms qu to su and matches s and q in mu

(u ∈ [1, x]), we have τ > |T | ≥ ∑x+1
u=1 ED(su, qu) ≥

k+∑x
u=1 ED(su, qu). Thus,ED(sx+1, qx+1) ≤ τ−k. On the

other hand, as there are τ +1−k segments in sx+1, theremust
exist a segment in sx+1 that matches a substring in qx+1. This
contradicts with the assumption that sk is the last matched
segment. Thus, pk ∈ [Posi, jl − (k − 1),Posi, jl + (k − 1)].

Similarly we can prove pk ∈ [Posi, jl + Δ − (τ +
1 − k),Posi, jl + Δ + (τ + 1 − k)]. Therefore, using the

set W(q,Li, j
l ) = {q[Posi, jl ∈ [LB, UB],Leni, jl ]} to find

matching candidates, our method will not miss any result.
�


To identify string s with Ni (s, q) ≥ 2i − τ , we use the
list-merge algorithm [20] to improve the performance which
utilizes a heap to efficiently identify the candidates without
accessing every strings on the inverted lists.
Remove invalid matchings The above method identifies the
candidates by simply counting the number of matched com-
mon segments. However, it is worth noting that the substrings
of q matchingwith different segmentsmay conflict with each
other, where conflict means that the two matched substrings
overlap. This is because the segments of the data strings are
disjoint and the matched substrings of q should also be dis-
joint. For example, if q=“acompany”, s=“accomplish”

Algorithm 3: HS-Search-Filter()
begin1

// Replace Line 10 of Algorithm 2 with
the following

D[1] = 1;2
for j = 2 to Ni (s, q) do3

D[ j] = max1<t≤ j−1{γ ( j, t) · D[t]} + 1;4

if D[Ni (s, q)] ≥ 2i − τ then5
if ED(s, q)≤τ then R=R∪{s};6

end7

and threshold τ = 2. If the substring “ac” of q matches the
first segment “ac”, the substring “com” cannot match the
second segment, because “ac” and “com” are overlapped in
q, but they are disjoint in s. If we do not eliminate such con-
flict matching, it will involve false positives. For example, we
get N2(s, q) = 2 in the segment count step, but string s has
only one common segment with string q. This false positive
will result in larger candidate size and extra verification cost.

To solve this problem,we design a dynamic-programming
algorithm to calculate the maximum number of matched
segments while eliminating the conflict between matched
segments (removing overlapped matching). Let D[ j] denote
the maximum number of matched segments without conflict
among the first j segments. To calculate D[ j], we need to
find the lastmatched segment t without conflict for t < j , and
compute the number of matched segments without conflict
using this segment. Then, we consider whether the current
matched segment conflicts with the last matched segment.
We use a function γ ( j, t) to judge whether two matches j
and t conflict: γ ( j, t) = 1 if there is no conflict; γ ( j, t) = 0
otherwise. Then, we can get the following recursion formula:

D[ j] =
{
1, j = 1
max1<t≤ j−1{γ ( j, t) · D[t]} + 1, otherwise

(1)

Then,we devise a dynamic-programming algorithmbased
on the above formula as shown in Algorithm 3. The algo-
rithm takes as input the set of matched segments between
s and q in level i , denoted as Mi (s, q), which can be eas-
ily gotten when computing Ni (s, q). The algorithm outputs
the number of matched segments without conflict based on
Equation 1. The time complexity of this algorithm isO(x2),
where x = Ni (s, q). Themaximum value of x is 2i in level i ,
but in practical cases the number of matched segments is far
smaller than 2i with the help of efficient substring selection
methods. Thus the cost of this algorithm is negligible.We can
integrate this observation into Algorithm 2 (replace line 8 of
Algorithm2withAlgorithm3) to enhance the pruning power.

Example 5 Suppose string s =“are accommodate to”,
q =“were acomofortable” and τ = 5. In the segment
matching step, we search in level 3 and get M3(s, q) =

123



M. Yu et al.

{ “ac”,“com”,“mo” } and N3(s, q) = 3 ≥ 23 − 5. How-
ever, when we perform Algorithm 3 on M3(s, q), we get
D[1] = 1, D[2] = 1 and D[3] = 2. So there are 2 matched
segments. As 2 < 23−5 = 3, we safely prune s.

4.3 Improving the verification step

In our HS-Search algorithm, after generating the candidate
strings,weverifywhether their real edit distances to the query
are within the threshold τ . In this section, we devise novel
techniques to improve the verification step.

To compute the edit distance between two stringsq and s, a
naive method is to use the dynamic-programming algorithm.
Given two strings q and s, it utilizes a matrix C with |q| + 1
rows and |s| + 1 columns where C[i][ j] is the edit distance
between the substring q[1, i] and s[1, j] [30]. Actually, if
we only want to check whether the edit distance between
two strings is within a given threshold τ , we can further
reduce the complexity by only computing the C[i][ j] values
for |i − j | ≤ τ , with the cost of (2τ + 1) · min(|q|, |s|).
A length-aware method has been proposed to improve the
time complexity to τ · min(|q|, |s|) [23]. These algorithms
can also do early termination when the values in a row are
all larger than τ to further improve the time complexity.

Next we discuss how to effective verify whether s and q
are similar. Consider the value ofNi (s, q). (1) IfNi (s, q) <

2i−τ , we can safely prune s, because s does not share enough
common segments with q; (2) IfNi (s, q) ≥ 2i − τ , we need
to verify s.Note there could bemultiple alignments between s
and q. IfNi (s, q) ≥ 2i −τ , there are

(Ni (s,q)
2i−τ

)
possible align-

ments (by selecting 2i − τ matched segments fromNi (s, q)

segments). (2.1) If
(Ni (s,q)

2i−τ

)
is very large, i.e.,

(Ni (s,q)
2i−τ

) ≥ |s|,
it is expensive to verify every alignment, and thus we directly
verify the pair using the dynamic-programming algorithm.
(2.2) If

(Ni (s,q)
2i−τ

)
is small, i.e.,

(Ni (s,q)
2i−τ

)
< |s|, we propose an

efficient verification method as follows. We first enumerate
every possible alignment, i.e., checking each subset Mi (s, q)

of Mi (s, q) with 2i − τ segments. For each alignment
Mi (s, q), we propose an extension-based method. As dis-
cussed in Sect. 4.1, given a candidate string s, y = Ni (s, q),
and we align q and s based on these matched segments and
partition them into 2 · y + 1 parts including y matched seg-
ments and y + 1 unmatched segments. We only need to
verify whether ED(q, s) ≤ τ in this alignment. Suppose
the set of matched segments is Mi (s, q) = {m1,m2, . . .,
my}, and the set of unmatched segments of query q (string
s) is Q = {q1, q2, . . . , qy+1} (S = {s1, s2, . . ., sy+1}), where
q j (s j ) is the substring between mi and mi + 1 for j ∈ [1, y]
and qy+1(sy+1) is the substring after py (sy). If two matched
segments m j and m j+1 are consecutive, s j (q j ) =“”. We

denote the total edit distance as TED = ∑y+1
i=1 ED(si , qi ). If

TED is larger than τ , s is not similar to q in this alignment;

otherwise, we add s into the result set. We call this method
as SingleThreshold.

Wecan further improve theperformanceof SingleThresh-
old by assigning each ED(q j , s j ) with a tighter threshold
bound. As we can see, the part s j is between the segments
m j and m j+1. Let p j denote the order of m j among the 2i

segments in s. For string s, s j consists of p j+1 − p j − 1
segments (for j = 1, the value is p1 − 1 and for j = y + 1,
the value is 2i − py). For a given threshold τ , if y is exactly
2i − τ , the τ edit operations must be distributed in each seg-
ment according to the pigeon hole principle. In this case, if
we find two consecutive errors in one segment (or in other
words, more than τ j errors appear in part j), we can safely
terminate the verification step. The threshold τ j of each part
j is calculated as follows:

τ j =
⎧
⎨

⎩

p1 − 1, j = 1
2i − py, j = y + 1
p j+1 − p j − 1, otherwise

(2)

We propose an early-termination technique (Lemma 2).

Lemma 2 Consider two strings s and q with exactly y =
2i −τ common segments. IfED(q j , s j ) > τ j ,ED(q, s) > τ .

Proof We prove it by contradiction. Consider any trans-
formation T from s to q with |T | ≤ τ edit operations.
|T | = ∑y+1

j=1 ED(s j , q j ) ≤ ∑y+1
j=1 τ j = p1 + p2 − p1 − 1+

· · ·+ 2i − py = 2i − y = τ . As there are exactly y = 2i − τ

common segments, the |T | edit operations are distributed in
the τ mismatched segments. If ∃ j ∈ (1, y + 1) satisfying
ED(q j , s j ) > τ j , there must exist a segment in s j with more
than one edit operation. Then, there are at most τ − 2 edit
operations and at least τ − 1 mismatched segments. Accord-
ing to the pigeon hole principle, there must be at least one
matched segment. This contradicts with the condition that
there are exactly x = 2i − τ common segments. Thus, for
j ∈ (1, y + 1) and ED(q, s) ≤ τ , we have ED(q j , s j ) ≤ τ j .
Similarly we can reach the same conclusion when j = 1 or
j = y + 1. �


Based on Lemma 2, we can devise the verification algo-
rithm MultiExtension as shown in Algorithm 4. If there
are multiple possible alignments (i.e.,

(Ni (s,q)
2i−τ

) ≥ |s|), we
directly verify it (lines 2-3); otherwise, we can use the length-
aware method to efficiently verify each alignment Mi (s, q),
which is a subset of Mi (s, q) with 2i − τ elements (lines
5-13). If the edit distance between each segment is not larger
than the threshold τ j (i.e., ED(q j , s j ) ≤ τ j ), s is an answer
and we add it to the result (lines 9-11); otherwise, we skip the
alignment (lines 12-13). Next we walk through the two ver-
ification algorithms SingleThreshold and MultiExtension
using the following example as shown in Fig. 3.

123



A unified framework for string similarity search with edit-distance constraint

a b an l e v i

o

an

n

v

r

e

l

i

v

o

e

21

2

M

2

1 2

2 2

3 2

M

1

10 2

m1

m2

m3

m1 m2 m3

q1

q2

q3

q4

s1 s2 s3 s4

M

M

Fig. 3 The MultiExtension verification (y = 4)

Algorithm 4: HS-Search-Verification MultiExten-
sion (s, q, τ,Mi (s, q))

begin1
// Replace Line 6 of Algorithm 3 with the

following

if
(Ni (s,q)

2i−τ

) ≥ |s| then2
if ED(s, q)≤τ then R=R∪{s};3

else4
for each alignment case Mi (s, q) (a subset of Mi (s, q)5

with 2i − τ elements do
Generate sets S and Q based on Mi (s, q);6
Generate thresholds based on Mi (s, q);7
Calculate ED(q j , s j ) with length-aware method;8
if ∀ j ∈ [1,Ni (s, q) + 1], ED(q j , s j ) ≤ τ j then9

R=R∪{s};10
return;11

else12
// ∃ j, ED(q j , s j ) > τ j
break;13

end14

Example 6 Consider two strings s9=“abna levina” in
Table 2 and q=“ovner loevi”, and the threshold is 5.We
perform HS-Search on level 3 with 8 segments. The seg-
ments of s on level 3 are, respectively, {“a”,“b”,“n”,“a”,“l”,
“ev”,“i”,“na”}. As we can see from Fig. 3, s and q
have matched segments m1 = “n”,m2 = “l”,m3 = “ev”.
p1 = 3, p2 = 5, p3 = 6. Then, we can gener-
ate the set of S={s1=“ab”,s2=“a ”,s3=“”,s4=“ina”} and
Q={q1=“ov”,q2=“er”,q3=“o”,q4=“i”}. For MultiExten-
sion, the thresholds of each part are, respectively, 2,1,0,2.
Then we calculate ED(s1, q1) = 2 ≤ 2, ED(s2, q2) =
2 > 1, then MultiExtension terminates and discards s.
SingleThreshold continues to calculate ED(s3, q3) = 1,

ED(s4, q4) = 2 and TED = 2+2+1+2 = 7 > 6,
then it discards s. Thus, MultiExtension outperforms Sin-
gleThreshold.

