
The VLDB Journal (2011) 20:617–640
DOI 10.1007/s00778-011-0218-x

REGULAR PAPER

Efficient fuzzy full-text type-ahead search

Guoliang Li · Shengyue Ji · Chen Li · Jianhua Feng

Received: 29 January 2010 / Revised: 22 January 2011 / Accepted: 2 February 2011 / Published online: 24 February 2011
© Springer-Verlag 2011

Abstract Traditional information systems return answers
after a user submits a complete query. Users often feel “left in
the dark” when they have limited knowledge about the under-
lying data and have to use a try-and-see approach for find-
ing information. A recent trend of supporting autocomplete
in these systems is a first step toward solving this problem.
In this paper, we study a new information-access paradigm,
called “type-ahead search” in which the system searches the
underlying data “on the fly” as the user types in query key-
words. It extends autocomplete interfaces by allowing key-
words to appear at different places in the underlying data.
This framework allows users to explore data as they type,
even in the presence of minor errors. We study research chal-
lenges in this framework for large amounts of data. Since each
keystroke of the user could invoke a query on the backend,
we need efficient algorithms to process each query within
milliseconds. We develop various incremental-search algo-
rithms for both single-keyword queries and multi-keyword
queries, using previously computed and cached results in
order to achieve a high interactive speed. We develop novel
techniques to support fuzzy search by allowing mismatches
between query keywords and answers. We have deployed

G. Li (B) · J. Feng
Department of Computer Science, Tsinghua University,
Room 10-204, East Main Building, 100084 Beijing, China
e-mail: liguoliang@tsinghua.edu.cn

J. Feng
e-mail: fengjh@tsinghua.edu.cn

S. Ji · C. Li
Department of Computer Science, University of California,
Irvine, CA, USA
e-mail: shengyuj@ics.uci.edu

C. Li
e-mail: chenli@ics.uci.edu

several real prototypes using these techniques. One of them
has been deployed to support type-ahead search on the UC
Irvine people directory, which has been used regularly and
well received by users due to its friendly interface and high
efficiency.

Keywords Auto complete · Full-text search · Type-ahead
search · Fuzzy search

1 Introduction

In a traditional information system, a user composes a query,
submits it to the system, and the system retrieves relevant
answers. This information-access paradigm requires the user
to have certain knowledge about the structure and content of
the underlying data repository. In the case where the user
has limited knowledge about the data, often the user feels
“left in the dark” when issuing queries and has to use a
try-and-see approach for finding information, as illustrated
by the following example.

At a conference venue, an attendee named John met a per-
son from a university. After the conference, John wanted to
get more information about this person, such as his research
projects.John knows about all the person is that he is a pro-
fessor from that university, and John only remembers the
name roughly. In order to search for this person, John goes
to the directory page of the university. Figure 1 shows such an
interface. John needs to fill in the form by providing informa-
tion for some attributes, such as name, phone, department,
and title. Given his limited information about the person,
especially since he does not know the exact spelling of the
person’s name, John needs to try a few possible keywords,
go through the returned results, modify the keywords, and
re-issue a new query. He needs to repeat this step multiple

123

618 G. Li et al.

Fig. 1 A typical directory-search form

times to find the person, if lucky enough. This search inter-
face is neither efficient nor user friendly.

Many systems are introducing various features to solve
this problem. One of the commonly used methods is auto-
complete, which suggests a word or phrase that the user may
type next based on the query the user has entered. As an
example, almost all the major search engines nowadays auto-
matically suggest possible keyword queries as a user types
in keywords. More and more Web sites have this feature,
due to recent advances in high-speed networks and browser-
based programming languages and tools such as JavaScript
and AJAX.

In this paper, we study a new computing paradigm,
called “type-ahead search.” Our method searches for the best
answers “on the fly” as users type in query keywords. When
searching for relevant records, we also extend our method to
find those records that include words similar to the keywords
in the query, even if they do not match exactly.

We have developed several prototypes using this par-
adigm. The first one supports type-ahead search on the
UC Irvine people directory. A screenshot is shown in
Fig. 2. In the figure, a user has typed in a query string
“professor smyt.” Even though the user has not typed in
the second keyword completely, the system can already find
person records that might be of interest to the user. Notice that
the two keywords in the query string (including a keyword
“smyt”) can appear in different attributes of the records. In
particular, in the first record, the keyword “professor”
appears in the “title” attribute, and the keyword “smyt”
appears in the “name” attribute. The matched prefixes are
highlighted.

