
Noname manuscript No.
(will be inserted by the editor)

A Partial-Order-Based Framework for Cost-Effective Crowdsourced
Entity Resolution

CHENGLIANG CHAI · GUOLIANG LI · JIAN LI · DONG DENG · JIANHUA
FENG

Abstract Crowdsourced entity resolution has recently at-
tracted significant attentions because it can harness the wis-
dom of crowd to improve the quality of entity resolution.
However existing techniques either cannot achieve high qual-
ity or incur huge monetary costs. To address these problems,
we propose a cost-effective crowdsourced entity resolution
framework, which significantly reduces the monetary cost
while keeping high quality. We first define a partial order on
the pairs of records. Then we select a pair as a question and
ask the crowd to check whether the records in the pair re-
fer to the same entity. After getting the answer of this pair,
we infer the answers of other pairs based on the partial or-
der. Next we iteratively select pairs without answers to ask
until we get the answers of all pairs. We devise effective
algorithms to judiciously select the pairs to ask in order to
minimize the number of asked pairs. To further reduce the
cost, we propose a grouping technique to group the pairs and
we only ask one pair instead of all pairs in each group. We
develop error-tolerant techniques to tolerate the errors intro-
duced by the partial order and the crowd. We also study the
budget-aware entity resolution, which, given a budget, finds
the maximum number of matching pairs within the budget,
and propose effective optimization techniques. Experimen-
tal results show that our method reduces the cost to 1.25% of
existing approaches (or existing approaches take 80× mon-
etary cost of our method) while not sacrificing the quality.

1 Introduction

Entity resolution aims to find records that refer to the same
entity from a collection of records. For example, consider
the 11 records in Table 1. r1, r2 and r3 refer to the same en-
tity. r4, r5, r6 and r7 refer to the same entity. Entity resolu-

Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China
E-mail: {chaicl15,dd11}@mails.tsinghua.edu.cn
{liguoliang,lijian83,fengjh}@tsinghua.edu.cn

tion has many real-world applications, particularly in health
data integration, knowledge-base construction, web search,
comparison shopping, and law enforcement.

However existing machine-based methods are still far
from perfect[44,46], because the same entity may have many
unpredictable representations. Crowdsourced entity resolu-
tion that leverages the crowd’s ability to solve this prob-
lem has attracted significant attentions[27,43,45,46,47]. A
brute-force method enumerates every pair of records and
asks the crowd to check whether they refer to the same en-
tity. This method involves huge monetary costs, especially
for large datasets. To address this problem, several algo-
rithms have been proposed to reduce the cost by pruning
some pairs that do not need to be asked. Wang et al. [45]
utilized the transitivity to reduce the cost, but were unable
to provide quality guarantees. This is because the transitiv-
ity may not hold for some records, which leads to incor-
rect deduction and uncontrollable error propagation. Wang
et al. [46] proposed a correlation-clustering method, which
adaptively assigned the records referring to the same entity
into the same cluster. This method improves the quality at
the expense of asking more questions and thus involves high
monetary costs. In summary, existing methods either cannot
achieve high quality or involve huge monetary costs.

To address these problems, we propose Power, a partial-
order based crowdsourced entity resolution framework, which
significantly reduces the monetary cost while keeping high
quality. The basic idea is that we define a partial order on
all pairs of records based on the similarity of each pair and
prune many pairs that do not need to be asked based on the
partial order. Specifically, we first define a partial order: (1)
If a pair of records refer to the same entity, then the pairs
preceding this pair also refer to the same entity; (2) If a pair
of records refer to different entities, then the pairs succeed-
ing this pair refer to different entities. Then we select a pair
as a question and ask the crowd to check whether the records
in the pair refer to the same entity. Based on the answer of

2 C. CHAI et al.

this pair, we infer the answers of other pairs based on the
partial order. Thus our goal is to judiciously select the pairs
to ask in order to minimize the number of asked pairs. To
this end, we devise effective algorithms to iteratively select
pairs without answers to ask until we get the answers of all
the pairs. To further reduce the cost, we propose a group-
ing technique to group the pairs such that we only need to
ask one pair instead of all pairs in each group. Since asking
only one pair in each iteration leads to a high latency, we
propose effective techniques to select multiple pairs in each
iteration. As both the partial order and the crowd may intro-
duce errors, we develop error-tolerant techniques to tolerate
the errors. We also study the budget-aware entity resolution,
which, given a budget, finds the maximum number of match-
ing pairs within the budget, and propose effective algorithms
to address this problem.

To summarize, we make the following contributions.

(1) We propose a partial-order based crowdsourced entity
resolution framework. We define a partial order on record
pairs and utilize the partial order to infer the answers of
some unasked pairs so as to reduce the monetary cost.

(2) We construct a graph based on the partial order and uti-
lize the graph to ask questions and infer answers. We de-
vise efficient algorithms to construct the graph. We develop
a grouping technique to group the record pairs, which can
further reduce the cost. We prove that the optimal grouping
is NP-hard and propose approximation algorithms.

(3) We judiciously select pairs to ask in order to minimize
the number of asked pairs. We propose a path-based algo-
rithm that asks one question in each iteration and prove that
the algorithm is optimal in general. To reduce the latency, we
devise a topological-sorting-based algorithm that asks mul-
tiple questions in parallel in each iteration.

(4) We develop a probability-based method to tolerate the
errors introduced by the crowd and the partial order.

(5) We propose budget-aware algorithms to maximize the
number of matching pairs within a given budget.

(6) We conduct experiments using real-world datasets on a
real crowdsourcing platform. Experimental results show that
our method reduces the cost to 1.25% of existing approaches
(or existing approaches take more than 80 times money of
our method) while not sacrificing the quality.

The rest of this paper is structured as follows. We first
define the problem and review related work in Section 2
and then propose our framework in Section 3. The grouping
strategy, question selection, and error-tolerant techniques are
discussed in Sections 4, 5, 6 respectively. We study the budget-
aware problem in Section 7. We report experimental results
in Section 8 and conclude in Section 9.

2 Preliminaries
2.1 Problem Definition

Definition 1 (Crowdsourced Entity Resolution) Consider
a table T withm attributes {A1,A2, . . . ,Am} and n records
{r1, r2, . . . , rn}, where each record denotes an entity. The
entity resolution aims to identify the records that refer to the
same entity. Crowdsourced entity resolution leverages the
crowd’s ability to address this problem.

In most cases, requesters have a budget and aim to iden-
tify as many as possible matching pairs within the given bud-
get. Next we formulate the problem of budget-aware crowd-
sourced entity resolution.

Definition 2 (Budget-Aware Crowdsourced Entity Res-
olution) Consider a table T and a budget B. The budget-
aware crowdsourced entity resolution aims to identify the
maximum number of pairs that refer to the same entity within
the budget, i.e., asking at most B questions to the crowd.

For example, Table 1 shows a table with 4 attributes and
11 records. r1, r2, and r3 refer to the same entity. r4, r5, r6,
and r7 refer to the same entity. Each of r8, r9, r10, r11 repre-
sents a different entity. Crowdsourced entity resolution asks
questions to the crowd (or workers) for identifying the records
referring to the same entity. As we need to pay the workers
for answering a question, the objective is to reduce the num-
ber of questions while keeping high quality. Given a budget
of asking 2 questions, the budget-aware crowdsourced entity
resolution aims to find the maximum number of matching
pairs with 2 questions.

We summarize our notations used in our paper in Ta-
ble 2. We first focus on the first problem and then extend
our techniques to support the second problem in Section 7.

2.2 Related Work

2.2.1 Machine-based Entity Resolution

There are a bunch of works studying entity resolution with
machine-based approaches. For example, Konda at. el [21]
propose an end-to-end entity matching system to using ma-
chine learning approach. Also, Done et. al [7] identified match-
ing attributes corresponding to the same real-world entity in
a database using a dependency graph. .

2.2.2 Crowdsourced Entity Resolution

Generating Questions for Workers. An important prob-
lem in crowdsourced entity resolution is to design questions
for workers. A straightforward method is to generate pair-
comparison-based questions, where each question is a pair
of two records and asks workers to check whether the two
records refer to the same entity. This method may gener-
ate a large number of questions. To address this problem,
clustering-based questions are proposed [27,44], where each

A Partial-Order-Based Framework for Cost-Effective Crowdsourced Entity Resolution 3

Table 1: Eleven Records In A Real Restaurant Dataset.

Name (A1) Address (A2) City (A3) Flavor (A4)
r1 ritz-carlton restaurant (atlanta) 181 w. peachtree st. atlanta european french
r2 ritz-carlton restaurant 181 peachtree dr atlanta european(french)
r3 ritz-carlton restaurant Georgia 181 peachtree st. city of atlanta european France
r4 cafe ritz-carlton buckhead 3434 peachtree rd. city of atlanta american
r5 cafe ritz-carlton (buckhead) 3434 peachtree rd. city of atlanta american
r6 dining room ritz-carlton buckhead 3434 peachtree ave. atlanta international
r7 dining room ritz-carlton (buckhead) 3434 peachtree ave. atlanta international
r8 cafe claude 201 83rd st. new york cafe
r9 cafe bizou (american) 13 54th st. new york american food
r10 gotham bar & grill 12th rd. new york american(new)
r11 mesa grill 102 5th rd. new york southwestern

Table 2: Notations Used In This Paper.

Notation Description
T = {r1, r2, ..., rn} a set or records
A = {A1,A2, ...,Am} a set of attributes

ri[k] value of attribute Ak in record ri
pij (ri, rj)
skij similarity between ri[k] and rj [k]

G = (V, E) a DAG of pairs in T
G′ = (V ′, E ′) a grouped DAG of G = (V, E)

� partial order
C(pij) the child vertex set of pij
P(pij) the parent vertex set of pij
θ the number of incomparable vertices

question is a group of records and asks workers to classify
the records into different clusters such that records in the
same cluster refer to the same entity and records in different
clusters refer to different entities. As the clustering-based
method does not need to enumerate every pair, it can reduce
the monetary cost. However, it has no inference power and
our method based on the partial order graph can infer much
more pairs compared with clustering method.

Pruning Dissimilar Pairs. Intuitively, we do not need to ask
the dissimilar pairs that have low probabilities referring to
the same entity. Wang et al. [44] proposed a similarity-based
method, which computed the similarity of record pairs and
pruned the pairs with small similarities. As this method can
prune many dissimilar pairs without sacrificing the quality
of final answers, most of existing studies used this technique
to reduce the cost. We also utilize the method to do pruning
in the first step. Afterwards, we utilize the similarity score
to do more pruning, which can result in much lower cost.

Leveraging Transitivity to Reduce The Cost. Transitivity
can be used to reduce the cost: Given three records, r1, r2, r3,
if r1 = r2 (r1 and r2 refer to the same entity) and r2 = r3,
we can deduce that r1 = r3 and do not need to ask whether
r1 = r3. Wang et al. [45] and Vesdapunt et al. [43] stud-
ied how to utilize the transitivity to reduce the number of
questions. Although this method can reduce the cost, the
quality may be reduced. For example, suppose r1 = r2 and
r2 6= r3, but the crowd returns r1 = r2 and r2 = r3. Then
it introduces an incorrect deduction r1 = r3. Though this

method can reduce the cost, it uses pure crowdsourcing to do
that. However, we use partial-order which has higher prun-
ing power.

Improving The Quality. Wang et al. [46] proposed a corre-
lation clustering method, which includes three steps. It first
prunes dissimilar pairs with small similarities. Then, it se-
lects some pairs to ask and divides the records into a set of
clusters based on the workers’ results of these asked pairs.
Finally, it refines the clusters by selecting more pairs to ask,
checking whether their answers are consistent with the ini-
tial clusters, and adjusting the clusters based on the inconsis-
tencies. This method improves the accuracy at the expense
of huge monetary costs. We use the confidence value of an-
swers given by different workers for the same question to
control the quality. We can see from the evaluation that we
also have a good performance in quality control.

Question Selection. A natural problem is how to select next
questions to ask in order to improve the quality. Whang et al.
[47] proposed a probabilistic model to select high-quality
questions. Verroios et al. [42] improved the model by toler-
ating workers’ errors. Gokhale et al. [13] studied the crowd-
sourced record linkage problem, which linked two records
from two tables, which is different from ours as we focus on
linking multiple records in the same table.In our framework,
we select question based on our graph. We select the opti-
mal questions every time and the result can show that we
can save a lot under our question selection strategy.

Compared with existing techniques, our model can sig-
nificantly reduce the cost while not sacrificing the quality.
Compared with the conference version [4], we make the fol-
lowing new contributions. Firstly, we define the budget-based
entity resolution problem and propose a budget-aware algo-
rithm. Secondly, we conduct extensive experiments to eval-
uate our budget-aware algorithms. Experiment results show
that our method signi ficantly outperforms existing algo-
rithms, leading by 60%-80% on recall. Thirdly, we add the
proofs of all theorems and lemmas. Fourthly, we discuss more
related works in this manuscript.

4 C. CHAI et al.

2.2.3 Other Related Work

Crowdsourced Operators. There are many studies on lever-
aging crowd’s ability to improve database operators, e.g.,
crowdsourced selection [32,31,38,3,53,23], crowdsourced
sort[5,36,8,14,6,49,20], crowdsourced max/top-k [14,41],
crowdsourced collection [39,35], crowdsourced join [45,43,
46,13]. They focus on trading-off monetary cost, quality and
latency.
Crowdsourced Systems. Several crowdsourced databases,
e.g. Deco[33,34], Quak[28], CrowdDB[11], CDB [24], were
proposed, aiming to implement and optimize crowdsourced
operators. Li et al. [25] give a survey on crowdsourced data
management.
Crowdsourced Quality Control. Many methods are pro-
posed to improve the quality[16,30,9,26,56,55,54]. Most
of these studies focus on devising a worker model to capture
worker’s quality, computing the worker’s model, eliminat-
ing bad workers, assigning questions to appropriate work-
ers, and aggregating the results from multiple workers [14,
50,3,19,2,18,48,17,1,48,40,37,9,52,51,15]. They design
majority voting or EM algorithm to improve the quality.

3 Partial-Order-Based Framework

We first define a partial order (Section 3.1) and then propose
a partial-order-based algorithm (Section 3.2).

3.1 Partial Order

Record Similarity. Given two records ri and rj , we use pij
to denote the pair (ri, rj) and use skij to denote the similarity
of pij on attributeAk. We can utilize any similarity function
to compute the similarity, e.g., edit distance, Jaccard, Eu-
clidean distance. Here we take Jaccard and edit similarity as
examples. Let ri[k] denote the value of ri on attribute Ak.
For Jaccard, we tokenize ri[k] into a set of tokens and com-
pute Jaccard on token sets as below.

skij = JAC(ri[k], rj [k]) =
|ri[k] ∩ rj [k]|
|ri[k] ∪ rj [k]|

, (1)

where |ri[k]| is the token-set size of ri[k].
For edit similarity, we first compute their edit distance,

which is the minimum number of edit operations (insertion,
deletion, substitution) required to transform one string to the
other, and then compute the edit similarity as below.

skij = EDS(ri[k], rj [k])) = 1− ED(ri[k], rj [k])

max(|ri[k]|, |rj [k]|)
, (2)

where EDS(ED) is the edit similarity (distance) function.
For example, we use the edit similarity on attributes A1

and A4, and Jaccard on attributes A2 and A3. For instance,
s112 = 1 − 9

33 = 0.72, and s212 = 2
5 = 0.4. As discussed in

Table 3: Record Similarity.
pij s1ij s2ij s3ij s4ij pij s1ij s2ij s3ij s4ij
p12 0.72 0.4 1 0.88 p37 0.28 0.2 0.33 0
p13 0.75 0.75 0.33 0.8 p45 0.92 1 1 1
p23 0.77 0.5 0.33 0.69 p46 0.69 0.5 0.33 0
p24 0.51 0.2 0.33 0 p47 0.65 0.5 0.33 0
p25 0.53 0.2 0.33 0 p56 0.63 0.5 0.33 0
p26 0.42 0.2 1 0 p57 0.71 0.5 0.33 0
p27 0.45 0.2 1 0 p67 0.94 1 1 1
p34 0.39 0.2 1 0 p89 0.33 0.2 1 0
p35 0.39 0.2 1 0 p10,11 0.5 0.25 1 0

Section 2.2, we do not need to consider pairs whose similari-
ties are smaller than a similarity bound τ , as they have small
probabilities to be the same entity. Formally, we only con-
sider the similar pair pij such that (1) sij = JAC(ri, rj) ≥ τ
for Jaccard, where JAC(ri, rj) is the Jaccard similarity on
the token sets of ri and rj ; or (2) sij = EDS(ri, rj) ≥ τ

for edit similarity, where EDS(ri, rj) is the edit similarity
on records ri and rj . The similar record pairs with τ = 0.2

are shown in Table 3. If skij < τ , we set skij = 0 for simplic-
ity.
Partial Order. We define a partial order on record pairs.
Given two pairs pij = (ri, rj), pi′j′ = (ri′ , rj′), pij � pi′j′ ,
if (ri, rj) has no smaller similarities than (ri′ , rj′) on every
attribute. pij � pi′j′ , if pij � pi′j′ and (ri, rj) has larger
similarities on at least one attribute than (ri′ , rj′). Formally,

pij � pi′j′ if skij ≥ ski′j′ for 1 ≤ k ≤ m (3)

pij � pi′j′ if pij � pi′j′ and ∃k, skij > ski′j′ (4)

For example, in Table 3, p34 � p35, p27 � p34, p27 � p35.