5 Top-k similarity search

In this section, we study the top-k similarity search prob-
lem. Different from the threshold-based similarity search,
the top-k similarity search has no fixed threshold. Although
we can extend the threshold-based method to find top-k
answers by enumerating thresholds incrementally until k
results found, this algorithm is rather expensive because it
executes multiple (unnecessary) search operations for each
threshold and involves many duplicated computations. To
address this issue, we devise an efficient algorithm HS-Topk
to support top-k similarity search using our HS-Tree index.
The basic idea is to first access the promising strings with
large possibility to be similar to the query to prune large
numbers of dissimilar strings effectively. To this end, we first
propose a batch-pruning-based method in Sect. 5.1 and then
present an effective pruning strategy in Sect. 5.2. Finally we
devise our HS-Topk algorithm in Sect. 5.3.

5.1 The batch-pruning-based method

Wemaintain a priority queueQ to keep the current k promis-
ing results. LetUBQ denote the largest edit distance between
the strings in Q to the query, i.e., UBQ = max{ED(s ∈
Q, q)}. Obviously UBQ is an upper bound of the edit dis-
tances of top-k results to the query. In other words, we can
prune a string if its edit distance to the query is larger than
UBQ. Next we discuss how to utilize the queue to find top-k
answers.

Given a queryq, we still access theHS-Tree in a top-down
manner. Consider the i th level of the HS-Tree with length
l. For each node ni, jl , we generate the substringsW(q,Li, j

l )

for 1 ≤ j ≤ 2i and identify the corresponding inverted
lists Li, j

l . We group the strings in the inverted lists based

on the number of substrings they contain inW(q,Li, j
l ). Let

Bx denote the group of strings containing x substrings. As
each string contains at most 2i segments, there are at most
2i groups. For strings in Bx , they share x common segments
with the query. If 2i − 1 < UBQ, for x ∈ [1, 2i − 1] all
strings in Bx can be regarded as candidates. Otherwise, there
are 2i−x mismatch segments for strings inBx .As amismatch
segment leads to at least 1 edit error, the lower bound of the
edit distances of strings in Bx to query q is LBBx = 2i − x .
Obviously if LBBx ≥ UBQ, we can prune the strings in Bx

based on Lemma 3. In other words, we only need to visit
the groups such that x ≥ 2i − UBQ. On the other hand, the
larger x is, the strings in Bx have larger possibility in the top-
k answers. Thus, we want to first access the strings in groups

123



M. Yu et al.

Fig. 4 The batch-pruning-based method

with larger x . These two observations motivate us devise a
batch-pruning-based method.

Lemma 3 If LBBx ≥ UBQ, strings in Bx can be pruned.

Proof According to the definition of LBBx , strings in bucket
Bx are with the edit distance larger than 2i − x . If LBBx ≥
UBQ, there is no chance for strings in Bx to pass the verifi-
cation step. Thus, these strings can be pruned. �


For level i , if 2i−1 ≥ UBQ +1, we can terminate because
we have found all top-k answers within thresholdUBQ using
the nodes in the first i − 1 levels; otherwise, we retrieve
the inverted lists of substrings in W(q,Li, j

l ) from the i th
level and identify the substrings with Ni (s, q) ≥ 2i − UBQ
from these lists. Next we group the strings into Bx (x ∈
[2i − UBQ, 2i ]) based on the number of matched segments.
Then, we visit the groups based on the number x in descend-
ing order. For each string s ∈ Bx , we compute the real edit
distance between s and q. If ED(s, q) < UBQ, we update
the priority queue Q and UBQ using s. Iteratively, we can
correctly find the top-k answers.

Obviously, this batch-pruning-based method reduces not
only the filtering cost, because we only need to do segment
counting once for a level i while we need to perform 2i − 1
times for each threshold using the threshold-based method,
but also the verification time, because we can use a tighter
bound UBQ to do verification (Fig. 4).

Example 7 Consider a top-2 query q = “brachers” on the
data set in Table 1. Suppose string s6 = “brachels” is
already in Q as it has a common segment “brac” in level
1 with q. ED(q, s4) = 2. UBQ = ∞. Then, consider the
HS-Tree for stringswith length 7 (S7) in Fig. 2.We start from
level 1. As there is no matched segment, we move to level
2. There are four matched segments “b,ch,er, he”. After
calculating occurrence of each string in the inverted lists of
these segments, finally we haveN2(s1, q) = 2,N2(s3, q) =
N2(s4, q) = 1 and N2(s5, q) = 3. We put s5 into B3 and
verify B3. As ED(q, s5)=2 < UBQ, we add s5 into Q and
update UBQ = 2. As 22 ≥ UBQ + 1, the algorithm is
terminated and strings in B2 = {s1} and B1 = {s3, s4} are
pruned.

5.2 The greedy-match strategy

Thebatch-pruning-basedmethodcan effectively prune strings
without enough common segments. If each mismatch seg-
ment only contains one edit error, this method is very
effective as it can effectively estimate the lower bound.
However, if one mismatch segment involves more than one
consecutive errors, the estimation is not accurate, and this
method fails to filter such candidates. For example, con-
sider query q =“broader” on the data set in Table 1. For
UBQ = 1, string s1 =“brother” and s2 =“brothel”
can pass the segment filter as they share a common segment
“bro”, but it is obvious that their edit distances to q are larger
than 1 as the second segment contains 3 errors. To address this
issue,we devise a greedy-match strategy to prune stringswith
consecutive errors by utilizing our hierarchical tree structure.

Consider a string s in level i with Ni (s, q) ≥ 2i − UBQ.
In this case, we cannot prune s. Instead of directly verifying
string s, we go to the next level i + 1 and estimate a tighter
bound by counting the number of matched segments in level
i + 1 (i.e.,Ni+1(s, q)). If the number is smaller than 2i+1 −
UBQ, we can prune string s based onLemma3. If the string is
not pruned in level i+1.We check the level i+2. Iteratively, if
the string is still not pruned in the leaf level, we will compute
the real edit distance based on the method in Sect. 4.3. It is
worth noting that the larger the level is, the shorter a segment
is, and the higher probability that those dissimilar stringswith
consecutive errors can be pruned.

Next we discuss how to efficiently compute the number
of matched segments between s and q. A naive method enu-
merates each segment of s and checks whether it appears as
a substring of q. This method should enumerate many seg-
ments. Alternatively, we propose an effective method. Based
on the characteristics of the HS-Tree, if the j th segment in
level i matches a substring of q, the 2 ∗ j − 1th and 2 ∗ j th
segments must match two substrings of q in level i+1. Thus,
we do not need to check them again. Thus, we only need to
check the mismatch segments in level i .

The pseudo-code of the greedy-match strategy is shown in
Algorithm 5. It gets the set of matched segmentsMi (s, q) in
current level i and then useMi (s, q) to generateMi+1(s, q).
This iteratively matching procedure for different levels will
not involve heavy filtering cost, because segment j in level i
corresponds to segments 2∗ j −1 and 2∗ j in level i +1 and
such matched segments can be passed down to lower levels.
Besides, as we have generated the substringsW(q,Lr, j

|s| ) for
each level r (1 ≤ r ≤ n), when we look for a matched
substring for segment j , we just check W(q,Lr, j

|s| ) and do
not need to scan inverted lists any more.

Example 8 Consider s10=“christopher swenson” and
query q=“atrmstophbwcmrense”. The length of s10 is
19, so there are 4 levels. Suppose the current threshold UBQ

123



A unified framework for string similarity search with edit-distance constraint

Algorithm 5: GreedyMatch (s, q, i, τ )
Input: s, q: the strings to be verified

i : level; τ : the current threshold
Mi (s, q): matched segments of s, q in level i .

Output: True or False
begin1

for r = i + 1 to n do2
for segments w ∈ Mr−1(s, q) do3

put w’s two subsegments into Mr (s, q);4

for j = 1 to 2r do5
if segment j /∈ Mr (s, q) then6

check the segment j ;7
if find a matched substring then8

put segment j into Mr (s, q);9

if Nr (s, q) < 2r − τ then return False;10

return True;11

end12

Algorithm 6: HS-Topk (S, q, k)
Input: q: the query string; k: the size of result set

S: The string set
Output: R: the top-k answer
begin1

Initialize queue Q and UBQ;2
for i = 1 to L do3

if 2i−1 ≥ UBQ + 1 then return;4
for l ∈ [|q| − UBQ, |q| + UBQ] do5

Identify strings with occurrence number larger than6

2i − UBQ and group them to Bx ;
for x = 2i to 2i − UBQ do7

for each string s ∈ Bx do8

if GreedyMatch(s, q, i, 2i − UBQ) then9
Verify ED (s,q);10
if ED(s, q) < UBQ then11

Update Q and UBQ;12

end13

is 3. It requires 22 − 3 = 1 matched segments in level 2,
23 − 3 = 5 segments in level 3 and 24 − 3 = 13 segments
in level 4. We find a matched segments “stoph” in level 2.
Instead of verification, here we continue to look for another
5−1∗2 = 3 matched segment in level 3. We find a matched
segment “en” in level 3. As there are totally 3 matched seg-
ments in level 3, which is smaller than the required number
of matched segment 5, s10 will be pruned and we do not need
to compute its real edit distance to q.

5.3 The HS-Topk algorithm

We combine the batch-pruning-based method and greedy-
match strategy together and devise a top-k similarity search
algorithm HS-Topk. The pseudo-code is shown in Algo-
rithm 6. It first initializes the queueQ and sets the threshold
UBQ = ∞ (line 2). Then, it searches the HS-Tree from the

Fig. 5 An example for greedy-match strategy

root (line 3). If the value of UBQ is no larger than the mini-
mum threshold supported by current level (2i−1 ≥ UBQ+1),
the algorithm terminates and we can safely prune remainder
strings (line 4). For each level, we only visit HS-Tree with
lengths between |q| − UBQ and |q| + UBQ based on length
filtering (line 5). For each HS-Tree, it identifies the matched
segments, groups strings with different numbers of matched
segments into different groups, and visits the group sorted
by the number in ascending order (line 6). For each string in
the current group Bx , we perform the greedy-match strategy
(line 9). If the string passes the filter, we verify the candidate
using threshold UBQ based on the techniques in Sect. 4.3
(line 10). If ED(s, q) < UBQ, we use s to update Q and
UBQ (line 12) (Fig. 5).

