The VLDB Journal
https://doi.org/10.1007/s00778-019-00588-3

SPECIAL ISSUE PAPER

®

Check for
updates

Making data visualization more efficient and effective: a survey

Xuedi Qin' - Yuyu Luo' - Nan Tang? - Guoliang Li’

Received: 31 December 2018 / Revised: 16 October 2019 / Accepted: 21 October 2019

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Data visualization is crucial in today’s data-driven business world, which has been widely used for helping decision making
that is closely related to major revenues of many industrial companies. However, due to the high demand of data processing
w.r.t. the volume, velocity, and veracity of data, there is an emerging need for database experts to help for efficient and
effective data visualization. In response to this demand, this article surveys techniques that make data visualization more
efficient and effective. (1) Visualization specifications define how the users can specify their requirements for generating
visualizations. (2) Efficient approaches for data visualization process the data and a given visualization specification, which
then produce visualizations with the primary target to be efficient and scalable at an interactive speed. (3) Data visualization
recommendation is to auto-complete an incomplete specification, or to discover more interesting visualizations based on a

reference visualization.

Keywords Data visualization - Visualization languages - Efficient data visualization - Data visualization recommendation

1 Introduction

Data visualization, which transforms abstract data into phys-
ical visions (for example, length, position, shape, color, and
so on), is a powerful means to present compelling stories of
data to humans who are more visually oriented. Nowadays,
all organizations have more data than ever at their disposal.
Consequently, more and more organizations use data and
advanced analytics to inform strategic and operational deci-
sions. Data visualization is a natural fit for both giving a good
overview of massive data, and making it easier to interpret
the results of data analytics to data scientists.

B Guoliang Li
liguoliang @tsinghua.edu.cn

Xuedi Qin
qxd17 @mails.tsinghua.edu.cn

Yuyu Luo
luoyy 18 @mails.tsinghua.edu.cn

Nan Tang

ntang @hbku.edu.qa

Department of Computer Science and Technology, Tsinghua
University, Beijing, China

2 Qatar Computing Research Institute, HBKU, Doha, Qatar

Published online: 19 November 2019

The Blossom of Data Visualization Undoubtedly, data visu-
alization has made great strides in many fields, contributed
by multiple communities.

The computer graphics community has significantly
advanced the technology of rendering beautiful yet self-
interpretable visualizations using e.g., D3 [1].

The visualization community makes it easy for users to
specify and interact with visualizations, such as D3 [1], Vega-
Lite [2], VizQL [3], Tableau [4], and Microsoft Power BI [5].

The database community has significantly improved the
user experience of seeing and interacting with data visu-
alization in real time, even for big data (e.g., for millions
or billions of records). For example, Hyper DB [6-8] is
the back-end engine to power up Tableau [4], and the Fal-
con project (available at GitHub https://github.com/uwdata/
falcon) makes D3 [1] highly scalable supported by Apache
Spark.

In addition, data visualization has also been extensively
used in many database-related applications, such as Excel [9],
Google Sheets [10], Oracle Data Visualization Desktop [11],
IBM DB2 [12], Amazon Quicksight [13], Microsoft Power
BI [5], and many others.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00588-3&domain=pdf
http://orcid.org/0000-0002-1398-0621
https://github.com/uwdata/falcon
https://github.com/uwdata/falcon

X.Qinetal.

i v v v

Data _ Data . Data

Import Preparation Manipulation —[Mapping]|— [Rendering

Fig.1 The data visualization pipeline

The Pipeline of Data Visualization A typical iterative data
visualization pipeline' is shown in Fig. 1.

1. Data import is to retrieve the required data from a desired
data source.

2. Data preparation is to prepare the imported data for
visualization, by e.g., normalizing values, correcting
erroneous entries, and interpolating missing values.

3. Data manipulation is to select the data to be visualized
(a.k.a. filtering from the visualization community) and
possibly with other common operations such as joining
and grouping.

4. Mapping is to map the data obtained from the above
process to geometric primitives (e.g., points and lines),
together with their attributes (e.g., color, position, and
size).

5. Rendering is to transform the above geometric data into
a visual representation.

Based on the pipeline, we have identified three directions

that make data visualization more efficient and effective, yet
relevant to database researchers.
(1) Visualization Specifications Visualization specifications
provide various ways that users can specify what they want.
There have been a great many studies from both visual-
ization [1,2,14-16] and database community [3,17-19] on
visualization specifications. We include it in this survey for
two reasons:

— Self-completeness: It is important for readers to know
how to generate data visualizations.

— Language design perspective: It mainly serves the “Map-
ping” component of the pipeline (Fig. 1), by specifying
how to map different information to visual elements.
However, it has some overlap with the “Data Manipula-
tion” component, e.g., grouping and ordering operations
can be specified in either step, which triggers a design
choice problem between database languages (such as
SQL) and visualization languages (see Sect. 2 for more
details).

(2) Efficient Approaches for Data Visualization

! Note that, our pipeline and terminologies used in this paper are slightly
different than those used in the visualization community. Please refer to
https://infovis-wiki.net/wiki/Visualization_Pipeline for more details.

@ Springer

In order to effectively involve users in the iterative

pipeline, the process of creating data visualizations must be
efficient and scalable, especially for the two components,
“Data Manipulation” and “Mapping”. Many researchers have
tried both interfacing with powerful and mature data pro-
cessing engines (such as translating visualization queries
to SQL queries to be evaluated over RDBMSs [17,20-
23]), and customizing existing systems for data visualization
tasks (such as HyperDB [6-8] for Tableau). There are also
approximate solutions [24,25] and progressive solutions [26—
28] to cope with big data, in order to provide real-time
response. Both visualization [1,27,29-31] and database com-
munities [22,24,32-34] have signification contributions on
efficient visualization.
(3) Data Visualization Recommendation Precisely specify-
ing a visualization is hard, even for experts, simply because
the understanding of what data to visualize, which story
to tell, and how to visualize is a trial and error exercise
[17,22,35,36]. Hence, it is important that the visualization
system can smartly guide users by providing recommenda-
tions. Several systems [18,32,36,37] allow users to provide
an ambiguous specification, and the system will either
automatically complete the visualizations, or provide rec-
ommendations. The works [20,38—41] from visualization
community and [17,18,22,42] from database community
tackle the problem of visualization recommendation from
various angles.

Related Surveys Most existing surveys on visualization
focus on a specific topic, such as graph visualization [43—
45], linked data visualization [46—48], ontology visualiza-
tion [49], high-dimensional data visualization [50], temporal
data visualization [51]. We survey techniques from a differ-
ent perspective.

For visualization specifications, Mei et al. [52] give a sur-
vey about classification, data source, presentation medium,
etc., of visualization languages. We survey visualization lan-
guages from the stack perspective and emphasize how these
languages are used from a practical perspective. There have
also been some surveys [53,54] on exploratory data analy-
sis tools, which are complementary to our interactive data
visualization—we have added a discussion in the correspond-
ing section.

For efficient approaches for data visualization, Keim et
al. [55] consider how to integrate databases, data visualiza-
tion, and data analysis so a user can easily work in one system,
but without a discussion for efficiency. Idreos et al. [56] sur-
veyed the techniques which aim to improve efficiency in the
data exploration cycles, but we focus on techniques about
how to construct visualizations efficiently. Bikakis [57] gives
an overview of current systems and techniques for big data
visualization, but with a less detailed discussion.

https://infovis-wiki.net/wiki/Visualization_Pipeline

Making data visualization more efficient and effective: a survey

For data visualization recommendation, although there
have been many works [58—61] about recommendation sys-
tems and works about recommendation for different tasks,
e.g., QOS-aware web services [62], social software [63],
E-commerce [64], and there is no survey about data visu-
alization recommendation, where we survey how different
systems recommend insightful visualizations for users auto-
matically.

2 Visualization specifications
2.1 The specification of data visualizations

Generally speaking, data visualization languages consist of
three parts: data, marks (or visual cues), and the mapping
between them.

— Data

— Records: the data that need to be visualized.

— Transformation: the operations—such as group, bin,
filter, and sort—are used to transform the specified
data records.

— Marks (or visual cues)

Type: the visual representation for data records, such
as bar, line or point.

— Size: the width, height of the visualization.

Legend: the legend information.

Miscellaneous: other properties, such as the width
and color of a bar.

— Mapping: maps data to corresponding marks.

GUI-based visual operations are typically translated into
data visualization languages.

2.2 A categorization of data visualization languages

A commonly used strategy to categorize data visualization
languages is based on their expressiveness, as shown in the
left side of Fig. 2. Apparently, the lower level of a language,
the more expressive it is. Higher level languages encapsulate
some low-level details by providing sensible defaults and
adding more constraints (e.g., Excel [9] provides templates
for supported visualizations). Another dimension to under-
stand different levels of visualization specification languages
is through their accessibility (or easy-to-use): the higher level
the language, the easier to use, as also shown in Fig. 2.

Low-level Languages We refer to low-level languages as
those that the users need to specify all mapping elements [1,
14,65-68].

zenvisage[18,36]
DeepEye[32] m SW[19]
Eviza[89] Evizeon[90]

Tableau[4]
iVisDesigner[77]

| Microsoft
Power BI[5]

oogle
1lu 0,81] Tables[76]

ggplot2[71] Vega-Lite[2] Altair[72]
Echarts[16,73] ZQL[18,36]

Prefuse[65]
D3[1] Reactive Vega[68]

Expressiveness
Underspecified
Language

°
[
(%]
«

£

=)

(&)

High-level
Language

Low-level
Language

Accessibility

Fig. 2 An overview of data visualization specifications. Data visual-
ization specifications are classified to four types: low-level language,
high-level language, GUI-based tools and underspecified Language.
The higher level the data visualization specification is, the easier it is to
use and the less expressive it is.

Prefuse [65] and Flare [66] are Java-based visualization
libraries; they encapsulate visual items as a Java class, which
have many visual attributes, and the languages map data to
these visual attributes by setting predefined functions. Proto-
vis [67] is a declarative JavaScript-based graphical toolkit; it
uses simple graphical marks (bar, area, line, etc.) with spec-
ified visual attributes. D3 [1] is a development of Protovis
and is more effective in dealing with users’ interaction (e.g.,
brushing and linking [69]). Vega [14] and Reactive Vega [68]
are similar to Protovis and D3, but they provide declarative
composable interaction grammars.

High-level Languages High-level languages [2,3,16,18,36,
70-73] encapsulate the details of visualization construction,
such as the mapping function, as well as some properties for
marks such as canvas size, legend, and other properties.
ggplot2 [71] is built on top of Wilkinson’s work in 2005
“The Grammar of Graphics [70]”; itis a layered grammar of
graphics embedded in R language. Vega-Lite [2] is a higher
development of Vega and Reactive Vega; it also supports
composable interaction design but provides concise gram-
mars. Recently, Altair [72] made Vega-Lite available to the
Python community. Echarts [16,73] is a latest development
in declarative visualization languages designed to support
quick visualization creation for non-programmers. VizQL [3]
develops from the Polaris system [20] and is the visualization

@ Springer

X.Qinetal.

- e N N
. "axes": [. . .
eLOW—IeveI language: Vega ' High-level language: Vega-Lite '
1 { "orient": "bottom", "scale": "xscale" }, L1]
1 { "orient": "left", "scale": "yscale" } " !
: "width": 600, 1, { N
3 height": 200, "marks": [n Cdata’: { 1
1 “padding": 5, { :: "values": [:
: "data": ["type": "rect”, " {"destination": "Atlanta","passenger_num": 350656}, '
1 { “from": {"data":"table"}, n {"destination": "Boston","passenger_num": 82227}, L]
[“name": "table", “encode”: { :: {"destination": "Chicago","passenger_num": 392253}, :
: "values": [“enter”: { n {"destination": "Dallas","passenger_num": 133957}, 1
1 {"category”: "Atlanta”, "passenger_num”: 356656}, “x": {"scale": "xscale", "field": "category"}, n {"destination": "Houston","passenger_num": 190344}, 1
" oW "o " n L]
' {Vcategory”s "Boston”, "passenger_nun": 82227}, "width": {"scale": "xscale", "band": 1}, n {"destination”: "Los Angeles","passenger_num": 1190475}, ,
1 “category": "Chicago", "passenger_num": 392253},
. {Meategory icago’, "passenger_nu } "y": {"scale": "yscale", "field": "passenger_num"},il {"destination”: "New York","passenger_num": 3145680}, 1
{"category”: "Dallas”, "passenger_num": 133957}, R o - . n o ’ 1
' " - - . y2": {"scale": "yscale", "value": 0} {"destination": "San Francisco","passenger_num": 768042},
1 {"category": "Houston", "passenger_num": 190344}, n K K .]
1 {"category": "Los Angeles”, "passenger_num": 1190475} } [1] {"destination": "Washington","passenger_num": 23085}]
’ - ’ n 1
: {"category": "New York", "passenger_num": 3145680}, ; y n 1 1
N {"category": "San Francisco", "passenger_num": 768042}, 4 n b 1
1 {"category”: "Washington", “passenger_num": 23085} { ': "mark": "bar", :
M] type": "text", m encoding”: { []
1 "
M } encode”: { n "x": {"field": "destination", "type": "ordinal"},]
N n
[enter”: { " "y": {"field": "passenger_num", "type": "quantitative"} :
1 scales': ["align": {"value": "center"}, w3 b
: { "baseline": {"value": "bottom"}, "y 1
1 “name": “xscale", "fill": {"value": "#333"} L)
' . e . o |
type”: "band”, } T O R R NN
N domain”: {"data": "table", "field": "category"}, } ' Target visualization '
' "range": "width", }) .
' "padding": ©.65, 1 ! 3,500,000 1
' “round”: true } it 3,000,000 '
1 N 1! o]
L}
' 1 2,500,000 '
o { !]
' “name": “yscale", l: 2,000,000-| '
L . : [} 1
"domain": {"data": "table", "field": "passenger_num"},
] t i ger_nun"}) ! 1,500,000 1
1 "nice": true, ! 1
1 “prange": "height" ! 1,000,000 1
1) 1!]
1 ! 500,000 1
b " 1
[' 0- 1
1 Atlanta Boston Chicago Dallas Houston Los Angeles New York San Francisco Washington
L L L L I T T T I T I R T L L L

Fig.3 Example of low- and high-level visualization languages. The target visualization (®) is a bar chart showing the passenger_num of different

destinations. And we can use both low- (@) and high-level (®) visualization language to specify @

specification language of Tableau. ZQL [18,36] of Zenvis-
age [18,36] employs a tabular structure language—each row
in the table is a visualization specification.