3.2 Graph-Based Algorithm

We model the pairs as a graph based on the partial order.

Definition 3 (Graph Model) Given a table T , we build a
directed acyclic graph G = (V, E), where each vertex in
V is a similar record pair. Given two pairs pij and pi′j′ , if
pij � pi′j′ , there is a directed edge in E from pij to pi′j′ .

Figure 1 shows the graph for the pairs in Table 1. In the
figure, we do not show all the edges for illustration purpose:
given two vertices, if there is already a path between them,
we do not show the direct edge between them. For example,
there should be an edge between p67 and p12, but we omit it
as there is already a path from p67 to p12.
Graph Coloring. Each vertex in G has two possibilities: (1)
they refer to the same entity and we color it GREEN; (2) they
refer to different entities and we color it RED. Initially each
vertex is uncolored. Our goal is to utilize the crowd to color
all vertices. A straightforward method is to take the record
pair on each vertex as a question and ask workers to answer
the question, i.e. whether the two records in the pair refer to
the same entity. If a worker thinks that the two records on the
vertex refer to the same entity, the worker returns Yes; No

A Partial-Order-Based Framework for Cost-Effective Crowdsourced Entity Resolution 5

p67 p45

p12 p13

p23

p27 p26

p10,11

p89

p37

p24

p34

p25

p35

p47

p57

p46

p56

same entity

different entities

p67
p45

p12 p13
p23

p27

p26

p10,11

p89

p37

p24

p34

p25

p35

p47

p57

p46

p56

Fig. 1: Partial Order and Graph Model.

otherwise. For each pair, to tolerate the noisy results from
workers, we assign it to multiple workers, say 5. Based on
the workers’ results, we get a voted answer on each vertex.
If majority workers vote Yes, we color it GREEN; otherwise
we color it RED. Next, we interchangeably use vertex, pair
and question if the context is clear.

Obviously this method is rather expensive as there are
many vertices on the graph. To address this issue, we pro-
pose an effective coloring framework to reduce the number
of questions. Algorithm 1 shows the pseudo code. It first
computes the partial orders between pairs and constructs a
graph (line 1). Then it selects an uncolored vertex pij (line 3)
and asks workers to answer Yes or No on the vertex,
(1) If majority workers vote Yes, we not only color pij
GREEN, but also color all of its ancestors GREEN (line 5).
In other words, for pi′j′ � pij , we also take ri′ and rj′ as
the same entity. This is because pi′j′ has larger similarity on
every attribute than pij , and since ri and rj refer to the same
entity (denoted by ri = rj), we deduce that ri′ = rj′ .
(2) If majority workers vote No, we not only color pij RED,
but also color all of its descendants RED (line 7). In other
words, for pij � pi′j′ , we also take ri′ and rj′ as different
entities. This is because pi′j′ has smaller similarity on ev-
ery attribute than pij , and since ri and rj refer to different
entities (denoted by ri 6= rj), we deduce that ri′ 6= rj′ .

If all the vertices have been colored, the algorithm termi-
nates (line 4); otherwise, it selects an uncolored vertex and
repeats the above steps (lines 2-7).

Obviously, this method can reduce the cost as we can
avoid asking many unnecessary vertices. For example, con-
sider the constructed graph in Figure 1. A naive method is to
ask all eighteen pairs. However, if we first ask p10,11, as ma-
jority workers vote No, we can color p10,11 and its descen-
dants p27, p26, p34, p35, p89 and p37 RED without needing
to ask these descendants. Then if we select p56, as majority
workers vote Yes, we color p56 and its ancestors p46, p47,
p57, p23, p45, p67 and p13 GREEN without needing to ask
them. In Section 5, we will show that we need to ask at least
4 questions (e.g., p12, p10,11, p25, p56) to color all vertices.

There are several challenges in this algorithm.

Algorithm 1: A Partial-Order-Based Framework
Input: T = {r1, r2 · · · , rn}
Output: All vertices are colored as GREEN or RED
Construct G = (V, E) based on partial orders;1
while there exist uncolored vertices in V do2

Select an uncolored vertex pij to ask workers;3
if majority workers vote Yes then4

color pij and pi′j′ (pi′j′ � pij) GREEN;5

else6
color pij and pi′j′ (pij � pi′j′) RED;7

return colored V;8

(1) Graph Construction. As there are large numbers of
pairs, how to efficiently construct the graph? Can we reduce
the graph size so as to reduce the number of questions?
(2) Question Selection. How to select the minimum number
of vertices to ask in order to color all vertices?
(3) Error Tolerant. The coloring strategy and the workers
may introduce errors. So how to tolerate the errors?

We address these challenges in the following sections.

4 Graph Construction

We first propose efficient graph-construction algorithms (Sec-
tion 4.1) and then present grouping methods (Section 4.2).

4.1 Graph Construction Algorithms

Brute-Force Method. It enumerates every pair of vertices
and checks whether they satisfy the partial order. If so, the
algorithm adds an edge between them. The complexity of
this method is O(|V|2). Obviously this method is rather ex-
pensive, especially if there are a large number of vertices.

Quicksort-Based Method. Quicksort is an efficient algo-
rithm for the sorting problem and it can be extended to con-
struct the graph. We first randomly select a vertex pij as
pivot, and then split other vertices into three disjoint parts
by comparing them with pij :
(1) Parent Vertex Set:P(pij) = {pi′j′ |pi′j′ � pij}. For each
pi′j′ in P(pij), we add an edge from pi′j′ to pij ;
(2) Child Vertex Set: C(pij) = {pi′j′ |pij � pi′j′}. For each
pi′j′ in C(pij), we add an edge from pij to pi′j′ ;
(3) Incomparable Vertex Set: U(pij) = V−P(pij)−C(pij) =
{pi′j′ |pij 6� pi′j′ & pi′j′ 6� pij}. For each pi′j′ , there is no
edge between pij and pi′j′ , as they are incomparable.

Obviously, ∀p ∈ P(pij), p′ ∈ C(pij), p � p′, and thus
we do not need to compare the pairs in P(pij) × C(pij).
Then, we consider the pairs in (P(pij)∪U(pij))×(P(pij)∪
U(pij)) and (C(pij) ∪ U(pij))× (C(pij) ∪ U(pij)). To add
edges between these pairs, we can recursively utilize the
above method.1 The worst-case complexity of this method

1 Note to avoid duplicately comparing two pairs in U(pij), we can only select
pivots from C(pij) and P(pij).

6 C. CHAI et al.

is also O(|V|2) if all the vertices are incomparable. How-
ever, this method has better performance than brute-force in
practice, because it can prune many unnecessary pairs (e.g.,
P(pij)× C(pij)).
Index-Based Method. The quicksort-based method still has
poor performance for large datasets. To address this issue,
we propose an index-based method. As the similarity skij is
a numerical value, we can utilize geometric relationship to
compare two pairs. For simplicity, we first assume there are
two attributes (m = 2). So the similarity of pij has two
components s1ij and s2ij . Therefore, we can map each ver-
tex to a point in a two-dimensional coordinate as shown in
Figure 2(a).

If we want to find the child set of pij , C(pij) = {pi′j′ |pij �
pi′j′}, we report the left-bottom vertices (i.e., vertices in the
rectangle). Similarity, if we computeP(pij) = {pi′j′ |pi′j′ �
pij}, we report the top-right vertices. We can utilize the 2-
dimensional range trees to achieve this goal [22].
Range Search Tree Construction. We first construct a first-
level balanced binary tree based on s1ij for all vertices as
shown in Figure 2(b), where leaves are vertices in V and
the internal nodes are guided search values. (There are mul-
tiple pairs in a node because they have the same similar-
ity. For example, p34, p35 are in the same node, because
s134 = s135 = 0.39.) The value of a node is the largest s1ij
for all vertices in its left subtree, and thus the s1ij values of
vertices under the left subtree are not larger than the value of
this node; while the s1ij values of vertices under its right sub-
tree are larger than the value. We can build the binary tree in
a bottom-up way. For each internal node, we construct the
second-level balanced binary tree based on s2ij for vertices
under this node.
Reporting C(pij) with Range Search Tree. Given a vertex
pij , we use the range search tree to report C(pij). We first
find the tree nodes whose descendants’ similarities on A1

are not larger than s1ij using the first-level tree. For each of
such qualified nodes onA1, we visit its second-level tree and
find the nodes whose descendants’ similarities on A2 are
not larger than s2ij . Then the vertices under these nodes are
added into C(pij). Next we discuss how to find such quali-
fied nodes in the first-level tree and the same techniques can
be used to search the second-level tree.

To find the qualified nodes on A1, we search the first-
level tree from the root. For each node, (1) If its value is
not larger than s1ij , (1.1) if it is a leaf, it is a qualified node;
(1.2) if it is not a leaf, the similarities of all the vertices un-
der its left child on attribute A1 are not larger than s1ij , and
its left child is a qualified node. Next we recursively pro-
cess its right child; (2) If its value is larger than s1ij , (2.1)
if it is a leaf, we prune it; (2.2) if it is not a leaf, we prune
its right subtree as the similarities of all the vertices under
its right child on attribute A1 must be larger than s1ij . Next
we recursively process its left child. Iteratively, we can iden-

tify all qualified nodes onA1. This method accesses at most
log(|V|) nodes in the first-level tree.

For example, suppose we want to compute C(p12) where
s112 = 0.72 and s212 = 0.4. We first compare s112 with the
root s156 = 0.63. As s112 > s156, its left child (i.e., p26) is a
qualified node. Next we go to the right child p12. As s112 =

s112, we visit its left child p46. As s112 > s146, its left child
p47 is a qualified node. Next we go to the right child p57. As
s112 > s157, its left child p57 is a qualified node and we go to
its right node p12. As p12 is a leaf, it is a qualified node. Next
for each qualified node (p26, p47, p57, p12), we check it on
the second attribute. Take p26 as an example. As s212 = 0.4

is larger than the root’s value, its left child p37 is a qualified
node. We then visit its right child p56. As s212 ≤ s256, we go
to its left child which is a leaf. As the value is larger than
s212, we prune it. Thus the pairs under node p37 are added
into C(p12).
Building The Graph with Range Search Tree. For each ver-
tex pij , we use the range search tree to find C(pij) and add
vertices in C(pij) as the children of pij . Then we can build
the graph. It is straightforward to generalize 2-dimensional
range trees to m-dimensional range trees.
Complexity. Both the time and space complexities of con-
structing the tree is O(|V| logm−1 |V|). The time complex-
ity of computing C(pij) is O(logm |V| + |C(pij)|), where
|C(pij)| is the size of C(pij). After using the fractional cas-
cading technique [22], the complexity is reduced toO(logm−1
|V| + |C(pij)|). Thus the overall time complexity of con-
structing the graph is O(|V| logm−1 |V|+ |E|).

4.2 Vertex Grouping

Note that some vertices have very close similarities and we
can combine them to reduce the graph size, which not only
reduces the cost but also saves the graph construction cost.
For example, p67 and p45 have close similarities on the four
attributes, i.e., p67:(0.94, 1, 1, 1) and p45:(0.92, 1, 1, 1) as
shown in Table 3. Thus we can combine them as a single
vertex. Next we formulate the problem.

Definition 4 (Vertex Group) Given a threshold ε, a subset
g ⊆ V is called a vertex group, if for any pairs pij and pi′j′
in g, |skij − ski′j′ | ≤ ε for 1 ≤ k ≤ m.

As the similarities between different pairs in a group
should not have large gap, we use ε to set a constraint. For
example, suppose ε = 0.1. {p26, p34, p35} is a group as the
difference of their similarities on every attribute is smaller
than 0.1 (p26:(0.42,0.2,1,0), p34:(0.39,0.2,1,0), p35:(0.39,0.2,1,0)).

Next we partition the vertices into different groups.

Definition 5 (Grouping Strategy) Given a set of vertices
V , a grouping strategy is a partition of V to generate a set of
groups g1, g2, . . . , gx, which satisfies,

A Partial-Order-Based Framework for Cost-Effective Crowdsourced Entity Resolution 7

0.5

0.5

0 1

1

pijpij
s1ij = 0.5s1ij = 0.5

s2ij = 0.5s2ij = 0.5

(a) 2d coordinate

0.69

0.53

0.39

0.33

0.28

0.28 0.33

0.45

0.42

0.5

0.51

0.510.50.42 0.45

0.72

0.65

0.77

0.63

0.71 0.75 0.92

0.94

0.94

0.920.75 0.770.71 0.72

0.63

0.690.530.39 0.65

0.25

0.2

0.2 0.25 0.5

0.5

p56

p26
p12

p89

p10,11
p46

p23

p37 p35p34 p27 p24 p47 p57 p13 p45

p67p25

p67

p45p23p13p12p57p46p47

p56p25

p24p10,11
p27

p26p37 p89p35p34

p56

p56

p10,11

p10,11

p37

p37

p35p34

p27p25

p24

p26

p89

(b) Rang Search Tree
Fig. 2: Index-based Graph Construction.

g9

g1

g2
g3

g4

g5 g6

g7

g8
boundary

boundary

p67 p45

p12 p13

p23

p27 p26

p10,11

p89

p37

p24

p34

p25

p35

p47

p57

p46

p56

g9

g2

g1

g8

g3 g4

g5

g7

g6

Fig. 3: Vertex Grouping.

(1) Complete: For any pij ∈ V , ∃gt, pij ∈ gt; and
(2) Disjoint: For any two groups gi, gj , gi ∩ gj = φ.

For example, consider the eighteen pairs in Table 1. Given
threshold ε = 0.1, the groups {p67,p45}, {p12}, {p13}, {p23},
{p10,11, p27}, {p57,p47,p46,p56},{p24,p25}, {p26,p34,p89,p35},
{p37} satisfy the two constraints.

Partial Order on Groups. We can define the partial order
on the groups. For any two groups gi and gj ,

gi � gj if ∀p ∈ gi, p′ ∈ gj , p � p′ (5)

gi � gj if ∀p ∈ gi, p′ ∈ gj , p � p′ (6)

Let gk.l/gk.u denote the smallest/largest similarity of
pairs in g on Ak, i.e., gk.l = minpij∈g s

k
ij and gk.u =

maxpij∈g s
k
ij . We can prove that if gki .l ≥ gkj .u for 1 ≤ k ≤

m, gi � gj ; if gki .l ≥ gkj .u and ∃k gki .l > gkj .u, gi � gj .
Thus we can use gki .l and gkj .u to easily determine the partial
orders of two groups. Given a set of groups, if gi � gj , we
add an edge from gi to gj . Then we can construct a grouped
graph.

Definition 6 (Grouped Graph) Given a set of vertices V
and a set of groups g1, g2, . . . , gx generated using the group-
ing strategy, we construct a grouped graph G′ = (V ′, E ′),
where each vertex in V ′ is a group, and there is an edge in
E ′ from gi to gj if gi � gj .

Coloring The Grouped Graph. We ask workers to color
the grouped graph. If a group is selected to ask, we randomly
select a pair in the group and take the answer of this pair
as the answer of the group. Then we utilize our coloring
algorithm (Section 3.2) to color the grouped graph.
Optimal Group Generation. There are multiple grouping
strategies. We quantify how good a grouping strategy is. Ob-
viously, the smaller the number of vertices in the grouped
graph is, the lower the cost is. Thus we aim to generate the
minimum number of groups.

Definition 7 (Optimal Group Generation). Given a set of
vertices V and a threshold ε, we aim to generate the min-
imum number of groups.

All pairs

[0.28,0.94], [0.2,1]
[0.33,1], [0,1]

p12

(0.61,0.94]
 [0.2,0.6]
 (0.67,1]
 (0.5,1]

 p45 p67

p24 p25 p37
p26 p27 p34 p35

p89 p10,11

p46 p47

p56 p57

(0.61,0.94]
(0.6,1]

(0.67,1]
(0.5,1]

[0.28,0.61]
[0.2,0.6]

 [0.33,0.67]
[0,0.5]

(0.61,0.94]
[0.2,0.6]

 [0.33,0.67]
 [0,0.5]

[0.28,0.61]
[0.2,0.6]
 (0.67,1]
[0,0.5]

p23

p24 p25 p37 p34 p35 p26 p89 p10,11 p27

[0.28,0.41]
[0.2,0.2]

 [0.33,0.33]
[0,0]

(0.42,0.5]
[0.2,0.25]

 [1,1]
[0,0]

p13

(0.61,0.94]
 (0.6,1!

 [0.33,0.67!
 (0.5,1]

(0.61,0.94]
 [0.2,0.6]

 [0.33,0.67]
 (0.5,1]

N1N1

N2N2

N3N3

N4N4

N5N5 N6N6

N7N7

N8N8

N9N9

N10N10

N11N11

[0.33,0.42]
[0.2,0.25]

 [1,1]
[0,0]

(0.41,0.53]
[0.2,0.2]

 [0.33,0.33]
[0,0]

N12N12

Fig. 4: The Group Tree.

We can prove that the optimal group generation problem
is NP-hard as proved in Theorem 1.

Theorem 1 The optimal group generation problem is NP-
Hard.

Proof We prove the problem is NP-Hard even m = 2 by
a reduction from the following rectangle cover problem. In
a rectangle cover instance, we are given a set of points in
the Euclidean plane R2. Our goal is to use the minimum
number of unit squares to cover all points. The problem is
known to be NP-Hard [29]. In our problem, it is easy to see
a vertex group can be covered by a square of side length ε.
We can partition the set of vertices into k groups, if and only
if all vertices can be covered by k squares of side length ε.
Therefore, our problem is equivalent to the rectangle cover
problem, thus is NP-Hard as well.