6 Supporting disk-based settings

In this section, we extend our index and algorithms to support
disk-based settings and propose new disk-based indexes and
algorithms. For memory-based algorithms, the primary goal
is to reduce computational time and thus we adopt a filter-
verification framework to avoid expensive computation cost.
However, for disk-based settings, we also need to consider
the I/O cost and make a tradeoff between computation time
and I/O time.

A straightforward way to deploy HS-Tree on disk is to
store all inverted lists on the disk and directly use algo-
rithms in Sects. 4 and 5 to support similarity search.However,
this method has several weaknesses. First, it needs to access
inverted lists in every level and thus accesses disk multiple
times, leading to expensive I/O cost. Second, it involvesmany
random accesses, because each query will match multiple
segments, which are stored in-consecutively (with their cor-
responding inverted lists) on disk. To achieve high efficiency
of disk-based algorithms, we need to address the following
two challenges. The first is to reduce the index size and the
second is to avoid random accesses.

123



M. Yu et al.

Fig. 6 The architecture of compact HS-Tree index

6.1 Disk-based index: compact HS-Tree

We observe that in the HS-Tree, for i > 1, all inverted lists
in node ni, jl are the union of some inverted lists in node

ni−1,� j/2�
l . For example, in Fig. 2, the inverted list of “th”

in node n2,3l contains strings s1 and s2, which is the union of

inverted lists of “ther” and “thel” in node n1,2l . We can
utilize this property to reduce the index size of the HS-Tree.
Next we formulate this problem.

Definition 3 (Parent Segment) Given a segment w in node
ni, jl , a segment wp in node n

i−1,� j/2�
l is a parent segment of

w, if w is a segment partitioned from wp, i.e.,

(1) if j%2 = 1, w is a prefix of wp or
(2) if j%2 = 0, w is a suffix of wp.

For example, in Fig. 2, segments “ther” and “thel” in
node n1,2l are parent segment of “th” in node n2,3l .

We can prove that the inverted list of w in node ni, jl can
be gotten based on its parent segments’ inverted lists, i.e.,

Li, j
l [w] = ∪wpL

i−1,� j/2�
l [wp]. (3)

where wp is a parent segment of w.
Based on Equation 3, we do not need to maintain inverted

lists in every level. Instead, we only maintain the inverted
lists for the first level and the inverted lists for other levels
can be deduced from inverted lists of the first level.

Formally, in the first level, we still build inverted lists for
each segment like HS-Tree. For level i(i > 1), for each seg-
ment w of node ni, jl , we construct an address list Ai, j

l [w],
which is a list of pointers that point to inverted lists of w’s
parent segments in node ni−1,� j/2�

l (if i = 2) or address lists

of w’s parent segments in node ni−1,� j/2�
l (if i > 2).

Next, we introduce the compact HS-Tree index as shown
in Fig. 6, which consists of three components: in-memory

Algorithm 7: CompactHS-TreeConstruction (S)
Input: S: The string set
Output: The compact HS-Tree index
begin1

Group strings in S by length;2
for l = lmin to lmax do3

Calculate the maximum level L = �log2 l�;4

Generate sets S1,1
l , S1,2

l , inverted lists L1,1
l , L1,2

l , Write5

L1,1
l , L1,2

l to disk;
for i = 2 to L do6

for j = 1 to 2i−1 do7

for each segment S i−1, j
l do8

Generate sets S i,2 j−1
l and S i,2 j

l , address lists9

Ai,2 j−1
l ,Ai,2 j

l ;

Put the disk address of S i, j
l into address list10

Ai,2 j−1
l and Ai,2 j

l ;

Write Ai,2 j−1
l ,Ai,2 j

l to disk;11

end12

segment metadata, disk-resident segment map and disk-
resident (inverted and address) lists. The segment meta is
similar to HS-Tree, and the difference is that, for each node
ni, jl , we do not maintain segments and inverted lists. Instead,
weonly record apointer that points to disk-resident segments.
The segments in node ni, jl , i.e., S i, j

l , are consecutively stored
on the disk. Each segment is associated with a pointer that
points to the disk-resident (inverted or address) lists. For each
segment in the first level, we keep its inverted list; otherwise,
we keep its address list.

Example 9 An example compact HS-Tree index for the
strings in Table 1 is shown in Fig. 7. The string length is
7, so there are two levels. The in-memory segment meta con-
tains the pointer to the segment map of different segments in
each level. By visiting the segment map, we can get (inverted
or address) lists. For example, in Fig. 7 the segment “bro”
in S1,1

l has a pointer pointing to the invert list L1,1
7 [bro].

For disk-resident lists, we generate the inverted lists by par-
titioning strings into two segments in the level 1 (same as
HS-Tree). In level 2, we store the address lists. For example,
address list A2,1

7 [b] contains the addresses of inverted lists

L1,1
7 [bro] andL1,1

7 [bre]. At the same time, in HS-Tree the

inverted list L2,1
7 [b] stores 5 entries “1,2,3,4,5”. But in our

compact index, A2,1
7 [b] only needs to store two addresses.

Thus, the space overhead is much lower.

Algorithm 7 shows the algorithm to build the compact
index. The whole process is similar to Algorithm 1. The dif-
ference is that it only builds inverted lists in the first level.
In other levels, it iteratively builds address lists (line 9). As
we can efficiently find the parent segments of a segments
based on the partition strategy, we can efficiently construct
the compact HS-Tree index.

123



A unified framework for string similarity search with edit-distance constraint

Fig. 7 An example of compact
HS-Tree index

bro bre

chb ro

ther

re er

Segment Map

M
EM

O
RY

DISK

thel athe

th el

cher

at

S7
i=1,j=1

i=1,j=1L7

i=1,j=2L 71,2,3[bro]
[bre] 4,5

1

3,4

2
[ther]
[thel]
[athe]

i=2,j=1A7
i=2,j=2A7

S7
i=1,j=2

S7
i=2,j=1 S7

i=2,j=2
S7

i=2,j=3 S7
i=2,j=4

he

i=2,j=3A7
i=2,j=4A7

Inverted Lists

Address Lists

Segment Meta

...

[b] [ro]

[cher] 5

[th]
[at]

[er]
[el]

n7
i=1,j=1 n7

i=1,j=2

n7
i=2,j=1 n7

i=2,j=4

[re]
[ch] [he]

Space Complexity of Compact HS-Tree. We analyze the
space complexity of the compact HS-Tree. The in-memory
metadata consist of disk addresses in different levels of dif-
ferent groups. Suppose lmin is theminimum string length, and
lmax is the maximum string length. Then, for group Sl , the
maximum number of levels is �log l�. As level i has 2i seg-
ments, there are totally

∑�log l�
i=1 2i = O(l) segments in group

Sl . Therefore, the space complexity of the in-memory com-
ponent isO(

∑l=lmax
l=lmin

l). Note that the in-memory index only
depends on the string length but not the number of strings,
and thus the in-memory index is rather small and can bemain-
tained in the memory. For example, the in-memory index of
a data set with 6 GB is only 8KB (see Sect. 7).

The disk-resident components consist of the segments and
lists. The space complexities of segments and inverted lists
are the same as those in Sect. 3, which is O(

∑l=lmax
l=lmin

l ∗
|Sl |).As strings in the first level are partitioned into 2 seg-
ments, each string is contained in 2 inverted lists; and in
group Sl there are at most 2 ∗ |Sl | inverted lists. So the size
of inverted list in group Sl is at most 4 ∗ |Sl |. And the total
space complexity of inverted lists isO(

∑l=lmax
l=lmin

|Sl |). AsAi, j
l

(i ≥ 2) consists of addresses of lists in level i − 1, and the

number of lists in level i − 1 is O(|Sl |), the space com-
plexity of address list is also O(

∑l=lmax
l=lmin

l ∗ |Sl |). However,
the length of Ai, j

l is determined by the number of lists in

Ai−1,� j/2�
l rather than the number of strings in Li−1,� j/2�

l , so
the constant parameter in space complexity of address lists
is smaller than that of the inverted lists in HS-Tree.
Update. For inserting a string, we need to insert it into both
the in-memory metadata and the disk-based segment map
and inverted/address list. Firstly, we consider the in-memory
metadata. We generate its segments. If there is already a seg-
ment, we ignore the segment; otherwise, we insert it into the
in-memory metadata. Secondly, we consider the disk-based
index. For the segment map, if the segment is already in the
map, we do not need to update the segment map and only
need to append it to the corresponding inverted/address list;
otherwise, we need to append it into the segment map, create
a new inverted list/address list and append it to the new list.
Note that appending an element to segment map, inverted
lists and address lists are the same as updating inverted lists,
which is widely studied in [14,32]. A nature idea is to use
a delta update techniques, which uses a temporary structure

123



M. Yu et al.

to store the updated inverted lists and incrementally merges
them with the original index.

For deleting a string, we need to delete it from both the
in-memory metadata and the disk-based segment map and
inverted/address lists. Firstly, we consider the in-memory
metadata. We generate its segments. For each segment, if
there exist other strings matching the segment, we ignore the
segment; otherwise, we delete it from the in-memory index.
For disk indexes, we only need to keep a flag that the deleted
string is not valid.We can also incrementally update the orig-
inal index based on the flags.

6.2 Disk-based algorithms

In this section, we discuss how to utilize the compact
HS-Tree index to answer a query. To answer a threshold-
based similarity query, we first identify the level i =
�log2(τ + 1)� and retrieve all relevant nodes in level i from
the in-memory segment meta. Then, for each relevant node,
we load the corresponding segment maps into main mem-
ory and perform substring matching. For each substring, if
the level i = 1, we directly load the inverted lists and count
the number of matched segments; Otherwise, we iteratively
search the address lists from level i to level 1 and then retrieve
the corresponding inverted lists. Finally we perform verifi-
cation to remove false positives similar to the in-memory
algorithms.

However, this process is inefficient because it involves
many duplicated I/Os. For each substring, it needs to load
address lists in each level in a bottom-up manner. Although
the index size has been reduced, it still needs a large num-
ber of I/O operations to do iterative search among different
levels. Moreover, this search method also leads to repeated
I/O operations for a same address list. Thus, this method had
random I/O operations, which is much more expensive than
sequential I/Os.

To address this issue, we observe that there are redun-
dant I/O operations in the process of iteratively getting
inverted lists for each substring. Substrings may have com-
mon addresses in the upper level. For example, in Fig. 7,
if we need to check substrings “th”and “er” in level
2, we search their address lists and get the correspond-
ing addresses L1,2

7 [ther], L1,2
7 [thel], L1,2

7 [athe],L1,2
7

[athe] and L1,2
7 [ther]. Then, we visit each address to

get the lists in the upper level. In this case, the address list
with address L1,2

7 [ther] is read twice and one of them are
unnecessary.