Now, let us show the difference between different levels
of visualization languages by an example.

Example 1 Table 1 is an excerpt of flight delay statistics.
And Fig. 3 shows high-level (Fig. 3-®) and low-level
specifications (Fig. 3-@) of a bar chart (Fig. 3-®) about pas-
senger_num with destination in Table 1. Users can specify
Fig. 3-® by Vega-Lite in Fig. 3-®, and then Vega-Lite is
compiled to Vega (Fig. 3-@), finally users will get the target
visualization (Fig. 3-®).

Note that, in low-level languages, users have to spec-
ify the mapping function. For example, the “scales” in the
Vega specification specifies the mapping function of the
target visualization. The “xscale” denotes placing the cat-
egorical elements (Atlanta, Boston, Chicago, etc.) to the
pixel range ([0, 600], specified by “range”:*“width”) of X-
axis averagely. And the “yscale” denotes mapping the data
range ([0, 3500000], range of passenger_num) to the pixel
range ([0, 200], specified by “range”:“height”) of Y-axis lin-
early. But in high-level language, users only need to specify
the mark type, e.g., bar and do not need to specify the map-
ping function between data and mark. O

@ Springer

Note that, most of the low- and high- level languages listed
in the survey are declarative languages (where the users only
need to specify “what” they want) except Prefuse and Flare.
Prefuse and Flare are procedural languages, because they are
Java-based visualization libraries, and users should initialize
panels, add visual elements, etc.

2.3 GUI-based visual operations

Compared with using declarative visualization languages to
specify visualizations as discussed in Sect. 2.2, a more user-
friendly way of providing a specification is to follow the
“direct manipulation principle” [74], a widely used concept
in the human-computer interaction aspect.

‘We have listed state-of-the-art GUI-based tools (Tableau [4],
Qlik [75], Excel [9], Google Sheets [10], Amazon Quick-
sight[13], Microsoft Power BI[5], Google Fusion Tables [76],
iVisDesigner [77], Lyra [78], Keshif [79], Data Illustra-
tor [80,81]) in Fig. 2. Figure 4 shows an example of visual
specification in Tableau using the flight delay data.

Remarks Our main purpose of discussing GUI-based visual
operations is to show different ways that users can specify
visualizations. Regardless of using declarative languages or
visual operations to specify visualizations, the common prob-

Making data visualization more efficient and effective: a survey

Table 1 Anexcerpt of flight delay statistics of Chicago O’Hare Interna-
tional (Jan-Dec, 2015), where scheduled is the scheduled time to take
off, carrier, destination, departure delay (min), arrival delay (min),

passengers are the carrier, destination, departure delay, arrival delay,
passenger number of the flight, respectively

A. scheduled B. carrier C. destination D. departure delay (min) E. arrival delay (min) F. passengers
01-Jan 00:04 AA New York =5 173
01-Jan 06:43 MQ Atlanta 9 132
01-Jan 09:30 EV Chicago 13 17 127
01-Jan 00:04 AA Boston 22 10 141
01-Jan 00:04 MQ New York 19 13 232
01-Jan 00:04 UA Los Angeles 0 -2 119

B & & G- g - & - 85 2 IF | £2- T Stendad - EHE- TT £

Data Analytics Pages iii Columns

Dimensions EOo v s

Abc Carrier

Abc Destination
B9 Scheduled
Abc Measure Names

Marks

v Al o 50

v AVG(Arrival ... o I
o

~ AVG(Depart...

Avg. Arrival Delay (Min)

O Circle =
0 ¥
[I ; I
Color | Size | Label %

#
4 Passengers

=4 Number of Records
4 Measure Values

o
Measures o0 = Month of Scheduled: February
Detail | Tooltip)
4 Arrival Delay (Min) Carrier:
Departure Delay (Min) 08 Avg. Arrival Delay (Min): 18 0 For horizontal bars try

Avg. Departure Delay (Min): 3.00

Scheduled

T
III

1

1

H H

Hod
e -

B Data Source Sheetl [} H 0O

s ® 00rmore (CIIIEEED
§ 40
g
£ . H
2
Al et I T
a
<]
3
) I = I I I I
January February March April June July Septemb.. October November December
LI

_ 216marks 2rowsby 10columns SUM of AVG(Arrival Delay (Min)): 583.4

Fig. 4 An example of visual specification in Tableau using the flight
delay data. @ displays the attributes of the loaded data, and users
can drag attributes here to @. @ specifies the column attributes,
row attributes, aggregation functions, and so on, for the specified
visualization. The visualization of Tableau is in tabular structure.
And the Columns and Rows in @ denote the column attributes (i.e.,
MONTH(scheduled)) and row attributes (i.e., AVG(departure delay

lems of making the process efficient and smart are the same.
Hence, classifying the applications of different tools is out
of the scope of this article, for which please see the slides?
of Jeff Heer for an introduction of these tools.

2 https://courses.cs.washington.edu/courses/cse442/17au/lectures/
CSE442-Tools.pdf.

(min)) and AVG(departure delay (min))) of the table. Users can choose
the filter condition and visual mapping of marks in @ and ®, respec-
tively. Also, users can click in ® to specify the chart type. ® displays the
final specified visualizations to users, which is a box-and-whisker plot
of average departure delay and average arrival delay with each month
and carrier in 2017

Interactive Data Visualization The rationality behind inter-
active data visualization is that in many cases, data visualiza-
tion is a process of exploration, where the users need to keep
refining the specification (e.g., add/remove/change attributes,
change chart type) of current explored visualization until get-
ting their desired visualizations in the exploration process.
We show two categories of interactive data visualization,
Polaris and Tableau, using step-by-step query refinement to

@ Springer

https://courses.cs.washington.edu/courses/cse442/17au/lectures/CSE442-Tools.pdf
https://courses.cs.washington.edu/courses/cse442/17au/lectures/CSE442-Tools.pdf

X.Qinetal.

=G @B @oo B 1
Flight Delay Statistics 1] ¢

} AVG(0EP_DELAY)
oo

Facet: category

(OEP_DELAY)

Fig. 5 Faceted navigation in DeepEye: visualization @ is the root for
exploration, and the suggested facets for visualization @ are bin size and
category; Once the user chooses the facet bin size, she gets visualization
@. Visualization @ is different from @ only in the bin size (O and @ are
binned by weekday and date, respectively), and the other visualization
elements (e.g., X-axis, Y-axis, chart type) of @ and @ are the same.
Then, DeepEye suggests 3 facets for @: chart type, category, bin size

create multidimensional visualizations. Moreover, DeepEye
and Voyager enable facet exploration and help users easily
navigate the visualization.

(1) Stepwise Query Refinement Polaris [20] and Tableau [4]
provide chart templates to show multidimensional visu-
alizations. Multidimensional visualizations are shown in
two-dimensional plane organized in a tabular structure
(Fig. 4). Using tabular structure (e.g., 2 Rows x 1 Col-
umn in Fig. 4) to display visualizations of different attributes
(e.g., AVG(departure delay (min)) and AVG(departure delay
(min)) in Fig. 4) or different values of the same attribute is
called “small multiples” [82], which is convenient to com-
pare and analyze different attributes (different values of the
same attribute). The “small multiples” are widely used in data
visualization systems, such as Voyager [83], VizDeck [84],
Show Me [39], Profiler [85], [86], [87], etc. Users can grad-
ually drag multiple attributes to the rows, columns, layers
of the tabular visualization, pick the appropriate visualiza-
tion type, mapping of data to visual properties, etc., to build
desired visualizations step-by-step.

(2) Faceted Navigation DeepEye [37] supports faceted nav-
igation to help users explore the visualization design space.

@ Springer

Users can type in keywords, then DeepEye recommends
relevant visualizations to users. Once a user chooses one
interested visualization V, she can do a further navigation by
different facets. The facets include chart type, X-axis, Y-axis,
category, bin size, group column, and DeepEye will recom-
mend visualizations which have the corresponding different
facets with V while maintaining the other visualization ele-
ments unchangeable once users select one facet to explore.
Also, users can choose the similar trend or different trend
facets, and then DeepEye will recommend visualizations
which have similar or different trend with V. Figure 5 shows
afaceted navigation example on Table 1. Similar to DeepEye,
Voyager [41] allows users to explore the visualization space
by recommending visualizations which have the same or one
more other attribute with current explored visualization.
Remark Although GUI-based interactive tools provide sim-
ple interfaces to quickly construct common visualizations,
which is of great importance for non-technical people, there
may be limited chart types in the templates, and it is also
not flexible to change details of visualizations, such as bar
width, and color mapping, etc. Hence, in practice, similar
to high-level visualization languages, GUI-based interactive
tools are typically used for quickly prototyping, or for finding
useful visualizations. Afterward, low-level languages (e.g.,
D3) will be used for fine tuning or reimplementing the desired
visualizations.

2.4 Underspecified specifications

Visualizations are meaningless if they cannot give insights
of the data. However, in many cases, the users do not really
know all aspects of the data at hand, because the data might be
large and the data can be frequently updated. Hence, it poses
a requirement of supporting underspecified specifications.

Generally speaking, for underspecified specifications,
users only provide some “hint”, and it is the task of the
visualization systems to interpret the underspecified input,
in (possibly) different ways.

The first type of hint is “reference-based”, where the
users provide a reference visualization as a seed and the
system suggests visualizations based on the reference. zen-
visage [18,36] returns similar or dissimilar visualizations
(e.g., similar trends in line charts) with a user provided ref-
erence visualization.

The second type of hint is “keyword-based”, in a Google
style. APT [88] accepts user’s data viewing goals of desired
columns, for example, “present the departure delay and
scheduled relations”. In other words, APT specifies the
columns to be visualized and then recommends visualizations
which satisfy the goals. DeepEye [32] is a recent system that
accepts keyword inputs as data viewing goals and provides
recommended visualizations. For example, the user may
input “show me line charts about electricity”, and DeepEye

Making data visualization more efficient and effective: a survey

will recommend line charts which also contain the column
“electricity” to users. The demo of DeepEye can be found
at http://deepeye.tech. A similar tool® that supports keyword
inputs, called “Ask Data”, was recently released by Tableau,
which allows user to get answers without the need to know
the structure of the data, such as “what is the average price by
variety”. SW [19] accepts users’ window-based constraints
(e.g., “identify all windows in which the average departure
delay > 50) about desired visualization windows (a window
is a rectangular region in a visualization).

The third type of hint is “natural language-based”, which
considers the context of user inputs and system states in
the data exploration cycle instead of one-shot in “keyword-
based” hint. Eviza [89] and Evizeon [90] are two recent
visualization systems which provide natural language inter-
faces for visual analysis cycles. For example, in Evizeon [90],
the user first types “show me the spike of measles in the
UK”, and Evizeon will show the user the spike in the line of
measles outbreaks in the UK. Then, the user types “mumps
over there”, and Evizeon will show the user the mumps out-
breaks in the zone of the spike of measles.

Discussion (1) We categorize visualization languages orga-
nized as a stack (see Fig. 2), which is different from the
survey [52] that categorizes visualization languages based
on graphic library, declarative, chart typology, data source,
presentation medium, and so on. (2) The survey [54] that
evaluates different exploratory data analysis (EDA) tools
for different applications is complementary to our survey,
because we focus on how interactive data visualization
tools construct visualizations through iterative interaction
(i.e., stepwise query refinement, faceted navigation) with
users.

3 Efficient approaches for data visualization

In this section, we will discuss efficient approaches for data
visualization; it is important because the data visualization
life-cycle is always iterative (see Fig. 1), with human-in-the-
loop.

In the following, we will first describe exact data visual-
ization that computes precise visualization as fast as possible
(Sect. 3.1). Sometimes, however, providing exact visualiza-
tions may not always be doable because of the large size
of data and high complexity of queries, approximate data
visualization that provides fast, but approximate visualiza-
tions are ideal for this case (Sect. 3.2). Furthermore, instead
of only producing one-shot approximate visualizations, pro-
gressive data visualization gradually refines the intermediate
results (Sect. 3.3).

3 https://www.tableau.com/about/blog/2018/11/ask-data-
simplifying-analytics-natural-language-98655.

Table 2 gives a summary of the techniques to be discussed
in this section.

3.1 Exact data visualization

Many data visualization systems [17,21-23] read data from
databases. They may also manipulate data by SQL statements
and then use visualization tools to render the visualizations.

Query Translation A natural way to reuse many mature
(DBMS) systems is to translate the visualization queries to
the queries those systems accept. For example, DeepEye [17,
21], Polaris [20], SeeDB [22,23] get data by issuing SQL
queries to the databases. By creating a mapping between the
primitives of visualization language and SQL language, we
can convert the target visualization language to a SQL query.

Example 2 The visualization f] in Table 3 specified by aZQL
query can be translated to a SQL query Q1 as shown below.

Q1 :SELECT carrier, SUM(passengers)
FROM flight delay
GROUP BY carrier
WHERE destination=“New York”;

The attributes of X- and Y-axes, i.e., carrier and passen-
gers, can be mapped to the projection clause followed the
keyword SELECT. The Constraints can be mapped to the
filter condition following the WHERE clause. The Viz, i.e., y
= sum(passengers) means that the SQL query should GROUP
BY carrier and apply sum to passengers. O

Integrating Visualization Systems with DBMSs Although
using query translation is natural, there are some disad-
vantages. One main issue is that many functionalities are
repeated, resulting in non-unified optimization techniques
with different assumptions and performance in server (i.e.,
the database side) and client (i.e., the visualization side),
leaving the developers confused to choose the suitable opti-
mization techniques. For example, the database engine and
visualization tool may both support the filter operation; con-
sequently, one can filter data records by either issuing a SQL
query to database or by the function filter of JavaScript in
the front end—choosing to filter at database or visualiza-
tion tool (e.g., the front end) is difficult. Another main issue
is that decoupled methods are hard to maintain, extend and
optimize [92] for interactive visualizations, which requires
continuously issuing queries to modify visualizations.
Intuitively, a promising way to solve the above prob-
lems is to tightly couple (or integrate) data retrieval and
rendering together to speedup the process of visualization
creation. Ermac [91], a Data Visualization Management Sys-
tem (DVMS), is a research attempt on this direction. It
supports two relations: data and scales, where relation

@ Springer

http://deepeye.tech
https://www.tableau.com/about/blog/2018/11/ask-data-simplifying-analytics-natural-language-98655
https://www.tableau.com/about/blog/2018/11/ask-data-simplifying-analytics-natural-language-98655

X.Qinetal.