The system can also find records with keywords that
are similar to the query keywords, such as a person name
“smith.” The feature of supporting fuzzy search is impor-
tant especially when the user has limited knowledge about
the underlying data or the entities she is looking for. In addi-
tion, as the user types in more letters, the system interac-
tively searches on the data and updates the list of relevant
records. The system also utilizes a priori knowledge such
as synonyms. For instance, given the fact that “william”
and “bill” are synonyms, the system can find a person

called “William Kropp” when the user has typed in
“bill crop.” This search prototype has been used regu-
larly by many people at UCI and received positive feedback
due to the friendly user interface and high efficiency.

In this paper, we study research challenges that arise nat-
urally in this computing paradigm. The main challenge is the
requirement of a high efficiency. To make search interactive,
for each keystroke on the client browser, from the time the
user presses the key to the time the results computed from the
server are displayed on the browser, the delay should be as
small as possible. An interactive speed requires this delay be
within milliseconds. Notice that this time includes the net-
work transfer delay, execution time on the server, and the
time for the browser to execute its JavaScript (which tends
to be slow). Providing a high efficiency on a large amount of
data is especially challenging because of two reasons. First,
we allow the query keywords to appear in different attributes
with an arbitrary order, and the “on-the-fly join” nature of the
problem can be computationally expensive. Second, we want
to support fuzzy search by finding records with keywords that
match query keywords approximately.

We develop novel solutions to these problems. We present
several incremental-search algorithms for answering a query
by using cached results of earlier queries. In this way, the
computation of the answers to a query can essentially spread
across multiple keystrokes of the user, thus we can achieve
a high speed. Specifically, we make the following contribu-
tions. (1) We present an incremental algorithm for computing
keyword prefixes similar to a prefix keyword (Sect. 4). (2)
For queries with multiple keywords, we study various tech-
niques for computing the intersection of the inverted lists
of query keywords and develop a novel algorithm for com-
puting the results efficiently (Sect. 5.1). (3) We develop an
on-demand caching technique for incrementally computing
first-k (any-k) answers.1 Its idea is to cache only part of the
results of a query. For subsequent queries, the unfinished
computation will be resumed if the previously cached results
are not sufficient. In this way, we can efficiently compute
and cache a small amount of results (Sect. 5.2). (4) We study
various features in this paradigm, such as how to highlight
keywords in the results, how to utilize domain-specific infor-
mation (e.g., synonyms) to improve search, and how to sup-
port updates (Sect. 6). (5) In addition to deploying several
real prototypes, we conducted a thorough experimental eval-
uation of the developed techniques on real data sets and show
the practicality of this new computing paradigm. All exper-
iments were done using a single desktop machine, which
can achieve a response time of milliseconds on millions of
records.

1 In our deployed system of UCI people search, we return the top-k
answers for each query. In this paper, we focus on any-k queries and
will study how to answer top-k queries efficiently in the future.

123

Efficient fuzzy full-text type-ahead search 619

Fig. 2 Type-ahead search on
the UC Irvine people directory
(http://psearch.ics.uci.edu)

Fig. 3 Trie with inverted lists at leaf nodes (The numbers in rectangles
are record IDs, the underlined numbers are word IDs, and other numbers
are node IDs.)

1.1 Related work

Bast et al. proposed techniques to support “CompleteSearch,”
in which a user types in keywords letter by letter, and the sys-
tem finds records that include these keywords (possibly at
different places) [4–7,10]. Different from CompleteSearch,
we propose an alternative index structure to achieve the goal.
Chaudhuri et al. [15] also studied how to extend autocomple-
tion to tolerate errors. The algorithms for computing similar
prefixes for a query presented in the two papers are similar,
while our algorithm was published earlier in [26]. In addi-
tion, our work also studied type-ahead search of multiple
keywords, which was not studied in their paper.

2 Preliminaries

2.1 Problem formulation

We formalize the problem of type-ahead search on a set of
records, and our method can be adapted to textual documents
[57], XML documents [41], and relational databases [42] as
well.

Exact type-ahead search: Consider a set of records
R = {r1, r2, . . . , rn}. Each record is a sequence of words
(tokens). A query consists of a set of keywords Q =
{p1, p2, . . . , p�}. The query answer is a set of records r in
R such that for each query keyword pi , record r contains a
word with pi as a prefix. For example, consider the data in
Table 1, which has ten records. For a query {“vldb”, “l”},
record 7 is an answer, since it contains word “vldb” and a
word “luis” with a prefix “l”.