Based on this consideration, we can share the I/O opera-
tion of different substrings if they have common list addresses
in the upper level. To this end, we propose a scheduling
function for searching each level. The core idea is that
when getting address lists for substrings, we do not imme-

Algorithm 8: Scheduling (W(q, l, lv))
Input: W(q, l, lv): the set of substrings for group l and level lv
Output: H: the set of addresses to be visited for level lv
begin1

Initialize an empty hash map H;2

for pn = 1 to 2lv do3

Get substrings W(q,Llv,pn
l ) from W(q, l, lv);4

for each w ∈ W(q,Llv,pn
l ) do5

Perform substring matching in segment map, get6

Alv,pn
l [w] from disk;

for each address α ∈ Alv,pn
l [w] do7

if α /∈ H then H = H ∪ {α};8

return H;9

end10

diately perform disk I/O for each address. Instead, we get
the mapping relation of each substring and its corresponding
addresses. We record the addresses of each distinct list and
store such mapping relation in a hash map in main mem-
ory. Then we perform disk seek in batch and load all lists.
According to the mapping relation, we can get the combined
lists of each substring in the upper level. In this way, we
can perform one sequential disk seek for each level and thus
reduce the number of random I/O operations as well as total
I/O operations.

Algorithm 8 shows the process of the scheduling function.
For substrings in each level, we first initialize the list set and
the hashmap (line 2). Then, for substrings of each part,we get
the set of lists in upper level by looking up the segment map
(line 6). Then, we put the mapping relation of the substring
and its list set into a hash map (line 7). The information in
the hash map will be used in the threshold-based similarity
search algorithm (Algorithm 9). For each list address in the
set, we check whether it has been included. If not, we add it
to the list address set of the current level (line 8); otherwise,
we will skip it.

Example 10 An example of the scheduling procedure is
shown in Fig. 8. Suppose we need to check the substrings
{“b”, “re”,“th”,“sh”, “el” }. We first perform substring
matching with the help of segment map. And we find that
substring “sh” does not have corresponding address list.
Then, we get the addresses of “b”,“re”,“th” and “el”,
which are L1,1

7 [bro], L1,1
7 [bre], L1,1

7 [bre], L1,2
7 [ther],

L1,2
7 [thel], L1,2

7 [thel]. Then, we seek the lists in upper
level by visiting each address. At the same time, we generate
the hash map of the mapping relation between substrings
and set of addresses. In this case, we need 7 disk seeks.
By doing scheduling, we can avoid redundant disk seek to
addressesL1,1

7 [bre] andL1,2
7 [thel]. And only 4 disk seeks

are needed.
Next, we get the corresponding inverted lists for each sub-

string by looking up the hashmap. For example, for substring

123



A unified framework for string similarity search with edit-distance constraint

Substrings set b,2,1 re,2,2 th,2,3 el,2,4

Address Lists

sh,2,3

Segment map b ro re th at ch er el he

[re]
[b]

[th]

seek, load segment map

Disk seek, load Address Lists

DISK

Scheduling, get
addresses

S7
i=2,j=1 S7

i=2,j=2 S7
i=2,j=3 S7

i=2,j=4

i=1,j=1L7 [bro,bre]
[bre]i=1,j=1L7

i=1,j=2L 7
[ther, thel]

i=1,j=1L7 [bro,bre]
i=1,j=2L 7 [ther, thel]

[el] i=1,j=2L 7 [thel]

Disk

Fig. 8 The scheduling function

“b” we visit the hash map and find that the corresponding
lists are from address L1,1

7 [bro] and L1,1
7 [bre]. Then, we

merge the two lists in Fig. 7 and get the corresponding list
{1,2,3,4,5}.

Based on the scheduling method, we propose the disk-
based algorithm for threshold-based similarity search. The
pseudo-code is shown in Algorithm 9. First, we need to cal-
culate the maximum level and perform length filtering and
generate substrings (which are similar toAlgorithm 2). Then,
wevisit the in-memory segmentmeta tofinddisk addresses of
relevant nodes. Next we visit the segment map and load these
nodes’ segments into memory and perform substring match-
ing (line 2). Then, we perform iterative search in address
lists from level i to level 1 to get the corresponding inverted
lists for each substring (line 4–7). Next, we use the schedul-
ing method in Algorithm 8 to get the corresponding address
lists in the upper level from disk. We then get the corre-
sponding substrings in the upper level by searching the hash
map generated in the process of scheduling and doing list
merging of loaded lists (line 7). We only need to keep the
mapping relation for one level in memory once, so there
will not be heavy space overhead of the hash map. After
we reach level 1, we load and merge the corresponding
inverted lists (line 10). The next procedures are the same
as those in Algorithm 2: We remove invalid matching, count
matched segments and perform verification for each candi-
date.

Algorithm 9: Disk-Based Search((S, q, τ ))
Input: S: The string set

q: The query string
τ : The given edit-distance threshold

Output: R = {(s ∈ S) | ED(s, q) ≤ τ}
begin1

// Replace line 4 to line 8 in
Algorithm 2 with the following:

Load the segment map of related nodes;2
Generate substrings W(q, l, i) for level i ;3
for j = i to 1 do4

H = Scheduling(W(q, l, j));5
Perform disk seek for each address in H, get address lists;6
Look up hash map and get set of substrings7
W(q, l, j − 1);

Perform disk seek for each address in H, load all the inverted8
lists;
for each w ∈ W(q,Li, j

l ) do9

Generate Li, j
l [w] by combining corresponding inverted10

lists;

end11

Similarly, we can extend this algorithm to support top-
k similarity search. One thing we need to notice is that the
GreedyMatch strategy in Sect. 5.2 is inefficient for disk-
based algorithm. The reason is that it needs extra random I/O
operations to perform greedymatching in lower levels. So for
disk-based top-k algorithm, we directly do verification after
batch pruning.

7 Experimental study

In this section, we conducted an extensive set of experiments.
Our experimental goal is to evaluate the efficiency of our
algorithms and compare with state-of-the-art methods.

7.1 Experiment setup

In-Memory Data Sets. We used publicly available real data
sets in our experiments: DBLP Author, DBLP publication
records,1 QueryLog2 andREAD,3 whichwerewidely used in
previous studies [18]. DBLP Author contained short strings,
QueryLog containedmedium-length strings, and DBLP con-
tained long strings. READ is aDNAdata set used in the string
similarity search/join competition, organized by EDBT [33].
The details of data sets are shown in Table 2.
Disk Data Sets. To evaluate disk-based algorithms, we used
DBLP and three larger data sets: PubMed Author,4 a large
QueryLog (denoted as QueryLog-L) and PubMed.

1 http://www.informatik.uni-trier.de/~ley/db/.
2 http://www.informatik.uni-trier.de/~ley/db/.
3 http://www2.informatik.hu-berlin.de/~wandelt/searchjoincompeti
tion2013/.
4 http://www.ncbi.nlm.nih.gov/pubmed/.

123

http://www.informatik.uni-trier.de/~ley/db/
http://www.informatik.uni-trier.de/~ley/db/
http://www2.informatik.hu-berlin.de/~wandelt/searchjoincompetition2013/
http://www2.informatik.hu-berlin.de/~wandelt/searchjoincompetition2013/
http://www.ncbi.nlm.nih.gov/pubmed/


M. Yu et al.

Table 2 Data sets
Data sets # Size (MB) AvgLen MaxLen MinLen

DBLP author 613 K 9.21 15 46 6

QueryLog-S 464 K 21.3 45 522 30

DBLP 1.4 M 138.8 105 1626 1

READ 1.24 M 121 100 103 14

PubMed author 10.3 M 121.9 12 101 4

QueryLog-L 1.2 M 62.8 40 501 5

PubMed 230 M 6624 30 277 1

0

0.01

0.1

1

10

1 2 3 4

A
ve

ra
ge

 T
im

e(
m

s)

Edit Distance

Length Aware
Single Threshold

Multi-extension

(a)

0

0.01

0.1

1

10

100

1 5 10 15

A
ve

ra
ge

 T
im

e(
m

s)

Edit Distance

Length Aware
SingleThreshold
Multi-Extension

(b)

 0

 40

 80

 120

 160

 200

 5  10  15  20

A
ve

ra
ge

 T
im

e(
m
s)

Edit Distance

Length Aware
Single Threshold

Multi-Extension

(c)

 0

 10

 20

 30

 40

 50

 5  10  15  20

A
ve

ra
ge

 T
im

e(
m
s)

Edit Distance

Length Aware
Single Threshold

Multi-Extension

(d)

Fig. 9 Threshold-based similarity search: evaluation on different verification algorithms

We compared our in-memory algorithms with state-of-
the-art methods. For threshold-based similarity search, we
compared our HS-Search algorithm with Adapt [37],
QChunk [28], PassJoin [23]Bed-tree,[45]. Although there
are other in-memory similarity search algorithms, e.g.,
Hobbes [1],Flamingo [20] andVChunk [21], previous stud-
ies have compared them and showed that PassJoin, Adapt
and QChunk outperformed them [23,28,31,33,37]. So we
only compared HS-Search with the three algorithms. For
top-k similarity search, we compared HS-Topk with App-
gram [39], Range [8], Bed-tree and AQ [43]. We obtained
the source codes of Appgram, Adapt, Range, Bed-tree
from the authors and implemented QChunk and AQ by our-
selves [18].

We compared our disk-based algorithms with state-of-
the-art algorithms. For threshold-based similarity search, we
compared our method HS-Search-d with Flamingo [3],
Bed-tree [45], and the best algorithm of EDBT com-
petition [33], PassJoin. For top-k similarity search, we
compared our method HS-Topk-d with Bed-tree [45] and
Appgram [39].

All the algorithms were implemented in C++ and com-
piled using GCC 4.8.2 with -O3 flag. All the experiments
were run on a Ubuntu machine with two Intel Xeon E5420
CPUs (8 cores, 2.5 GHz) and 32 GB memory. And we did
not use the properties of multiple cores in our experiments.

7.2 Evaluation on threshold-based search

7.2.1 Evaluating different verification algorithms

We first evaluated the verification methods.We implemented
three methods Length-aware, SingleThreshold and Multi-
Extension. Length-aware was the algorithm which utilizes
the string length for pruning [23]; SingleThreshold, the
method has only one threshold τ ; MultiExtension is our
method that has separate thresholds for each matched part
based on Lemma 2. All the three methods were imple-
mented with early-termination techniques. Figure 9 shows
the results by varying edit-distance thresholds on the three
data sets. We can observe that SingleThreshold involved
less verification time than Length-aware because it can
avoid duplicated computations on alreadymatched segments
and divided the two strings into different parts. For each
part, MultiExtension had a different threshold and termi-
nated as soon as the edit distance of one part was larger than
the given threshold of that part. Thus, MultiExtension ter-
minated earlier than SingleThreshold. For example, on the
QueryLog-S data set, for τ = 15, Length-aware took 55
ms on average, and SingleThreshold decreased the time to
39 ms,while MultiExtension further reduced the time to 24
ms.