Table 2 A summary of efficient data visualization, where we sum-
marize the widely studied problems in efficient data visualization in
column Problem, the corresponding techniques and references for each

problem in column 7echnique and the target for solving the problem in
column 7arget

Problem Technique

Target

Exact Data Visualization

DBMS [91,92]

Query Translation [17,20-23]

Integrating Visualization Systems with

Accelerate Visualization
Exploration Process

Column Stores [22,23,29,85]

Indexes [93-95]

Parallel Computation [22,23,31,96]
Prediction and Prefetching [19,31,34,97,98]

Approximate Data Visualization AQP [24,25]

Enable Quick Visualization
Creation

Incremental Sampling [26-28]

Human Perception [26,99]
Hierarchical Aggregation [31,93,100,101]

Progressive Data Visualization

Enable Progressive Visualization
Creation

Table 3 An ZQL query which returns a bar chart about the
SUM(passengers) of different carriers to “New York”, where Name
denotes the visualization name specified by the ZQL query, X and
Y denote attributes of the X- and Y-axes, Constraints specifies the

constraints which the data used to generate the visualization should
satisfied, and Viz specifies the visualization type and aggregation func-
tion on attribute of Y-axis

Name X Y

Constraints Viz

fi carrier passengers

destination = “New York” bar. (y = sum (passengers))

data include the data records to be visualized and ref-
erences to the rendered visual elements; relation scales
denote the mapping from data ranges to visual encoding
ranges. A visualization in Ermac is represented as a Log-
ical Visualization Plan (LVP), and LVP is compiled into a
SQL-like query. The SQL-like query deals with the data
and scales relations, and the query constitutes a Physical
Visualization Plan (PVP), and then PVP can be optimized
by the traditional database optimization techniques. During
query execution, Ermac uses rendering placement and psy-
chophysical approximation techniques to reduce latency. It
also uses visualization features to support automatic lineage-
based interaction, visualization estimation, recommendation,
and so forth.

A further development [92] of Ermac is proposed to pro-
vide a SQL-like language, DeVIL, to represent both static
and interactive visualizations. In DeVIL, Marks and Pixels
are two visual relations to express visualizations which are
expressed in SQL-like queries. DeVIL models the user inputs
as event streams and database relations and enables the inter-
active visualizations by executing SQL-like queries in joined
visualizations and event relations iteratively to update the
visualizations and response to user’s inputs. By modeling the
static and interactive visualizations as declarative database
relations, visualization designers are released from event-

@ Springer

driven programming, making programming process more
standardized and code more scalable. The work of [92] also
proposes many optimization techniques (e.g., concurrency
control and streaming framework) for interactive visualiza-
tions in DVMS.

Column Stores In data management, a key performance
factor is the data layout, e.g., row-based and column-based
layouts, which may have a huge performance difference for
OLAP applications. In terms of data visualization, the users
are typically interested in only a few columns. Naturally,
column-stores may achieve better performance, compared
with row-stores, which have been adopted in SeeDB [22,23],
Profiler [85], and TDE [29].

Indexes Indexes are widely used to improve search perfor-
mance by essentially cutting down the number of records/rows
in a table that need to be examined. Naturally, they play an
important role in improving data visualization performance.
FlashView [94] builds a hierarchical tree-based index to sup-
port users’ selections with continuous filtering conditions.
The work of [95] builds a tree-based index for the data which
is to be queried instead of the whole dataset and gradually
refines the index when more data are queried. imMens [31]
and Nanocubes [93] build datacubes which precompute
aggregation results for different data slices to reduce query
execution time by accessing the precomputed aggregation

Making data visualization more efficient and effective: a survey

results instead of the raw data. Hashedcubes [102] also builds
datacubes for real-time big data visualization. Hashedcubes
uses pivot arrays to construct datacubes, while Nanocubes is
tree-based. And Hashedcubes achieves lower memory usage
and lower query time compared with Nanocubes. Gaussian
Cubes [30] is a development of Nanocubes which supports
more visualization analysis task types. For example, Gaus-
sian Cubes precomputes sufficient statistics information in
the datacubes to support model fitting.

Falcon [103] uses indexing techniques to reduce inter-
action time for brushing and linking in visualization. The
visualization that the user is interacting (i.e., brushing) with
is active view, and the other visualizations are passive. For
current active visualization, Falcon builds index for each pas-
sive visualization. The index stores the data which should be
highlighted in the passive visualization, and the data are in
the form of array, where each entry of it stores cumulative
counts. Thus, Falcon can calculate the data to be highlighted
in the passive visualizations in constant time given the start
and end position in the active visualization. Since Falcon only
maintains index for active visualization, it has much smaller
index than imMens [31], Nanocubes [93], etc.

Parallel Computation Parallel computation has also been
widely used for query processing in data visualization sys-
tems [22,23,31,96]. The aggregation queries on data tiles in
imMens [31] are parallelized using the dense index represen-
tation of a data tile. SeeDB [22,23] executes multiple SQL
queries of visualization candidates in parallel during visual-
ization ranking. Harald et al. [96] provide a multi-threading
architecture for interactive visualization exploration. The
architecture maintains a main application thread to capture
users’ interaction requests and multiple visualization threads
for each visualization to process the visualization of this
thread. Furthermore, whether the main thread and visual-
ization threads are asynchronous or synchronous depends on
the types of the users’ interaction requests.

Prediction and Prefetching One important step of data
visualization is data exploration—users continuously browse
their interested visualizations to get a sense of what to visual-
ize. Oftentimes, the current explored visualization is usually
inspired from the previous one. In other words, users may
get the next visualization by changing parameters of cur-
rent visualization or zooming in/out to get detailed/overall
information, etc. Evidently, predicting the following data
that users may be interested, and then prefetching/caching
data which may be used in the next step during cur-
rent exploration can speedup the exploration process, and
these techniques have been used in many visualization sys-
tems [19,31,34,97,98,100,104].

We categorize the prefetch and prediction technologies to
two types, based on:

1. Currently explored visualizations [19,31,34,100], or
2. Historical data [34,97,98,105,106].

(1) Currently Explored Visualizations. XmdvTool [34] clus-
ters tuples in different granularity to support users’ hierarchi-
cal navigations. It enables users to continuously explore data
in the structured-based brush [107]. Hence, it needs to predict
the next direction of the user and then prefetches and caches
the data in that direction during the idle time. The caching
system uses the least recently used (LRU) as the replacement
policy and the current explored visualization-based prefetch-
ing strategy is to randomly pick a direction from the position
of the current explored data.

Following the above hierarchical navigations, instead of
prefetching only one piece of data on the tree hierarchies, it
is also natural to prefetch different levels’ representation of
the present data, as used in imMens [31] and [100].

Another angle for a good prefetching is based on the size
of prefetched data (e.g., SW [19]), instead of the direction on
the hierarchy that the user will explore. More specifically, SW
finds all windows that satisfy users’ constraints inputs (e.g.,
“identify all windows in which the average departure delay
> 507). SW iteratively explores all possible visualization
windows to find “good” (i.e., satisfy users’ constraints inputs)
windows. When a window is being explored, SW prefetches
the neighbor windows in all directions, but the size of the data
to be prefetched in each direction should be decided by the
algorithm. SW first computes whether the prefetched window
satisfies the constraints by sampling data of the window. If
the result is true, the prefetching in this direction is stopped,
and the prefetched window is to be explored further (the
exploring process is same as the current window). Otherwise,
SW continues to prefetch in that direction by increasing the
sampling rate until the data in this direction are all prefetched
or the constraints are satisfied. Note that SW wants to find all
“good” windows in the search space, and thus, it must explore
all possible windows, and by exponentially increasing the
sampling size, SW can terminate the exploration quickly with
less prefetching times, thus getting all “good” windows with
less time.

(2) Historical Data. Next, we will discuss techniques that
leverage historical trajectories [34,97,98,105] for prefetch-
ing.

When historical data are available, naturally, systems
can do more complicated yet meaningful inference than
randomly picking a direction as discussed above. More
specifically, XmdvTool [34] proposes three strategies to
prefetch the data based on historical data:

— the direction: select the most likely direction based on

the users’ previous trajectory tracking,
— the focus: select the direction with hot regions, and

@ Springer

X.Qinetal.

— the vector: select the direction based on the vectors of the
movement trajectories of the users, in the form of <start
position, width, level>, where start position is the start
location and orientation of the movement, width is the
moving distance of the movement, level is the aggregation
hierarchy of the data explored in the movement. It uses
the mean or exponential weighted average of previous
trajectory vectors to select the directions.

Recently, machine learning-based approaches have also
been studied. ForeCache [98] partitions data to blocks or
data tiles in different levels and predicts data tiles to users.
There are two stages of data prediction:

— Predicting analysis phases: it predicts the users’ explo-
ration phase by a Support Vector Machine (SVM) model,
and the features include position, panning, and zooming
information of users’ exploration traces.

— Predicting data tiles: it uses the corresponding strategies
to recommend prefetched data: @ action-based strat-
egy using Markov chain which accepts sequences of
users’ movement (e.g., {left, left, left}) as a state and a
move from state to state as a transition (e.g., “right”); @
signature-based strategy which recommends similar data
tiles with users’ previous explored data.

Experiments have shown that ForeCache achieves 25%

higher prediction accuracy than the prediction strategies in
XmdvTool [34].
Case Studies using Kyrix and Tableau In the following,
we will discuss two case studies using Kyrix, an interactive
scalable data visualization system, and Tableau, one of the
most successful visualization tools.

Kyrix [108] is an interactive scalable data visualization
system. Kyrix provides declarative visualization specifica-
tion interface in front end and effective scalable visualization
processing in back-end, where the user zooms in to see
detailed information and zooms out to overview in scalable
visualization.

1. Visualization Specifications in Front end. There are two
abstractions in the visualization specification language
of Kyrix: canvas and jump. A canvas contains a static
visualization, where the data of the visualization are
specified by a SQL query and the transformation and
rendering function can be specified by existing visualiza-
tion libraries (e.g., D3 [1], Vega [14]). A jump specifies
the source and destination canvas and the transition type
when panning or zooming.

2. Efficient Approaches for Data Visualization in Back-end.
There are two important improvements in Kyrix: fetch-
ing granularity and indexing. For fetching granularity,
Kyrix splits raw data to static data tiles of fixed size.

@ Springer

[P OO 3 7 el
.o H :e I{Rendenng .
' :r J Placement ©

LN

'
' w \. @Zoom H Layer1
! Canvas2 : 2
. {Rendenng A- : Transform 1 E \\
Placement . ” H)
e v 2
vy Raw Data

H
. H <
. '

H Canvas 1 Layerz .

: H . : v
H ' : v
:W: . @m . ©
' : *" b 4
H k {Rende”ng A— 1 Transform K H
H : Placement . '

Layer M

E Canvas N

(a) Declarative model of Kyrix [121]. A canvas (@) contains
multiple layers (@), and a layer can be got by specifying a
rendering and placement function for the transformed data (®).

2 " v
| = o _
— ——
(b) Zoomable crime rate map of US by Kyrix [121]. @ is the

original visualization, and @,® are more detailed visualizations
by zooming in.

Fig.6 Declarative model and zooming example of Kyrix [108]

The tiles of current visualization together with a dynamic
box which encompasses these tiles are sent to the front
end, and the box is recalculated when the tiles of current
visualization are out of it. Compared to fetching large or
small tiles, Kyrix can adjust the size of dynamic box by
different algorithms, providing a way to neutralize the
network time and prefetching size. For indexing, Kyrix
builds Btree [109] or hash indexes on the tile id of a tuple
to support quick fetching.

Figure 6a shows the declarative model of Kyrix. A canvas
(Fig. 6a-®) in Kyrix is a level of detail of data, and users can
zoom in/out to see more canvas of different levels of details.
A canvas may contain more than one layer (Fig. 6a-@) (e.g.,
background layer, line layer, etc.), and there should be a ren-
dering function and placement function for the transformed
data (Fig. 6a-®) of each layer, where the rendering function
defines how to map data to visual objects, and the place-
ment function gives the location of the visualized data by the
fetching granularity and indexing strategies. Figure 6b is a
zoomable crime rate map of USA by Kyrix.

TDE [29] is a data engine customized for visualization in
Tableau 6.0. TDE optimizes the data engine mainly in the
following perspectives.

1. Column-oriented Storage and Compression. Due to the
high I/O cost of Tableau’s former database Firebird and
data of visualizations usually stored in different columns,
column-oriented storage and compression techniques
have been designed to solve this problem in TDE. TDE
mainly uses dictionary compression strategy, and there

Making data visualization more efficient and effective: a survey

are two compression mechanisms for dictionary com-
pression: heap compression for variable width types and
array compression for fixed width types. Then, the com-
pressed columns can be represented by the dictionary
tokens (i.e., the dictionary keys) which reference the dic-
tionary values during the query execution.

2. Operator Reordering. Selection operators and operators
with single compressed columns are pushed down in the
SQL query plan tree.

3. Cardinality Reduction. For columns with high cardinality
columns, TDE automatically transforms these columns
to higher hierarchies, e.g., transforms column 7ime with
2500 distinct values to column Year with 7 distinct values,
then pushes the operators with Time in SQL query plan
tree down and replaces Time with Year.

4. Other Visualization Support. TDE provides domain
information (e.g., the cardinality, maximum and mini-
mum values of the domain) of columns. This domain
information can be used to choose the level of detail of a
visualization for users. TDE also supports progressive
reporting and termination control (i.e., terminate long
running visualization queries) when executing visualiza-
tion queries.

The recent effort of Tableau 10’s server data engine is to
customize a highly efficient main-memory system Hyper [6—
8]. Hyper is used as the data engine to power all versions of
Tableau, such as Tableau Server, Tableau Desktop, Tableau
Online, and Tableau Public. In particular, Hyper is used
to support efficient creation, refresh, query extraction, and
cross-database joins.

3.2 Approximate data visualization

When the data volumes grow exponentially, traditional data
processing modules cannot provide fast interactive process-
ing results. To bridge the gap between data volumes and
interactivity, many works [24-28,99] speedup data process-
ing phase by leveraging approximate query processing (AQP)
that provides approximate visualization results.