Fuzzy type-ahead search: Different from exact type-ahead
search, the query answer of fuzzy type-ahead search is a
set of records r in R such that for each query keyword
pi , record r contains a word with a prefix similar to pi .
In this work, we use edit distance to measure the similarity
between two strings. We can transform a string to another
using four operations: match, insertion, deletion, and sub-
stitution. The edit distance between two strings s1 and s2,
denoted by ed(s1, s2), is the minimum number of inser-
tion, deletion, and substitution operations of single char-
acters needed to transform the first one to the second. We
say a word in a record r has a prefix w similar to the
query keyword pi if the edit distance between w and pi is
within a given threshold τ .2 For example, suppose the edit-
distance threshold τ = 1. For a query {“vldb”, “lvi”},
record 7 is an answer, since it contains a word “vldb”
(matching the query keyword “vldb” exactly) and a word
“luis” with a prefix “lui” similar to query keyword “lvi”

2 For simplicity, we assume a threshold τ on the edit distance between
similar strings is given. Our solution can be extended to the case where
we want to increase the threshold τ for longer prefixes.

123

http://psearch.ics.uci.edu

620 G. Li et al.

Fig. 4 Fuzzy search of prefix
queries of “nlis” on a partial
trie (edit-distance threshold
τ = 2). a Initialize, b query ‘n’,
c query ‘nl’, d query ‘nli’,
e query ‘nlis’

(a) (b) (c) (d) (e)
Table 1 A set of records

ID Record

1 EASE: an effective 3-in-1 keyword search method for unstructured, semi-structured and structured data. Guoliang Li,
Beng Chin Ooi, Jianhua Feng, Jianyong Wang, Lizhu Zhou. SIGMOD, 2008

2 BLINKS: ranked keyword searches on graphs. Hao He, Haixun Wang, Jun Yang, Philip S. Yu. SIGMOD, 2007

3 Spark: top-k keyword query in relational databases. Yi Luo, Xuemin Lin, Wei Wang, Xiaofang Zhou. SIGMOD, 2007

4 Finding top-k min-cost connected trees in databases. Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, Xuemin
Lin. ICDE, 2007

5 Effective keyword search in relational databases. Fang Liu, Clement T. Yu, Weiyi Meng, Abdur Chowdhury. SIGMOD, 2006

6 Bidirectional expansion for keyword search on graph databases. Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S.
Sudarshan, Rushi Desai, Hrishikesh Karambelkar. VLDB, 2005

7 Efficient IR-style keyword search over relational databases. Vagelis Hristidis, Luis Gravano, Yannis Papakonstantinou. VLDB, 2003

8 DISCOVER: keyword search in relational databases. Vagelis Hristidis, Yannis Papakonstantinou. VLDB, 2002

9 DBXplorer: a system for keyword-based search over relational databases. Sanjay Agrawal, Surajit Chaudhuri, Gautam Das. ICDE, 2002

10 Keyword searching and browsing in databases using BANKS. Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen
Chakrabarti, S. Sudarshan. ICDE, 2002

(i.e., their edit distance is 1, which is within the threshold
τ = 1).

2.2 Indexing

We use a trie to index the words in the records. Each word w

in the table corresponds to a unique path from the root of the
trie to a leaf node. The label of the root node is ε, where ε

is a special mark and denotes the empty string. The label of
each leaf node is also ε. Each of other nodes on the path has a
label of a character in w. For simplicity, a node is mentioned
interchangeably with its corresponding string in the remain-
der of the paper. Each leaf node has an inverted list of IDs
of records that contain the corresponding word. For instance,
Fig. 3 shows a partial index structure for publication records.
The word “vldb” has a trie node ID of 28, and its inverted
list includes record IDs 6, 7, and 8.

In this paper, we focus on in-memory index structures for
applications that need to support a high query throughout for
a large number of users.

3 Exact search for single keyword

In this section, we discuss how to answer a query with a
single keyword using the trie structure.

3.1 Non-incremental method

One naive way to process a query with a single keyword on
the server is to answer the query from scratch as follows.
We first find the trie node corresponding to the query key-
word by traversing the trie from the root. Then, we locate the
leaf descendants of this node and retrieve the corresponding
words and the records on the inverted lists.