123



A unified framework for string similarity search with edit-distance constraint

0.001

0.01

0.1

1

10

1 2 3 4

A
ve

ra
ge

 T
im

e(
m
s)

Edit Distance

Filter
Verify

0.001

0.01

0.1

1

10

100

1 5 10 15

A
ve

ra
ge

 T
im

e(
m
s)

Edit Distance

Filter
Verify

 0

 40

 80

 120

 160

 200

5 10 15 20

A
ve

ra
ge

 T
im

e(
m
s)

Edit Distance

Filter
Verify

 0

 40

 80

 120

 160

 200

5 10 15 20

A
ve

ra
ge

 T
im

e(
m
s)

Edit Distance

Filter
Verify

(a) (b) (c) (d)

Fig. 10 Threshold-based similarity search: filter cost versus verification cost

0

10

20

30

40

50

1 2 3 4

A
ve

ra
ge

 T
im

e(
m

s)

Edit Distance

HSsearch
Adapt

Qchunk
Bedtree

0
100
200
300
400
500
600
700
800

1 5 10 15

A
ve

ra
ge

 T
im

e(
m

s)

Edit Distance

HSsearch
Adapt

Qchunk
Bedtree

 0

 400

 800

 1200

 1600

 2000

 5  10  15  20

A
ve

ra
ge

 T
im

e(
m
s)

Edit Distance

HSsearch
Adpate
Qchunk
Bedtree

 0

 400

 800

 1200

 1600

 2000

 5  10  15  20

A
ve

ra
ge

 T
im

e(
m
s)

Edit Distance

HSsearch
Adpate
Qchunk
Bedtree

(a) (b) (c) (d)

Fig. 11 Threshold-based similarity search: comparison with state-of-the-art methods

7.2.2 Filter time versus verification time

Next we evaluated the cost of the filter step and the verifica-
tion step, and the result is shown in Fig. 10. We can see that
our segment filter had great filtering power for small thresh-
olds, and a large number of dissimilar strings can be pruned
in the filter step, so the verification time was reduced. For
large thresholds, e.g., τ = 15 and τ = 20 in Fig. 10c, the
verification time was dominant in the overall time. This is
because when the threshold become large, we needed to do
segment matching in lower levels and the segments would be
much shorter. It is obvious shorter segments hadmore chance
to be matched, so the number of candidates was larger than
that of small thresholds.

7.2.3 Comparison with state-of-the-art methods

We compared our HS-Search algorithm with state-of-the-
art algorithms Adapt,QChunk and Bed-tree by varying
different edit-distance thresholds on the four data sets DBLP
Author, QueryLog-S, DBLP and READ. Figure 11 shows
the results. We can see that HS-Search achieved the best
performance on all the data sets and outperformed existing
algorithms by 3 to 20 times. For example, on theQueryLog-S
data set for τ = 10, HS-Search took 6 ms. And the average
search time for Adapt, QChunk and Bed-tree was 32, 151
and 104ms, respectively. Among all the baselines, the overall
performance of Bed-tree was the worst because it had poor
filtering power to prune dissimilar strings. Adapt had better
performance than QChunk because Adapt took advantage

of the adaptive prefix length to reduce a large number of
candidates.

Our method achieved the best performance for the fol-
lowing reasons. Firstly, existing algorithms were based on
n-grams, and our method used segments which had much
stronger filtering power than gram-based methods (as seg-
ments were longer than n-grams). Moreover, the segments
were selected across the string and not restricted to the pre-
fix. Thus, our method always generated the least number of
candidates. Secondly, comparingwith other similarity search
algorithms, we also designed efficient verification mecha-
nism. In this way, we can take advantage of the results of
filter step and avoid redundant computations. Thirdly, since
previous algorithms were based on n-grams, they needed to
tune the parameter n for different data sets even for different
thresholds on the same data set to achieve the best perfor-
mance. Our HS-Search algorithm does not need to tune
any parameters. So the utility of HS-Search was much bet-
ter than the existing algorithms.

In addition, we compared the index construction time
and index size, and the result is shown in Table 3. We
had the following observations. Firstly, HS-Search had the
least index time because it can iteratively divide the seg-
ments in different levels and do not need to build a large
inverted index like n-gram-based methods. And the data
with the same length can be constructed into HS-Search
index together, so it was more efficient than inserted into
index one by one, like Bed-tree. Secondly, the index size of
HS-Tree was nearly the same with state-of-the-art n-gram-
based methods, because HS-Tree partitioned each string

123



M. Yu et al.

Table 3 Threshold-based similarity search: index

Data set Method Index size (MB) Index time (s)

DBLP author HS-Search 43.5 1.38

Adapt 56 8.59

QChunk 62 1.36

Bed-tree 32 5.0

QueryLog-S HS-Search 157 5.3

Adapt 983 22.8

QChunk 172 10.7

Bed-tree 129 15.0

DBLP HS-Search 904 46.5

Adapt 4194 121.9

QChunk 425 70.5

Bed-tree 347 96.0

READ HS-Search 559 24.1

Adapt 4137.8 119.2

QChunk 423.5 61.0

Bed-tree 318.0 75.0

with length l into disjoint segments in each level with totally
1+2+ ...+2log l = O(l) segments; and n-gram-basedmeth-
ods generated ln + 1 grams. Thus, they generated similar
number of n-grams/segments, and thus, the index sizes were
also similar. In addition, in the inverted lists, for a segment,
HS-Tree only needed tomaintain the string containing it, but
n-gram-based methods also needed to store the position of
n-gram, so our index size can be smaller than state-of-the-art
methods. Thirdly, Bed-tree organized ”similar” strings into

a B-tree node based on specific orders and did not need to
maintain inverted lists, and thus, its index size was smaller.

7.2.4 Scalability

We evaluated the scalability of HS-Search. We varied the
number of strings in each data set and tested the average
search time. Figure 12 shows the result on the three data
sets. We can see that as the size of a data set increased, our
method scaled very well for different edit-distance thresh-
olds and achieved near linear scalability. For example, on
the DBLP data set, when the threshold was 20, the average
search time for 200,000 strings, 400,000 strings and 600,000
strings were, respectively, 20, 27 and 33 ms.

7.3 Evaluation on top-k similarity search

7.3.1 Evaluating filtering techniques

We first evaluated the efficiency of our filter techniques. We
implemented four methods: HS-Search, Batch, Greedy
and B+G. HS-Search extended the threshold-based algo-
rithm by increasing the threshold by 1 each time and
executing the algorithm multiple times; Batch only imple-
mented the batch-pruning-based method; Greedy only
implemented the greedy-match strategy; and B+G used both
batch-pruning-based method and greedy-match strategy. We
evaluated the candidate number of each method to judge the
filtering power. The result is shown inFig. 13. Itwas clear that
Batch can prune dissimilar strings in batch and thus reduce

0.01

0.1

1

10

0 1 2 3 4 5 6

A
ve

ra
ge

 T
im

e(
m

s)

Number of Strings(*100000)

τ=1
τ=2
τ=3
τ=4

0.01
0.1

1
10

100
1000

0 1 2 3 4 5

A
ve

ra
ge

 T
im

e(
m

s)

Number of Strings(*100000)

τ=1
τ=5

τ=10
τ=15

0.1

1

10

100

1000

 0  2  4  6  8  10

A
ve

ra
ge

 T
im

e(
m
s)

Number of Strings(*100000)

τ=5
τ=10
τ=15
τ=20

0.1

1

10

100

1000

 0  2  4  6  8  10

A
ve

ra
ge

 T
im

e(
m
s)

Number of Strings(*100000)

τ=5
τ=10
τ=15
τ=20

(a) (b) (c) (d)

Fig. 12 Threshold-based similarity search: scalability

0

5

10

15

2 5 10 20

N
um

be
r o

f C
an

di
da

te
(*

10
00

00
0)

Number of k

HSsearch
Batch

Greedy
B+G

0

10

20

30

40

2 5 10 20

N
um

be
r o

f C
an

di
da

te
(*

10
00

00
0)

Number of k

HSsearch
Batch

Greedy
B+G

0

20

40

60

80

2 5 10 20

N
um

be
r o

f C
an

di
da

te
(*

10
00

00
0)

Number of k

HSsearch
Batch

Greedy
B+G

0

20

40

60

80

2 5 10 20

N
um

be
r o

f C
an

di
da

te
(*

10
00

00
0)

Number of k

Hsearch
Batch

Greedy
B+G

(a) (b) (c) (d)

Fig. 13 Top-k similarity search: candidate number of different filters

123



A unified framework for string similarity search with edit-distance constraint

0

40

80

120

160

2 5 10 20

A
ve

ra
ge

 T
im

e(
m

s)

Number of k

HSsearch
Batch

Greedy
B+G

0

1000

2000

3000

4000

5000

2 5 10 20

A
ve

ra
ge

 T
im

e(
m

s)

Number of k

HSsearch
Batch

Greedy
B+G

0

10

20

30

40

50

2 5 10 20

A
ve

ra
ge

 T
im

e(
s)

Number of k

HSsearch
Batch

Greedy
B+G

0

10

20

30

40

2 5 10 20

A
ve

ra
ge

 T
im

e(
s)

Number of k

Hsearch
Batch

Greedy
B+G

(a) (b) (c) (d)

Fig. 14 Top-k similarity search: average time of different filters

 0

 100

 200

 300

 400

 500

 600

0 1 2 5 10 20

A
ve

ra
ge

 T
im

e(
m
s)

Number of k

bed-tree
AQ

range
appgram

HStopk

 5

 10

 15

 20

 25

 30

0 1 2 5 10 20

A
ve

ra
ge

 T
im

e(
s)

Number of k

bed-tree
AQ

range
appgram

HStopk

 20

 40

 60

 80

0 1 2 5 10 20

A
ve

ra
ge

 T
im

e(
s)

Number of k

bed-tree
AQ

range
appgram

HStopk

 20

 40

 60

 80

0 1 2 5 10 20

A
ve

ra
ge

 T
im

e(
s)

Number of k

bed-tree
AQ

range
appgram

HStopk

(a) (b) (c) (d)

Fig. 15 Top-k similarity search: comparison with state-of-the-art methods

the number of candidates. As Greedy can find consecutive
errors within a long segment, the number of candidates can
also be reduced. Our method had significant filtering power
by combining these two filters together. For example, on
Author data set with k = 10, HS-Search involved about
9.8million candidates,Batch involved about 5million candi-
dates,whileGreedy involved4.5million candidates. Finally,
B+G reduced the number to 2.7 million. This result showed
the effectiveness of pruning techniques.

Then we evaluated the average search time. As shown in
Fig. 14, the average search time of Batch was much larger
than that of HS-Search because Batch can dynamically
update the threshold and prune strings in batch. Greedy was
also better than HS-Search because it can reduce the candi-
date number by going to lower tree levels. However, Greedy
also involved relatively heavy filtering cost, so Greedy did
not perform so well. By combining the two techniques, B+G
can strengthen the filter power as well as reduce the filter cost
and thus achieved the best performance.

7.3.2 Comparison with state-of-the-art methods

We compared our HS-Topk algorithm with state-of-the-art
methods AQ, Bed-tree, Range and Appgram. We evalu-
ated the performance on the same three data sets. For each
experiment, we randomly selected 100 queries from the data
set and reported the average search time. All the algorithms
were in-memory, including Bed-tree. The results are shown
in Fig. 15.