We discuss approximate data visualization from three per-
spectives: AQP-based approaches that leverage techniques
from AQP; incremental sampling-based approaches that link
incremental query processing to visualization; and human
perception-based approaches that capture the cognitive lim-
itations of human perception. A summary of the contents to
be discussed is shown in Table 4 and Fig. 7.

AQP-based A straightforward way for generating approx-
imate visualizations in interactive time is leveraging the
techniques of AQP. Using the representative subset of the
data can provide users with approximate visualizations for
online interaction by sacrificing the quality. We will review

Table4 Summary of approximate data visualization systems, where we summarize the papers and algorithms for approximate data visualization systems in column Paper and Algorithm, respectively,

and the supported visualization and query types of each algorithm in column Visualization Types and Query Types

Visualization Types Query Types

Algorithm

Paper

GROUP BY WHERE ORDER BY COUNT SUM AVG

Heatmap

Pie Line

Bar

Uniform Sampling &

Sample+Seek [24]

Measure-biased Sampling

Optimistic Visualization

Pangloss [25]

Based on AQP
Sampling-based

SampleAction [27]

Incremental Visualization

Sampling-based

INCVISAGE [28]

Incremental Visualization

IFocus Algorithm

IFocus [26]

Human Perceptual Model

PFunk-H [99]

with Sampling-based

AQP

@ Springer

X.Qinetal.

AQP

Sample+Seek

Pangloss

Human
Perception

Incremental

Sampling SampleAction

INCVISAGE

Fig. 7 A classification of approximate data visualization, where the
surveyed works are classified as AQP, incremental sampling, and human
perception methods

two works [24,25] that mainly focus on the sampling-based
AQP techniques.

Sample+Seek [24] is an AQP system for answering visual-
izations generated from aggregation queries in an interactive
speed, and the visualization results are within an error bound
specified by users. It first presents the concept of distribu-
tion precision (e.g., distance between the approximate and
exact visualizations) that can represent the precision of total
distribution across aggregate groups. Thus, users can specify
a distribution precision as an error bound. When sampling,
for those queries with large data volumes, it uses the uni-
form sampling to answer the COUNT aggregation queries
and proposes a measure-biased sampling technique for
approximately answering SUM aggregation queries with less
predicates, and the key feature of measure-biased sampling is
to select the rows with probability proportional to its value on
the aggregation attribute. Sample+Seek proposes two index-
ing techniques to speedup sampling: measure-augmented
inverted index for indexing the categorical dimension to
answer the aggregation queries; and low-frequency group
index for supporting those queries with a conjunction of one
or more equi-constraints.

Although there exists a significant difference between
approximate and accurate visualizations with a small pos-
sibility, users may get frustrated with the visualization tools
once a big difference happens. Thus, Pangloss [25], a web-
based system powered by Sample+Seek [24], is designed to
provide users with approximate visualizations together with
exact visualizations. Pangloss provides users with approxi-
mate visualizations quickly based on the technique of AQP
and then the system still computes the exact results in the
background if users click the “remember” button for this
visualization. In Pangloss, users can get initial insights from
the approximate results and later verify their observations on
the precise results.

Incremental Sampling-based Some works [26-28] try to
link incremental data query techniques to data visualization.

@ Springer

The key idea of approximate visualization with incremental
sampling is that the system generates an approximate visu-
alization based on representative samples of dataset rapidly.
Then, the system increases the sample size over time to con-
tinuously improve the quality of visualizations. The user
usually can get some initial insights from the approximate
visualizations and decide to terminate if the quality of the
visualization is enough to verify these insights.

SampleAction [27] is a tool for visualizing aggregation
queries on very large datasets. Given a query, SampleAction
rapidly responds to users with partial aggregation results for
each group with error bounds (i.e., a bar chart with confidence
bounds) based on fixed samples. As the users are waiting, it
will narrow its error bound and incrementally improve the
visualizations by increasing sampling size in every second.

There may exist significant fluctuations between the
adjacent incremental approximate visualizations due to the
random sampling in SampleAction [27], which may mis-
lead users during the incremental approximation process.
Thus, INCVISAGE [28] is designed to solve this problem.
INCVISAGE [28] is a web-based system, which provides
incremental approximate visualizations, typically support-
ing trendline and heatmap. And there are no significant
fluctuations compared with SampleAction [27] during the
process of visualization refinement due to the design of
the ISplit algorithm, thus providing meaningful intermediate
visualizations for users. In INCVISAGE, a trendline displays
aggregation results for all groups, and a segment denotes
multiple successive groups of the trendline together with the
same approximate aggregation value. A trendline is first ini-
tialized as a segment with all groups, and during the iterative
process, the ISplit algorithm chooses one segment and splits
the segment into two segments until there is no segment to
split (i.e., all segments have only one group). During each
iteration, the ISplit algorithm calculates the sampling num-
ber for given § (failure probability) and € (guarantee of error)
and then chooses the best segment to be split based on the
sampled data.

Figure 8 illustrates what approximate visualizations might
be generated by SampleAction and INCVISAGE, where sig-
nificant fluctuation exists during two adjacent visualizations
generated by SampleAction, while INCVISAGE keeps stable
updating. For example, in Fig. 8-O, the visualizations gener-
ated by SampleAction at #; and #, have very different trends.
But, INCVISAGE only splits one segment to update visual-
izations and thus keeps stable updating.

Human Perception-based At times, increasing the sample
size does not always improve the quality of the visualiza-
tion. The external reason is that the number of pixels of the
screen is finite, and the internal reason is that the cognitive
limitations of human perception in identifying small details.
Therefore, it is possible for approximate visualization sys-

Making data visualization more efficient and effective: a survey

-/ Completion

e’
il

Fig. 8 A schematic diagram (not generated by real data) showing
what approximate visualizations might generate by SampleAction and
INCVISAGE as time progresses (i.e., more samples are sampled) [28].
® and @ are approximate lines generated by SampleAction and
INCVISAGE, respectively, using the same data, and ® and @ are
approximate heatmaps generated by SampleAction and INCVISAGE,
respectively, using the same data

tems to generate approximate results based on representative
samples but with minimal impact on the quality of visual-
ization. Human perception-based approaches stop sampling
when there is no obvious difference on human perception
between the current approximate visualization and the visu-
alization which is to get by further sampling.

IFocus [26], an online sampling algorithm, can generate
an approximate bar chart rapidly and guarantee the pairwise
ordering of each bar in a bar chart, because the pairwise
ordering in bar charts is important human perceptual focuses.
IFocus iteratively draws a sample for each active group (all
groups are active at first) and maintains a confidence interval
for each active group. Once a confidence interval of a bar has
no overlap with other bars, meaning the order of this bar is
determined, i.e., this bar is not active any more. The algorithm
terminates until all bars are not active, and the approximate
visualization results with ordering guarantee are returned to
users.

PFunk-H [99] addresses the approximate visualization
as the human perception problem. The basic idea of this
work is that to combine sampling-based AQP techniques and
human perception limitation together to provide approximate
visualization in order to satisfy human perception. PFunk-H
is an online sampling algorithm that provides approximate
visualizations using perceptual functions from graphical per-
ception. It presents an algorithm that can learn the knowledge
of human perception error to provide approximate visualiza-
tions with perceptually indiscernible error. Besides, it can
provide error bound of approximated query results under the
restriction of perceptual function.

3.3 Progressive data visualization

Many works [26-28] in approximate data visualization
(Sect. 3.2) produce progressive visualization results to users.

Besides, the above incremental sampling-based progressive
data visualization, there have also been many works [31,
93,100,101] which provide progressive visualizations by
hierarchical aggregation. Generally speaking, they build a
hierarchical structure by aggregating the data in different lev-
els, for example, different sizes of bins, different ranges of
temporal values, different zones of spatial values. Then, these
hierarchical structures are used to support users’ progressive
visualization exploration.

Range-Based Binning imMens [31] provides visualizations
of different resolutions by changing bin sizes. The bins of the
same resolution have equal ranges. Multi-dimensional data
in imMens are partitioned into data cubes, and cubes are
partitioned into tiles of different levels. Users can explore
data in different levels and change current explored visual-
izations’ resolution by zooming in or zooming out, and then,
the system will change the underlying aggregation bin size
correspondingly. imMens bins numeric data by equal ranges,
which has some limitations. For example, considering an
examination transcript dataset, binning by equal ranges of
score is not applicable if teachers want to know the top-10,
top 10 to 20, top 20 to 30 students, etc. Also, users can-
not change the bin size or number of different resolution in
imMens.

Range and Content-Based Binning The work of [100]
provides two tree-structures for hierarchical exploration:
HETree-R (Range-based HETree) and HETree-C (Content-
based HETree). HETree-R is similar with imMens, and the
leaf nodes of HETree-R denote data points within equal width
ranges, while HETree-C has the same number of data points
in all leaf nodes. Thus, the HETree-C can be used in the above
examination transcript scenario. Users can explore the data
abstraction or data details by a roll-up or drill-down opera-
tion to reach the upper or next level. It provides incremental
tree construction algorithms based on user interaction and
exploration scenarios (top—down or bottom—up). The algo-
rithms automatically determine the proper arguments of the
tree, i.e., the height of the tree, the range of the leaf, the num-
ber of children, etc. Also, the tree construction algorithms are
adaptive and can fit to users’ preference selection for param-
eters of tree to support better user experience. Figure 9 is a
binning example of HETree-R and HETree-C.

4 Visualization recommendation

Recall thatin Fig. 1, the data visualization process is iterative,
and the main pain point of practitioners is that they have to be
involved in each step to make some modifications. Naturally,
it is highly desirable that there can have some visualization
recommendation solutions that make the lives of users easier,
by recommending (possibly) good visualizations to them.

@ Springer

X.Qinetal.

[20, 100]

[68, 100]

777

ip4 age 30u pé age 45\ ””””””””””””””””
1pO age 35 1p9 age 50‘
| p5age 35 }

(a) HETree-R.
[20, 100]

{p8 age 2oﬁf)b’é§e’3’5’ ‘w’bé’égé’ﬁ ; ;’59’5@&’5’6 P ﬁi’ég’é’é()“
4 age 30H p5 age 35 “ pé age 45} | p2 age 5 55‘ ip1 age 1OOJ

(b) HETree-C.

Fig. 9 A binning example of HETree-R and HETree-C. Ten points
(p0—p9) are binned by attribute age. HETree-R bins data by equal age
ranges: each leaf is a bin with size 16, and HETree-C bins data by equal
number of points: each leaf is a bin with 2 points

The rest of this section will be organized as follows.

— Specification-based recommendations. (Section 4.1)

— The specification is incomplete, i.e., empty or par-
tial specification of visualization elements. (Sec-
tion 4.1.1)

— The specification is treated as a reference. (Sec-
tion 4.1.2)

— Behavior-based recommendations. (Section 4.2)
— Personalized recommendations. (Section 4.3)

Solution Overview Generally speaking, for solving all the
above problems, the visualization recommendation systems
need to first enumerate all possible visualizations and then
recommend top-ranked visualizations.

Note that the search space of all visualizations is huge,
which needs to consider the combination of several factors,
such as choosing the columns to be visualized, transform-
ing the data (e.g., group or bin), choosing the right visual
encodings including mark types (e.g., bar, line, point), and
encoding types for the selected mark chart (e.g., width of bar,
position of point).

Pruning Meaningless Visualizations Fortunately, there are
many signals (or constraints)—either from the users or from

@ Springer

traditional wisdom—that can be used to prune “bad” visual-
izations.

— User-specified constraints. Users can specify interested
visualization elements such as columns or data records.

— SeeDB [22] stipulates that user should specify an
interested query Q to obtain the target data before
recommendation.

— In Voyager [41,83,110], users should first specify
interested variables too.

— Expert provided constraints. Some combinations of vari-
ables, transformations, and visual encodings may not
generate a valid visualization. For example, the mark-
type “pie” cannot combine with the encoding-type
“height”, and the encoding-type “Y-axis” is not suitable
for categorical attributes. These constraints are typically
given by experts.

— Voyager [41,83,110] develops a permitted combina-
tion table of different data types, encoding types and
mark types.

— DeepEye [17,21,32,37] defines a set of rules (Table 5)
to generate meaningful visualizations. For example,
the first transformation rule in Table 5 denotes that
if X-axis of a visualization is categorical, and Y-axis
is numerical, and then the transformation operation
should be grouping by X-axis, and aggregating on
Y-axis.

— Draco [35] has hard constraints and soft constraints,
where hard constraints must be satisfied when gener-
ating visualizations (e.g., the encoding-type “shape”
is not applicable for numeric values), and soft con-
straints are used to rank visualizations (e.g., itis better
to use the encoding-type X-axis for temporal values).

After generating candidate (or valid) visualizations by
pruning the entire search space as described above, visualiza-
tion recommendation systems will then recognize meaning-
ful visualizations based on predefined metrics or rules. Some
systems may also rank interesting visualizations or recom-
mend top-k visualizations to users. In the rest of this section,
we will discuss these methods to solve the above problems.

4.1 Specification-based recommendations
4.1.1 Incomplete specification

Visualization recommendation systems with empty specifica-
tion require no user inputs, while recommendation systems
with partial specification accept users’ partial visualization
elements specification inputs for desired visualization. For
example, APT [88] accepts user’s data viewing goals before

Making data visualization more efficient and effective: a survey

Table 5 Constraints in
DeepEye (T denotes the data
type, AGG denotes the
aggregation function, including
AVG (average), SUM (sum),
CNT (count), and X, Y denote
attributes for X- and Y- axes,
respectively). The
transformation rules define how
to transform the data when the
data types of the X- and Y- axes
are given. The sorting rules
define how to sort the data. And
the visualization rules define
how to choose the right
visualization types for different
data types of X- and Y- axes

Transformation Rules

Sorting Rules

Visualization Rules

*T(X) = Categorical, T(Y) = Numerical - GROUP(X), *AGG(Y).
T(X) = Categorical, T(Y) # Numerical - GROUP(X), CNT(Y).
T(X) = Numerical, T(Y) = Numerical - BIN(X), AGG(Y).

T(X) = Numerical, T(Y) # Numerical — BIN(X), CNT(Y).

T(X) = Temporal, T(Y) = Numerical - GROUP/BIN(X), AGG(Y).
T(X) = Temporal, T(Y) # Numerical - GROUP/BIN(X), CNT(Y).