We propose a greedy algorithm and a heuristic algo-
rithm.
Greedy Algorithm. The basic idea is that we first generate
all the maximal groups, which are defined as below.

Definition 8 (Maximal Group) A group g is called a max-
imal group if ∀pij ∈ V − g, g ∪ {pij} is not a group (i.e., it
does not satisfy the ε-constraint in Definition 4.).

8 C. CHAI et al.

Algorithm 2: Vertex Grouping: Greedy
Input: G = (V, E)
Output: A set of groups g1, g2, ..., gx
Generate maximal groupsM;1
whileM is not empty do2

Pick the largest group g fromM;3
for each gi inM do4

gi = gi − g;5

return g1, g2, ..., gx6

For example, {p26, p34, p35} is a group, but it is not a
maximal group, because if we add p89, {p26, p34, p35, p89}
is still a group satisfying Definition 4, which contradicts
with Definition 8. {p26, p34, p35, p89} is a maximal group,
as we cannot add any pair to form a new group.

Next we introduce a greedy algorithm. At the beginning
of the algorithm, we need to compute the set of all maximal
groups. Next we show how to solve this problem.
Generating Maximal Groups. We first consider the one-
dimensional case, i.e., m = 1. We generate all the maxi-
mal groups based on s1ij . We first sort pij based on s1ij in
a descending order, denoted by p1, p2, . . . , pn. For the first
pair p1, we generate a longest group {p1, p2, . . . , pt} where
p1−pt ≤ ε and p1−pt+1 > ε. Obviously this longest group
is a maximal group. Next we generate the longest group for
p2. If the longest group of p2 is not contained by that of
p1, it is a maximal group. Iteratively we can generate all the
maximal groups. The complexity is O(|V|2).

For the m-dimensional case, we first generate the maxi-
mal groupsMi on every attribute Ai. Then we join them to
generate the maximal groups, i.e., M1 on M2 on · · · on
Mm = {M1

i1
∩ M2

i2
∩ · · · ∩ Mm

im
} where 1 ≤ ij ≤

|Mj |. We prove that the generated groups contain all maxi-
mal groups. Then we utilize these groups to run the greedy
algorithm.

Theorem 2 M1 onM2 on · · · onMm = {M1
i1
∩M2

i2
∩

· · · ∩Mm
im
} contains all maximal groups.

Proof We prove that for any maximal group, g, there exist
M1

i1
,M2

i2
, · · · ,Mm

im
, g =M1

i1
∩M2

i2
∩ · · · ∩Mm

im
. As

g is a maximal group, gki .u − gki .l ≤ ε for any attribute
Ak. Let skij = gki .l. We generate the maximal group Mk

ik

on attribute Ak based on skij . Obviously g ⊆ Mk
ik

. Thus
g ⊆ M1

i1
∩M2

i2
∩ · · · ∩ Mm

im
. As g is a maximal group,

g =M1
i1
∩M2

i2
∩ · · · ∩Mm

im
.

Algorithm 2 shows the pseudo code. It first generates
all the maximal groups (line 1), and then greedily picks the
largest group (line 3). Finally it updates other groups by re-
moving the vertices in the largest group (line 5).

We first generate the set of all maximal groups, denoted
byM. Then we greedily pick the largest group g inM with
the maximum number of vertices. For each gi inM, we re-
move the vertices in g from gi and update gi to gi-g. (If gi-g
is empty, we remove it from M.) Next we iteratively pick

the largest group from M until M is empty. This greedy
algorithm has a ln(|V|) approximation ratio. However it is
expensive to generate the maximal groups and the complex-
ity of this greedy algorithm is O(|V|m).

For example, we want to group the vertices in Figure
1. Firstly, we generate all the maximal groups M ={{p67,
p45}, {p12}, {p13}, {p23}, {p10,11, p27, p26}, {p27, p26, p34,
p35}, {p26, p34, p35, p89}, {p47, p57, p46, p56}, {p24, p25},
{p37}}. Then we select the largest group {p27, p26, p34, p35}
from the maximal group set as a group. Next we remove
vertices in it from other maximal groups. NowM ={{p67,
p45}, {p12}, {p13}, {p23}, {p10,11}, {p89}, {p47, p57, p46,
p56}, {p24, p25}, {p37}}. Then we select the largest group.
Finally the groups areM ={{p67, p45}, {p12}, {p13}, {p23},
{p10,11}, {p27, p26, p34, p35}, {p89}, {p47, p57, p46, p56},
{p24, p25}, {p37}}.
Split-Based Algorithm. As the greedy algorithm is expen-
sive, we propose an efficient algorithm. The basic idea is
that we first take all the pairs as a group, and if any at-
tribute does not satisfy the threshold constraint, we parti-
tion the group based on this attribute. The pseudo code is
shown in Algorithm 3. Formally, we build a tree structure
and the root is N1 = V . Let N i

1.l/N i
1.u denote the min-

imal/maximal similarity of pairs in N1 on attribute Ai. If
N i

1.u−N i
1.l > ε, we splitN1 based onAi and generate two

ranges [N i
1.l,

N i
1 .l+N

i
1 .u

2], (N
i
1 .l+N

i
1 .u

2 ,N i
1.u]; otherwise, we

do not split N1 based on this attribute. Suppose we split N1

based on Ai1 ,Ai1 , . . . ,Ait . We generate 2t children of N1

by enumerating the two ranges of these attributes. For each
node, we add the pairs that fall in the corresponding ranges
into the node. If a node cannot be split on any attribute, it is
a leaf. Finally the groups on leaves are the result.

For example, we walk through our algorithm on the records
in Table 3. Suppose ε = 0.1. Figure 4 shows the group tree.
Firstly, the rootN1 ([N 1

1 .l,N 1
1 .u],[N 2

1 .l,N 2
1 .u], [N 3

1 .l,N 3
1 .u],

[N 4
1 .l,N 4

1 .u]) is denoted as ([0.28, 0.94], [0.2, 1], [0.33, 1],
[0, 1]) in Figure 4. AsN i

1.u−N i
1.l > ε for i ∈ [1, 4], we split

[N 1
1 .l,N 1

1 .u], [N 2
1 .l,N 2

1 .u], [N 3
1 .l,N 3

1 .u] and [N 4
1 .l,N 4

1 .u]

into 〈[0.28, 0.61], (0.61, 0.94]〉, 〈[0.2, 0.6], (0.6, 1]〉, 〈[0.33, 0.67],
(0.67, 1]〉 and 〈[0, 0.5] (0.5, 1]〉 respectively. Then we move
each pair in N1 into the 24 children (empty children are
removed). For i ∈ [1, 4], si45 and si67 are in the range of
(0.61, 0.94], (0.6, 1], (0.67, 1], (0.5, 1], and p45 and p67 are
added intoN4. Then we calculateN i

4.l,N i
4.u and get ([0.92, 0.94],

[1, 1], [1, 1], [1, 1]). As each range is smaller than ε, N4 =

{p45, p67} is a leaf. Next, we move {p24, p25, p37} into N5

([0.28, 0.53], [0.2, 0.2], [0.33, 0.33], [0, 0]). It is not a group
and split again. As [N 2

5 .u−N 2
5 .l] < ε, [N 3

5 .u−N 3
5 .l] < ε

and [N 4
5 .u−N 4

5 .l] < ε, we splitN 1
5 and get two leavesN9

and N10. At last, we get 9 groups (as shown in Figure 3).

Complexity. At the root of the tree, the maximum similarity
interval of each attribute is 1. Each time we partition the at-

A Partial-Order-Based Framework for Cost-Effective Crowdsourced Entity Resolution 9

Algorithm 3: Vertex Grouping: Split
Input: G = (V, E)
Output: A set of groups g1, g2, ..., gx
N1 ← V; Priority queue Q = {N1};1
while Q is not empty do2

Pop node Ni from Q;3
for k ∈ [1,m] do4

if N k
i .u−N k

i .l > ε then5
Split Ni based on Ak ;6

if Ni is split by Ai1 ,Ai2 , . . . ,Ait then7
Generate 2t children of Ni;8
Move pairs in Ni into corresponding children;9
Add these children into Q;10

else11
Ni is a leaf and taken as a group g;12

return the groups on the leaves;13

tribute, the interval is reduced by half. We stop the algorithm
until 1

2H−1 ≤ ε, where H is the number of levels of the tree.
Therefore, the tree has at most (log 1

ε + 1) levels. Thus the
time complexity of constructing the tree is O(|V| log 1

ε).
Remark. In the experiment, we evaluate the quality, cost
and latency by varying the vertex grouping threshold ε. Our
method Power is not sensitive to the threshold much on
quality. For cost, our algorithm with small threshold only
took slightly more cost than the algorithm with larger ε but
it was still much less than state-of-the-art algorithms. There-
fore, if one cares about the cost, one can choose a large
threshold like 0.3, which may sacrifice the quality a little.
Otherwise, one can choose a small threshold like 0.1, which
can achieve a high recall.

5 Question Selection

An important problem is to select the minimum number of
vertices as questions to color all vertices. We first formulate
the question-selection problem (Section 5.1,) and then pro-
pose a serial algorithm that selects one vertex in each itera-
tion (Section 5.2) and parallel algorithms that select multiple
vertices in each iteration (Section 5.3).

5.1 Optimal Vertex Selection

We first assume that (1) if a vertex is GREEN, then all of its
ancestors are GREEN; and (2) if a vertex is RED, then all of
its descendants are RED. We will discuss how to support the
case that the two conditions do not hold in Section 6.

Definition 9 (Optimal Graph Coloring) Given a graph, the
optimal graph coloring problem aims to select the minimum
number of vertices as questions to color all the vertices using
the coloring strategy.

For example, in Figure 3, if we sequentially select ver-
tices g8, g7, g5, g2, g3, g4 and g6, we ask 7 questions. The

optimal crowdsourced vertices are g2, g5, g6 and g8 (high-
lighted by bold circles), because the colors of these vertices
cannot be deduced based on the colors of other vertices.
Next we study how to identify the optimal vertices. We first
introduce a notation for ease of presentation.

Definition 10 (Boundary Vertex) A vertex is a boundary
vertex if its color cannot be deduced based on other ver-
tices’ colors. There are four cases: (1) all of its parents have
different colors with the vertex; (2) all of its children have
different colors with the vertex; (3) it has no child and its
color is GREEN; or (4) it has no parent and its color is RED.

For example, g6 is a boundary vertex as its child g8 has
different color with g6. g4 is not a boundary vertex as its
child g6 has the same color and g4’s color can be deduced
based on g6’s color.

We prove that all the boundary vertices must be asked,
as their colors cannot be deduced. Thus the number of asked
vertices using any algorithm is not smaller than the num-
ber of boundary vertices. However, as we do not know the
ground truth, we cannot identify the boundaries in advance.
To address this problem, we propose effective algorithms to
identify the boundary vertices with theoretical guarantees.

5.2 Serial Algorithm

Comparable Vertices. Given any two vertices pij , pi′j′ , if
they are comparable, i.e., pij � pi′j′ or pi′j′ � pij , we
may deduce pij’s color based on pi′j′ ’s color, and vice versa.
Obviously, two comparable vertices must be on a (directed)
path in the graph, and the vertices on a path are totally or-
dered (i.e., any two vertices are comparable). Given a path,
we can use a binary-search method to select the boundary
vertices. Formally given a path, we first ask the mid-vertex
on the path. (1) If the vertex is colored GREEN, its ancestors’
colors can be deduced but its descendants’ colors cannot be
deduced, and thus we ask the mid-vertex between this ver-
tex and the destination vertex of the path; (2) If the vertex
is colored RED, its descendants’ colors can be deduced but
its ancestors’ colors cannot be deduced, and thus we ask the
mid-vertex between this vertex and the source vertex of the
path. Iteratively, we can find the boundary vertices. For the
path P with |P | vertices, the number of asked vertices is
O(log |P |). This is optimal and cannot be improved in gen-
eral. For example, g1 g4 g6 g8 g9 is a path.
We first ask the mid-vertex g6. As g6 is GREEN, we ask the
mid-vertex between g6 and g9, i.e., g8. As g8 is RED, all the
vertices are colored in the path.

Incomparable Vertices. If two vertices are incomparable,
we cannot deduce one vertex’s color based on the other ver-
tex’s color. Suppose there are θ incomparable vertices (any
two vertices are incomparable). We can divide the graph into

10 C. CHAI et al.

g8

g2

g3

g4

g5

g6

g7

g1

g2

g3

g4

g5

g6

g7

g1

g8

g9g9

(a) Disjoint Paths

g9

g2

g1

g8

g3 g4

g5

g7

g6

(b) 3 Paths, Ask g6

g9

g2

g1

g8

g3 g4

g5

g7

g6

(c) Ask g8

g9

g2

g1

g8

g3 g4

g5

g7

g6

(d) Ask g5

g9

g2

g1

g8

g3 g4

g5

g7

g6

(e) Ask g2

g9

g2

g1

g8

g3 g4

g5

g7

g6

(f) All Colored

Fig. 5: Single-Path Method.

g9

g2

g1

g8

g3

g4

g5

g7

g6

(a) Ask g5, g3, g6

g9

g2

g1

g8

g3 g4

g5

g7

g6

(b) Ask g2

g9

g2

g1

g8

g3 g4

g5

g7

g6

(c) Ask g8

g9

g2

g1

g8

g3 g4

g5

g7

g6

(d) All Colored
Fig. 6: Multi-Path Method.

θ disjoint paths (i.e., any two paths have no common ver-
tices). Then we can ask each path using the binary search
method. As the maximum length of a path is |V|, the number
of asked vertices isO(θ log |V|). This is optimal in the worst
case and cannot be improved in general. This is because if
θ = 1, we need to ask log |V| vertices. For example, in Fig-
ure 5, we have 3 disjoint paths g1 g4 g6 g8 g9
, g2 g5 g7, and g3. We need to ask these paths using
the binary-search algorithm.

Finding θ Disjoint Paths. We transform the graph G into a
bipartite graph Gb = ((Vb

1 ,Vb
2), Eb), where Vb

1 = Vb
2 = V

and there is an edge between v1 ∈ Vb
1 and v2 ∈ Vb

2 if there
is an edge (v1, v2) ∈ V . We find a maximal matching in
Gb = ((Vb

1 ,Vb
2), Eb), which is a maximal set of edges in

Gb = ((Vb
1 ,Vb

2), Eb) where any two edges do not share a
common vertex in Vb

1 and Vb
2 , i.e., for any two edges (v, v′),

(u, u′) in the matching, v 6= u and v′ 6= u′. Obviously any
two edges in the matching sharing the same vertex in V must
be on the same path, i.e., for any two edges (v, v′), (u, u′)
in the matching, if v′ = u, then v v′ = u u′ must
be on the same path based on the partial order. Note that the
maximal matching can be computed inO(θ|V|2)[10]. Based
on this idea, we utilize the maximal matching to find the θ
disjoint paths as follows.

Let Y denote the maximal matching, Y1 denote the set
of the first vertices in Y and Y2 denote the set of the second
vertices in Y . Then Vb

2 −Y is the set of vertices that have no
in-edges, and we can take them as the first vertex of a path.
For each such vertex v, if it has an edge (v, v′), we take v′ as
the second vertex in the path. Then we check whether v′ has
an edge (v′, v′′). Iteratively, we can find the path starting
at v. The paths computed in our method satisfy: disjoint,
complete and minimal, and the correctness is guaranteed by
the following theorem.

Theorem 3 The set of paths found by the maximal matching
of Gb satisfy:
(1) Disjoint: any two paths do not share a vertex;
(2) Complete: the paths contain all the vertices;
(3) Minimal: the size is exactly θ and is not larger than the
size of any other set of paths satisfying (1) and (2).

Proof The proof essentially follows the Fulkerson’s proof
of Dilworth theorem [12].
(1) Disjoint: If there exist two paths with common vertices,
this vertex has at least two edges in the maximal matching,
which contradicts with the definition of maximal matching.
(2) Complete: Consider any vertex v. If its in-degree is 0, it
must be covered by a path. If its in-degree is not 0, it has an

A Partial-Order-Based Framework for Cost-Effective Crowdsourced Entity Resolution 11

Algorithm 4: Question Selection: SinglePath
Input: G = (V, E)
Output: All vertices in V are colored as GREEN or RED
while there exist uncolored vertices in V do1

Compute disjoint paths using maximal matching;2
Color the longest path using binary search;3
Remove the colored vertices;4

return colored V;5

in-edge (v′, v). We call v′ the parent of v. If the in-degree of
v′ is 0, v′ and v will be covered by the same path starting at
v′; otherwise we find the parent of v′. Iteratively we find an
ancestor of v whose in-degree is 0, and then v is covered by
the path starting at this ancestor.
(3) Minimal: Let J denote the number of edges in a match-
ing and D denote the number of disjoint paths in the graph.
Fulkerson et al. [12] proved that J + D = |V|. As |V| is
fixed, if we find the maximal matching, then D is minimal.

For example, consider the graph in Figure 3. We con-
struct a bipartite graph as shown in Figure 5(a). As there
is an edge from g1 to g3 in G, there is an edge from g1
in Vb

1 to g3 in Vb
2 . Thus G and Gb have the same number

of edges. Then we find a maximal matching which is the
set of the colored edges. The vertices g1, g2 and g3 in Vb

2

have no in-edges in the maximal matching. We compute
the disjoint paths starting from them. From g1 we get path
g1 g4 g6 g8 g9; from g2 we get g2 g5 g7;
and g3 itself is a path. Thus we get 3 disjoint paths.
SinglePath Algorithm. Then we propose a path-based question-
selection algorithm. The pseudo code is shown in Algorithm 4.
It first computes the θ disjoint paths. Then it asks the longest
path using the binary-search method, colors the graphs, and
then removes the colored vertices. Next it recomputes the
disjoint paths and asks the next longest path. Iteratively it
can color all vertices. The complexity of this algorithm is
O(θ|V|2).