We had the following observations. Firstly, our HS-Topk
algorithm outperformed all the existing methods. Secondly,
Appgram had the second best performance. This was
because Appgram allowed approximate matching between
n-grams, which can relax the filter condition. It also devised
a double-level index structure and used the CA algorithm
to accelerate top-k search. However, as Appgram used the
mapping distance of approximate n-gram to estimate the
lower bound of top-k results, the lower bound was loose.
Moreover, the searching process on the double-level index
also involved extra filter cost. Therefore, the overall perfor-
mance of Appgramwasworse than our HS-Topk algorithm.
Thirdly, on the Author data set, Range outperformed Bed-
tree and AQ. This was because Range took advantage of
the trie-based index [8]. If a large number of strings shared
prefixes, Range had strong filtering power. Our method out-
performed Range by nearly an order of magnitude because
we can identify promising strings to estimate an upper bound
and utilize the upper bound to prune large numbers of candi-
dates for each threshold. Moreover, our batch-based-pruning
and greedy-match techniques can also improve the perfor-
mance. For instance, for k = 10, Range took 340 ms on
average, but our HS-Topk only took 41 ms. Fourthly, on the
DBLP data set with long strings, our method significantly
outperformed other methods. We can see from Fig. 15c that
AQ and Range cannot finish within 10 hours. For instance,
Range tookmore than 40,000 seconds to run the 100 queries
when k = 10. This was because in data sets with long strings,
the length of common prefixes is relatively short and there
would be a large number of long, single branches in the

123



M. Yu et al.

Table 4 top-k search: index

Data set Method Index size (MB) Index time (s)

DBLP author HS-Tree 43.5 1.38

Appgram 37 3.99

Range 146 12.5

AQ 316 6.4

Bed-tree 32 5.0

QueryLog-S HS-Tree 157 5.3

Appgram 104 11.3

Range 1600 17

AQ 224 78.3

Bed-tree 129 15.0

DBLP HS-Tree 904 46.5

Appgram 365 43.1

Range 4480 102.3

AQ 1824 167.2

Bed-tree 347 96.0

READ HS-Tree 559 24.1

Appgram 283.7 33.6

Range 3808.9 90.6

AQ 1202.9 108.9

Bed-tree 318.0 75.0

trie index, which brings both space and computational over-
head. Finally,Bed-tree had relatively well performance on
each data set because it can group strings within a threshold
together in one node and dynamically updated the threshold
for pruning. But for small values of k, Bed-tree performed
the worst because it involved many dissimilar strings in one
node.

Table 4 shows the index size and index time of each algo-
rithm. We can see that HS-Tree involved both less space
and time overhead than Range and AQ. Compared with
Appgram, our method involved less index construction time
because Appgram needed to divide strings into n-grams
with different sizes.Moreover, ourmethod also outperformed
them in query efficiency, due to the effective filtering power
on our segments.

7.3.3 Scalability

We evaluated the scalability of HS-Topk. We varied the size
of eachdata sets and tested the averagequery time for ourHS-
Topk algorithm. As shown in Fig. 16, ourmethod scaled very
well with different k values and can support large-scale data.
This was attributed to our segment-based filtering techniques
and effective indexes. For example, on the QueryLog-S data
set for k = 20, our method took 436 ms for 100,000 strings,
and time increased to 672 ms for 200,000 strings and 1279
ms for 400,000 strings.

7.4 Evaluation on disk-based algorithms

7.4.1 Evaluating the compact index structure and iterative
search strategy

We first evaluated the index size and time of our com-
pact HS-Tree index. We implemented two methods: Simple
and Compact. Simple was the naive method which sim-
ply stored the HS-Tree on disk. Compact was the method
using the compact index structure in Sect. 6.1. The index size
and time are shown in Table 5 . We can see that Compact
had much smaller index size than Simple because Simple
contained redundant information in inverted lists. By using
address lists instead of inverted lists, Compact can signifi-
cantly reduce the index size. This was because Compact can
match the address lists in the upper level during the process
of iteratively dividing segments. At the same time,Compact
only involved slightly larger index construction time than
Simple, because Compact required to generate the address
lists from the inverted lists.

Next we evaluated the efficiency of our disk-based search
algorithms. We implemented three methods: Simple, Com-
pact and Iter-Schedule. Simple was the naive method on
HS-Tree,Compact used the simple iteratively search on the
compact index, and Iter-Schedule was the iterative search
algorithm with scheduling in Sect. 6.2. We compared both
the threshold-based and top-k similarity search algorithms.
We used two metrics: the number of I/Os and the overall
query time.

The results of the number of I/O are shown in Figs. 17
and 18. Although Compact can reduce the index size, the
number of I/O operations was still large because it involved
random disk I/Os. It is obvious that Iter-Schedule hadmuch
smaller number of I/O operations because it can avoid dupli-
cate I/Os with the help of the scheduling process. We can
also see that Iter-Schedule was more significant in top-k
than in threshold-based similarity search. The main reason
was that top-k similarity search involved search operations
on multiple levels, which involved more duplicate I/O oper-
ations in Compact method. For example, for top-k search
on DBLP data set when k = 4, Simple involved 19,435 I/O
operations, whileCompact reduced the number to 6,978 and
Iter-Schedule only involved only 1,635 I/O operations.

The results of overall query time are shown in Figs. 19
and 20. We can see that Iter-Schedule had the best perfor-
mance because it had the least number of I/O operations.
The iterative search algorithm on address lists in both Com-
pact and Iter-Schedule involved extra CPU overhead. In
some cases, Compact was even worse than Simple. But
with the scheduling process, our method can efficiently trade
the CPU time for the more expensive disk I/O operations
in Iter-Schedule. Therefore our method can get a smaller
overall query time.

123



A unified framework for string similarity search with edit-distance constraint

20

40

60

80

100

0 1 2 3 4 5 6

A
ve

ra
ge

 T
im

e(
m

s)

Number of Strings(*100000)

k=2
k=5

k=10
k=20

300

600

900

1200

1500

1800

0 1 2 3 4 5

A
ve

ra
ge

 T
im

e(
m

s)

Number of Strings(*100000)

k=2
k=5

k=10
k=20

5

10

15

20

0 2 4 6 8 10

A
ve

ra
ge

 T
im

e(
s)

Number of Strings(*100000)

k=2
k=5

k=10
k=20

 5

 10

 15

 20

 0  2  4  6  8  10

A
ve

ra
ge

 T
im

e(
m
s)

Number of Strings(*100000)

k=2
k=5

k=10
k=20

(a) (b) (c) (d)

Fig. 16 Top-k similarity search: scalability

Table 5 Disk-based algorithms: index

Data set Method Index size (MB) Index time (s)

PubMed author Simple 817 60.3

Compact 604 71.2

Flamingo 629 57.4

Bed-tree 314 78

PassJoin 336 69.5

Appgram 328 33.9

QueryLog-L Simple 170 19.68

Compact 102 22.3

Flamingo 158 16.8

Bed-tree 92 63

PassJoin 62 19.1

Appgram 103 11.2

DBLP Simple 904 78.3

Compact 667 84.5

Flamingo 702 75.2

Bed-tree 347 96

PassJoin 375 81

Appgram 365 43.1

PubMed Simple 51844 3102.1

Compact 38233 3294.3

Flamingo 41022 2933.4

Bed-tree 19288 3821

PassJoin 22140 3110.7

Appgram 20495 1677.2

7.4.2 Evaluating different segment size

We evaluated the effect of segments’ size. We tested the
average search time by varying the size of segments for our
methodsHS-Search-d and HS-Topk-d. We randomly com-
bined words in the data set PubMed to generate data sets with
different string lengths but with the same number of strings.
Since the segment size depended on the string length, our
generated data sets had different segment size. Table 6 shows
the results by varying string length from 10 to 30. We can
see that the in-memory segment meta of our index took very

little size. This is because the segment meta depended on the
string length but not the number of strings. The disk-based
index was large because the disk-based index depended on
the number of strings. The index size also scaled well with
different number of segments. For example, the index sizes
were 7.2 GB for 149 million segments and the size increased
to 37 GB for 940 million segments.

We also evaluated the performance by varying the seg-
ment size, and Fig. 21 showed the results. We can see that
our method scaled very well for different sizes of segments.
For example, utilizing HS-Search-d algorithm with τ = 8,
our method took 167 seconds for the data set with average
string length of 20. And it increased to 247 seconds when the
average string length became to 30. Thus, even if the number
of segments increased, our method still achieved rather high
performance.

7.4.3 Evaluating updates

We evaluated the performance of updates on our disk-based
algorithms. We first tested the update cost on the PubMed
data set. We first built an index on the whole data set and
then inserted or deleted 10K strings. Figure 22a shows the
average update cost. We could see that the update cost was
rather small and only took less than 1ms for each update. This
was because our method used a temporary index to maintain
the updated strings, and we only needed to merge indexes for
10K updates and thus the average update cost was small.

We then evaluated the query performance on the updated
index. Figure 22b, c show the average query time of our two
disk-based algorithms after updating a number of strings.
For example, x-axis = 1 denoted the query performance
after updating 10K strings and x-axis = 0 denoted the query
performance when there was no update. In these experi-
ments, we set k = 8 and τ = 15. We can see that our
method achieved higher performance, even on the updated
indexes. As the number of updates was larger, the perfor-
mance became slightly slower because we needed to use the
temporary index to answer the queries and a larger number
of updates led to larger temporary indexes.