For example, suppose a user types in a query with a sin-
gle keyword “luis” letter by letter. When the user types
in the character “l”, the client sends the query “l” to the
server. The server finds the trie node corresponding to this
keyword, i.e., node 12. Then, it locates the leaf descendants
of node 12, i.e., nodes 14, 16, 18, 20, and 23, and retrieves
the corresponding words, i.e., “li”, “lin”, “liu”, “lu”,
and “luis”, and the records, i.e., 1, 3, 4, 5, and 7. When
the user types in the character “u”, the client sends a query
string “lu” to the server. The server answers the query from

123

Efficient fuzzy full-text type-ahead search 621

Table 2 Computing active-node sets for queries of “nlis” (edit-distance threshold τ = 2)

�ε 〈n0, 0〉 〈n12, 1〉 〈n13, 2〉 〈n19, 2〉
(a) Query “n”

Deletion 〈n0, 1〉 〈n12, 2〉 – –

Substitution 〈n12, 1〉 〈n13, 2〉; 〈n19, 2〉 – –

Match – – 〈n15, 2〉 –

Insertion – – – –

�n 〈n0, 1〉; 〈n12, 1〉; 〈n13, 2〉; 〈n19, 2〉; 〈n15, 2〉
�n 〈n0, 1〉 〈n12, 1〉 〈n13, 2〉 〈n15, 2〉 〈n19, 2〉
(b) Query “nl”

Deletion 〈n0, 2〉 〈n12, 2〉 – – –
Substitution – 〈n13, 2〉; 〈n19, 2〉 – – –
Match 〈n12, 1〉 – – – –
Insertion 〈n13, 2〉; 〈n19, 2〉 – – – –
�nl 〈n12, 1〉; 〈n0, 2〉; 〈n13, 2〉; 〈n19, 2〉
�nl 〈n12, 1〉 〈n0, 2〉 〈n13, 2〉 〈n19, 2〉

(c) Query “nli”
Deletion 〈n12, 2〉 – – –
Substitution 〈n19, 2〉 – – –
Match 〈n13, 1〉 – – 〈n21, 2〉
Insertion 〈n15, 2〉; 〈n17, 2〉 – – –
�nli 〈n13, 1〉; 〈n12, 2〉; 〈n15, 2〉; 〈n17, 2〉; 〈n19, 2〉; 〈n21, 2〉
�nli 〈n13, 1〉 〈n12, 2〉 〈n15, 2〉 〈n17, 2〉 〈n19, 2〉 〈n21, 2〉

(d) Query “nlis”
Deletion 〈n13, 2〉 – – – – –
Substitution 〈n15, 2〉; 〈n17, 2〉 – – – – –
Match – – – – – 〈n22, 2〉
Insertion – – – – – –
�nlis 〈n13, 2〉; 〈n15, 2〉; 〈n17, 2〉; 〈n22, 2〉

Table 3 Computing pivotal active-node sets for queries of “nlis”, where the edit-distance threshold is τ = 2

�ε 〈n0, 0, ε, 0〉
(a) Query “n”

Deletion 〈n0, 1, ε, 0〉
Match 〈n15, 2, “n”, 2〉
�n 〈n0, 1, ε, 0〉; 〈n15, 2, “n”, 2〉

�n 〈n0, 1, ε, 0〉 〈n15, 2, “n”, 2〉
(b) Query“nl”

Deletion 〈n0, 2, ε, 0〉 –
Match 〈n12, 1, “nl”, 1〉 –
�nl 〈n12, 1, “nl”, 1〉; 〈n0, 2, ε, 0〉

�nl 〈n12, 1, “nl”, 1〉 〈n0, 2, ε, 0〉
(c) Query “nli”

Deletion 〈n12, 2, “nl”, 1〉 –
Match 〈n13, 1, “nli”, 1〉; 〈n21, 2, “nli”, 2〉 –
Insert 〈15,2〉 –
�nli 〈n13, 1, “nli”, 1〉; 〈n12, 2, “nl”, 1〉; 〈n21, 2, “nli”, 2〉

�nli 〈n13, 1, “nli”, 1〉 〈n12, 2, “nl”, 1〉 〈n21, 2, “nli”, 2〉
(d) Query “nlis”

Deletion 〈n13, 2, “nli”, 1〉 – –
Match – – 〈n22, 2, “nlis”, 2〉
�nlis 〈n13, 2, “nli”, 1〉; 〈n22, 2, “nlis”, 2〉

123

622 G. Li et al.

scratch as follows. It first finds node 19 for this string and
then locates the leaf descendants of node 19 (nodes 20 and
23). It retrieves the corresponding words (“lu” and “luis”)
and computes the records (4 and 7). Other queries invoked by
keystrokes are processed in a similar way. One main limita-
tion of this method is that it involves a lot of re-computation
without using the results of earlier queries.