For example, in Figure 5, we first identify the minimal
disjoint paths as shown in Figure 5(a). Then we select the
longest path (Figure 5(b)), ask the path using binary search.
We first ask g6 and color the graph based on the answers
of asked vertices (Figure 5(c)). Next we ask g8 and get Fig-
ure 5(d). Then we recompute the disjoint paths, ask mid-
vertex of the longest path g2 g5 g7 (Figure 5(d)), and
color the graph (Figure 5(e)). Next as there is only one ver-
tex left, we ask it and get the final result (Figure 5(f)). This
method totally asks 4 vertices and involves 4 iterations.

5.3 Parallel Algorithm

If users do not care about the latency, the single-path algo-
rithm is a good choice. However if the latency is very cru-
cial, the single-path algorithm is not acceptable as it needs
to post one question at a time on crowdsourcing platforms,

which would result in a long time latency. To address this
issue, we design parallel algorithms, which select multiple
vertices and ask them together in each iteration.

5.3.1 Multi-Path Algorithm

We extend the path-based algorithm to support the parallel
setting. We first identify the θ disjoint paths and then ask
their mid-vertices in parallel. Based on the answers on these
vertices, we color the graph. Next we remove the colored
vertices and repeat the above step until all the vertices are
colored. Figure 6 shows an example. Note that the paral-
lel algorithm may generate conflicts. For example, if gi is
colored GREEN and gj is colored RED, then there is a con-
flict on g where g � gi and gj � g, because g is deduced as
GREEN based on gi and deduced as RED based on gj . To ad-
dress this issue, we can use majority voting to vote g’s color.
Algorithm 5 shows the pseudo code. It first finds the mini-
mal disjoint paths (line 2) and then asks their mid-vertices
in parallel (lines 4-5). Next it colors the graph based on the
answers and removes the colored vertices (line 6). Finally,
it repeats the above step if there exist uncolored vertices in
V . For example, we first compute the three disjoint paths and
asks their mid-vertices g5, g3 and g6 together in Figure 6. We
get the answers: g5 is RED, and g3 and g6 are GREEN. We
color the graph based on these three answers(Figure 6(b)).
Next we generate a path: g2 g8 and we ask g2. The an-
swer is: g2 is GREEN, and we color the graph (Figure 6(c)).
Iteratively we color all vertices (Figure 6(d)). This method
asks 5 vertices and involves 3 iterations.

5.3.2 Topological-Sorting-Based Algorithm

In the multi-path algorithm, the asked vertices may have
ancestor-descendent relationships, and thus it may ask un-
necessary questions. For example, in Figure 6(a), we do not
need to ask g3 and g6 together, as the color of g3 can be de-
duced based on the color of g6. To address this issue, we aim
to ask independent vertices in each iteration.

To this end, we perform a topological sorting on the ver-
tices. We first identify the set of vertices with zero in-degree,
denoted by L1. Then we delete them from the graph and find
another set of vertices whose in-degrees are zero, denoted
by L2. We repeat this step until all vertices are deleted. Sup-
pose there are |L| sets, L1,L2, · · · ,L|L|. Obviously vertices
in each Li have no in-edges (as their in-degrees are 0) and
thus can be taken as an independent set. Moreover, the ver-
tices in the sets with small subscripts (e.g., L1,L2) are more
likely to be colored GREEN and the vertices in the sets with
large subscripts (e.g., L|L|) are more likely to be colored
RED, and thus we cannot deduce the colors of many uncol-
ored vertices based on them. In other words, the boundary

12 C. CHAI et al.

L
1

L
2

L
3

L
4

g9

g2

g1

g8

g3 g4

g5

g7

g6

L
5

(a) Ask g5, g6

L
1

L
2

g9

g2

g1

g8

g3 g4

g5

g7

g6

(b) Ask g2

L
1

g9

g2

g1

g8

g3 g4

g5

g7

g6

(c) Ask g8

g9

g2

g1

g8

g3 g4

g5

g7

g6

(d) All Colored
Fig. 7: Topological-Sorting Based Method.

g9

g2

g1

g8

g3 g4

g5

g7

g6

Fig. 8: Error-Tolerant.

Algorithm 5: Question Selection: Multi-Path
Input: G = (V, E)
Output: All vertices in V are colored as GREEN or RED
while there exist uncolored vertices in V do1

Compute θ disjoint paths;2
for each path of these disjoint paths do3
N ← mid-vertex of the path;4

Ask N to workers in parallel and color G;5
Removed colored vertices;6

return colored V;7

Algorithm 6: Topological Sorting
Input: G = (V, E)
Output: All vertices in V are colored as GREEN or RED
while there exist uncolored vertices in V do1

Do a topological sorting on the uncolored vertices in G and2
obtain |L| sets, L1,L2, · · · ,L|L|;
Ask workers to color vertices in L |L|+1

2

;3

return colored V;4

vertices are more likely to be in the middle sets. To this end,
we first ask vertices in L |L|+1

2
.

Next we design a topological-sorting-based algorithm
and Algorithm 6 illustrates the pseudo code. It first com-
putes topological-sorted sets L1,L2, · · · ,L|L|. Then it asks
vertices in L |L|+1

2
in parallel. Based on the results of these

vertices, it colors the graph, removes the colored vertices,
and repeats the above step. Iteratively it colors all vertices.

For example, we construct the topological structure as
shown in Figure 7(a). L1 = {g1},L2 = {g2, g3, g4},L3 =

{g5, g6}, L4 = {g7, g8},L5 = {g9} and |L| = 5. So we
select L3 = {g5, g6} and ask the vertices. After getting their
answers, we obtain Figure 7(b). Then we compute the topo-
logical sorting on the graph of the uncolored vertices. Next,
L1 = {g2},L2 = {g8}. We ask g2. After this iteration,
only g8 is uncolored. We ask it and get the final result (Fig-
ure 7(d)). This method asks 4 vertices and has 3 iterations.

6 Tolerating Errors

There are two types of possible errors in our framework. The
first is caused by workers’ errors and the second is intro-
duced by our coloring strategy. For example, suppose a ver-
tex pij is actually RED. However the workers wrongly color
it GREEN. This error is caused by workers. Consider pij’s
ancestor, pi′j′ , whose color is RED. Our coloring strategy
will wrongly color it GREEN based on partial order. This er-
ror is caused by our coloring strategy. Next we discuss how
to address these errors.

Confidence of Workers’ Answers. To tolerate workers’ er-
rors, we assign each vertex to multiple workers and aggre-
gate their answers. There are many methods to compute the
confidence of workers’ answers, and we take majority vot-
ing as an example and any other techniques can be integrated
into our method. Suppose each vertex is assigned to z work-
ers and y > z

2 workers vote a consensus answer (e.g, Yes)
and z−y workers vote the other answer (e.g., No). The con-
fidence of the voted answer is c = y

z .

Error-Tolerant Coloring Strategy. For each crowdsourced
vertex, if the confidence of workers on this vertex is larger
than a confidence threshold, e.g, ≥ 0.8, we use our coloring
strategy to color its ancestors or descendants; otherwise, we
color it BLUE and do not color its ancestors or descendants.
For the GREEN and RED pairs, we take them as ground
truth as their answers have large confidences. Next we uti-
lize them to color BLUE pairs.

We first need to compute the weights of different at-
tributes which reflect the importance in determining the col-
ors of each pair. Let P g denote the set of GREEN pairs. For
every pij ∈ P g , if skij is large, then attribute Ak plays an
important role to determine the color of pij , and we should
assign it with a large weight; otherwise it is insignificant to
determine the color of pij . To this end, we assign a weight
ωk for each attribute Ak as below

ωk =

∑
pij∈P g skij∑

pij∈P g

∑
1≤t≤m stij

. (7)

A Partial-Order-Based Framework for Cost-Effective Crowdsourced Entity Resolution 13

Algorithm 7: Error-Tolerant
Input: G = (V, E)
Output: All vertices in V are colored as GREEN or RED
while there exist uncolored vertices in V do1

Select a set of uncolored vertices to ask workers;2
for each asked pij with an answer do3

if confidence ≥ 0.8 then4
color pij and its ancestors or descendents;5

else color pij BLUE;6

Generate histogram hi and compute Pri;7
for each pi′j′ colored BLUE in hi do8

if Pri > 0.5 then color pi′j′ GREEN;9
else color pi′j′ RED;10

return colored V;11

Then we compute a weighted similarity of pij ,

ŝij =
∑

k∈[1,m]

ωk · skij . (8)

Coloring The Pairs in Low-Confidence Groups. We use a
histogram based method to color pairs in BLUE vertices [44,
47]. We first generate equi-width histograms based on the
weighted similarities of pairs in GREEN and RED vertices.
Each histogram hi contains a set of pairs within a similarity
range. We count the number of GREEN pairs in hi and com-
pute the probability Pri that pairs in hi should be colored
GREEN, i.e., the number of GREEN pairs to the total num-
ber of pairs in hi. Then we assign the pairs in BLUE ver-
tices into the histograms and color them based on probabil-
ity Pri. For example, if a pair falls in a histogram with high
probability of GREEN, the vertex is colored GREEN; other-
wise RED. Algorithm 7 shows the pseudo code. It uses the
coloring strategy only for the vertices with high-confidence
answers (line 5) and utilizes the histograms to color the ver-
tices with low-confidence answers (lines 7-10).

Recall the topological-sorting method in Figure 7(b). The
workers return the answer of g2 with a low confidence, and
we color it BLUE and do another topological sorting among
the rest groups, i.e., g8. g8 is colored BLUE as workers give
a low confidence answer. We get Figure 8. Then we need to
color pairs in g2 and g8 (i.e., p12, p24, p25) based on the col-
ored pairs. First, we calculate the attribute weight ω based
on the pairs P g ={p12, p67, p45, p23, p46, p56, p47, p57} in
the colored groups. Using Equation 7, we obtain ω ={0.32,
0.28, 0.21, 0.19}. Then we build 5 histograms with width
0.2. We compute ŝij of each colored pair by Equation 8 and
assign it into the corresponding histogram. Figure 10 shows
the histograms and table 9 shows the estimated similarities.
{p67, p45} are assigned into h5 ([0.8,1]). As all of them are
colored GREEN, Pr5 = 1. {p23, p13} are assigned into h4
([0.6,0.8)), and Pr4 = 1. {p46, p57, p47, p56, p10,11, p26,
p27} are assigned into h3 ([0.4,0.6)), and Pr3 = 4

7 = 0.57.
{p37, p89, p34, p35} are assigned into h2 ([0.2,0.4)), and
Pr2 = 0. Next we compute ŝij of p12, p24 and p25. For

pij ŝij pij ŝij
p12 0.72 p37 0.21
p13 0.68 p45 0.97
p23 0.60 p46 0.43
p24 0.28 p47 0.42
p25 0.29 p56 0.41
p26 0.40 p57 0.44
p27 0.41 p67 0.98
p34 0.39 p89 0.37
p35 0.39 p10,11 0.44

Fig. 9: Estimated Similarity
ŝij .

0 0.2 0.4 0.6 0.8 1

p67

p45

p13

p23

p46

p57

p47

p56

p10,11

p26

p27

p34

p35

p37

p89

Pr
5
=1Pr

4
=1

Pr
2
=0

Pr
3
=0.57

h1 h2 h3 h4 h5

Fig. 10: Equi-width
Histograms.

instance, ŝ12 = 0.32 × 0.72 + 0.28 × 0.4 + 0.21 × 1 +

0.19 × 0.88 = 0.72, so we assign it into h4 and color it
GREEN as Pr4 > 0.5. Similarly, we color p24 and p25 RED.
Remark For the confidence threshold, if we select a too low
confidence, we are likely to prune less pairs and increase the
cost. If we select a too high confidence, we may have a low
quality. Obviously, the most suitable confidence depends on
the difficulty of the datasets. In our framework, we first ask
the pairs in middle layer, which are likely to be the most
difficult pairs, and thus reflect the difficulty of the dataset.
Then in the first iteration, we can collect the answers per
pair and then compute the numbers of pairs corresponding
to different confidence values. Then we can select the con-
fidence value with the most number of pairs. For example,
if there are 50 pairs with confidence 0.8 and 20 with confi-
dence 0.6 which means that most workers have confidence
0.8. Thus we choose 0.8 as the final confidence threshold.

7 Budget-Aware Methods

In this section, we first formulate the budget-based entity
resolution problem (Section 7.1), and then propose a se-
rial algorithm and a parallel algorithm to solve the problem
(Section 7.2).

7.1 Budget-based Question Selection

Crowdsourced entity resolution aims to minimize the num-
ber of questions to color the whole graph. Thus it regards
the RED vertices with the same importance as the GREEN

ones. The budget-aware problem, however, aims to identify
as many GREEN vertices (i.e., the matching pairs that refer
to the same entity) as possible within the budget, which is
formalized as below.

Definition 11 (Optimal Budget-based Question Selection)
Given a budget B and a graph G = (V, E), color the maxi-
mum number of GREEN vertices by asking at most B ques-
tions.

Intuitively, it should first ask the GREEN boundary ver-
tices. For example, in Figure 1, if B is equal to or more than

14 C. CHAI et al.

2, the vertices p12 and p56 are the optimal choices. If B is
less than 2, i.e., only one question can be asked, then p56 is
the optimal vertex because it can deduce more vertices than
p12.

We can prove that if the budget B exceeds the number
of GREEN boundary vertices, the optimal solution is to ask
all GREEN boundary vertices. Otherwise, the budget-aware
problem is NP-hard as proved in Theorem 4.

Theorem 4 If budgetB exceeds the number of GREEN bound-
ary vertices, the optimal solution asks the GREEN boundary
vertices. Otherwise, the budget-aware problem is NP-hard.

Proof We first consider the case that the budget exceeds the
number of GREEN boundary vertices. Apparently, the opti-
mal solution is that we must ask all GREEN boundary ver-
tices because any matching pair can be deduced by a GREEN

boundary vertex.
We then consider the case that the budget is smaller than

the number of GREEN boundary vertices. We prove that the
problem is NP-hard, by a reduction from the set cover prob-
lem. Set cover problem is defined as follows: given a collec-
tionC of subsets of a finite set S, a positive integerK ≤ |C|,
it asks whether there exists a subset C

′ ⊆ C with |C ′ | ≤ K
such that every element of S belongs to at least one member
of C

′
? To reduce this problem to the budget-based selection

problem, we take the finite set S as the set of GREEN ver-
tices and take each element of collection C as each GREEN

boundary node and its ancestors. Therefore, the set cover
problem can be reduced to budget-based optimal selection
problem.

For the first case, we aim to ask all the GREEN bound-
ary vertices. For the second case, we aim to first ask the
GREEN boundary vertices which can be used to deduce a
large number of vertices, i.e., those having many ancestors.
To this end, we propose a unified framework to address the
two cases together.

7.2 Budget-Aware Algorithm

7.2.1 Budget-Aware Serial Algorithm

We need to consider two factors to select a vertex to ask.
Firstly, the vertex v should have a large probability Pr(v) to
be a GREEN boundary vertex. Secondly, the vertex v should
have a large number |F(v)| of ancestors. Thus we combine
them together and propose a benefit functionExp(v), which
denotes the benefit to select a question pij ∈ v. Obviously
we want to select the question with the largest benefit.

Next we define the benefit function as below.

Exp(v) = Pr(v)× |F(v)| (9)

Obviously |F(v)| is easy to compute based on the graph
structure and next we discuss how to compute Pr(v). Simi-
lar to Section 6, we still compute the weighted similarity of
each pair based on Equation 8 and build histograms. Then
for each pair, if the pair falls in a histogram with high proba-
bility of GREEN, the pair has large probability to be GREEN

and the probability that the pair is colored GREEN is set
as the probability of this histogram. Then for each vertex,
we can compute the probability that the vertex is colored as
GREEN by computing the overall similarity of all pairs in
the vertex. Formally, we can compute Pr(v) as below.

Pr(v) =

∑
pij∈v Prpij

|v| (10)

where Prpij
is the probability that pij is colored as GREEN

based on the histogram and |v| is the number of pairs in
vertex v.

Initialization. At the beginning of the algorithm, we have
no hints on which vertices are GREEN and we do not have
histograms either. Thus we have to select one vertex to ask
without any information. Intuitively, we do not want to se-
lect the pair with too large or too small similarities. Instead
we want to select the boundary vertices close to the average
similarity. To this end, we propose a boundary estimation
function to compute the closeness of a pair to the average
similarity of all pairs. For each pair pij , we compute the m
differences between skij and average scores on attribute Ak.
Then we sum the m differences as the final boundary esti-
mation of this pair, which is defined as below.

min
pij∈Pu

m∑
k=1

|skij −
∑

pij∈Pu skij

|Pu| |. (11)

where |Pu| is the number of uncolored pairs.
Thus initially we select the pair with the minimal bound-

ary estimation value based on Equation 11.
The pseudo code is shown in algorithm 8. It first selects

the first pair with the minimal boundary estimation value
based on Equation 11. Then it selects pairs with the largest
benefits based on Equation 10. The algorithm terminates un-
til the budget is used up.