123



M. Yu et al.

0

50

100

150

200

250

300

1 2 3 4

A
ve

ra
ge

 N
um

be
r 

of
 I/

O

Edit Distance

Simple
Compact

Iter-Schedule

0

200

400

600

800

1000

1 5 10 15

A
ve

ra
ge

 N
um

be
r 

of
 I/

O

Edit Distance

Simple
Compact

Iter-Schedule

0

50

100

150

200

250

5 10 15 20

A
ve

ra
ge

 N
um

be
r 

of
 I/

O

Edit Distance

Simple
Compact

Iter-Schedule

 0

 15000

 30000

 45000

 60000

 5  10  15  20

A
ve

ra
ge

 N
um

be
r 

of
 I/

O

Edit Distance

Simple
Compact

Iter-Schedule

(a) (b) (c) (d)

Fig. 17 Disk-based algorithm: average number of I/Os for threshold-based similarity search

0

50

100

150

200

250

300

350

400

1 2 4 8

A
ve

ra
ge

 N
um

be
r 

of
 I/

O

Number of k

Simple
Compact

Iter-Schedule

0

100

200

300

400

1 2 4 8

A
ve

ra
ge

 N
um

be
r 

of
 I/

O

Number of k

Simple
Compact

Iter-Schedule

0

5000

10000

15000

20000

1 2 4 8

A
ve

ra
ge

 N
um

be
r 

of
 I/

O

Number of k

Simple
Compact

Iter-Schedule

 0

 5000

 10000

 15000

 20000

1 2 4 8

A
ve

ra
ge

 N
um

be
r 

of
 I/

O

Number of k

Simple
Compact

Iter-Schedule

(a) (b) (c) (d)

Fig. 18 Disk-based algorithm: average number of I/Os for top-k similarity search

0

0.5

1

1.5

2

2.5

3

1 2 3 4

A
ve

ra
ge

 Q
ue

ry
 T

im
e(
s)

Edit Distance

Simple
Compact

Iter-Schedule

 0

 100

 200

 300

 400

 500

 600

1 5 10 15

A
ve

ra
ge

 Q
ue

ry
 T

im
e(

m
s)

Edit Distance

Simple
Compact

Iter-Schedule

0

1

2

3

4

5

5 10 15 20

A
ve

ra
ge

 Q
ue

ry
 T

im
e(
s)

Edit Distance

Simple
Compact

Iter-Schedule

 0

 100

 200

 300

 400

 500

 600

1 5 7 10

A
ve

ra
ge

 Q
ue

ry
 T

im
e(
s)

Edit Distance

Simple
Compact

Iter-Schedule

(a) (b) (c) (d)

Fig. 19 Disk-based algorithm: average query time for threshold-based similarity search

0

0.5

1

1.5

2

2.5

3

1 2 4 8

A
ve

ra
ge

 Q
ue

ry
 T

im
e(
s)

Number of k

Simple
Compact

Iter-Schedule

0

0.4

0.8

1.2

1.6

2

2.4

1 2 4 8

A
ve

ra
ge

 Q
ue

ry
 T

im
e(
s)

Number of k

Simple
Compact

Iter-Schedule

0

20

40

60

80

1 2 4 8

A
ve

ra
ge

 Q
ue

ry
 T

im
e(
s)

Number of k

Simple
Compact

Iter-Schedule

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8

A
ve

ra
ge

 Q
ue

ry
 T

im
e(
s)

Number of k

Simple
Compact

Iter-Schedule

(a) (b) (c) (d)

Fig. 20 Disk-based algorithm: average query time for top-k similarity search

7.4.4 Comparison with state-of-the-art methods

We compared our disk-based algorithms (the Iter-Schedule
method) with state-of-the-art algorithms. For threshold-
based similarity search, we compared our method HS-
Search-d with Flamingo [3], Bed-tree and PassJoin. For
top-k similarity search, we compared our method HS-Topk-
d with Bed-tree and Appgram.

The results of threshold-based similarity search are shown
in Fig. 23. We can see that HS-Search-d performed best on
all the three data sets and outperformed existing methods by
2 to 20 times. For example, on data set PubMedAuthor when
threshold was 3, HS-Search-d took 0.78 seconds on aver-
age,while the average query timeof Flamingo,Bed-tree and
PassJoin was correspondingly 2.31, 9.62 and 1.66 seconds.
This was because by reducing index size and scheduling the
I/O operation, our method reduced the number of I/O opera-

123



A unified framework for string similarity search with edit-distance constraint

Table 6 Disk-based algorithms: varying segment size

Avg Len 30 20 10

Disk-based index on PubMed

Num of segments (million) 940 596 149

Segment meta (KB) 8.5 7.16 5.39

Segment map (GB) 7.8 4.45 1.28

Index size (GB) 37.3 23.8 7.2

Avg Len 100 50 10

In-memory-based index on READ

Num of segments (million) 158 72 16

Index size (MB) 599 294 58

tions and avoided unnecessary random accesses. Flamingo
used an adaptive algorithm to avoid visiting long inverted
lists, but it cannotmake accurate decision of list retrievals as it
used heuristic-based cost model. So Flamingo still incurred
heavy I/O overhead. As the range search operation in Bed-
tree needed to traverse multiple paths for a single threshold,
it needed to visit many nodes on disk. So Bed-tree had the
worst I/O performance. PassJoin achieved slower perfor-
mance because it required to find an appropriate threshold to
answer the query and the threshold might be larger and thus
had poor performance. The results for top-k similarity search
are shown in Fig. 24. Our method HS-Topk-d outperformed

Bed-tree by an order of magnitude, and it was also faster
than Appgram. For example, on QueryLog-L data set with
k = 8, the average query time of HS-Topk-d was 0.92 sec-
onds, while that of Bed-tree and Appgram was 15.19 and
6.9 seconds. The main reason was that Bed-tree involved
many dissimilar strings in one node, and it needed to check a
large number of nodes to get the top-k results. Thus,Bed-tree
involved much more disk I/O operations than our HS-Topk-
d. In addition, Appgram cannot achieve high performance
like ours because it required to constructed two-level index
for filtering and its loose lower bound for mapping distance
of n-grams made the verification step need extra time.

7.4.5 Scalability

Finally, we evaluated the scalability of our disk-based algo-
rithms. We varied the size of each data set and tested the
average query time for our HS-Search-d and HS-Topk-d
algorithm. The results of HS-Search-d are shown in Fig. 25.
As the size of a data set increased, our method scaled very
well for different edit-distance thresholds and achieved near
linear scalability. For example, on the PubMed Author data
set for τ = 4, our method took 115 ms for 2M strings, and
the time increased to 268 ms for 4M strings and 354 ms for
6M strings. The results of HS-Topk-d are shown in Fig. 26.
We can see that our method also achieved linear scalability
for different k values. For example, on the QueryLog-L data

 0

 40

 80

 120

 160

 200

 240

10 50 100

A
ve

ra
ge

 T
im

e(
s)

Ave Len

τ=10
τ=20

 0

 4

 8

 12

 16

10 50 100

A
ve

ra
ge

 T
im

e(
s)

Ave Len

k=4
k=8

 0

 40

 80

 120

 160

 200

 240

10 20 30

A
ve

ra
ge

 T
im

e(
s)

Ave Len

τ=5
τ=15

0

0.1

1

10

100

1000

10 20 30

A
ve

ra
ge

 T
im

e(
s)

Ave Len

k=4
k=8

(a) (b) (c) (d)

Fig. 21 Disk-based algorithm: evaluation on different segment size

0.001

0.01

0.1

1

10

100

 1  2  3  4  5

A
ve

ra
ge

 T
im

e(
m
s)

Number of Update(*100,000)

Deletion
Insertion

 0

 80

 160

 240

 320

 400

0 1 2 3 4 5

A
ve

ra
ge

 T
im

e(
s)

Number of Update(*100,000)

Deletion
Insertion

 0

 50

 100

 150

 200

 250

0 1 2 3 4 5

A
ve

ra
ge

 T
im

e(
s)

Number of Update(*100,000)

Deletion
Insertion

(a) (b) (c)

Fig. 22 Disk-based algorithm: evaluation on update on PubMed. a Update cost, b search efficiency (threshold τ = 15) , c search efficiency
(Top − k, k = 8)

123



M. Yu et al.

 0

 2

 4

 6

 8

 10

 1  2  3  4

A
ve

ra
ge

 T
im

e(
s)

Edit Distance

flamingo
bed-tree

PassJoin
HSsearch-d

 0

 200

 400

 600

 800

1 5 10 15

A
ve

ra
ge

 T
im

e(
m
s)

Edit Distance

flamingo
bed-tree

PassJoin
HSsearch-d

 0

 400

 800

 1200

 1600

 2000

 5  10  15  20

A
ve

ra
ge

 T
im

e(
m
s)

Edit Distance

flamingo
bed-tree

PassJoin
HSsearch-d

 0

 100

 200

 300

 400

 500

1 5 10 15

A
ve

ra
ge

 T
im

e(
s)

Edit Distance

flamingo
bed-tree

PassJoin
HSsearch-d

(a) (b) (c) (d)

Fig. 23 Disk-based algorithm: comparison with state-of-the-art threshold-based similarity search methods

0.01

0.1

1

10

100

1 2 4 8

A
ve

ra
ge

 T
im

e(
s)

Number of k

bed-tree
appgram
HStopk-d

0.01

0.1

1

10

100

1 2 4 8

A
ve

ra
ge

 T
im

e(
s)

Number of k

bed-tree
appgram
HStopk-d

0.1

1

10

100

1000

1 2 4 8

A
ve

ra
ge

 T
im

e(
s)

Number of k

bed-tree
appgram
HStopk-d

0.1

1

10

100

1000

1 2 4 8

A
ve

ra
ge

 T
im

e(
s)

Number of k

bed-tree
appgram
HStopk-d

(a) (b) (c) (d)

Fig. 24 Disk-based algorithm: comparison with state-of-the-art top-k similarity search methods

400

800

1200

1600

2000

0 2 4 6 8 10

A
ve

ra
ge

 T
im

e(
m
s)

Number of Strings(*1 million)

τ=1
τ=2
τ=3
τ=4

 0

 100

 200

 300

 400

 0  2  4  6  8  10

A
ve

ra
ge

 T
im

e(
m
s)

Number of Strings(*100,000)

τ=1
τ=1

τ=10
τ=15

 0

 300

 600

 900

 1200

 1500

 0  2  4  6  8  10

A
ve

ra
ge

 T
im

e(
m
s)

Number of Strings(*100,000)

τ=5
τ=10
τ=15
τ=20

 50

 100

 150

 200

 250

 0  2  4  6  8  10

A
ve

ra
ge

 T
im

e(
s)

Number of Strings(*10,000,000)

τ=1
τ=5

τ=10
τ=15

(a) (b) (c) (d)

Fig. 25 Disk-based algorithm: scalability of threshold-based similarity search methods

200

400

600

800

0 2 4 6 8 10

A
ve

ra
ge

 T
im

e(
m
s)

Number of Strings(*1 million)

k=2
k=4
k=8

200

400

600

800

0 2 4 6 8 10

A
ve

ra
ge

 T
im

e(
m
s)

Number of Strings(*100,000)

k=2
k=4
k=8

4

8

12

16

20

24

0 2 4 6 8 10

A
ve

ra
ge

 T
im

e(
s)

Number of Strings(*100,000)

k=2
k=4
k=8

 0

 2000

 4000

 6000

 8000

 0  2  4  6  8  10

A
ve

ra
ge

 T
im

e(
m
s)

Number of Strings(*10,000,000)

k=2
k=4
k=8

(a) (b) (c) (d)

Fig. 26 Disk-based algorithm: scalability of top-k similarity search methods

set, when k = 8, the average search time for 40K strings,
60K strings and 80K strings was, respectively, 476, 551, and
689 ms. This is attributed to our compact index and efficient
scheduling algorithm.

We also evaluated the index sizes by increasing the data
set size. Table 7 shows the results. We can see that the index
size scaled very well with the increase in data set size. For

Table 7 Disk-based algorithms: index size of different string numbers
on PubMed

Num (*1 million) 50 100 150 200

Index size (GB) 8.3 16.8 24.6 31.1

Index time (s) 670.5 1421.3 1947.153 2533.6

123



A unified framework for string similarity search with edit-distance constraint

Table 8 Disk-based algorithms versus in-memory algorithms

τ HS-Search (ms) HS-Search-d (ms)

5 21.3 42.8

10 38.0 83.6

15 77.5 157.4

20 190.0 424.9

k HS-Topk (ms) HS-Topk-d (ms)

1 1.5 2.74

2 8.75 17.58

4 12.44 21.43

8 14.72 30.45

example, the index was 19.8G and the construction time
was 1421.3 seconds when the data set contained 100 mil-
lion strings. And when the data set increased to 200 million,
the size of index became to 31.1G and the construction time
was 2533.6 seconds.