3.2 Incremental algorithm

We can incrementally compute answers as follows. We main-
tain a session for each user.3 Each session keeps the key-
words that the user has typed in so far and the corresponding
trie nodes. The goal is to use such information to answer
subsequent queries incrementally.

Assume a user has typed in a query with a single key-
word px = c1c2 . . . cx letter by letter. Suppose nx is the trie
node corresponding to px . After the user types in a prefix
query px , we store node nx for px and its relevant records.
For example, suppose a user has typed in “lui”. After this
query is submitted, the server has stored node 12 and records
1, 3, 4, 5, and 7 for the prefix query “l”, node 19 and records
4 and 7 for the prefix query “lu”, and node 21 and record 7
for “lui”. For each keystroke from the user, for simplicity,
we first assume that the user types in a new character cx+1 at
the end of the previous query. To incrementally answer the
new query, we first check whether node nx kept for px has a
child with a character of cx+1. If so, we locate the leaf descen-
dants of node nx+1 and retrieve the corresponding words and
records. Otherwise, there is no word with a prefix of px+1,
and we can just return an empty answer. For example, if the
user types in a letter “s” after “lui”, we check whether node
21 kept for “lui” has a child with character “s”. Here, we
find node 22 and retrieve the word “luis” and record 7.

It is possible that the user modifies the previous query arbi-
trarily or copies and pastes a completely different string. In
this case, for the new query, among all the keywords typed by
the user, we identify the cached keyword that has the longest
prefix with the new query. Formally, consider a cached query
with a single keyword c1c2 . . . cx . Suppose the user submits a
new query with a single keyword p = c1c2 . . . ci di+1 . . . dy .
We find pi = c1c2 . . . ci that has a longest prefix with p.
Then, we use the node ni of pi to incrementally answer the
new query p, by inserting the characters after the longest
prefix of the new query (i.e., di+1 . . . dy) one by one. In par-
ticular, if there exists a cached keyword pi = p, we use
the cached records of pi to directly answer the query p. If
there is no such a cached keyword, we answer the query from
scratch.

3 Different sessions can share their cached results.

4 Fuzzy search for single keyword

In this section, we study fuzzy search for a single keyword.
For the case of exact prefix search using a trie index, there
can be at most one trie node corresponding to each keyword.
We can access the inverted lists of its descendant leaf nodes
to retrieve candidate records. The solution to the problem of
fuzzy search is more challenging since a keyword can have
multiple similar prefixes, and we need to compute them effi-
ciently. In this section, we focus on computing these similar
prefixes efficiently.

4.1 Active nodes

Let p be a query keyword and τ be an edit-distance threshold.
We call a trie node n an active node of p with respect to τ ,
or simply an active node of p when τ is clear in the context,
if the edit distance between the string of n and p is within τ ,
i.e., ed(n, p) ≤ τ . The leaf descendants of the active nodes
are called the similar words of p. For example, consider the
trie in Fig. 4. Suppose the edit-distance threshold τ = 2, and
a user types in a prefix p = “nlis”. As illustrated by Fig. 4e,
each of the prefixes “li”, “lin”, “liu”, and “luis” has
an edit distance to p within τ . Thus, nodes 13, 15, 17, and
22 are active nodes of p. The similar words for the prefix
are “li”, “lin”, “liu”, and “luis”. We can retrieve the
records on the inverted lists of the similar words to compute
answers to the prefix query.

4.2 Incrementally computing active nodes

We now study how to compute active nodes efficiently for
a keyword as the user types in a keyword character by
character. We develop a caching-based algorithm, called
“ICAN”, which stands for incrementally computing active
nodes. Given a query keyword p, we want to compute and
store a set of tuples �p = {〈n, ξn〉}, such that (1) each n is
an active node of p with ξn = ed(n, p) ≤ τ and (2) every
active node of p appears in a tuple in �p. We call �p the
set of active nodes of p. The idea of the ICAN algorithm is
the following: when the user types in one more letter after
p, the active nodes of p can be used to compute the active
nodes of the new query. For example, assume a user types
in a query “nlis” letter by letter and the threshold τ is 2.
Figure 2 illustrates how the algorithm processes the queries
invoked by keystrokes. Table 2 shows the details of how to
compute the active node sets incrementally.

4.2.1 Algorithm description

Now we describe the details of the ICAN algorithm. Ini-
tially, before the user types in any character, the query key-
word is the empty string ε, and its corresponding active node

123

Efficient fuzzy full-text type-ahead search 623

set �ε is initialized as: �ε = {〈n, ξn〉 | ξn = |n| ≤ τ }.
That is, it includes all trie nodes n whose corresponding
string has a length |n| within the edit-distance threshold
τ . Clearly, these nodes are all the active nodes for ε. In
our running example, the first step is to initialize �ε =
{〈n0, 0〉, 〈n12, 1〉, 〈n13, 2〉, 〈n19, 2〉}, as shown in Fig. 4a and
Table 2a, where n0 denotes node 0.