For example, given the uncolored graph in Figure 1 and
B = 2, we illustrate how our algorithm works as follows.
Since each vertex contains only one pair in this example, we
take one pair as a group. Firstly, we compute the average

similarity scores (
∑

pij∈Pu skij

|Pu|) among all uncolored pairs
and we get the average scores (0.58, 0.41, 0.66, 0.24). Then
we traverse all the pairs and compute the boundary estima-
tion of all uncolored pairs. The minimum boundary estima-
tion is p56 (|0.63−0.58|+ |0.5−041|+ |0.33−0.66|+ |0−
0.24| = 0.71) and we select p56 to ask first. Then p56, p47,
p46, p57, p13, p23, p45, p67 are colored green. Using equation

A Partial-Order-Based Framework for Cost-Effective Crowdsourced Entity Resolution 15

Algorithm 8: Budget-Aware Algorithm:Serial
Input: G = (V, E), B
Output: All GREEN vertices in V after asking B questions
Select a pair p with the minimum offset by equation 11.1
Ask workers to color p.2
while B > 0 do3

Compute ŝ of all groups, reconstruct the histograms and4
compute the probability corresponding to each histogram.
Select the group gi with the most benefit.5
B = B − 16
Select a pair p randomly from gi and ask workers to color7
p.

return V;8

Algorithm 9: Budget-Aware Algorithm:Parallel
Input: G = (V, E), B
Output: All GREEN vertices in V after B uses up
Select the maximum independent groups by equation 11.1
Ask workers to color these pairs.2
while B > 0 do3

Compute ŝ of all groups, reconstruct the histograms and4
compute the probability corresponding to each histogram.
Select the maximum independent groups according to the5
descending order of all uncolored pairs.
Update the B.6
Ask workers to color pairs randomly selected from these7
groups.

return V;8

7, we obtain ω = {0.33, 0.28, 0.21, 0.18}. We next com-
pute ŝ of each pair and get that ŝ12 = 0.72, ŝ10,11 = 0.44,
ŝ27 = 0.41. Then we obtain Exp(p12) = 0.72 × 3 = 2.16,
Exp(p10,11) = 0.44 × 4 = 1.76, Exp(p27) = 0.41 × 5 =

2.05. So p12 is the pair with the most benefit and we select it
to ask. Then we can get all RED vertices within the budget.

7.2.2 Budget-Aware Parallel Algorithm

However, if we care about the latency, only asking one ques-
tion in one crowdsourcing iteration is unacceptable. There-
fore, we propose a parallel algorithm. Similar to the parallel
algorithm proposed in section 5.3 above, we aim to select
vertices with no ancestor-descendent relationships in each
iteration. Furthermore, we should also select vertices with
large benefit. Then we discuss how to select them.

Firstly, at the beginning of the algorithm, we need to
select groups without any information in the first iteration.
Note that the asked groups in each iteration should not have
ancestor-descendent relationships. Therefore, we sort all un-
colored groups according to their differences computed by
Equation 11 in an ascending order. We select the first group
as one of questions greedily. Then we check whether the
next group has ancestor-descendent relationship with the first
group. If not, we add the pair into the question set. Otherwise
we check the next group. We repeat this until there is no ver-
tex can be added to the question set. Then we ask the set of
groups in parallel. After workers give answers, we color the

Table 4: Three real-world Datasets.
#Records #Attr #Pairs #Workers/Pair

Restaurant 858 4 5010 5
Cora 997 8 29510 5

ACMPub 66,879 4 204,000 5

graph and select the next batch of groups. Then we sort all
uncolored groups according to their benefits in a descending
order and select independent groups similarly to the method
above. Next, we color the graph and select another set of in-
dependent groups according to their benefits until the budget
is used up. The pseudo code is shown in algorithm 9.

For example, assuming that B = 3, at the beginning,
we sort these pairs and get the order p56, p47, p46, p57,
p10,11. Though p47 is the second pair in the list, we select
p56 and p10,11 because the next three pairs after p56 have
ancestor-descendent relationships with it. After the first it-
eration, there are only p12, p25 and p24 left and p12 is the
pair with the most benefit. Since all pairs left have ancestor-
descendent relationships with p12, we can only select p12 in
this iteration. Then we can see that all green groups have
been found out and we use only 2 iterations.

8 Experiment

In this section, we evaluate our methods and report exper-
imental results. The goals of our experiments include (1)
evaluating our proposed techniques and (2) comparing our
method with state-of-the-art approaches.

8.1 Experimental Setting

Datasets. We use three real-world datasets which are widely
adopted by existing works [13,44,45,46]. (1) Restaurant2

is a restaurant dataset consisting of 858 restaurants with 752
different entities. The dataset has four attributes, Name, Ad-
dress, City and Flavor. (2) Cora3 is a dataset of research
papers, which contains 997 records with 191 different enti-
ties. The dataset has 8 attributes: Author, Title, Journal, Year,
Pages, Publisher, Type and Editor. (3) ACMPub4 is a larger
publication dataset consisting of 66,879 records with 5347
different entities. It has four attributes: Author, Title, Con-
ference and Year. Table 4 shows the details.
Similarity Functions. We use three similarity functions, Jac-
card, edit similarity and bigram Jaccard. For bigram, we
generate bigrams for every attribute and compute Jaccard on
bigram sets as the similarity, where a bigram is a substring
with length 2 and a bigram set contains all the bigrams in an
attribute. We use bigram by default.

2 http://www.cs.utexas.edu/users/ml/riddle/data/restaurant.tar.gz
3 https://www.cics.umass.edu/smccallum/data/cora-refs.tar.gz
4 http://dbs.uni-leipzig.de/en/research/projects/object matching/

fever/benchmark datasets for entity resolution

16 C. CHAI et al.

0
10
20
30
40
50
60

1k 2k 3k 4k 5k

T
im

e
 (

m
s
)

of Pairs

(a) Restaurant

Brute-Force
Quicksort

Index

0

4

8

12

16

20

4k 8k 12k 16k 20k 24k 28k

T
im

e
 (

s
)

of Pairs

(b) Cora

Brute-Force
Quicksort

Index

1

10

100

1000

100k 200k 300k 400k 500k

T
im

e
 (

s
)

of Pairs

(c) ACMPub

Brute-Force
Quicksort

Index

Fig. 11: Graph Construction: Efficiency.

Pruning. As ACMPub has 66,879 records, it will generate
66879∗66878

2 = 2, 236, 366, 881 pairs and it is expensive to
consider all of them. Following previous work [46,45], we
compute a similarity score for each pair of records by Jac-
card and prune pairs whose similarity scores are bellow 0.3.
After pruning, there are 5010, 29510 and 204000 pairs left
in Restaurant, Cora and ACMPub datasets respectively.
AMT Setting. We use Amazon Mechanical Turk (AMT). To
ensure fair comparison between different algorithms, each
question should be answered by the same workers. To this
end, we crowdsource all pairs in each dataset to AMT and
get their answers. If different algorithms ask the same pair,
they will use the same answer. We assign each question to
five workers and use the weighted majority voting to inte-
grate the answers. We pack every ten pairs in a HIT and pay
10 cents for each HIT. We vary workers’ accuracy which can
be specified on AMT, where the worker accuracy is com-
puted based on workers’ approval rate in history at AMT.
Comparison. We compare with state-of-the-art methods, in-
cluding Trans [45], ACD [46] and GCER [47] on the same
experimental setting. We get the source codes of ACD and
Trans from the authors and implement GCER by ourselves.
Evaluation Metrics. We compare the quality, the number
of questions, the number of iterations, and the assignment
time. For quality, we use F-measure, which is a combination
of precision and recall. Suppose the set of pairs that refer to
the same entity is ST , and the set of pairs that an algorithm
reports as the same entity is SP . Then the precision is p =
|ST∩SP |
|SP | , recall is r = |ST∩SP |

|ST | , and F-measure is 2pr
p+r .

8.2 Evaluation on Graph Construction

8.2.1 Evaluation on Graph Construction Algorithms

We compare the efficiency of the three graph construction
algorithms (proposed in Section 4.1). (1) Brute-Force:
the brute-force method that compares every two pairs. (2)
QuickSort: the quicksort-based method. (3) Index: the
index-based method.5 To test the scalability, on ACMPub,
we set the bound τ as 0.18 and generate 500K pairs. Fig-
ure 11 shows the results by varying the number of pairs. We

5 The three datasets have 4-8 attributes. As it is too complicated to construct a high
dimensional range tree, we use a heuristics: we choose two important attributes in each
dataset to construct 2-dimensional indexes. When we search the children of a pair, the
pairs reported by the index are a superset as they may not satisfy other attributes. To
address this issue, we only need to verify them to remove the false positives based
on other non-indexed attributes. In our experiment, we choose attributes Name and
Address for Restaurant, Author and Title for Cora, and Author and Title for
ACMPub.

0

30

60

90

120

150

180

0.1 0.15 0.2 0.25 0.3

#
 o

f
g
ro

u
p
s

Threshold (ε)

(a) Restaurant

Greedy
Split

0

500

1000

1500

0.1 0.15 0.2 0.25 0.3

#
 o

f
g
ro

u
p
s

Threshold (ε)

(b) Cora

Greedy
Split

0

500

1000

1500

0.1 0.15 0.2 0.25 0.3

#
 o

f
g
ro

u
p
s

Threshold (ε)

(c) ACMPub

Split

Fig. 12: Grouping: #Groups.

10
-2

10
-1

1

10

0.1 0.15 0.2 0.25 0.3

T
im

e
(s

)

Threshold (ε)

(a) Restaurant

Greedy Split

10
-2

1

10
2

10
4

10
6

0.1 0.15 0.2 0.25 0.3

T
im

e
(s

)

Threshold (ε)

(b) Cora

Greedy Split

0.5

0.6

0.7

0.8

0.9

1

0.1 0.15 0.2 0.25 0.3

T
im

e
(s

)

Threshold (ε)

(c) ACMPub

Split

Fig. 13: Grouping: Efficiency.

can see that Index significantly outperforms the other two
methods, even by 1 order of magnitude. For example, on the
Cora dataset with 28k pairs, Brute-Force takes 20 sec-
onds, QuickSort improves it to 10 seconds, while Index
only takes 1 second. On the larger dataset ACMPub, Index
still outperforms other methods and achieves higher perfor-
mance. This is because Index can utilize the range search
tree index to efficiently find the children of a pair and can
prune many unnecessary pairs (e.g., incomparable pairs).
QuickSort outperforms Brute-Force because it can
also remove some unnecessary pairs based on the partial
order. However the improvement is not signifiant, as many
vertices in the graph are not comparable based on the partial
order and thus many pairs cannot be pruned. For example,
in Restaurant, 70% pairs of records are not compara-
ble. In Cora, 84% pairs of records are not comparable. In
ACMPub, 80% pairs of records are not comparable.

8.2.2 Evaluation on Grouping

We first evaluate our two techniques Greedy and Split
(proposed in Section 4.2). (1) Greedy: it greedily groups
the vertices. (2) Split: it uses the split-based technique.
We first compare the number of groups generated by them.
Figure 12 shows the number of groups and Figure 13 shows
the running time. Note that on the ACMPub dataset, Greedy
cannot report the results within 10 hours and thus we do
not show Greedy in the figure. We have several obser-
vations on the number of groups. Firstly, compared with
the total number of pairs in Restaurant (5,010 pairs),
Cora (29,510 pairs) and ACMPub (204,000 pairs), Split
and Greedy only generate less than 150, 1300 and 700
groups. Thus the grouping technique can significantly re-
duce the number of vertices, and thus can reduce the time la-
tency and the crowd cost. Secondly, Split generates a few
more groups than Greedy, because Split uses heuristics
to generate groups while Greedy utilizes a greedy strategy
to generate high-quality groups. For example, on the Cora
dataset with grouping threshold ε = 0.1, Greedy gener-
ates 800 groups and Split generates 1200 groups. Thus

A Partial-Order-Based Framework for Cost-Effective Crowdsourced Entity Resolution 17

0.92

0.94

0.96

0.98

1

0.1 0.15 0.2 0.25 0.3

F
-m

e
a
s
u
re

Threshold (ε)

(a) Restaurant

SinglePath-Non-Group
SinglePath-Greedy

SinglePath-Split

0.7

0.8

0.9

1

0.1 0.15 0.2 0.25 0.3

F
-m

e
a
s
u
re

Threshold (ε)

(b) Cora

SinglePath-Non-Group
SinglePath-Greedy

SinglePath-Split

0.8

0.85

0.9

0.95

1

0.1 0.15 0.2 0.25 0.3

F
-m

e
a
s
u
re

Threshold (ε)

(b) ACMPub

SinglePath-Non-Group
SinglePath-Split

Fig. 14: Grouping vs Non-Grouping: Quality.

0

50

100

150

200

250

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(a) Restaurant

SinglePath-Non-Group
SinglePath-Greedy

SinglePath-Split

0

250

500

750

1000

1250

1500

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(b) Cora

SinglePath-Non-Group
SinglePath-Greedy

SinglePath-Split

0

500

1000

1500

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(c) ACMPub

SinglePath-Non-Group
SinglePath-Split

Fig. 15: Grouping vs Non-Grouping:#Questions.

if we focus on reducing the number of groups, we can se-
lect the Greedy algorithm. Thirdly, with the increase of the
thresholds, the number of groups decreases, as groups with
larger thresholds contain more vertices. On the other hand,
Greedy takes much longer time than Split, even 10000×
slower on larger datasets. For example on the Cora dataset,
Greedy takes more than 10000 seconds while Split only
takes less than 1 second. Thus if we focus on high efficiency,
we recommend the Split algorithm.

We then compare grouping with non-grouping in terms
of quality and the number of questions. We compare three
algorithms. (1) SinglePath-Non-Group, which utilizes
SinglePath to ask questions on the original graph with-
out grouping. (2) SinglePath-Greedy, which utilizes
SinglePath to ask questions on the grouped graph gener-
ated by the Greedy algorithm. (3) SinglePath-Split,
which utilizes SinglePath to ask questions on the grouped
graph generated by the Split algorithm. Figure 14 shows
the quality and Figure 15 shows the number of questions.
Note that we do not show SinglePath-Greedy on the
ACMPub dataset as it is too slow.

We have the following observations. (1) The grouping
technique slightly reduces the quality by 2% than the non-
grouping method. The reasons are twofold. Firstly, many
pairs are grouped and we only ask one pair and utilize its
answer to deduce the answer of other pairs in the group. If
the pairs in the same group have different colors, this method
may involve errors. Secondly, there is a smaller number of
edges in the grouped graph and we ask fewer questions. (2)
The grouping technique significantly reduces the number
of questions. For example, on the Cora dataset with ε =

0.1, the non-grouping method asks 800 questions while the
grouping method only asks 80 questions. On the ACMPub
dataset, the non-grouping method asks 1400 questions while
the grouping method asks 163 questions. This is because
the grouping technique can significantly reduce the graph
size. Thus we can utilize grouping techniques to reduce the
cost. (3) The two grouping techniques have no large differ-
ence on the number of question as their graph sizes are very

0.92

0.94

0.96

0.98

1

1k 2k 3k 4k 5k

F
-m

e
a
s
u
re

of pairs

(a) Restaurant

	Random
SinglePath

0.75

0.77

0.79

0.81

0.83

0.85

4k 12k 20k 28k

F
-m

e
a
s
u
re

of pairs

(b) Cora

	Random
SinglePath

0.8

0.85

0.9

0.95

1

50k 100k 150k 200k

F
-m

e
a
s
u
re

of pairs

(c) ACMPub

	Random
SinglePath

Fig. 16: Question Selection(Serial): Quality.

50

100

150

200

250

300

1k 2k 3k 4k 5k

#
 o

f
q
u
e
s
ti
o
n
s

of Pairs

(a) Restaurant

Random
SinglePath

0
200
400
600
800

1000
1200
1400

4k 12k 20k 28k

#
 o

f
q
u
e
s
ti
o
n
s

of Pairs

(b) Cora

Random
SinglePath

500

1000

1500

2000

2500

50k 100k 150k 200k

#
 o

f
q
u
e
s
ti
o
n
s

of Pairs

(c) ACMPub

Random
SinglePath

Fig. 17: Question Selection(Serial): #Questions.

close. This verifies that we can use Split to generate the
groups. (4) The number of questions is not only determined
by the number of groups, but also the number of edges. First,
fewer groups will lead to fewer questions. Second, fewer
edges may lead to more questions, because the answers of
many groups cannot be deduced based on the answers of
other groups. With the increase of the grouping threshold,
the number of groups decreases, and thus the number of
questions should decrease intuitively. However, with the in-
crease of the grouping threshold, the groups become larger
and it is more difficult to add an edge between two groups.
Thus there may be fewer edges in the graph and the number
of questions may decrease.

8.3 Evaluation on Question Selection

8.3.1 Evaluation on Serial Algorithms

We first evaluate the serial question-selection algorithms and
compare two algorithms (Section 5.2). (1) Random: which
randomly selects a vertex in each iteration. (2) SinglePath:
which selects a vertex from the longest path in each itera-
tion. We compare the two algorithms on the non-grouping
graphs. Figure 16 shows the quality and Figure 17 shows
the number of questions. We can see that SinglePath
outperforms Random and reduces the number of questions.
For example, on the Restaurant dataset with 5000 pairs,
Random asks 250 pairs while SinglePath only asks 150
pairs. On the ACMPub dataset, Random asks 2500 pairs
while SinglePath only asks 1400 pairs. This is because
SinglePath can effectively identify the boundary pairs
using a binary search strategy. On the other hand, SinglePath
achieves similar quality with Random as the question order
does not significantly affect the quality. Thus we can utilize
the SinglePath to select questions.