T(X) = Numerical/Temporal - ORDER BY (X).
T(Y) = Numerical - ORDER BY(Y).

T(X) = Categorical, T(Y) = Numerical - BAR/PIE.
T(X) = Numerical, T(Y) = Numerical - LINE/BAR.

T(X) = Numerical, T(Y) = Numerical, (X, Y) correlated — SCATTER.
T(X) = Temporal, T(Y) = Numerical — LINE.
*T = Type, AGG = {AVG, SUM, CNT}

recommendation. Users should first choose one interested
column before visualization recommendation in Voyager [41,
83,110]. DeepEye [17,21,32,37] accepts users’ keyword
specification, e.g., the user may input “show me line charts
about electricity”.

The only difference between empty and partial specifica-
tion is that the latter should prune the search space by the
user-specified constraints when enumerating visualization
elements to generate visualization candidates. For example,
the visualizations which do not contain column c are filtered
from the visualization candidates if users specify column
c as the interested column in Voyager, and the visualiza-
tions which are not line charts or do not contain the column
“electricity” are filtered from the visualization candidates
when users type “show me line charts about electricity” in
DeepEye. And there is no difference when ranking candidate
visualizations.

In the remaining part of this section, we describe two
common methods used to rank the visualization candidates:
rule-based solution and machine learning-based solution.

Rule-based visualization ranking

Most earlier works (APT [88], SAGE [111], BOZ [112])
on visualization recommendations are rule-based, which
are inspired by the work of [88,113—-116]. Rule-based rec-
ommendation systems rank the visualization candidates by
their predefined rules, which are usually human percep-
tual effectiveness metrics, measured as an effectiveness
score s considering data type, statistical information, human
visual preference, etc. For example, a pie chart consists
of many blocks (e.g., > 500) is not a good visualiza-
tion by human perception, because it is too messy. The

main difference in the rule-based recommendation systems
is the definition of s. Voyager [41,83,110], Show Me [39],
Polaris [20], DIVE [117], DeepEye [17,21,32,37], Wang et
al. [40] develop richer perceptual rules with more data types,
mark types, statistical information compared with former
works, while Rank-by-feature [38] ranks visualizations by
a single statistical metric.

Statistical Rules Rank-by-feature framework [38] is a sta-
tistical rule-based recommendation system. It can rank 1D or
2D axis-parallel projection visualizations (histograms, box-
plots, and scatterplots) to users by different statistical ranking
metrics. The metrics for 1D ranking (histograms and box-
plots) include normality or uniformity of the distribution,
number of potential outliers or unique values, and size of
the biggest gap, and the metrics for 2D ranking (scatterplots)
include correlation coefficient, number of potential outliers,
uniformity of scatterplots, etc. By discovering these ranked
low-dimensional visualizations, users may find complex rela-
tions, clusters, outliers, and so on.

Perceptual Rules The Rank-by-feature framework can only
rank between the same visualization type (e.g., histograms,
boxplots) by a single statistical metric, while Voyager [41,83,
110] ranks different visualization types by a perceptual effec-
tiveness score s considering data type, cardinality, human
visual preference, and so on. For example, high cardinality
variables should not be mapped to color; visualizations with
less screen space are preferred. s is a weighted sum of these
factors, and the weight of these factors is manually deter-
mined through tests and experiments. Table 6 shows some
perceptual effectiveness ranking rules used in Voyager; for
example, the third row in Table 6 means that if the data types
of X- and Y- axes are temporal and numerical, respectively,
then line chart is the best choice, and bar, point, text types

@ Springer

X.Qinetal.

Table 6 Ranking rules in Voyager

T(X) T(Y) Mark Type

Categorical Categorical point > text

Categorical Numerical bar > point > text
Temporal Numerical line > bar > point > text
Numerical Numerical point > text

T(X) and T(Y) denote the data type of X- and Y- axes, respectively, and
Mark Type denotes the permitted ranked mark types for this data type
correspondingly

ranked behind line. And the rules together with users’ input
for column preference form the ranking metric in Voyager.

DeepEye [17,21,32,37] captures human perceptual effec-
tiveness in richer details than Voyager. DeepEye defines
three factors to describe the quality of a visualization and
then develops a partial-order-based solution to rank all the
valid visualization candidates. The three factors are: @ the
matching quality between data and chart; @ the quality of
transformations; and ® the importance of columns. A visu-
alization precedes another if all of the three factors are greater
than another. And based on the partial relation, DeepEye can
construct a graph G(V, E), where V denotes the all valid
visualizations and E denotes the partial orders. Then, Deey-
Eyeranks all the visualizations in a way similar to topological
sorting.

The above two works (Voyager [41,83,110] and Deep-
Eye [17,21,32,37]) consider common visualization types,
while Wang et al. [40] propose an algorithm to automati-
cally pick line graph or scatter plot for time series. Although
people may use line graphs to visualize time series in most
cases, scatter plots are better choices sometimes. For exam-
ple, the scatter chart provides a clearer trend than line chart
when there are many outliers in time series. The algorithm
first constructs line graph, scatter plot, and a trend curve by
LOESS regression [118], then calculates the visual consis-
tency between the trend curve and the line graph or scatter
plot, respectively, and picks the visualization type which
has bigger visual consistency (i.e., smaller distance) with
the trend curve, where the visual consistency is achieved
by comparing the consistency (i.e., distance) of visualiza-
tions’ density fields, which can be calculated by KDE [119]
algorithm. Experiments have shown that the choices of the
algorithm are consistent with users in most cases.

Machine learning-based visualization ranking

With the rapid development of machine learning and deep
learning, more and more systems [21,32,35,84,120] focus
on machine learning-based visualization recommendation.
Given two visualizations # and v, the systems should deter-
mine which is better. Typically speaking, machine learning-

@ Springer

based recommendation systems first collect training data,
which comes from crowdsourcing or web, then train a rank-
ing model which takes the input space X as lists of feature
vectors, and) the output space consisting of grades (or
ranks). The model learns a function F(-) from the training
examples, such that given two input vectors xj and X, it can
determine which one is better, F'(x1) or F(X3).

Learning with Soft Constraints Draco [35] expresses pref-
erences by soft constraints, and the soft constraints (e.g.,
it is better for temporal values to use the encoding type:
X-axis) are specified by human perceptions. Each soft con-
straint has a weight denoting the penalty when a visualization
v violates the soft constraint. And the overall cost of V is:
cost(v) = Y 7_, wi-ni,n; € {0, 1}, where w; is the weight of
the ith constraint, and n; denotes that V violates the ith con-
straint n; times. Draco prefers visualizations with less cost
and formulates the problem of learning weights as a learning-
to-rank [121] problem using RankSVM model [122]. Draco
gets 1110 ranked visualization pairs from crowdsourcing,
and the ranking principles are from Kim et al. [123] and
Saket et al. [124]. Draco is similar to Voyager, but Draco dif-
fers with Voyager in that it learns the weight of constraints
by machine learning techniques.

Learning with Examples The constraints in Draco are pre-
defined to the system by users or developers, rather than
learned by machines. In contrast, DeepEye [21,32] develops
a machine learning-based solution which captures visual-
ization design knowledge automatically by learning from
examples besides the above rule-based solution.

DeepEye [21,32] captures human perception by learning
from examples and supposes the models learned from for-
mer examples can be extended to different domains. DeepEye
identifies 12 features: statistical information (cardinality, dis-
tinct numbers, max, min, correlation, etc.) and mark type.
DeepEye uses a binary classifier (decision tree [125]) to
determine whether a visualization is good or bad, which
is called Visualization Recognition, then use a learning-to-
rank [121] model (LambdaMART algorithm [126]) to score
all good visualizations, which is called Visualization Rank-
ing. DeepEye collects 42 real-world datasets from various
domains and then picks 285, 236 visualization comparisons
over these datasets labeled by 100 students.

Figure 10 shows the architecture of DeepEye. A user can
pose a keyword query to VSE (Visualization Search Engine)
module (Fig. 10-@), and VSE returns ranked visualizations
to users. The VSE first translates the keyword query to multi-
ple visualization candidates (keyword-to-visualizations) by
querying database (Fig. 10-®), then discovers good visu-
alizations (visualization transformation) and ranks them
(visualization ranking). The crawler (Fig. 10-@) extracts
training data for visualization transformation and ranking
of VSE. In the client (Fig. 10-®), users can input keyword,

Making data visualization more efficient and effective: a survey

1+ ““User Makes a Search

© VSE

Keyword-
to-Visualizations
 —

epEye

Fiight delay in

y

' ' \
' H (L
! ! Visualization
gumaceted Navigation Transformation

. e Vv
> ect @ Difterent H Vi lizati
T menmerar. o W s Isualization
| Line ohart =

T dloysfin.. H Ranking

3% Map
ol 55 e number of delays ..

Fig. 10 The architecture of DeepEye [21,32]. User can post a keyword
search in @, and @ generates visualization candidates by querying ®,
then @ returns ranked visualizations to user using the model trained by
data from @

Decoder RNN

1 humo’: “100", str0’ fnumo’: 160", 1
H St H

19937}
m1”: 1993)]

 [("sale’: 100" “catgegory” 993 . ('sale’: 1605, 4
:] '

Fig. 11 The architecture of Data2Vis [120]. Data2Vis is built based
on sequence to sequence model with the encoder—decoder architecture
(@ and @) and the attention mechanism (®). It takes original datasets
(®) as input and automatically recommends visualizations (®) by given
datasets (D)

interact with recommended visualizations, and do faceted
navigation, etc.

Data2Vis [120] is an attempt in generating visualizations
using RNN (recurrent neural network [127]). As shown in
Fig. 11, Data2Vis treats visualization design as a sequence
to sequence [128,129] translation problem, where the input
string is a dataset in JSON format (Fig. 11-®) and the output
string is a Vega-Lite [2] visualization specification (Fig. 11-
®). Data2Vis trained a model with a 2-layer RNN encoder
(Fig. 11-@) and a 2-layer RNN decoder (Fig. 11-®), and
both have 256 LSTM (Long Short-Term Memory [130,131])
cells. The training dataset has 4300 training instances [132].
Experiments have shown that Data2Vis can generate visu-
alizations with appropriate mark types (e.g., use scatter for
two numeric attributes), transformations (e.g., use means for
numeric attributes), selection patterns (e.g., select data by
country, gender), etc.

6 SeeDB Server \

View Generator

8 Selection
y % SeeDB Client
Query Builder L

Most
interestin

views

—

Execution
Engine

View and
interact with
visualizations

Fig.12 The architecture of SeeDB [22]. Client (D) accepts users’ input,
constructs visualization queries and shows recommended visualizations
to users. Server (@) generates visualization candidates (view generator)
and recommends visualizations to users (execution engine)

4.1.2 Reference-based specification

Some visualization recommendation systems recommend
visualizations based on reference data or reference visualiza-
tions [18,22,36,85]. Typically, the system would recommend
visualizations which are similar to or different from the given
reference in certain aspects.

Deviation-based SeeDB [22] recommends visualizations by
deviation with some reference visualizations. Before recom-
mendation, the user should specify an interested query Q
to obtain the target data which is called D¢y and a refer-
ence dataset Dy is also needed. Then, SeeDB enumerates
different combinations of same variables, transformation,
mark types, encoding types on both Do and D to get
all V(Dg) and V(Dg), respectively. Finally, SeeDB rec-
ommends the top-k V(Do) which have the largest value
S(P[V(Dg)l, PIV(Dg)]), where S is a distance function,
and P[V (Dg)land P[V (Dp)] are the distribution of V (D)
and V(Dg), respectively. Figure 12 shows the architecture
of SeeDB.

Anomaly-based Profiler [85] recommends visualizations
which can best distinguish anomalies in the primary visual-
ization. The tuples in the primary visualization are classified
by some anomaly detection methods: normal points and
abnormal points are in different classes, denoted as a column
class. Suppose VisToCol(V) is a function which returns a
column that describes the classes of each tuple in the visual-
ization V, then Profiler recommends the visualization V that
minimizes D(VisToCol(V), class). D(X, Y) is a distance
function measuring the independence between X and Y:

ey

DX,Y)=1-— ((X, 1))

max (H(X), H(Y))

where I (X, Y) denotes mutual information of X and Y, quan-
tifying the reduction of predicting one variable when another
is given, and H (X), H (Y) denote entropies of X, Y, respec-
tively.

@ Springer

X.Qinetal.

el = R R R R R R R R Rl > P
' 3 ZQLTable n
1zen(visjage

.] o n

Fig. 13 The front end of Zenvisage [18,36]. The user can upload their
datasets and select the X-axis, Y-axis, and category for visualizations
in @. After that, Zenvisage first recommends representative (i.e., typical
trends) and outlier trends in ® according to the settings of @. @ will

Similarity/Distance-based Zenvisage [18,36] tries to find
other interesting visualizations when the users provide their
desired trends, patterns, or insights. Users can draw their
desired trends or patterns as a visualization V, then the system
recommends visualizations V' by their similarity or dissim-
ilarity (specified by users) with V, i.e., recommends V' with
largest or smallest S(V, V'), where S is a distance func-
tion. Thus, the definition of the distance function is of great
importance. The distance functions used by Zenvisage are
Euclidean distance and Dynamic Time Warping [133]. Fig-
ure 13 depicts the front end of the Zenvisage.