Suppose after the user types in a query string px =
c1c2 . . . cx , we have computed the active node set �px for
px . Now, the user types in a new character cx+1 and submits
a new query px+1. The algorithm computes the active node
set �px+1 for px+1 by using �px as follows. We initialize
�px+1 to be empty. Before we present the details of adding
more tuples to �px+1 , we first introduce a notation. Given two
strings s1 and s2, consider a transformation from s1 to s2. We
define the transformation distance with respect to this trans-
formation is the number of single-character edit operations
in the transformation. We introduce this notation instead of
using the standard definition of edit distance because there
can be different numbers of edit operations transforming one
string to another. Two strings can have multiple transforma-
tion distances with respect to different transformations, and
their edit distance is referring to the minimum one.

For each 〈n, ξn〉 in �px , only the descendants of n are
examined as active node candidates for px+1, as illustrated
in Fig. 5. We consider the following cases.

Considering node n: Consider the active node n of px . We
can transform n to px+1 with ξn + 1 edit operations by first
transforming n to px (with ξn edit operations) and then delet-
ing the last character cx+1. If ξn + 1 ≤ τ , we add 〈n, ξn + 1〉

Fig. 5 Incrementally computing the active-node set �px+1 from the
active-node set �px . We consider an active node 〈n, ξn〉 in �px

to �px+1 . In our running example, consider the case where
the user types in the first character “n”. For 〈n0, 0〉 ∈ �ε ,
since we can apply a deletion operation on letter “n” with 1
edit operation, we add 〈n0, 1〉 to �n.

Considering children of node n: For each child nc of node n,
there are two possible cases.

Case 1 The child node nc has a character different from cx+1.
Figure 5 shows a node ns for such a child node, where “s”
stands for substitution. We can transform ns to px+1 with
ξn + 1 operations by first transforming n to px (with ξn

operations) and then substituting the character of ns for the
character cx+1. If ξn + 1 ≤ τ , then we add 〈ns, ξn + 1〉 to
�px+1 . This case corresponds to substituting the character of
ns for the character cx+1. In the running example, consider
the case where the user types in the first character “n”. For
〈n0, 0〉 ∈ �ε , node 12 is a child of node 0 with a letter “l”.
Since we can apply a substitution operation on character “l”
for“n” with 1 edit operation, 〈n12, 1〉 is added to �n.

Case 2 The child node nc has a character cx+1, i.e., a charac-
ter matching the new character in the query. Figure 5 shows
the node nm for such a child node, where “m” stands for
matching. In this case, we can transform nm to px+1 with ξn

edit operations by first transforming n to px (with ξn opera-
tions) and then matching the character of nm with the char-
acter cx+1. We add 〈nm, ξn〉 to �px+1 . This case corresponds
to the match between the character of nm and the character
cx+1. One subtlety here is that if ξn < τ , the following oper-
ations are also required: for each nm’s descendant d that is
at most τ − ξn letters away from nm , we need to add 〈d, ξd〉
to �px+1 , where ξd = ξn + |d| − |nm |. The operations for
each descendant correspond to inserting several letters after
node nm . In our running example, suppose the user types in
the first character “l”. For 〈n0, 0〉 ∈ �ε , node 12 is a child
of node 0 with a letter “l”. As the character of node 12 (“l”)
matches letter “l”, 〈n12, 0〉 is added to �l. Node 13 is a child
of node 12. As we can insert the character of n13 (character
“i”) after node 12 with 1 edit operation, 〈n13, 1〉 is added
to �l.
Keeping minimum distances: During the computation of the
set �px+1 , whenever we add a tuple 〈v, ξ1〉 to the set, there
can be already a tuple 〈v, ξ2〉 for the same trie node v in the
set. If ξ1 ≥ ξ2, then the new tuple is not added. If ξ1 < ξ2,
then the new tuple will replace the original tuple 〈v, ξ2〉. In
other words, for the same trie node v, in the new set, we only
keep its minimum transformation distance to the query string
px+1.
Complexity analysis: Given a query keyword p, we ana-
lyze the complexity of the algorithm ICAN for computing
its active node set from that of its prefix p′, which does
not have the last character of p. Consider the set of active

123

624 G. Li et al.

nodes of p,�p. We first consider each active node in �p,
which is computed from its ancestors within τ steps. Such
an active node is inserted into �p at most τ times. The
total time to compute them is O(τ ∗ |�p|). In addition,
we need to consider those nodes that are considered by the
algorithm but are not inserted into �p since their edit dis-
tance to p is greater than τ . Such nodes can be detected
and avoided by checking whether an active node n in �′

p
has an edit distance to p strictly less than τ . These check-
ing steps take O(|�′

p|). Thus, the total time complexity is

O
(
τ ∗ (|�p| + |�′

p|)
)

.