18 C. CHAI et al.

0.92

0.94

0.96

0.98

1

0.1 0.15 0.2 0.25 0.3

F
-m

e
a
s
u
re

Threshold (ε)

(a) Restaurant

SinglePath
Multi-Path

Power

0.7

0.8

0.9

1

0.1 0.15 0.2 0.25 0.3

F
-m

e
a
s
u
re

Threshold (ε)

(b) Cora

SinglePath
Multi-Path

Power

0.8

0.85

0.9

0.95

1

0.1 0.15 0.2 0.25 0.3

F
-m

e
a
s
u
re

Threshold (ε)

(c) ACMPub

SinglePath
Multi-Path

Power

Fig. 18: Question Selection(Parallel): Quality.

0

20

40

60

80

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(a) Restaurant

SinglePath
Multi-Path

Power

0

100

200

300

400

500

600

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(b) Cora

SinglePath
Multi-Path

Power

0

50

100

150

200

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(c) ACMPub

SinglePath
Multi-Path

Power

Fig. 19: Question Selection(Parallel):#Questions.

1

10

10
2

0.1 0.15 0.2 0.25 0.3

#
 o

f
it
e
ra

ti
o
n
s

Threshold (ε)

(a) Restaurant

SinglePath
Multi-Path

Power

1

10

10
2

10
3

0.1 0.15 0.2 0.25 0.3

#
 o

f
it
e
ra

ti
o
n
s

Threshold (ε)

(b) Cora

SinglePath
Multi-Path

Power

1

10

10
2

0.1 0.15 0.2 0.25 0.3

#
 o

f
it
e
ra

ti
o
n
s

Threshold (ε)

(c) ACMPub

SinglePath
Multi-Path

Power

Fig. 20: Question Selection(Parallel):#Iterations.

10
-1

1

10

0.1 0.15 0.2 0.25 0.3

T
im

e
 (

m
s
)

Threshold (ε)

(a) Restaurant

SinglePath
Multi-Path

Power

1

10

10
2

10
3

10
4

0.1 0.15 0.2 0.25 0.3

T
im

e
 (

m
s
)

Threshold (ε)

(b) Cora

SinglePath
Multi-Path

Power

1

10

10
2

10
3

0.1 0.15 0.2 0.25 0.3

T
im

e
 (

m
s
)

Threshold (ε)

(c) ACMPub

SinglePath
Multi-Path

Power

Fig. 21: Question Selection(Parallel): Time.

8.3.2 Evaluation on Parallel Algorithms

We then evaluate the parallel question-selection algorithms
(proposed in Section 5.3). We compare three algorithms: (1)
SinglePath: which selects a vertex from the longest path
in each iteration. (2) Multi-Path: which selects multiple
vertices from multiple disjoint paths in each iteration. (3)
Power: which selects multiple independent vertices based
on topological sorting in each iteration. We compare the
quality, the number of questions, the number of iterations,
and the assignment time in each iteration to select the ques-
tions for workers. Figures 18-21 show the results.

(1) For quality, we can see that the three methods achieve
similar quality, because different question orders will not af-
fect the quality based on the partial order. (2) For the num-
ber of questions, we can see that the two parallel algorithms
Multi-Path and Power ask a few more questions than
SinglePath. The reason is evident that Multi-Path
may ask pairs with ancestor-descendent relationships and
Power may ask pairs with the same descendants which can
be avoided by serial algorithms based on the partial order.
Power outperforms Multi-Path because Power asks
independent questions in each iteration while Multi-Path
may ask dependent questions. (3) For the number of itera-
tions, the two parallel algorithms Multi-Path and Power
significantly outperform SinglePath as they ask ques-

0.9

0.92

0.94

0.96

0.98

1

0.1 0.15 0.2 0.25 0.3

F
-m

e
a
s
u
re

Threshold (ε)

(a) Restaurant

	Power

Power+

0.75

0.77

0.79

0.81

0.83

0.85

0.1 0.15 0.2 0.25 0.3

F
-m

e
a
s
u
re

Threshold (ε)

(b) Cora

	Power
Power+

0.8

0.85

0.9

0.95

1

0.1 0.15 0.2 0.25 0.3

F
-m

e
a
s
u
re

Threshold (ε)

(c) ACMPub

	Power
Power+

Fig. 22: Error Tolerant: Quality.

0

20

40

60

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(a) Restaurant

	Power
Power+

0

100

200

300

400

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(b) Cora

	Power
Power+

0

50

100

150

200

0.1 0.15 0.2 0.25 0.3

#
 o

f
q
u
e
s
ti
o
n
s

Threshold (ε)

(c) ACMPub

	Power
Power+

Fig. 23: Error Tolerant: #Questions.

0

2

4

6

0.1 0.15 0.2 0.25 0.3

#
 o

f
it
e
ra

ti
o
n
s

Threshold (ε)

(a) Restaurant

	Power

Power+

0

2

4

6

0.1 0.15 0.2 0.25 0.3

#
 o

f
it
e
ra

ti
o
n
s

Threshold (ε)

(b) Cora

	Power
Power+

0

2

4

6

0.1 0.15 0.2 0.25 0.3

#
 o

f
it
e
ra

ti
o
n
s

Threshold (ε)

(c) ACMPub

	Power
Power+

Fig. 24: Error Tolerant: #Iterations.

tions in parallel. For example, on the Cora dataset, Power
and Multi-Path only have 4 iterations while SinglePath
involves 200 iterations. On the ACMPub dataset, Power and
Multi-Path have 5 iterations while SinglePath in-
volves 113 iterations. Thus Power and Multi-Path can
significantly reduce the latency. In practice, we need to use
the parallel algorithms. (4) For assignment time, all the three
algorithms can assign tasks within 1 second. Multi-Path
and SinglePath take longer time than Power as they are
expensive to find multiple independent paths using the graph
matching algorithm, which is consistent with the complexity
analysis, while Power only needs to compute the topologi-
cal sorting which is efficient.

8.4 Evaluation on Error-Tolerant Techniques

We evaluate the error-tolerant techniques (proposed in Sec-
tion 6) and compare two algorithms. (1) Power: which does
not consider errors. (2) Power+: which extends Power to
tolerate errors. We compare quality, the number of ques-
tions, and the number of iterations. As they have the same
assignment time, we do not compare the assignment time.
We build 20 histograms. Figures 22-24 show the results.

Power+ achieves better quality than Power, especially
on the Cora dataset, because it can tolerate the errors in-
troduced by workers and the partial order. For example, on
the Cora dataset with ε = 0.1, Power only has 79% F-
measure while Power+ improves the quality to 83%. On the
ACMPub dataset, Power has 87% F-measure while Power+
improves to 90%. On the Restaurant dataset, the im-
provement is not signifiant because the dataset is easy and
Power already achieves 96% F-measure. On the other hand,

A Partial-Order-Based Framework for Cost-Effective Crowdsourced Entity Resolution 19

0

0.2

0.4

0.6

0.8

1

5 6 7 8

F
-m

e
a
s
u
re

of attributes

(a) F-measure

0

2

4

6

5 6 7 8

#
 o

f
it
e
ra

ti
o
n
s

of attributes

(c) # of iterations

0

200

400

600

800

1000

5 6 7 8

#
 o

f
q
u
e
s
ti
o
n
s

of attributes

(b) # of questions

Fig. 25:Evaluation by Varying #Attributes(Cora).

Power+ asks a little more questions than Power as Power+
does not utilize the partial order for some pairs and thus re-
duces the number of deduced pairs. The two methods have
the same number of iterations, because the only difference is
that Power+ does not deduce the answers for some uncon-
fident pairs. Thus we can use the error-tolerant technique to
improve the quality.

8.5 Evaluation on The Number of Attributes

We vary the number of attributes on the Cora dataset and
Figure 25 shows the results. We can see that with the in-
crease of attribute numbers, the number of questions increases,
because it is harder to add edges between pairs for more at-
tributes and thus the number of edges decreases. Similar to
the number of questions, the number of iterations slightly
increases. The quality is not affected as it is determined by
the partial order and the crowd error.

8.6 Evaluating Worker Accuracy

We compare our methods (Powerwithout error-tolerant tech-
niques and Power+with error-tolerant techniques) with state-
of-the-art approaches ACD [45], Trans [46] and GCER [47].
We compare the number of iterations, the number of ques-
tions, and the quality. As GCER requires a parameter to tune
the number of asked pairs, we set this parameter the same as
ACD, i.e., the maximum number of questions among these
algorithms. GCER asks 100 questions in each iteration. For
our algorithms, we use the split-based grouping algorithm to
group the pairs and set the grouping threshold ε as 0.1, uti-
lize the index-based method to construct the graph, and em-
ploy the topological-sorting algorithm to select questions.

8.6.1 Real Exp: Evaluating Worker Accuracy

Existing studies [46,44,13] select the workers with approval
rate above 95% or passing a qualification test to avoid mali-
cious workers. To evaluate the robustness of the algorithms,
we vary the workers’ accuracy. In the real crowdsourcing
platforms AMT, we can specify the worker accuracy by se-
lecting the approval rate. We select three groups of workers,
70%-80% (70% in the figure), 80%-90% (80% in the fig-
ure) and above 90% (90% in the figure) respectively. For
each group of workers, we ask them to answer our questions
and compare different algorithms. Figures 26-28 show the
results. We make the following observations.

Quality. Firstly, Power+ outperforms Power. This because
Power+ can tolerate workers’ errors. With the increase of
worker accuracy, the improvement decreases. This is be-
cause for higher worker accuracy, there are fewer errors and
Power+ has limited room to further improve the quality.
Secondly, Power+ achieves the same quality as state-of-
the-art studies and even higher. Even for low-quality work-
ers, our methods still achieve high quality, because (1) Power+
can tolerate errors by not coloring unconfident vertices (and
thus avoid enlarging the errors by a wrong coloring vertex);
and (2) few pairs invalidate the partial order. Specifically, on
the Restaurant dataset, as the tasks are very easy, most
workers can correctly compare each pair, and thus all the
methods achieve high quality. On the Cora dataset, Power+
and ACD achieve much higher quality than Trans and GCER
on all three groups of workers, because this dataset is harder
and workers may return noisy results. Trans and GCER
cannot tolerate workers’ errors and moreover they may ex-
pand the error propagation due to the transitivity rules. On
the ACMPub dataset, Power+ and ACD still outperform other
methods because both of them consider crowd’s errors. Thirdly,
with the increase of worker accuracy, the quality of all the
algorithms increase, because workers return higher quality
answers. Fourthly, even for workers with different accuracy,
the algorithms achieve similar quality. This is because the
worker accuracy on AMT is computed based on their accu-
racy on history tasks but not on our tasks. A worker will give
higher quality on easy datasets, e.g., Restaurant, and
lower quality on hard datasets, e.g., Cora. To address this
issue, we conduct a simulation experiment in Section 8.6.2.

#Questions. Firstly, our two methods Power and Power+
ask fewer questions than state-of-the-art methods, even by 2
orders of magnitude. This is because we can utilize the par-
tial order to prune many pairs that do not need to be asked
and use the grouping techniques to reduce the graph size.
The partial order can prune the pairs with larger similarities
than a GREEN vertex and the pairs with smaller similari-
ties than a RED vertex, while the grouping technique can
prune many pairs with similar similarities close to the asked
pairs. Trans can also reduce the number of questions based
on transitivity at the expense of lowering down the quality.
ACD and GCER achieve high quality at the expense of ask-
ing many more questions. For example, on ACMPub, ACD,
GCER, and Trans ask 30,000 questions, and our methods
ask 150 questions. Thus our methods can save 200× mone-
tary cost than ACD, GCER, and Trans. On Restaurant,
ACD and GCER ask 4100 questions, Trans asks 3900 ques-
tions while Power only asks 51 questions. Thus our meth-
ods save 80× monetary cost than ACD, GCER, and Trans.
On Cora, ACD and GCER ask 4800 questions, Trans asks
1020 questions while our methods only ask 354 questions.
Trans saves a little cost on the Restaurant dataset be-
cause only few pairs satisfy the transitivity rules. Secondly,

20 C. CHAI et al.

0.9

0.92

0.94

0.96

0.98

1

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(a) Restaurant

Power
Power+

Trans

ACD
GCER

0.6

0.7

0.8

0.9

1

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(b) Cora

Power
Power+

Trans

ACD
GCER

0.8

0.84

0.88

0.92

0.96

1

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Fig. 26: Quality Comparison by Varying Worker Accuracy
(Real Experiments).

1
10

10
2

10
3

10
4

10
5

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(a) Restaurant

Power
Power+

Trans

ACD
GCER

1
10

10
2

10
3

10
4

10
5

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(b) Cora

Power
Power+

Trans

ACD
GCER

10
10

2
10

3
10

4
10

5

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Fig. 27: #Question Comparison by Varying Worker
Accuracy (Real Experiments).

0

10

20

30

70% 80% 90%

#
 o

f
it
e

ra
ti
o

n
s

Accuracy of workers

(a) Restaurant

Power
Power+

Trans

ACD
GCER

0

10

20

30

70% 80% 90%

#
 o

f
it
e

ra
ti
o

n
s

Accuracy of workers

(b) Cora

Power
Power+

Trans

ACD
GCER

0

10

20

70% 80% 90%

#
 o

f
it
e

ra
ti
o

n
s

Accuracy of workers

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Fig. 28: #Iteration Comparison by Varying Worker
Accuracy (Real Experiments).

Power+ asks a few more questions than Power to toler-
ate the unconfident vertices and avoid coloring their ances-
tors and descendants. As there are few unconfident vertices,
the gap between Power+ and Power is trivial. Thirdly, the
worker accuracy has little effect on the number of questions,
because (1) our methods ask few questions and the question
number is determined by the graph structure but not worker
accuracy and (2) other methods do not consider worker ac-
curacy to select questions.

#Iterations. Firstly, our methods involve fewer iterations
than state-of-the-art approaches. This is because (1) our meth-
ods ask smaller number of questions and (2) our methods
ask questions in parallel. For example, on the Restaurant
dataset, ACD involves 13 iterations, GCER involves 28 iter-
ations, Trans involves 23 iterations, while Power+ only
involves 5 iterations. On the Cora dataset, ACD involves
18 iterations, Trans involves 10 iterations, GCER involves
19 iterations, while Power+ only involves 4 iterations. On
the ACMPub dataset, ACD involves 15 iterations, Trans in-
volves 9 iterations, GCER involves 13 iterations, while Power+
only involves 5 iterations. Thus our method saves 2-5× la-
tency cost on the Cora dataset. Secondly, Power and Power+
nearly have the same number of iterations, as they have lit-
tle difference on the number of asked questions. Thirdly, the
worker accuracy has little impact on the number of itera-
tions, as existing studies do not consider worker accuracy
and our methods ask few questions.

0.4

0.6

0.8

1

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(a) Restaurant

Power
Power+

Trans

ACD
GCER

0.4

0.6

0.8

1

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(b) Cora

Power
Power+

Trans

ACD
GCER

0.4

0.6

0.8

1

70% 80% 90%

F
-m

e
a

s
u

re

Accuracy of workers

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Fig. 29: Quality Comparison by Varying Worker Accuracy
(Simulation Experiments).

1
10

10
2

10
3

10
4

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(a) Restaurant

Power
Power+

Trans

ACD
GCER

1
10

10
2

10
3

10
4

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(b) Cora

Power
Power+

Trans

ACD
GCER

10
10

2
10

3
10

4
10

5

70% 80% 90%

#
 o

f
q

u
e

s
ti
o

n
s

Accuracy of workers

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Fig. 30: #Question Comparison by Varying Worker
Accuracy (Simulation Experiments).

0

10

20

30

70% 80% 90%

#
 o

f
it
e

ra
ti
o

n
s

Accuracy of workers

(a) Restaurant

Power
Power+

Trans

ACD
GCER

0

10

20

30

70% 80% 90%

#
 o

f
it
e

ra
ti
o

n
s

Accuracy of workers

(b) Cora

Power
Power+

Trans

ACD
GCER

0

10

20

70% 80% 90%

#
 o

f
it
e

ra
ti
o

n
s

Accuracy of workers

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Fig. 31: #Iteration Comparison by Varying Worker
Accuracy (Simulation Experiments).

8.6.2 Simulation Exp: Evaluating Worker Accuracy

In real experiments, we select workers based on their history
accuracy on AMT. However the approval rates of workers
only reflect their history accuracy when they answered other
questions in history but not the accuracy on our questions.
Workers may have different quality on different datasets and
time. For example, on the Restaurant dataset, the prob-
lem is easy, and most workers give a correct answer even
though they have a low history accuracy. On the Cora dataset,
because the dataset is relative dirty and professional, many
workers return wrong answers even though they have a high
history accuracy. Therefore, the reason why many previous
studies[13,44,45,46] set a high approval rate is to filter these
malicious workers, but this does not mean that most work-
ers can give right answers under the high approval rate guar-
antee. To address this issue, we conduct a simulation ex-
periment. We assume the ground truth is known and gener-
ate workers with quality in 70%-80%, 80%-90%, and above
90% respectively. Figures 29-31 show the results on the sim-
ulation experiments.