4.2 Behavior-based recommendations

Behavior-based recommendation systems capture users’ cur-
rent behavior as inputs, then infer users’ intended task and
recommend useful visualizations based on their tasks.
HARVEST [134] is a behavior-driven visualization rec-
ommendation system. It recommends visualizations based on
the tasks of users which are inferred by their behavior. Since
it is difficult for a user to describe her intent clearly and the
task of a user evolves as the process of the exploration, HAR-
VEST guesses users’ intent by their behavior. As shown in
Fig. 14, when the user interacts with HARVEST in the front
end, it captures user’s action ¢; and sends it to the back-end.
There are several common atomic actions studied by HAR-
VEST: inspect, filter, and bookmark. The atomic
actions form a complex pattern, which usually indicates spe-
cific intents. Next, the Action Tracker module (Fig. 14-@)
analyzes and outputs the user’s task context ¢; and pattern
pi based on accepted actions. More concretely, ¢; denotes

@ Springer

L S A S
Simifarity © Custer Size § Data Smoothing & Options & 1

® Euclidean Distance 3 None @ Consider x-range
' n gf n Segmentation @ Show original sketch [
' n 92 i Y " DTW Number of Results @ Smoothing Constant: 0.5 Show scatterplot]
50 ~ -
n L -axi L]
1 Dataset © :Z n MmviP 50 Reverse y-axis
. n e % 5 n]
I 8 o - ~ . " .
y | realestate son =1 Y, n Aggregate @ Similarity Cutoft @ Filter Constraint @ Input Equation @ :
: o Submit X add [
g Pattern ©]
1 L]
1 L]
1 Category © © S R =1
L™ 6 LN Representative patterns £, Outliers £,
L] L)
1 X-axis " sclapricepersaft oy mont w '
' ! 250 e '
g month l: a0 & '
1 Y-axis 1 1 2 s 1
1 N 022008 os2012 022008 oa012 W 0212008 042012 0212008 w2012 1
3 || sodpricepersqt (1] city: Belleview (0.30) city: Glen Allen (0.260)] Glendora (1101) Temperance '
M1 scpricapasat by morth sodponpanh by it h o sidpricaparsqt by morth sccpricaparslt by morth
' " 20 " a0 '
1 : ' 20 T 1 5 1
Error Attribute 1 180 1 160 10k
' 1 ! 140 Y '
nl L 160 1 o
1 rnone 1 [}]
' L} 022 2012 0272008 042012 lI 0272008 0472012 0272008 0412012 1
it city: Tucson (0.23) city: Columbia (0.196) (] Schaumburg (538) Tamp:
1 LI soldpcepersaft by month soldpricepersatt by month Y sclapricepersatt by montn &= solapricepersaft oy month 1
1 p 20 " - =]
[2 20, [} 180 18K [
L} 180 100 1 160 10k
1 160 L) s L]
| LENST 4o] 140 B N
' " oz ouzone P ova0r2 W s owmiz e owziz
] " city: Odenton (0.188) city: Cockeysville (0.183) " Lafayette (138) Laurel L)
R e L L L L R e N L T T

also show those visualizations that are similar to the reference one in @.
The user can specify some system parameters, e.g., similarity functions
and aggregation functions, in ®

Response 2,

\
T

Action Tracker |

A
Rec.Vector %,
Pattern 2,

Contexte,

Visualization
Recommender

Query
Manager

Data<,
Contexte,

Fig. 14 The architecture of HARVEST [120]. The front end is a web-
based user interface (®). The user can specify the dataset and create
data visualizations on the front end. The back-end (@) accepts users’
actions, detects patterns, and recommends relevant visualizations by
users’ task intents, which is inferred by their behavior.

the constraints on current data and p; indicates user’s task
intents. HARVEST defines 4 patterns: scan, £1ip, swap,
and drill-down. Then, HARVEST can recommend visu-
alizations by the inferred patterns of users. For example, if a
user iteratively inspects hotel price of different regions in
a map, HARVEST can detect a scan pattern, which means
that users want to compare some attributes between some

Making data visualization more efficient and effective: a survey

similar objects, thus HARVEST may recommend a bar chart
showing the comparison of hotel price of different regions.

4.3 Personalized recommendations

Personalized recommendation systems capture users’ histor-
ical behavior as inputs to recommend personalized interest-
ing visualizations.

Linear Model VizDeck [84] provides personalized visual-
ization recommendation results by training a linear model for
each user using their historical behavior. VizDeck provides
a new interface design which displays top-k recommended
visualizations to users in a grid. The elements displayed in
the grid are called vizlets. Users can browse, drop, promote
or reorder the vizlets, and the final selected vizlets will be dis-
played on an interactive dashboard. VizDeck can get users’
visualization preference by their historical behavior during
the exploration, extract features for these vizlets, and then
train a linear model which score vizlets for future recom-
mendation.

Collaborative Filtering Besides training a model for each
user, there are many other techniques [135-137] in person-
alized recommendation systems. For example, collaborative
filtering (CF) [135] is a widely used personalized recommen-
dation algorithm. Based on CF, VizRec [138] proposes three
methods for personalized visualization recommendation.

1. Collaborative Filtering. VizZRec constructs an m X n
matrix A, where A[i][j] denotes the rating (e.g., 1 to
7) of the user i on the visualization j in the past. And
for a given user u, VizRec first calculates the top-k users
who are the most similar (i.e., their ratings for different
visualizations are similar.) with u by Pearson correlation
coefficient, denoted as u1, us, ..., ur. Then, for a visual-
ization candidate v, the rating of u on v is calculated as:

o itk SimQu, u) (Alui][v] = 1)
ru = ru + .
iz, Simu, u;)

@

where 7, and ry; denote the average rating of user u and
u;, respectively.

2. Content-based Filtering. For the users who are new to
the system, CF-based recommendation is not applicable.
Thus, VizRec also develops a content-based recommen-
dation. VizRec defines many features (e.g., attributes of
given datasets and mark types) to characterize users and
visualizations and uses the frequency of features to con-
struct user and visualization profiles. VizRec constructs
the profile of a user by her current (together historical
for old users) annotations of visualizations. And VizRec
builds the visualization profile by the aggregation of user
profiles for this visualization. Then, the user and visu-
alization profiles are transformed to vectors by TF-IDF

(Term Frequency-Inverse Document Frequency). And for
a given user u and a visualization recommendation can-
didate v, the similarity of u#’s and v’s vectors can be
considered as the ranking score between u and v.

3. Hybrid Filtering. A hybrid method of the above two
methods will bring a host of benefits (e.g., the algorithm
becomes adaptive when the users’ interest changed).
VizRec uses the weighted sum of the normalized scores
of the above two methods as the hybrid filtering score.

4.4 A summary

Table 7 shows a summary of the supported visualization
types, input, and ranking metric of the above visualization
recommendation systems.

Visualization recommendation systems with empty spec-
ification, such as Draco [35], Data2Vis [120] and Rank-by-
feature [38], are helpful for users to quickly explore the data
when the users are not very familiar with data and desired
visualizations. Most of the existing recommendation systems
require partial specification, because they permit users’ spec-
ification for desired visualizations as inputs, e.g., keyword
specification in DeepEye [17,32]. Rule-based solution is in
line with person’s intuitive understanding of visualizations,
but it does not make a complete understanding of human per-
ceptions, just focusing on several interested metrics. Machine
learning-based solutions need to collect training data, and the
results are hard to interpret, but it may well capture human’s
cognitive knowledge about visualization effectiveness. And
the learning model will become smarter when more training
data are collected.

Users should specify the reference data or desired pattern
in the reference-based visualization recommendation, which
may be difficult for users who are not familiar with the orig-
inal data and want to explore the data with the help of the
recommendation systems. The advantage is that it is easy to
develop such a system, and convenient when users are clear
about their needs, e.g., find a line chart with desired trend
with Zenvisage [18,36].

Behavior-based recommendations can recommend visu-
alizations based on inferred tasks, but are limited to the
predefined behavior patterns, making it not flexible for users’
random behavior.

Personalized recommendations perform differently for
different users, because personalized recommendations are
customized for different users by their historical behavior.

Besides the above works, there is also a preliminary design
of a framework [110] which uses a language, CompassQL,
to describe different ranking metrics. CompassQL is a gen-
eral framework, aiming to describe the ranking metrics of
SeeDB [22], Voyager [41,83,110], VizDeck [84], etc. But,
there is no implementation of CompassQL yet.

@ Springer

X.Qinetal.

A0 Suney [POLIOISIH > ot x ot [8€1]999Z1A
[OPOJA Teaur| SunoA [eou0ISTH A N N N [$8] Yo°2qzZIA PazZI[RUOSIag
USALI(T YSEL I01ARYRY JUSLIND > ot ot ot [+€1] LSHAIVH Paseq-I01ARYRg
(A NS UOTBZI[eNSIA > ot ot ot [9¢‘g1] a3estauay
(sspp2 (V) 10D0.LS1A)A uoneZIfensIA > ot ot ot (8] 1o1y01g
(@) Ald ‘[(PaQ) Ald)S K1ond > VA » » [cc] aa=es uoneoy100dg paseq-ooudIapy
sony [emdeorag SOLIAG QW] A Vs X X [ot] ‘Te 1o Suepm
wipLo3[y LIVINPPUE promAsy] o ot VA ot [ceL1] okgdasg
so[ny remdediog suwno) as YAl Yad Yad [6€] 9N moys
so[ny remdediog suwnjo) as Yad Yad Yad [02] suelog
so[ny [eonsnels - as X X YAl [8¢] eamyeaj-£g-yuery
so[ny remdediog suwn[o) as YAl YAl YAl [011°¢8] 108ekop
sony [emdooroad promAay ot /N Vol /N 111l aovs
so[ny remdediog promAay] as YAl Yad Yad [88] 1AV
NNY - N ~ VA N loz1] stAzeied
[OPOIN INASHUBY - as Yad Yad YAl [sg] ooevaq uoneoyroadg ajerdwoouy
Paspq-uonofidadg
IoNedS aury alg Ieq
ORI Sunyuey ndug sadA[, uoneziensipy Wo)SAS UOIBPUIWIWODIY UONRZI[BNSIA K103918D)

WQISAS UOT)BPUIWOIAI SIY) JO AT2)eI)s SUDURI UTRW Y} ST DL SULYUDY

‘wasAs uonepuAWIOsar s1y) Jo ndur oy st nduy (sadK) uonepuswiosar uonezijensia payroddns oy st sadL] 1oz pNsIA AIUYM ‘SWR)SAS UOTIEPUSWOIAI UONRZI[ENSIA JO ATewiwins 7 3|qel

pringer

Qs

Making data visualization more efficient and effective: a survey

5 Other research directions

In this section, we will discuss other research topics that are
also relevant to data management issues, but are not yet well
studied.

5.1 Data preparation for data visualization

Real-life data are typically dirty, and visualizing dirty data
may mislead users. This phenomenon has been known for
a long time as one type of biased visualizations from the
data visualization community. For example, a dataset that
is integrated from multiple sources may contain duplicates.
Naturally, the data being visualized should be cleaned, such
as value normalization, deduplication, missing value impu-
tation, and outlier detection. Tableau has integrated Trifacta
for data preparation over the entire dataset. The following
studies have been conducted, from both database commu-
nity and visualization community, to investigate the impact
of dirty data on data visualization.

— What-if Analysis for Outliers: Scorpion [139] allows
users to manually pinpoint the outliers from the result
of an aggregation query. It then tries to find and remove
the predicate that causes such outliers, without affecting
the other non-outliers. The problem was formulated as an
influential predicates problem and was solved by using
techniques from sensitivity analysis. As a result, Scor-
pion can automatically move away outliers identified by
users.

— Evaluating Visualizations with Missing Data: [140] did
a crowdsourced study to measure factors influencing
response accuracy, data quality, and confidence in inter-
pretation for time series data with missing values. In
particular, it tries a combination of three imputation meth-
ods (1) zero-filling, (2) marginal mean, and (3) linear
interpolation with four ways of showing the imputed
values (i) highlight, (ii) downplay, (iii) annotation, and
(iv) information removal. The evaluation over two real-
world datasets with 300+ crowd users partially verifies
the following hypotheses: (I) Perceived data quality and
response accuracy will both degrade as the amount of
missing data increases. (II) Highlighting methods will
generate higher perceived data quality than downplaying
and information removal methods. (IIT) Linear interpo-
lation will lead to higher perceived confidence and data
quality than marginal means or zero-filling as it takes
into account local trends in dataset. (IV) Imputed values
will lead to higher perceived data quality than removed
values.

Research Opportunities

— Detecting biased visualizations. A seemingly good visu-
alization might actually be biased; hence, it requires to
detect such visualizations automatically. Many people
have approached this problem from a statistics perspec-
tive. However, it is also important to study this problem,
from the angle of dirty data.

— Task-aware data cleaning. Intuitively, it is easier to clean
a dataset if the targeting task is known, such as only a
small part of data needs to be cleaned, which is cheaper
than cleaning the entire dataset in the conventional way.

5.2 Data visualization benchmarks

Like ImageNet or the classic TPC benchmarks, itis important
to develop benchmarks for performance and recommenda-
tion. The benchmarks should be faithful to the visual analysis
tasks, provide reusable traces and data, and in the case of rec-
ommendation, have high coverage and quality of its labels.
There is an emerging focus on developing benchmarks for
performance measures [141-143].

— A research work VizNet [144] has presented a large-
scale corpus of over 31 million datasets compiled from
open data repositories and online visualization galleries.
It provides the necessary common baseline for com-
paring visualization design techniques, and developing
benchmark models and algorithms for automating visual
analysis.

Naturally, more needs to be done.
Research Opportunities

— Categorization of visualizations. For ImageNet, it is easy
to set categories, such as “balloon” or “strawberry”,
because the classification task is easier. It is not clear
about how to define similar categories for visualizations
in a conceptual level, such as “trend” or “distribution”.

— Training data. Assuming the categories can be provided,
there remains a daunting task to label visualizations, and
each visualization may have multiple labels. Afterward,
it remains a hard problem on how to use these labeled
data, e.g., using which machine learning or deep learning
model to predict a good visualization for a given task.

5.3 Data visualization for database-related
applications

As mentioned earlier in Sect. 1, data visualization also plays
an important role in database-related applications, such as
Excel [9], Google Sheets [10], Oracle Data Visualization
Desktop [11], IBM Db2 [12], Amazon Quicksight [13],

@ Springer

X.Qinetal.

Microsoft Power BI [5], and many others. Naturally, with
the rapid development of visualization techniques, there
are more opportunities about using data visualization for
database-related applications.

Research Opportunities

— Data visualization for data discovery. Data discovery,
the problem of finding interesting datasets for a certain
application from a data lake with thousands or millions
of data silos, remains a hard problem to solve [145].
One roadblock is to quickly understand the discovered
datasets. Practically, browsing each dataset is time-
consuming. Intuitively, data visualization that provides a
high-level understanding can help in this important prob-
lem.

— Data visualization for data debugging. One problem
that was recently raised by the Data Civilizer sys-
tem [146,147] is data debugging, where the output of a
data analytics workflow is wrong not because of bugs
in programs, but in the data such as erroneous input
or wrong parameters. Although [146] has some initial
attempt to combine data visualization for data debugging,
the solution for data debugging is far from being mature,
and evidently, data visualization can help for more effec-
tive data debugging.