The space complexity is O(|�p| + |�p′ |), since we only
need to keep these two active node sets.

4.2.2 Proof of correctness

We now prove that the set �px+1 computed by the ICAN
algorithm above is indeed the set of active nodes with their
edit distances for the new prefix px+1. We prove the claim
by providing two lemmas corresponding to the completeness
and soundness, respectively.

Lemma 1 (Completeness) Let p be a query keyword. For
each active node n of p, the tuple 〈n, ed(n, p)〉 must be in
the set �p computed by the ICAN algorithm.

Proof We prove this lemma by induction. This claim is obvi-
ously true when p = p0 = ε. Suppose the claim is true for
px with x characters. We want to prove this claim is also true
for a new query string px+1, where px+1 = px c, i.e., px+1

is a concatenated string of the string px and a character c.
Suppose v is an active node of px+1. If v = ε, then by

definition, ed(v, px+1) = ed(ε, px+1) = x + 1 ≤ τ , and
x ≤ τ − 1 < τ . Thus, ed(v, px) = ed(ε, px) = x ≤ τ ,
and v is also an active node of px . When the ICAN algo-
rithm considers this node v, it adds the pair 〈v, x + 1〉 (i.e.,
〈v, ed(v, px+1)〉) to the set �px+1 .

Now consider the case where the active node v of px+1

is not the empty string. Let v = ny+1 = nyd, i.e., it has
y + 1 characters, and is concatenated from a string ny and a
character d. By definition, ed(ny+1, px+1) ≤ τ . We want to
prove that

〈
ny+1, ed(ny+1, px+1)

〉
will be added to �px+1 in

the ICAN algorithm.
Based on the idea in the classic dynamic programming

algorithm [30], we have

ed(ny+1, px+1) = min

⎧⎪⎪⎨
⎪⎪⎩

ed(ny+1, px) + 1 deletion{
ed(ny, px) + 1 if c 	= d
ed(ny, px) if c = d

ed(ny, px+1) + 1 insertion

Correspondingly, we consider the following four cases in
the minimum number of edit operations to transform ny+1

to px+1.

Case 1 Deleting the last character c from px+1, and trans-
forming ny+1 to px . Since ed(ny+1, px+1) = ed(ny+1, px)

+ 1 ≤ τ , we have ed(ny+1, px) ≤ τ − 1 < τ . Thus, ny+1

is an active node of px . Based on the induction assump-
tion,

〈
ny+1, ed(ny+1, px)

〉
must be in �px . From the node

ny+1, the ICAN algorithm considers the deletion case when
it considers the node ny and adds

〈
ny+1, ed(ny+1, px) + 1

〉
to �px+1 , which is exactly

〈
ny+1, ed(ny+1, px+1)

〉
.

Case 2 Substituting the character d of ny+1 for the last charac-
ter c of px+1. Since ed(ny+1, px+1) = ed(ny, px)+ 1 ≤ τ ,
we have ed(ny, px) ≤ τ −1 < τ . Thus, ny is an active node
of px . Based on the induction assumption,

〈
ny, ed(ny, px)

〉
must be in �px . From node ny , the ICAN algorithm consid-
ers the substitution case when it considers this child node
(ny+1) of the node ny and adds

〈
ny+1, ed(ny, px) + 1

〉
to

�px+1 , which is exactly
〈
ny+1, ed(ny+1, px+1)

〉
.

Case 3 The last character c of px+1 matching the character d
of ny+1. Since ed(ny+1, px+1) = ed(ny, px) ≤ τ , then ny

is an active node of nx . Based on the induction assumption,〈
ny, ed(ny, px)

〉
must be in �px . From node ny , the ICAN

algorithm considers the match case when it considers this
child node (ny+1) of the node ny and adds

〈
ny+1, ed(ny, px)

〉
to �px+1 , which is exactly

〈
ny+1, ed(ny+1, px+1)

〉
.