Quality. Firstly, Power+ significantly outperforms other meth-
ods for low-quality workers, e.g., 70% and 80%. This is be-
cause (1) Power+ can tolerate more errors by postponing
coloring the unconfident vertices, and for low-quality work-
ers, there are many more unconfident vertices. For exam-
ple, for those wrongly answered vertices, we do not color
them GREEN or RED immediately and also do not color
their ancestors or descendants, which avoid many errors;
(2) Power+ can tolerate the malicious answers by first ask-

A Partial-Order-Based Framework for Cost-Effective Crowdsourced Entity Resolution 21

ing middle-level vertices in the graph and thus has low pos-
sibility to wrongly label some pairs (because a high-level
vertex will affect many vertices if it is colored RED and
a low-level vertex will affect many vertices if it is colored
GREEN). ACD outperforms other baselines, because it tol-
erates errors based on the clusters refinement (each cluster
contains records referring to the same entity). However, on
the Restaurant dataset, ACD has lower quality, because
there are few records in each cluster and ACD cannot utilize
this limited information to infer the answers. Trans and
GCER cannot tolerate errors, and thus they have rather low
quality for low worker accuracy. Secondly, for high worker
accuracy, e.g., 90%, all the algorithms achieve rather high
quality as there are few errors in the workers’ answers. Thirdly,
with the increase of worker accuracy, all the methods achieve
higher quality as they can utilize high quality answers. Power+
outperforms ACD, which in turns is better than other meth-
ods. For example, on the Restaurant dataset, in real ex-
periments, all methods have more than 92% F-measure what-
ever the workers’ accuracy is, because workers have high
quality on this easy dataset. However, in our simulation ex-
periment, for 70% accuracy, Power+ achieves 92% F-measure
while Power, Trans, ACD, and GCER have 76%, 65%,
77% and 75% F-measure respectively. For 80% accuracy,
Power+ still outperforms other methods, and all the meth-
ods have improvement on quality compared with 70%. For
90% accuracy, all methods can achieve high quality, e.g.,
95%, because the workers return high-quality answers. On
the Cora dataset, for 70% accuracy, Power+ and ACD have
high F-measure and reach 91% due to tolerating crowd’s er-
rors while Power has F-measure 86%. Trans and GCER
expand the error propagation due to the transitivity rule, whose
F-measures are 60% and 65%. For 80% accuracy, Power+
and ACD improve to 93%. And Power, Trans and GCER
are 88%, 80% and 82% respectively. For 90% accuracy, all
methods improve the quality to above 90%. Power+ and
ACD still outperform others. On the ACMPub dataset, simi-
larly to the Restaurant and Cora datasets, Power+ and
ACD outperform other methods when worker accuracy is
low. If worker accuracy is high, all methods achieve nearly
the same quality.

#Questions. Our method saves 80× than Trans, ACD and
GCER for Restaurant, 10× than Trans, ACD and GCER
for Cora, and 200× than Trans, ACD and GCER for ACMPub.

#Iterations. Since the worker accuracy has little impact on
the number of iterations, there is little difference between
real experiments and simulation experiments. Our method
still saves 2-5× latency cost on the three datasets.

8.7 Evaluating Similarity Functions

We evaluate the effect of different similarity functions. On
each dataset, we respectively use Jaccard, edit similarity, and

0.2
0.4
0.6
0.8

1

Jaccard Edit-Distance Bigram

F
-m

e
a

s
u

re

Similarity Function

(a) Restaurant

Power
Power+

Trans

ACD
GCER

0.2
0.4
0.6
0.8

1

Jaccard Edit-Distance Bigram

F
-m

e
a

s
u

re

Similarity Function

(b) Cora

Power
Power+

Trans

ACD
GCER

0.2
0.4
0.6
0.8

1

Jaccard Edit-Distance Bigram

F
-m

e
a

s
u

re

Similarity Function

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Fig. 32: Quality Comparison by Varying Similarity
Functions (Real Experiments).

1
10

10
2

10
3

10
4

Jaccard Edit-Distance Bigram

#
 o

f
q

u
e

s
ti
o

n
s

Similarity Function

(a) Restaurant

Power
Power+

Trans

ACD
GCER

1
10

10
2

10
3

10
4

Jaccard Edit-Distance Bigram

#
 o

f
q

u
e

s
ti
o

n
s

Similarity Function

(b) Cora

Power
Power+

Trans

ACD
GCER

10
10

2
10

3
10

4
10

5

Jaccard Edit-Distance Bigram

#
 o

f
q
u
e
s
ti
o
n
s

Similarity Function

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Fig. 33: #Question Comparison by Varying Similarity
Functions (Real Experiments).

0

10

20

30

Jaccard Edit-Distance Bigram

#
 o

f
it
e
r
a
ti
o
n
s

Similarity Function

(a) Restaurant

Power
Power+

Trans

ACD
GCER

0

10

20

30

Jaccard Edit-Distance Bigram

#
 o

f
it
e
r
a
ti
o
n
s

Similarity Function

(b) Cora

Power
Power+

Trans

ACD
GCER

0

10

20

Jaccard Edit-Distance Bigram

#
 o

f
it
e
r
a
ti
o
n
s

Similarity Function

(c) ACMPub

Power
Power+

Trans

ACD
GCER

Fig. 34: #Iteration Comparison by Varying Similarity
Functions (Real Experiments).

bigram on every attribute to generate the graph and compare
the results for the three similarity functions. Note that on
the Restaurant dataset, Jaccard is not a good similarity
function for the Name attribute as there are only 1-2 words
in the restaurant name; while on the ACMPub dataset, edit
similarity is not a good choice for the Title attribute as there
are many words in the paper title. We want to test whether
our methods and state-of-the-art approaches can tolerate the
noisy results generated by different similarity functions. We
use the worker accuracy of 90%. Figures 32-34 show the
results. We make the following observations.

Firstly, different similarity functions have little impact
on the quality among all the methods, because all of these
methods use a property that the pairs with large similarities
have large possibility to refer to the same entity. On the real
datasets, most of the similar functions satisfy this property.
For our methods, if the functions do not significantly inval-
idate the partial order, they can be used in our methods. In
addition, existing methods use record-level similarity while
our methods utilize attribute-level similarity to evaluate dif-
ferent pairs. Thus our methods can use more information
to determine the partial order. Even if there exist some noisy
functions on some attributes (e.g., Jaccard for Name and edit
similarity for Title), our methods can utilize other similarity
functions to obtain a good partial order and thus can correct
the errors caused by the noisy similarity functions. Thus our
methods are robust on real datasets, even for some noisy
functions. Secondly, the similarity functions have little ef-
fect on the number of questions, as the number of questions
is determined by the graph structure and the graphs gener-

22 C. CHAI et al.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

P
re

c
is

io
n

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

P
re

c
is

io
n

questions

(b) Cora

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

P
re

c
is

io
n

questions

(c) AcmPub

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 35: Budget-Aware: Simulation Experiment (70%):
Precision.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

R
e

c
a

ll

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

R
e

c
a

ll

questions

(b) Cora

4E-04 2E-03 4E-03 6E-03 7.5E-03

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

R
e

c
a

ll

questions

(c) AcmPub

1.5E-03 3E-03 4E-03 8E-03 1.1E-02

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 36: Budget-Aware: Simulation Experiment (70%):
Recall.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

F
-m

e
a

s
u

re

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 25 50 75 100

F
-m

e
a

s
u

re

questions

(b) Cora

0.00 0.00 0.01 0.01 0.01

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

F
-m

e
a

s
u

re

questions

(c) AcmPub

0.002 0.01 0.01 0.02 0.02

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 37: Budget-Aware: Simulation Experiment (70%):
F-Measure.

ated by different functions have no much difference. Thirdly,
the similarity functions have little impact on the number of
iterations, as the number of iterations is determined by the
number of questions but not by the similarity functions.

8.8 Evaluation on Budget-Aware Methods

We compare our methods (Budget without error-tolerant
techniques and Budget+with error-tolerant techniques) with
Power+ and other state-of-the-art methods mentioned above.
For Budget proposed in Section 7.2, we easily extend it
to tolerate errors, i.e. Budget+, by utilizing the method in
section 6. We just need to color the vertex BLUE if its confi-
dence is low. After all vertices in the graph are colored, we
use the GREEN vertices to color these BLUE ones.

8.8.1 Evaluation on Serial Algorithms

We first evaluate the serial algorithm by varying the qual-
ity of different kinds of workers. We evaluate the precision,
recall and F-Measure by varying the budget. Figures 35-
43 show the experimental results on the simulation exper-
iments. We make the following observations.

Firstly, different methods have similar precision except
Budget because Budget does not tolerate errors. When
the worker quality is 70%, we can see that in Figure 35
on the Restaurant dataset, Budget has a low precision,
around 60%, because it does not have an error tolerant strat-
egy, which may deduce the colors of non-asked vertices in-
correctly. Budget+ and Power+ achieve the highest pre-

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

P
re

c
is

io
n

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

P
re

c
is

io
n

questions

(b) Cora

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

P
re

c
is

io
n

questions

(c)AcmPub

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 38: Budget-Aware: Simulation Experiment (80%):
Precision.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

R
e

c
a

ll

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

R
e

c
a

ll

questions

(b) Cora

4E-04 2.5E-03 5E-03 6.5E-03 8E-03

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

R
e

c
a

ll

questions

(c)AcmPub

2E-03 3.5E-03 5E-03 9E-03 1.2E-02

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 39: Budget-Aware: Simulation Experiment (80%):
Recall.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

F
-m

e
a

s
u

re

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 25 50 75 100

F
-m

e
a

s
u

re

questions

(b) Cora

0.00 0.00 0.01 0.01 0.01

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

F
-m

e
a

s
u

re

questions

(c)AcmPub

0.002 0.01 0.01 0.02 0.02

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 40: Budget-Aware: Simulation Experiment (80%):
F-Measure.

cision, above 90% because they can tolerate errors by post-
processing low-confident vertices. Though ACD can also tol-
erate errors, it is worse than Budget+ and Power+ be-
cause its technique cannot work well under a small budget.
Since Trans and GCER do not consider errors, they have a
lower precision (about 90%) than Budget+ and Power+.
On Cora and ACMPub datasets, Budget+ and Power+
both achieve the highest precision, which are about 95% and
90% respectively.

Secondly, Budget and Budget+ achieve much higher
recall than other methods. When the worker quality is 70%,
we can see that in Figure 36 on the Restaurant dataset,
even if we only ask 5 questions, Budget can achieve more
than 50% recall because it can select these large benefit ver-
tices. Trans, GCER and ACD achieve nearly 0 recall be-
cause they do not have graph model to deduce more results.
Furthermore, with 5 questions, there is no enough transi-
tivities that can be used to reduce the cost. The recall of
Budget+ is 0 because some vertices may be colored BLUE

due to the error-tolerant technique. However, with the bud-
get increasing, Budget+ achieves the highest recall because
it can tolerant error and select vertices with large benefits.
When we ask 25 questions, Budget+ achieves recall of
90%, while Power+ only achieves recall of 78%. When we
ask more than 25 questions, the recall of Budget+ remains
stable because we have almost found out all GREEN ver-
tices. On Cora, at the beginning, Budget+ and Budget
achieve more than 60% recall while other methods only get
a very small recall. With the budget increasing, the recall

A Partial-Order-Based Framework for Cost-Effective Crowdsourced Entity Resolution 23

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

P
re

c
is

io
n

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

P
re

c
is

io
n

questions

(b) Cora

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

P
re

c
is

io
n

questions

(c) AcmPub

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 41: Budget-Aware: Simulation Experiment (90%):
Precision.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

R
e

c
a

ll

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

R
e

c
a

ll

questions

(b) Cora

4E-04 3E-03 5.5E-03 7E-03 9E-03

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

R
e

c
a

ll

questions

(c) AcmPub

2.1E-03 4E-03 5E-03 1E-02 1.3E-02

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 42: Budget-Aware: Simulation Experiment (90%):
Recall.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

F
-m

e
a

s
u

re

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 25 50 75 100

F
-m

e
a

s
u

re

questions

(b) Cora

0.00 0.00 0.01 0.01 0.01

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

F
-m

e
a

s
u

re

questions

(c) AcmPub

2.1E-03 4E-03 5E-03 1E-02 1.3E-02

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 43: Budget-Aware: Simulation Experiment (90%):
F-Measure.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

P
re

c
is

io
n

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

P
re

c
is

io
n

questions

(b) Cora

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

P
re

c
is

io
n

questions

(c) AcmPub

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 44: Budget-Aware: Real experiment (70%): Precision.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

R
e

c
a

ll

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 25 50 75 100

R
e

c
a

ll

questions

(b) Cora

4E-04 2E-03 3.5E-03 4E-03 5E-03

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

R
e

c
a

ll

questions

(c) AcmPub

2E-03 3E-03 4.5E-03 1E-02 1.1E-02

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 45: Budget-Aware: Real experiment (70%): Recall.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

F
-m

e
a

s
u

re

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 25 50 75 100

F
-m

e
a

s
u

re

questions

(b) Cora

0.003 0.006 0.01 0.01 0.02

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

F
-m

e
a

s
u

re

questions

(c) AcmPub

0.004 0.01 0.01 0.02 0.02

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 46: Budget-Aware: Real experiment (70%):
F-Measure.

of Budget+ remains stable after only asking 50 questions.
On ACMPub, similar to other two datasets, Budget+ has
the best performance on both recall and costs.

Thirdly, since our methods outperform other approaches
on recall and have similar precision, our methods achieve
better F-measure. For example, in Figure 37, on Restaurant
dataset, Budget+ achieves 94% F-measure while Trans,

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

P
re

c
is

io
n

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

P
re

c
is

io
n

questions

(b) Cora

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

P
re

c
is

io
n

questions

(c) AcmPub

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 47: Budget-Aware: Real experiment (80%): Precision.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

R
e

c
a

ll

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 25 50 75 100

R
e

c
a

ll

questions

(b) Cora

4E-04 2E-03 4E-03 6E-03 7E-03

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

R
e

c
a

ll

questions

(c) AcmPub

2E-03 3E-03 4.5E-03 1E-02 1.2E-02

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 48: Budget-Aware: Real experiment (80%): Recall.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

F
-m

e
a

s
u

re

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 25 50 75 100

F
-m

e
a

s
u

re

questions

(b) Cora

0.003 0.006 0.01 0.01 0.02

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

F
-m

e
a

s
u

re

questions

(c) AcmPub

0.004 0.01 0.01 0.02 0.02

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 49: Budget-Aware: Real experiment (80%):
F-Measure.

GCER and ACD only have F-measure of 50%. On Cora and
ACMPub datasets, Budget+ has F-measures 83% and 82%
respectively while other approaches only have F-measures
close to zero, because their recalls are close to zero. The
reason why Trans, ACD, GCER have such low recall and
F-measure is that they aim to minimize the number of ques-
tions to get all the answers. For some selected questions,
they have low inference power to infer the answers of other
questions and thus they have low recall. For example, on
Cora dataset, there are 12793 matching pairs. Power+ can
achieve a stable high recall given only a budget of 100 ques-
tions, because Power+ can infer more than 10000 match-
ing pairs based on these 100 questions. However, Trans
can only infer less than 100 matching pairs. In other words,
Trans, ACD, and GCER have low inference power, and with
a small budget and the large number of matching pairs in
ground truth, they cannot infer the answers of many tasks
and thus they have low recall.

Fourthly, with the increase of budgets, the precision de-
creases and the recall increases, because we can utilize more
budgets to get more results and the side effect is that it intro-
duces more errors due to transitivities and crowd errors (for
Trans, ACD, GCER) and partial order and crowd errors (for
Budget and Power). Besides, the F-measure goes up be-
cause the recall increases more than the precision decreases.

Fifthly, with the increase of worker quality, the precision
increases but the recall keeps stable, as higher worker qual-
ity leads to high result accuracy while it cannot improve the
recall which is determined by the number of deduced pairs.
When the worker quality is 80%, we can see that in Fig-

24 C. CHAI et al.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

P
re

c
is

io
n

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

P
re

c
is

io
n

questions

(b) Cora

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

P
re

c
is

io
n

questions

(c) AcmPub

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 50: Budget-Aware: Real experiment (90%): Precision.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

R
e

c
a

ll

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 25 50 75 100

R
e

c
a

ll

questions

(b) Cora

4E-04 2E-03 4E-03 6.5E-03 7.5E-03

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

R
e

c
a

ll

questions

(c) AcmPub

2E-03 4E-03 5.5E-03 1E-01 1.3E-02

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 51: Budget-Aware: Real experiment (90%): Recall.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

F
-m

e
a

s
u

re

questions

(a) Restaurant

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

5 25 50 75 100

F
-m

e
a

s
u

re

questions

(b) Cora

0.003 0.007 0.01 0.01 0.02

Budget
Budget+
Power+

Trans
ACD

GCER

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

F
-m

e
a

s
u

re

questions

(c) AcmPub

0.004 0.01 0.01 0.03 0.03

Budget
Budget+
Power+

Trans
ACD

GCER

Fig. 52: Budget-Aware: Real experiment (90%):
F-Measure.

ure 38, the precision of Budget+ remains the highest be-
cause it can tolerate errors. However, the difference between
other methods and Budget+ is reduced because workers
are more accurate. For example, on Cora, the precision of
Trans, ACD and GCER are about 94% and Budget+ is
about 95%. In Figure 39, Budget+ achieves the best per-
formance among all methods, and its recall remains stable
after several questions and is much higher than others. When
the worker quality is 90%, we can see that in Figure 41,
the precision of all methods is high because workers sel-
dom make mistakes. For recall, Budget+ achieves the best
result. Since the precision increases and the recall keeps sta-
ble, F-measure increases obviously. We can see from Fig-
ures 37 and 43 that on Cora dataset, F-measure improves
from 92% to 95% with the increase of workers’ accuracy.