6 Conclusion

Data visualization is a fast growing field with a great many
new research results and novel systems developed recently.
Research and practitioners from many fields have contributed
to the remarkable success of data visualization, which is
driven by most (if not all) domains and applications.

This article mainly surveys recent data visualization
works, from data management perspective. In particular, we
have comprehensively described the works in visualization
specifications, efficient methods for data visualization, and
visualization recommendation. As mentioned earlier, most
commercial data visualization systems are good at ease-of-
use in terms of data visualization specifications. However,
many practitioners are still suffering from the efficiency and
recommendation issues of these systems. Hence, we also dis-
cuss several open problems that database researchers can
make significant contribution to advance the field of data
visualization.

Acknowledgements Funding was provided by 973 Program of China
(Grant No. 2015CB358700) and National Natural Science Foundation
of China (Grant Nos. 61632016, 61521002, 61661166012).

References

1. Michael, B., Vadim, O., Jeffrey, H.: D3: Data-driven documents.
TVCG 17(12), 2301-9 (2011)

@ Springer

b

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

Satyanarayan, A., Moritz, D., Wongsuphasawat, K., Heer, J.:
Vega-lite: a grammar of interactive graphics. TVCG 23(1), 341—
350 (2016)

Hanrahan, P.: Vizql: a language for query, analysis and visualiza-
tion. In: SIGMOD, p. 721 (2006)

Tableau. https://www.tableau.com. Accessed 31 Dec 2018
Power bi: Interactive data visualization bi tools. https://powerbi.
microsoft.com. Accessed 31 Dec 2018

Hyper: A hybrid oltp and olap high performance dbms. https://
hyper-db.de. Accessed 31 Dec 2018

Neumann, T., Miihlbauer, T., Kemper, A.: Fast serializable multi-
version concurrency control for main-memory database systems.
In: SIGMOD, pp. 677-689 (2015)

Neumann, T.: Efficiently compiling efficient query plans for mod-
ern hardware. PVLDB 4(9), 539-550 (2011)

Microsoft excel. https://products.office.com/en-us/excel.
Accessed 31 Dec 2018

Google sheets: Free online spreadsheets for personal use. https://
www.google.com/sheets/about/. Accessed 31 Dec 2018

Oracle data visualization desktop. https://docs.oracle.com/
en/middleware/bi/data- visualization-desktop/tutorials.html.
Accessed 31 Dec 2018

Ibm db2. https://www.ibm.com/analytics/db2. Accessed 31 Dec
2018

Amazon quicksight: Cloud based business intelligence. https://
aws.amazon.com/quicksight/. Accessed 31 Dec 2018

Vega: A visualization grammar. https://vega.github.io/vega/.
Accessed 31 Dec 2018

Wickham, H.: ggplot2—elegant graphics for data analysis. J] Com-
put. Graph. Stat. 19(1), 3-28 (2009)

Li, D., Mei, H., Shen, Y., Su, S., Zhang, W., Wang, J., Zu, M.,
Chen, W.: ECharts: A declarative framework for rapid construc-
tion of web-based visualization. Vis. Inform. 2, 136-146 (2018)
Luo, Y., Qin, X., Tang, N., Li, G.: DeepEye: towards automatic
data visualization. In: ICDE, pp. 101-112 (2018)

Siddiqui, T., Lee, J., Kim, A., Xue, E., Yu, X., Zou, S., Guo,
L., Liu, C., Wang, C., Karahalios, K., Parameswaran, A.G.: Fast-
forwarding to desired visualizations with zenvisage. In: CIDR
(2017)

Kalinin, A., Cetintemel, U., Zdonik, S.: Interactive data explo-
ration using semantic windows. In: SIGMOD, pp. 505-516 (2014)
Stolte, C., Hanrahan, P.: Polaris: a system for query, analysis and
visualization of multi-dimensional relational databases. In: INFO-
VIS, pp. 5-14 (2000)

Qin, X., Luo, Y., Tang, N., Li, G.: DeepEye: an automatic big data
visualization framework. Big Data Min. Anal. 1(1), 75-82 (2018)
Vartak, M., Madden, S., Parameswaran, A., Polyzotis, N.: Seedb:
automatically generating query visualizations. PVLDB 7(13),
1581-1584 (2014)

Vartak, M., Rahman, S., Madden, S., Parameswaran, A.G.,
Polyzotis, N.: SeeDB: efficient data-driven visualization recom-
mendations to support visual analytics. PVLDB 8(13),2182-2193
(2015)

Ding, B., Huang, S., Chaudhuri, S., Chakrabarti, K., Wang, C.:
Sample + seek: approximating aggregates with distribution pre-
cision guarantee. In: SIGMOD, pp. 679-694 (2016)

Moritz, D., Fisher, D., Ding, B., Wang, C.: Trust, but verify: opti-
mistic visualizations of approximate queries for exploring big
data. In: CHI, pp. 2904-2915 (2017)

Kim, A., Blais, E., Parameswaran, A.G., Indyk, P., Madden, S.,
Rubinfeld, R.: Rapid sampling for visualizations with ordering
guarantees. PVLDB 8(5), 521-532 (2015)

Fisher, D., Popov, L., Drucker, S., Schraefel, M.: Trust me, i’m par-
tially right: incremental visualization lets analysts explore large
datasets faster. In: CHI, pp. 1673-1682 (2012)

https://www.tableau.com
https://powerbi.microsoft.com
https://powerbi.microsoft.com
https://hyper-db.de
https://hyper-db.de
https://products.office.com/en-us/excel
https://www.google.com/sheets/about/
https://www.google.com/sheets/about/
https://docs.oracle.com/en/middleware/bi/data-visualization-desktop/tutorials.html
https://docs.oracle.com/en/middleware/bi/data-visualization-desktop/tutorials.html
https://www.ibm.com/analytics/db2
https://aws.amazon.com/quicksight/
https://aws.amazon.com/quicksight/
https://vega.github.io/vega/

Making data visualization more efficient and effective: a survey

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Rahman, S., Aliakbarpour, M., Kong, H.K., Blais, E., Karahalios,
K., Parameswaran, A., Rubinfield, R., Rahman, S., Aliakbarpour,
M., Kong, H.K.: I've seen “enough”: incrementally improving
visualizations to support rapid decision making. PVLDB 10(11),
1262-1273 (2017)

Wesley, R.M.G., Eldridge, M., Terlecki, P.. An analytic data
engine for visualization in tableau. In: SIGMOD, pp. 1185-1194
(2011)

Wang, Z., Ferreira, N., Wei, Y., Bhaskar, A.S., Scheidegger, C.:
Gaussian cubes: real-time modeling for visual exploration of large
multidimensional datasets. TVCG 23(1), 681-690 (2016)

Liu, Z., Jiang, B., Heer, J.: imMens: real-time visual querying
of big data. In: Eurographics Conference on Visualization, pp.
421-430 (2013)

Luo, Y., Qin, X., Tang, N., Li, G., Wang, X.: DeepEye: creating
good data visualizations by keyword search. In: SIGMOD, pp.
1733-1736 (2018)

Wu, E., Psallidas, F., Miao, Z., Zhang, H., Rettig, L.: Combin-
ing design and performance in a data visualization management
system. In: CIDR (2017)

Doshi, PR., Rundensteiner, E.A., Ward, M.O.: Prefetching for
visual data exploration. In: DASFAA, pp. 195-202 (2003)
Moritz, D., Wang, C., Nelson, G.L., Lin, H., Smith, A.M., Howe,
B., Heer, J.: Formalizing visualization design knowledge as con-
straints: actionable and extensible models in draco. TVCG 25(1),
438-448 (2019)

Siddiqui, T., Kim, A., Lee, J., Karahalios, K., Parameswaran,
A.G.: Effortless data exploration with zenvisage: an expressive
and interactive visual analytics system. PVLDB 10(4), 457-468
(2016)

Qin, X., Luo, Y., Tang, N., Li, G.: DeepEye: visualizing your data
by keyword search. In: EDBT Vision (2018)

Seo, J., Shneiderman, B.: A rank-by-feature framework for inter-
active exploration of multidimensional data. IV 4(2), 96-113
(2005)

Mackinlay, J.D., Hanrahan, P., Stolte, C.: Show me: automatic
presentation for visual analysis. TVCG 13(6), 1137-1144 (2007)
Wang, Y., Han, F, Zhu, L., Deussen, O., Chen, B.: Line graph
or scatter plot? Automatic selection of methods for visualizing
trends in time series. TVCG 24(2), 1141-1154 (2018)
Wongsuphasawat, K., Moritz, D., Anand, A., Mackinlay, J.D.,
Howe, B., Heer, J.: Voyager: exploratory analysis via faceted
browsing of visualization recommendations. TVCG 22(1), 649—
658 (2016)

Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: inter-
active visual specification of data transformation scripts. In: CHI,
pp- 3363-3372 (2011)

Von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J.,
van Wijk, J.J., Fekete, J.-D., Fellner, D.W.: Visual analysis of large
graphs: state-of-the-art and future research challenges. Comput.
Graph. Forum 30, 1719-1749 (2011)

Herman, 1., Melancon, G., Marshall, M.S.: Graph visualization
and navigation in information visualization: a survey. TVCG 6(1),
24-43 (2000)

Beck, F.,, Burch, M., Diehl, S., Weiskopf, D.: A taxonomy and
survey of dynamic graph visualization. Comput. Graph. Forum
36(1), 133-159 (2017)

Bikakis, N., Sellis, T.: Exploration and visualization in the web
of big linked data: a survey of the state of the art. arXiv preprint
arXiv:1601.08059 (2016)

Marie, N., Gandon, F.: Survey of linked data based exploration
systems. In: IESD (2014)

Dadzie, A.-S., Pietriga, E.: Visualisation of linked data-reprise.
Semant. Web 8(1), 1-21 (2017)

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.
67.

68.

69.

70.

71.

72.

73.
74.

Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C.,
Giannopoulou, E.: Ontology visualization methods’a survey.
ACM Comput. Surv. (CSUR) 39(4), 10 (2007)

Liu, S., Maljovec, D., Wang, B., Bremer, P.-T., Pascucci, V.: Visu-
alizing high-dimensional data: advances in the past decade. TVCG
3, 1249-1268 (2017)

Wohlfart, E., Aigner, W., Bertone, A., Miksch, S.: Comparing
information visualization tools focusing on the temporal dimen-
sions. In: IV, pp. 69-74 (2008)

Mei, H., Ma, Y., Wei, Y., Chen, W.: The design space of construc-
tion tools for information visualization: A survey. J. Vis. Lang.
Comput. 44, 120-132 (2018)

Diamond, M., Mattia, A.: Data visualization: an exploratory study
into the software tools used by businesses. J. Instr. Pedag. 17, 1-7
(2017)

Ghosh, A., Nashaat, M., Miller, J., Quader, S., Marston, C.: A
comprehensive review of tools for exploratory analysis of tabular
industrial datasets. Vis. Inform. 2(4), 235-253 (2018)

Keim, D.A., Lee, J.P., Thuraisinghaman, B., Wittenbrink, C.:
Database issues for data visualization: supporting interactive
database exploration. In: Workshop on Database Issues for Data
Visualization, pp. 12-25 (1995)

Idreos, S., Papaemmanouil, O., Chaudhuri, S.: Overview of data
exploration techniques. In: SIGMOD, pp. 277-281 (2015)
Bikakis, N.: Big data visualization tools. arXiv:1801.08336
(2018)

Adomavicius, G., Tuzhilin, A.: Toward the next generation of rec-
ommender systems: a survey of the state-of-the-art and possible
extensions. TKDE 6, 734-749 (2005)

Burke, R.: Hybrid recommender systems: survey and exper-
iments. User Model. User-Adapted Interact. 12(4), 331-370
(2002)

Sharma, L., Gera, A.: A survey of recommendation system:
research challenges. IJETT 4(5), 1989-1992 (2013)

Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recom-
mender systems survey. Knowl. Based Syst. 46, 109-132 (2013)
Christi, J.R., Premkumar, K.: Survey on recommendation and
visualization techniques for QoS-aware web services. In: ICICES,
pp. 1-6 (2014)

Guy, I., Zwerdling, N., Carmel, D., Ronen, 1., Uziel, E., Yogeyv, S.,
Ofek-Koifman, S.: Personalized recommendation of social soft-
ware items based on social relations. In: RecSys, pp. 53-60 (2009)
Wei, K., Huang, J., Fu, S.: A survey of e-commerce recommender
systems. In: ICSSSM, pp. 1-5 (2007)

Heer, J., Card, S.K., Landay, J.A.: prefuse: a toolkit for interactive
information visualization. In: CHI, pp. 421430 (2005)

Flare. http://flare.prefuse.org. Accessed 31 Dec 2018

Bostock, M., Heer, J.: Protovis: a graphical toolkit for visualiza-
tion. TVCG 15(6), 1121-8 (2009)

Satyanarayan, A., Russell, R., Hoffswell, J., Heer, J.: Reactive
vega: a streaming dataflow architecture for declarative interactive
visualization. TVCG 22(1), 659-668 (2015)

Khan, M., Khan, S.S.: Data and information visualization meth-
ods, and interactive mechanisms: a survey. Int. J. Comput. Appl.
34(1), 1-14 (2011)

Wilkinson, L.: The Grammar of Graphics. Springer, Berlin (2005)
Wickham, H.: A layered grammar of graphics. J. Comput. Graph.
Stat. 19(1), 3-28 (2010)

VanderPlas, J., Granger, B.E., Heer, J., Moritz, D., Wongsupha-
sawat, K., Satyanarayan, A., Lees, E., Timofeev, 1., Welsh, B.,
Sievert, S.: Altair: interactive statistical visualizations for python.
https://altair-viz.github.io. Accessed 31 Dec 2018

Echarts. http://echarts.baidu.com. Accessed 31 Dec 2018
Shneiderman, B.: Direct manipulation: a step beyond program-
ming languages. IEEE Comput. 16(8), 57-69 (1983)

@ Springer

http://arxiv.org/abs/1601.08059
http://arxiv.org/abs/1801.08336
http://flare.prefuse.org
https://altair-viz.github.io
http://echarts.baidu.com

X.Qinetal.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Qlik: Data analytics for modern business intelligence. https://
www.qlik.com/us. Accessed 31 Dec 2018

Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madha-
van, J., Shapley, R., Shen, W., Goldberg-Kidon, J.: Google fusion
tables: web-centered data management and collaboration. In: SIG-
MOD, pp. 1061-1066 (2010)