7.5 In-memory algorithms versus disk-based algorithms

We compared the disk-based algorithms HS-Search-d,
HS-Topk-d and the in-memory algorithmsHS-Search,HS-
Topk. Table 8 shows the results on the DBLP data set. We
can see that our disk-based methods were a bit slower than
the in-memory algorithms. When k = 8, the average search
time of HS-Topk andHS-Topk-dwas 14.7 seconds and 30.4
seconds, respectively. When τ = 10, the average search time
of HS-Search and HS-Search-d were 38 seconds and 83
seconds, respectively. The gap between the in-memory algo-
rithms and disk-based algorithms was not large, due to our
compact disk-based index and efficient search algorithms.
Thus, our disk-based algorithms can efficiently support the
large data sets that cannot be fit in the memory.

8 Conclusion

In this paper, we have studied the problem of string similarity
search. We proposed a hierarchical segment index to support
both threshold-based similarity search and top-k similarity
search.We devised an efficient algorithm HS-Searchwhich
utilized the segments to support threshold-based search
queries. We extended this technique to support top-k sim-
ilarity search and developed the HS-Topk algorithm with
efficient filters which can further improve the performance.
We also devised disk-based indexes and algorithms to sup-
port large data sets that cannot be loaded into memory.
Experimental results show that our method significantly out-
performs state-of-the-art algorithms on both threshold-based

and top-k similarity search problems for both in-memory and
disk-based settings.

Acknowledgements This work was supported by 973 Program of
China (2015CB358700), NSF of China (61373024, 61632016,
61422205, 61472198, 61661166012), Shenzhou, Tencent, TNList,
FDCT/116/2013/A3, and MYRG105 (Y1-L3)-FST13-GZ.

References

1. Ahmadi, A., Behm, A., Honnalli, N., Li, C., Weng, L., Xie, X.:
Hobbes: optimized gram-based methods for efficient read align-
ment. Nucleic Acids Res. 40, e41 (2012)

2. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity
search. In: WWW, pp. 131–140 (2007)

3. Behm, A., Li, C., Carey, M.J.: Answering approximate string
queries on large data sets using external memory. In: ICDE, pp.
888–899 (2011)

4. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for
similarity joins in data cleaning. In: ICDE (2006)

5. Chaudhuri, S., Kaushik, R.: Extending autocompletion to tolerate
errors. In: SIGMOD Conference, pp. 707–718 (2009)

6. Deng, D., Li, G., Feng, J.: A pivotal prefix based filtering algorithm
for string similarity search. In: SIGMODConference, pp. 673–684
(2014)

7. Deng, D., Li, G., Feng, J., Duan, Y., Gong, Z.: A unified framework
for approximate dictionary-based entity extraction. VLDB J. 24(1),
143–167 (2015)

8. Deng, D., Li, G., Feng, J., Li, W.-S.: Top-k string similarity search
with edit-distance constraints. In: ICDE, pp. 925–936 (2013)

9. Deng, D., Li, G., Hao, S., Wang, J., Feng, J.: Massjoin: a
mapreduce-based method for scalable string similarity joins. In:
ICDE, pp. 340–351 (2014)

10. Deng, D., Li, G., Wen, H., Feng, J.: An efficient partition based
method for exact set similarity joins. PVLDB 9(4), 360–371 (2015)

11. Deng, D., Li, G., Wen, H., Jagadish, H.V., Feng, J.: META: an
efficientmatching-basedmethod for error-tolerant autocompletion.
PVLDB 9(10), 828–839 (2016)

12. Feng, J.,Wang, J., Li, G.: Trie-join: a trie-basedmethod for efficient
string similarity joins. VLDB J. 21(4), 437–461 (2012)

13. Gerdjikov, S., Mihov, S., Mitankin, P., Schulz, K.U.: Wallbreaker:
overcoming the wall effect in similarity search. In:EDBT/ICDT,
pp. 366–369 (2013)

14. Guo, L., Shanmugasundaram, J., Beyer, K.S., Shekita, E.J.: Effi-
cient inverted lists and query algorithms for structured value
ranking in update-intensive relational databases. In: ICDE, pp.
298–309 (2005)

15. Gusfield, D.: Algorithms on Strings, Trees, and Sequences—
Computer Science and Computational Biology. Cambridge Uni-
versity Press, Cambridge (1997)

16. Hadjieleftheriou, M., Yu, X., Koudas, N., Srivastava, D.: Hashed
samples: selectivity estimators for set similarity selection queries.
PVLDB 1(1), 201–212 (2008)

17. Ji, S., Li, G., Li, C., Feng, J.: Efficient interactive fuzzy keyword
search. In: WWW (2009)

18. Jiang, Y., Li, G., Feng, J.: String similarity joins: an experimental
evaluation. PVLDB 7(8), 625–636 (2014)

19. Kim, Y., Shim, K.: Efficient top-k algorithms for approximate sub-
string matching. In: SIGMOD Conference, pp. 385–396 (2013)

20. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for
approximate string searches. In: ICDE, pp. 257–266 (2008)

21. Li, C., Wang, B., Yang, X.: Vgram: improving performance of
approximate queries on string collections using variable-length
grams. In: VLDB, pp. 303–314 (2007)

123



M. Yu et al.

22. Li, G., Deng, D., Feng, J.: Faerie: efficient filtering algorithms
for approximate dictionary-based entity extraction. In: SIGMOD
Conference, pp. 529–540 (2011)

23. Li, G., Deng, D., Wang, J., Feng, J.: Pass-join: a partition-based
method for similarity joins. PVLDB 5(3), 253–264 (2011)

24. Li, G., Feng, J., Li, C.: Supporting search-as-you-type using SQL
in databases. IEEETrans. Knowl. Data Eng. 25(2), 461–475 (2013)

25. Li, G., He, J., Deng, D., Li, J.: Efficient similarity join and search
on multi-attribute data. In: SIGMOD, pp. 1137–1151 (2015)

26. Li, G., Ji, S., Li, C., Feng, J.: Efficient fuzzy full-text type-ahead
search. VLDB J. 20(4), 617–640 (2011)

27. Mansour, E., Allam, A., Skiadopoulos, S., Kalnis, P.: Era: Efficient
serial and parallel suffix tree construction for very long strings.
Proc. VLDB Endow. 5(1), 49–60 (2011)

28. Qin, J., Wang, W., Lu, Y., Xiao, C., Lin, X.: Efficient exact edit
similarity query processing with the asymmetric signature scheme.
In: SIGMOD Conference, pp. 1033–1044 (2011)

29. Sarawagi, S., Kirpal, A.: Efficient set joins on similarity predicates.
In: SIGMOD Conference, pp. 743–754 (2004)

30. Sellers, P.H.: The theory and computation of evolutionary dis-
tances: pattern recognition. J. Algorithms 1(4), 359–373 (1980)

31. Siragusai, E., Weese, D., Reinert, K.: Fast and accurate read map-
ping with approximate seeds and multiple backtracking. Nucleic
Acids Res. 41(7), e78 (2013)

32. Tomasic, A., Garcia-Molina, H., Shoens, K.A.: Incremental
updates of inverted lists for text document retrieval. In: SIGMOD,
pp. 289–300 (1994)

33. Wandelt, S., Deng, D., Gerdjikov, S.,Mishra, S.,Mitankin, P., Patil,
M., Siragusa, E., Tiskin, A., Wang, W., Wang, J., Leser, U.: State-
of-the-art in string similarity search and join. SIGMODRec. 43(1),
64–76 (2014)

34. Wang, J., Li, G., Deng, D., Zhang, Y., Feng, J.: Two birds with one
stone: an efficient hierarchical framework for top-k and threshold-
based string similarity search. In: ICDE (2015)

35. Wang, J., Li, G., Feng, J.: Trie-join: efficient trie-based string simi-
larity joinswith edit-distance constraints. PVLDB 3(1), 1219–1230
(2010)

36. Wang, J., Li, G., Feng, J.: Fast-join: An efficient method for fuzzy
token matching based string similarity join. In: ICDE, pp. 458–469
(2011)

37. Wang, J., Li, G., Feng, J.: Can we beat the prefix filtering? An
adaptive framework for similarity join and search. In: SIGMOD
Conference, pp. 85–96 (2012)

38. Wang,W.,Xiao,C., Lin,X., Zhang,C.: Efficient approximate entity
extraction with edit distance constraints. In: SIGMODConference,
(2009)

39. Wang, X., Ding, X., Tung, A.K.H., Zhang, Z.: Efficient and effec-
tive knn sequence search with approximate n-grams. PVLDB 7,
1–12 (2014)

40. Xiao, C., Qin, J., Wang, W., Ishikawa, Y., Tsuda, K., Sadakane,
K.: Efficient error-tolerant query autocompletion. PVLDB 6(6),
373–384 (2013)

41. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for
similarity joins with edit distance constraints. PVLDB 1(1), 933–
944 (2008)

42. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for
near duplicate detection. In: WWW, pp. 131–140 (2008)

43. Yang, Z., Yu, J., Kitsuregawa,M.: Fast algorithms for top-k approx-
imate string matching. In: AAAI (2010)

44. Yu,M., Li, G., Deng, D., Feng, J.: String similarity search and join:
a survey. Front. Comput. Sci. 10(3), 399–417 (2016)

45. Zhang, Z., Hadjieleftheriou, M., Ooi, B.C., Srivastava, D.: Bed-
tree: an all-purpose index structure for string similarity search
based on edit distance. In: SIGMOD Conference, pp. 915–926
(2010)

123


	A unified framework for string similarity search with edit-distance constraint
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem definition
	2.2 Related works
	2.2.1 Threshold-based similarity search
	2.2.2 Top-k similarity search
	2.2.3 Similarity join
	2.2.4 Other related works


	3 The hierarchical segment tree
	4 Threshold-based similarity search
	4.1 The HS-Search algorithm
	4.2 Improving the filtering step
	4.3 Improving the verification step

	5 Top-k similarity search
	5.1 The batch-pruning-based method
	5.2 The greedy-match strategy
	5.3 The HS-Topk algorithm

	6 Supporting disk-based settings
	6.1 Disk-based index: compact HS-Tree
	6.2 Disk-based algorithms

	7 Experimental study
	7.1 Experiment setup
	7.2 Evaluation on threshold-based search
	7.2.1 Evaluating different verification algorithms
	7.2.2 Filter time versus verification time
	7.2.3 Comparison with state-of-the-art methods
	7.2.4 Scalability

	7.3 Evaluation on top-k similarity search
	7.3.1 Evaluating filtering techniques
	7.3.2 Comparison with state-of-the-art methods
	7.3.3 Scalability

	7.4 Evaluation on disk-based algorithms
	7.4.1 Evaluating the compact index structure and iterative search strategy
	7.4.2 Evaluating different segment size
	7.4.3 Evaluating updates
	7.4.4 Comparison with state-of-the-art methods
	7.4.5 Scalability

	7.5 In-memory algorithms versus disk-based algorithms

	8 Conclusion
	Acknowledgements
	References