We then evaluate the algorithms on real settings on real
crowdsourcing platforms. Figures 44-52 show the experi-
mental results on the real experiments. We make the fol-
lowing observations. Firstly, for the real experiment, when
the worker quality is 70% (Figure 44), on Restaurant,
the precision of all methods is high, around 96% because al-
though the worker quality is only 70%, the question is easy
for human to answer (the voting result by multiple workers
has high quality). On Cora, which is difficult for human
to answer, when the budget is around 100, Budget+ and
Power+ achieve the highest precision, about 80%, while
other methods is about 75%. Similarly, on ACMPub, Budget+
and Power+ achieve more precision than other methods
because they can tolerate errors. For recall, like the simu-
lation experiment, Budget+ performs the best. Budget+
achieves recall of 90%, 83% and 80% after asking 25, 50 and

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

P
re

c
is

io
n

questions

(a) Restaurant

Budget+

Magellan

Trans_ML

ACD_ML

GCER_ML

0
0.2
0.4
0.6
0.8

1

5 25 50 75 100

P
re

c
is

io
n

questions

(b) Cora

Budget+

Magellan

Trans_ML

ACD_ML

GCER_ML

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

P
re

c
is

io
n

questions

(c) AcmPub

Budget+

Magellan

Trans_ML

ACD_ML

GCER_ML

Fig. 53: Budget Aware. Machine-based Method
Comparison: Precision.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

R
e

c
a

ll

questions

(a) Restaraut

Budget+

Magellan

Trans_ML

ACD_ML

GCER_ML

0
0.2
0.4
0.6
0.8

1

5 25 50 75 100

R
e

c
a

ll

questions

(b) Cora

Budget+

Magellan

Trans_ML

ACD_ML

GCER_ML

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

R
e

c
a

ll

questions

(c) AcmPub

Budget+

Magellan

Trans_ML

ACD_ML

GCER_ML

Fig. 54: Budget Aware. Machine-based Method
Comparison: Recall.

0
0.2
0.4
0.6
0.8

1

5 15 25 35 45

F
-m

e
a

s
u

re

questions

(a) Restaurant

Budget+

Magellan

Trans_ML

ACD_ML

GCER_ML

0
0.2
0.4
0.6
0.8

1

5 25 50 75 100

F
-m

e
a

s
u

re

questions

(b) Cora

Budget+

Magellan

Trans_ML

ACD_ML

GCER_ML

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50

F
-m

e
a

s
u

re

questions

(c) AcmPub

Budget+

Magellan

Trans_ML

ACD_ML

GCER_ML

Fig. 55: Budget Aware. Machine-based Method
Comparison: F-measure.

30 questions on Restaurant, Cora and ACMPub respec-
tively. And afterwards, the recall remains stable, which is
much better than any other methods. For example, Power+
is only 70% when budget is 25 on Restaurant. When
the worker quality is 80% or 90%, similarly, the precision
of all methods is high and Budget+ performs the best on
recall on all datasets. At last, since our methods outperform
existing techniques on both precision and recall, obviously
achieve high F-measure.

Budget and Budget+ have higher recall, precision
and F-measure than other methods with different budgets.

8.8.2 Evaluation on Parallel Algorithms

We compare the serial and parallel algorithms by varying
worker quality on the three datasets. Tables 5, 6 and 7 show
the experimental results on the simulation experiments. We
make the following observations.

Firstly, the serial algorithm takes many more (about 10-
20×) rounds than the parallel algorithm. If one cares about
the latency, the serial algorithm is not acceptable. Therefore
we design the parallel algorithm in section 7.2.2. We can see
from the table that the parallel algorithm takes 5 iterations to
complete the task, which is significantly less than that of se-
rial algorithm. This is because our parallel algorithm can ask
many beneficial and independent questions in each iteration.
Secondly, the parallel algorithm takes nearly the same qual-
ity with the serial algorithm. In Table 5, on Restaurant,
for quality, the recall, precision and f-measure are similar
to the serial algorithm. And what’s more, different worker

A Partial-Order-Based Framework for Cost-Effective Crowdsourced Entity Resolution 25

Table 5: Evaluation on Parallel Algorithms (Restaurant, B = 65).

Worker Quality # iterations Precision Recall F-measure
Parallel Serial Parallel Serial Parallel Serial Parallel Serial

70% 5 65 0.95 0.96 0.91 0.92 0.93 0.94
80% 5 65 0.97 0.97 0.92 0.93 0.94 0.95
90% 5 65 0.99 0.99 0.95 0.94 0.97 0.96

Table 6: Evaluation on Parallel Algorithms (Cora, B = 100).

Worker Quality # iterations Precision Recall F-measure
Parallel Serial Parallel Serial Parallel Serial Parallel Serial

70% 5 100 0.73 0.75 0.84 0.84 0.77 0.79
80% 5 100 0.82 0.81 0.85 0.85 0.83 0.83
90% 5 100 0.83 0.83 0.84 0.85 0.83 0.84

Table 7: Evaluation on Parallel Algorithms (AcmPub, B = 70).

Worker Quality # iterations Precision Recall F-measure
Parallel Serial Parallel Serial Parallel Serial Parallel Serial

70% 5 70 0.82 0.83 0.84 0.84 0.83 0.83
80% 5 70 0.85 0.87 0.85 0.86 0.85 0.86
90% 5 70 0.92 0.92 0.88 0.87 0.90 0.89

qualities have little impact on the number of iterations. On
Cora, the parallel algorithm takes 5 iterations to achieve a
high and stable quality among all kinds of worker quality.
On ACMPub, it takes 4 iterations and B = 70 to achieve the
task with high quality.

8.8.3 Comparison with Machine-based Algorithm

We compare our method Budget+with state-of-the-art machine-
based entity resolution system Magellan [21]. Magellan
first uses blocking rules to prune the pairs with low possi-
bility to be matched. Then it active learning to selec some
training data and trains a matching model using random for-
est. Next it uses the matching model to evaluate each non-
pruning pairs. Magellan uses active learning to select the
training data. We can also use crowdsourced question se-
lection methods, e.g., ACD, Trans and GCER, to select the
training data. We compare with Magellan and Magellan
+Trans, Magellan +ACD, Magellan +GCER by vary-
ing the budget. We call these hybrid approaches as Tran ML,
ACD ML and GCER ML. Figures 53-55 show the results.

We can see that all methods achieve nearly the same
precision, while Budget+ is slightly better than the other
two. On Cora, the precision of Budget+ is about 10 per-
cent higher than other methods because the dataset is dirtier
than others and our methdo can tolerate errors. In Figure
54, we can see that Budget+ has a much better recall than
others. For example, on Restaurant dataset, Budget+
achieves 95% recall given the budget of 45 questions, while
Magellan has 80% recall and Tran ML, GCER ML and
ACD ML have 78%, 56% and 55% respectively. This because
machine-based method cannot perform very well given a
small size of budget(training set). Tran ML, GCER ML and

ACD ML are worse than Magellan becaues they aim to se-
lect some questions to infer all the answers but not maximize
the inference power with the given budget. Since Budget+
can leverage both human intelligence and machine-based
features to select suitable questions and infer a large num-
ber of answers according to the partial order graph model, it
can achieve a high recall. Since our method performs well
on both precision and recall, we can see from 55 that our
method also performs better on F-measure.

9 Conclusion

We proposed a partial-order based crowdsourced entity reso-
lution framework. We defined a partial order on record pairs
based on their similarities on every attribute. We proposed a
graph-based coloring strategy to deduce the answer of some
pairs based on the answers of asked pairs. We devised two
algorithms to construct the graph and proposed two group-
ing methods to reduce the graph size. We proposed effective
algorithms to judiciously select pairs to ask in order to mini-
mize the number of asked pairs. We developed error-tolerant
techniques to tolerate the errors. We designed a budget-aware
algorithm to maximize the number of matching pairs within
a given budget. Experimental results show that our method
saves more money than existing approaches while keeping
the same quality.

References

1. A.P.Dawid and A.M.Skene. Maximum likelihood estimation of
observer error-rates using em algorithm. Appl.Statist., 28(1):20–
28, 1979.

26 C. CHAI et al.

2. B. I. Aydin, Y. S. Yilmaz, Y. Li, Q. Li, J. Gao, and M. Demirbas.
Crowdsourcing for multiple-choice question answering. In AAAI,
pages 2946–2953, 2014.

3. C. C. Cao, J. She, Y. Tong, and L. Chen. Whom to ask? jury selec-
tion for decision making tasks on micro-blog services. PVLDB,
5(11):1495–1506, 2012.

4. C. Chai, G. Li, J. Li, D. Deng, and J. Feng. Cost-effective crowd-
sourced entity resolution: A partial-order approach. In Proceed-
ings of the 2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA, USA, June
26 - July 01, 2016, pages 969–984, 2016.

5. X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz.
Pairwise ranking aggregation in a crowdsourced setting. In
WSDM, pages 193–202, 2013.

6. S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the crowd
for top-k and group-by queries. In ICDT, pages 225–236, 2013.

7. X. Dong, A. Y. Halevy, and J. Madhavan. Reference reconcilia-
tion in complex information spaces. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Bal-
timore, Maryland, USA, June 14-16, 2005, pages 85–96, 2005.

8. B. Eriksson. Learning to top-k search using pairwise comparisons.
In AISTATS, pages 265–273, 2013.

9. J. Fan, G. Li, B. C. Ooi, K. Tan, and J. Feng. icrowd: An adaptive
crowdsourcing framework. In SIGMOD, pages 1015–1030, 2015.

10. S. Felsner, V. Raghavan, and J. P. Spinrad. Recognition algorithms
for orders of small width and graphs of small dilworth number.
Order, 20(4):351–364, 2003.

11. M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin.
Crowddb: answering queries with crowdsourcing. In SIGMOD,
pages 61–72, 2011.

12. D. R. Fulkerson. Note on dilworth’s decomposition theorem for
partially ordered sets. American Mathematical Society, 7(4):701–
702, 1956.

13. C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. W.
Shavlik, and X. Zhu. Corleone: hands-off crowdsourcing for entity
matching. In SIGMOD, pages 601–612, 2014.

14. S. Guo, A. G. Parameswaran, and H. Garcia-Molina. So who
won?: dynamic max discovery with the crowd. In SIGMOD, pages
385–396, 2012.

15. C.-J. Ho, S. Jabbari, and J. W. Vaughan. Adaptive task assignment
for crowdsourced classification. In ICML, pages 534–542, 2013.

16. P. G. Ipeirotis, F. Provost, and J. Wang. Quality management on
amazon mechanical turk. In SIGKDD workshop on human com-
putation, pages 64–67. ACM, 2010.

17. M. Joglekar, H. Garcia-Molina, and A. G. Parameswaran. Eval-
uating the crowd with confidence. In SIGKDD, pages 686–694,
2013.

18. D. R. Karger, S. Oh, and D. Shah. Iterative learning for reliable
crowdsourcing systems. In NIPS, pages 1953–1961, 2011.

19. L. Kazemi, C. Shahabi, and L. Chen. Geotrucrowd: trustwor-
thy query answering with spatial crowdsourcing. In SIGSPATIAL,
pages 304–313, 2013.

20. A. R. Khan and H. Garcia-Molina. Hybrid strategies for finding
the max with the crowd. Technical report, 2014.

21. P. Konda, S. Das, P. S. G. C., A. Doan, A. Ardalan, J. R. Ballard,
H. Li, F. Panahi, H. Zhang, J. F. Naughton, S. Prasad, G. Krishnan,
R. Deep, and V. Raghavendra. Magellan: Toward building entity
matching management systems. PVLDB, 9(12):1197–1208, 2016.

22. M. Kreveld, M. Overmars, O. Schwarzkopf, M. d. Berg, and
O. Schwartskopf. Computational geometry: algorithms and ap-
plications, 1997.

23. G. Li. Human-in-the-loop data integration. PVLDB, 10(12):2006–
2017, 2017.

24. G. Li, C. Chai, J. Fan, X. Weng, J. Li, Y. Zheng, Y. Li, X. Yu,
X. Zhang, and H. Yuan. CDB: optimizing queries with crowd-
based selections and joins. In SIGMOD, pages 1463–1478, 2017.

25. G. Li, J. Wang, Y. Zheng, and M. J. Franklin. Crowdsourced
data management: A survey. IEEE Trans. Knowl. Data Eng.,
28(9):2296–2319, 2016.

26. X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. CDAS: A
crowdsourcing data analytics system. PVLDB, 5(10):1040–1051,
2012.

27. A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller.
Human-powered sorts and joins. PVLDB, 5(1):13–24, 2011.

28. A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowdsourced
databases: Query processing with people. In CIDR, pages 211–
214, 2011.

29. N. Megiddo and K. J. Supowit. On the complexity of some com-
mon geometric location problems. SIAM journal on computing,
13(1):182–196, 1984.

30. W. R. Ouyang, L. M. Kaplan, and et al. Debiasing crowdsourced
quantitative characteristics in local businesses and services. In
IPSN, pages 190–201, 2015.

31. A. G. Parameswaran, S. P. Boyd, H. Garcia-Molina, A. Gupta,
N. Polyzotis, and J. Widom. Optimal crowd-powered rating and
filtering algorithms. PVLDB, 7(9):685–696, 2014.

32. A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis,
A. Ramesh, and J. Widom. Crowdscreen: algorithms for filtering
data with humans. In SIGMOD, pages 361–372, 2012.

33. A. G. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis,
and J. Widom. Deco: declarative crowdsourcing. In CIKM, pages
1203–1212, 2012.

34. H. Park and J. Widom. Query optimization over crowdsourced
data. PVLDB, 6(10):781–792, 2013.

35. H. Park and J. Widom. Crowdfill: collecting structured data from
the crowd. In SIGMOD, pages 577–588, 2014.

36. T. Pfeiffer, X. A. Gao, Y. Chen, A. Mao, and D. G. Rand. Adaptive
polling for information aggregation. In AAAI, 2012.

37. V. C. Raykar, S. Yu, L. H. Zhao, A. K. Jerebko, C. Florin, G. H.
Valadez, L. Bogoni, and L. Moy. Supervised learning from mul-
tiple experts: whom to trust when everyone lies a bit. In ICML,
pages 889–896, 2009.

38. A. D. Sarma, A. G. Parameswaran, H. Garcia-Molina, and A. Y.
Halevy. Crowd-powered find algorithms. In ICDE, pages 964–
975, 2014.

39. B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar. Crowd-
sourced enumeration queries. In ICDE, pages 673–684, 2013.

40. M. Venanzi, J. Guiver, G. Kazai, P. Kohli, and M. Shokouhi.
Community-based bayesian aggregation models for crowdsourc-
ing. In WWW, pages 155–164, 2014.

41. P. Venetis, H. Garcia-Molina, K. Huang, and N. Polyzotis. Max
algorithms in crowdsourcing environments. In WWW, pages 989–
998, 2012.

42. V. Verroios and H. Garcia-Molina. Entity resolution with crowd
errors. In ICDE, pages 219–230, 2015.

43. N. Vesdapunt, K. Bellare, and N. N. Dalvi. Crowdsourcing algo-
rithms for entity resolution. PVLDB, 2014.

44. J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowd-
sourcing entity resolution. PVLDB, 2012.

45. J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging
transitive relations for crowdsourced joins. In SIGMOD, pages
229–240, 2013.

46. S. Wang, X. Xiao, and C. Lee. Crowd-based deduplication: An
adaptive approach. In SIGMOD, pages 1263–1277, 2015.

47. S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question selec-
tion for crowd entity resolution. PVLDB, 2013.

48. J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. R. Movellan.
Whose vote should count more: Optimal integration of labels from
labelers of unknown expertise. In NIPS, pages 2035–2043, 2009.

49. P. Ye, U. EDU, and D. Doermann. Combining preference and ab-
solute judgements in a crowd-sourced setting. In ICML Workshop,
2013.

A Partial-Order-Based Framework for Cost-Effective Crowdsourced Entity Resolution 27

50. C. J. Zhang, L. Chen, H. V. Jagadish, and C. C. Cao. Reduc-
ing uncertainty of schema matching via crowdsourcing. PVLDB,
6(9):757–768, 2013.

51. Z. Zhao, F. Wei, M. Zhou, W. Chen, and W. Ng. Crowd-selection
query processing in crowdsourcing databases: A task-driven ap-
proach. In EDBT, pages 397–408, 2015.

52. Z. Zhao, D. Yan, W. Ng, and S. Gao. A transfer learning based
framework of crowd-selection on twitter. In SIGKDD, pages
1514–1517, 2013.

53. Y. Zheng, R. Cheng, S. Maniu, and L. Mo. On optimality of jury
selection in crowdsourcing. In EDBT, pages 193–204, 2015.

54. Y. Zheng, G. Li, and R. Cheng. DOCS: domain-aware crowd-
sourcing system. PVLDB, 10(4):361–372, 2016.

55. Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng. Truth inference in
crowdsourcing: Is the problem solved? PVLDB, 10(5):541–552,
2016.

56. Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng. QASCA: A
quality-aware task assignment system for crowdsourcing applica-
tions. In SIGMOD, pages 1031–1046, 2015.

	Introduction
	Preliminaries
	Partial-Order-Based Framework
	Graph Construction
	Question Selection
	Tolerating Errors
	Budget-Aware Methods
	Experiment
	Conclusion