Ren, D., Hollerer, T., Yuan, X.: iVisDesigner: expressive interac-
tive design of information visualizations. TVCG 20(12), 2092—
2101 (2014)

Satyanarayan, A., Heer, J.: Lyra: An interactive visualization
design environment. https://idl.cs.washington.edu/projects/lyra/.
Accessed 31 Dec 2018

Yal¢in, M.A., Elmgqvist, N., Bederson, B.B.: Keshif: Rapid and
expressive tabular data exploration for novices. TVCG 24(8),
2339-2352 (2018)

Liu, Z., Thompson, J., Wilson, A., Dontcheva, M., Delorey, J.,
Grigg, S., Kerr, B., Stasko, J.: Data illustrator. http://www.zcliu.
org/di/. Accessed 31 Dec 2018

Liu, Z., Thompson, J., Wilson, A., Dontcheva, M., Delorey, J.,
Grigg, S., Kerr, B., Stasko, J.T.: Data illustrator: Augmenting vec-
tor design tools with lazy data binding for expressive visualization
authoring. In: CHI, p. 123 (2018)

Warren, L.: The visual display of quantitative information. Yale
J. Biol. Med. 44(4), 400400 (1986)

Wongsuphasawat, K., Qu, Z., Moritz, D., Chang, R., Ouk, F.,
Anand, A., Mackinlay, J.D., Howe, B., Heer, J.: Voyager 2: aug-
menting visual analysis with partial view specifications. In: CHI,
pp- 2648-2659 (2017)

Key, A., Howe, B., Perry, D., Aragon, C.R.: Vizdeck: self-
organizing dashboards for visual analytics. In: SIGMOD, pp.
681-684 (2012)

Kandel, S., Parikh, R., Paepcke, A., Hellerstein, J.M., Heer, J.:
Profiler: integrated statistical analysis and visualization for data
quality assessment. In: AVI, pp. 547-554 (2012)

Elzen, S.V.D., van Wijk, J.J.: Small multiples, large singles: a
new approach for visual data exploration. Comput. Graph. Forum
32(3pt2), 191-200 (2013)

Wilkinson, L., Anand, A., Grossman, R.: Graph-theoretic
scagnostics. In: IEEE Symposium on Information Visualization,
2005. IEEE, Minneapolis, MN, USA (2005)

Mackinlay, J.: Automating the design of graphical presentations of
relational information. ACM Trans. Graph. 5(2), 110-141 (1986)
Setlur, V., Battersby, S.E., Tory, M., Gossweiler, R., Chang, A.X.:
Eviza: A natural language interface for visual analysis. In: UIST,
pp. 365-377 (2016)

Hoque, E., Setlur, V., Tory, M., Dykeman, I.: Applying pragmatics
principles for interaction with visual analytics. TVCG 24(1), 309—
318 (2017)

Wu, E., Battle, L., Madden, S.R.: The case for data visualiza-
tion management systems: vision paper. PVLDB 7(10), 903-906
(2014)

Wu, E., Psallidas, F., Miao, Z., Zhang, H., Rettig, L., Wu, Y., Sel-
lam, T.: Combining design and performance in a data visualization
management system. In: CIDR (2017)

Lins, L., Klosowski, J.T., Scheidegger, C.: Nanocubes for real-
time exploration of spatiotemporal datasets. TVCG 19(12), 2456—
2465 (2013)

Pang, Z., Wu, S., Chen, G., Chen, K., Shou, L.: FlashView: an
interactive visual explorer for raw data. PVLDB 10(12), 1869—
1872 (2017)

Zoumpatianos, K., Idreos, S., Palpanas, T.: Indexing for interac-
tive exploration of big data series. In: SIGMOD, pp. 1555-1566
(2014)

Piringer, H., Tominski, C., Muigg, P., Berger, W.: A multi-
threading architecture to support interactive visual exploration.
TVCG 15(6), 1113-1120 (2009)

@ Springer

97

98

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

Chan, S.-M., Xiao, L., Gerth, J., Hanrahan. P.: Maintaining inter-
activity while exploring massive time series. In: VAST, pp. 59-66
(2008)

Battle, L., Chang, R., Stonebraker, M.: Dynamic prefetching of
data tiles for interactive visualization. In: SIGMOD, pp. 1363—
1375 (2016)

Alabi, D., Wu, E.: PFunk-H: approximate query processing using
perceptual models. In: HILDA @ SIGMOD, pp. 10-16 (2016)
Bikakis, N., Papastefanatos, G., Skourla, M., Sellis, T.: A hier-
archical aggregation framework for efficient multilevel visual
exploration and analysis. Semant. Web 8(1), 139-179 (2017)
Elmgqvist, N., Fekete, J.D.: Hierarchical aggregation for informa-
tion visualization: overview, techniques, and design guidelines.
TVCG 16(3), 439-454 (2010)

Pahins, C.A., Stephens, S.A., Scheidegger, C., Comba, J.L.:
Hashedcubes: simple, low memory, real-time visual exploration
of big data. TVCG 23(1), 671-680 (2016)

Moritz, D., Howe, B., Heer, J.: Falcon: balancing interactive
latency and resolution sensitivity for scalable linked visualiza-
tions. In: CHI, p. 694 (2019)

Tauheed, F., Heinis, T., Shrmann, F., Markram, H., Ailamaki, A.:
SCOUT: prefetching for latent feature following queries. PVLDB
5(11), 1531-1542 (2012)

Yesilmurat, S.: Retrospective adaptive prefetching for interactive
web gis applications. Geoinformatica 16(3), 435-466 (2012)
Dong, H.L., Kim, J.S., Kim, S.D., Kim, K.C., Yoosung, K., Park,
J.: Adaptation of a neighbor selection markov chain for prefetch-
ing tiled web GIS data. In: ADVIS, pp. 213-222 (2002)

Fua, Y.H., Ward, M.O., Rundensteiner, E.A.: Structure-based
brushes: amechanism for navigating hierarchically organized data
and information spaces. TVCG 6(2), 150-159 (2000)

Tao, W., Liu, X., Demiralp, C., Chang, R., Stonebraker, M.: Kyrix:
Interactive visual data exploration at scale. In: CIDR (2019)
Broy, M., Denert, E., Bayer, R., McCreight, E.: Organization and
maintenance of large ordered indexes. In: Broy, M., Denert, E.
(eds.) Software Pioneers. Springer, Berlin, Heidelberg (2002)
Wongsuphasawat, K., Moritz, D., Anand, A., Mackinlay, J.D.,
Howe, B., Heer, J.: Towards a general-purpose query language
for visualization recommendation. In: HILDA @SIGMOD, pp.
4-9 (2016)

Roth, S.F., Kolojejchick, J., Mattis, J., Goldstein, J.: Interactive
graphic design using automatic presentation knowledge. In: CHI,
p. 207 (1994)

Casner, S.M.: Task-analytic approach to the automated design of
graphic presentations. ACM Trans. Graph. 10(2), 111-151 (1991)
Bertin, J.: Semiology of graphics - diagrams, net-
works, maps. ESRI. ISBN: 978-1-58948-261-6.
http://esripress.esri.com/display/index.cfm?fuseaction
=display&websiteID=190&moduleID=0 (2010)

Cleveland, W.S., McGill, R.: Graphical perception: theory, exper-
imentation, and application to the development of graphical
methods. ASA 79(387), 531-554 (1984)

Shepard, R.N.: Toward a universal law of generalization for psy-
chological science. Science 242(4880), 1317-1323 (1988)
Lewandowsky, Stephan, Spence, Ian: Discriminating strata in
scatterplots. ASA 84(407), 682—688 (1989)

Hu, K.Z., Orghian, D., Hidalgo, C.A.: DIVE: a mixed-initiative
system supporting integrated data exploration workflows. In:
HILDA @SIGMOD, pp. 5:1-5:7 (2018)

Cleveland, W.S.: Robust locally weighted regression and smooth-
ing scatterplots. ASA 74(368), 829-836 (1979)

Silverman, B.W.: Density estimation for statistics and data anal-
ysis. Springer, pp. 1-158 (1986). https://doi.org/10.1007/978-1-
4899-3324-9

https://www.qlik.com/us
https://www.qlik.com/us
https://idl.cs.washington.edu/projects/lyra/
http://www.zcliu.org/di/
http://www.zcliu.org/di/
http://esripress.esri.com/display/index.cfm?fuseaction=display&websiteID=190&moduleID=0
http://esripress.esri.com/display/index.cfm?fuseaction=display&websiteID=190&moduleID=0
https://doi.org/10.1007/978-1-4899-3324-9
https://doi.org/10.1007/978-1-4899-3324-9

Making data visualization more efficient and effective: a survey

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

Dibia, V., Demiralp, C.: Data2Vis: Automatic generation of data
visualizations using sequence to sequence recurrent neural net-
works. CoRR, abs/1804.03126 (2018)

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamil-
ton, N., Hullender, G.: Learning to rank using gradient descent.
In: Proceedings of the 22nd International Conference on Machine
Learning, pp. 89-96 (2005)

Herbrich, R., Graepel, T., Obermayer, K.: Support vector learning
for ordinal regression. In: ICANN, vol. 1, pp. 97-102 (2002)
Kim, Y., Heer, J.: Assessing effects of task and data distribution
on the effectiveness of visual encodings. Comput. Graph. Forum
37(3), 157-167 (2018)

Saket, B., Endert, A., Demiralp, C.: Task-based effectiveness of
basic visualizations. TVCG PP(99), 1-1 (2017)

Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81—
106 (1986)

Wu, Q., Burges, C.J., Svore, K.M., Gao, J.: Ranking, boosting, and
model adaptation. Technical report, Microsoft Research (2008)
Epelbaum, T.: Deep learning: technical introduction. CoRR,
arXiv:1709.01412 (2017)

Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning
with neural networks. NIPS 4, 3104-3112 (2014)

Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by
jointly learning to align and translate. Comput. Sci. arXiv preprint
arXiv:1409.0473 (2014)

Sundermeyer, M., Schliiter, R., Ney, H.: LSTM neural networks
for language modeling. In: Interspeech, pp. 601-608 (2012)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Comput. 9(8), 1735-1780 (1997)

Poco, J., Heer, J.: Reverse-engineering visualizations: recovering
visual encodings from chart images. Comput Graph Forum 36(3),
353-363

Sakoe, H., Chiba, S.: Dynamic programming algorithm optimiza-
tion for spoken word recognition. IEEE Trans. Acoust. Speech
Signal Process. 26(1), 159-165 (1990)

Gotz, D., Wen, Z.: Behavior-driven visualization recommenda-
tion. In: IUI, pp. 315-324 (2009)

Schafer, J.B., Konstan, J., Riedl, J.: Recommender systems in e-
commerce. In: World Automation Congress, pp. 158-166 (1999)
Liu, R.R., Jia, C.X., Zhou, T., Sun, D., Wang, B.H.: Personal
recommendation via modified collaborative filtering. Physica A
Stat. Mech. Appl. 388(4), 462—-468 (2012)

137. Soboroft, 1., Nicholas, C.: Combining content and collaboration
in text filtering. In: IJCAI, pp. 86-91 (1999)

138. Mutlu, B., Veas, E., Trattner, C.: VizRec: recommending person-
alized visualizations. TIIS 6(4), 31 (2016)

139. Wu, E., Madden, S.R.: Scorpion: explaining away outliers in
aggregate queries. In: PVLDB, pp. 553-564 (2013)

140. Song, H., Szafir, D.A.: Where’s my data? Evaluating visualiza-
tions with missing data. IEEE Trans. Vis. Comput. Graph. 25(1),
914-924 (2019)

141. Battle, L., Angelini, M., Binnig, C., Catarci, T., Eichmann,
P., Fekete, J., Santucci, G., Sedlmair, M., Willett, W.: Eval-
uating visual data analysis systems: a discussion report. In:
HILDA @SIGMOD, pp. 4:1-4:6 (2018)

142. Battle, L., Chang, R., Heer, J., Stonebraker, M.: Position state-
ment: the case for a visualization performance benchmark. In:
DSIA, pp. 1-5 (2017)

143. Jiang, L., Rahman, P, Nandi, A.: Evaluating interactive data
systems: workloads, metrics, and guidelines. In: SIGMOD, pp.
1637-1644 (2018)

144. Hu, K.Z., Gaikwad, S.N.S., Hulsebos, M., Bakker, M.A.,
Zgraggen, E., Hidalgo, C.A., Kraska, T., Li, G., Satyanarayan, A.,
Demiralp, C.: Viznet: Towards A large-scale visualization learn-
ing and benchmarking repository. In: CHI, pp. 662 (2019)

145. Valizadegan, H., Jin, R., Zhang, R., Mao, J.: Learning to rank by
optimizing NDCG measure. In: NIPS, pp. 1883-1891 (2009)

146. Rezig, E.K., Cao, L., Stonebraker, M., Simonini, G., Tao, W,
Madden, S., Ouzzani, M., Tang, N., Elmagarmid, A.K.: Data civ-
ilizer 2.0: a holistic framework for data preparation and analytics.
PVLDB 12(12), 1954-1957 (2019)

147. Rezig, E.K., Cao, L., Simonini, G., Schoemans, M., Madden, S.,
Ouzzani, M., Tang, N., Stonebraker, M.: Dagger: a data (not code)
debugger. In: CIDR (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

http://arxiv.org/abs/1709.01412
http://arxiv.org/abs/1409.0473

	Making data visualization more efficient and effective: a survey
	Abstract
	1 Introduction
	2 Visualization specifications
	2.1 The specification of data visualizations
	2.2 A categorization of data visualization languages
	2.3 GUI-based visual operations
	2.4 Underspecified specifications

	3 Efficient approaches for data visualization
	3.1 Exact data visualization
	3.2 Approximate data visualization
	3.3 Progressive data visualization

	4 Visualization recommendation
	4.1 Specification-based recommendations
	4.1.1 Incomplete specification
	Rule-based visualization ranking
	Machine learning-based visualization ranking
	4.1.2 Reference-based specification

	4.2 Behavior-based recommendations
	4.3 Personalized recommendations
	4.4 A summary

	5 Other research directions
	5.1 Data preparation for data visualization
	5.2 Data visualization benchmarks
	5.3 Data visualization for database-related applications

	6 Conclusion
	Acknowledgements
	References