Case 4 Transforming ny to px+1 and inserting character d of
ny+1. For each transformation from ny to px+1, we consider
the last character c of px+1. First, we can show that this trans-
formation cannot delete the character c, since otherwise we
can combine this deletion of c and the insertion of d into one
substitution, yielding another transformation with a smaller
number of edit operations, contradicting to the minimality of
edit distance.

Thus, we can just consider two possible operations on
the character c in this transformation. (1) Matching c for
the character of an ancestor na of ny+1: In this case, since
ed(ny+1, px+1) = ed(na−1, px) + y − a + 1 ≤ τ , we have
ed(na−1, px) ≤ τ , and na−1 is an active node of px . Based on
the induction assumption, 〈na−1, ed(na−1, px)〉 must be in
�px . From node na−1, the algorithm considers the matching
case and adds

〈
ny+1, ed(na−1, px) + y − a + 1

〉
to �px+1 ,

which is
〈
ny+1, ed(ny+1, px+1)

〉
. (2) Substituting c for the

character of an ancestor na of ny+1: In this case, instead of
substituting c for the character of na and inserting the charac-
ter d, we can insert the character of na and substitute c for the
last character d. Then, we get another transformation with the
same number of edit operations. (Characters c and d cannot
be the same, since otherwise the new transformation could
have fewer edit operations, contradicting to the minimality
of edit distance.) We use the same argument in “Case 2” to
show that the ICAN algorithm adds

〈
ny+1, ed(ny+1, px+1)

〉
to �px+1 .

123

Efficient fuzzy full-text type-ahead search 625

In summary, for all cases, the algorithm adds
〈
ny+1, ed

(ny+1, px+1)
〉

to �px+1 .

Lemma 2 (Soundness) For each tuple 〈n, ξn〉 in the final set
�p computed in the ICAN algorithm, the node n is an active
node of p, and ξn = ed(n, p).

Proof By definition, a transformation distance of two strings
in each added tuple by the algorithm is no less than their edit
distance. That is, ed(n, p) ≤ ξn ≤ τ . Therefore, n must
be an active node of p. Based on the completeness claim in
Lemma 1, 〈n, ed(n, p)〉 must be in �p. In addition, for each
node, the ICAN algorithm only keeps the minimum transfor-
mation distance, and the edit distance is the minimum trans-
formation distance. Therefore, there can be only one tuple
〈n, ξn〉 for node n in �p, and ξn = ed(n, p).
�
Theorem 1 Given a query keyword p, the ICAN algorithm
computes all the active nodes of p with their edit distances.

Proof It is a corollary of the two lemmas above.
�

4.3 Improvement by pruning active nodes

Our end goal of computing active nodes of a query keyword
is to use them to identify the similar words of the keyword.
There may be many active nodes for a given query
keyword. In this section, we discuss how to prune unnec-
essary active nodes while we can still compute all the similar
words of the keyword. This method has two advantages: (1)
We can reduce the space to store active nodes; (2) We can
improve search performance since we do not need to scan all
the active nodes for incremental computation.

The intuition of our approach can be illustrated as follows.
In our running example, consider a query keyword “nl” with
a threshold τ = 2, where �nl = {〈n12, 1〉; 〈n0, 2〉; 〈n13, 2〉 ;
〈n19, 2〉}. Although n13 (“li”) and n19 (“lu”) are active
nodes, we do not need to keep them, since we can use the
active node n12 (“l”) to compute the similar words of “li”
and “lu” using “l”. In other words, we only need to keep
the active node “l” to compute the same set of similar words
for the query keyword.

4.3.1 Pivotal active nodes

When defining a subset of active nodes that can be used to
compute all the similar words for the query keyword, we
also want to be able to compute them incrementally and effi-
ciently. To define such a subset, we have the following obser-
vation. Given an active node n of p, if for any transformation
from n to p with ed(n, p) operations, the operation on the
last character of n is not a match operation and we can delete
the last character of n. We keep n’s parent and do not keep n.
For example, consider the query keyword “nl” in our run-
ning example. The node of “l” is an active node. “li” and

“lu” are also active nodes, and their edit distances to “nl”
are 2 and their last characters do not match characters in
the query keyword “nl”. Obviously, we can derive the two
active nodes from the node “l” by appending characters “i”
and “u”, respectively. In addition, we can compute the simi-
lar words “li” and “lu” by visiting the leaf descendants of
“l”. Thus, we do not want to keep these two nodes. To this
end, we propose the concept of pivotal active node.

Definition 1 (Pivotal Active Node) Given a query keyword
p, a trie node n is a pivotal active node of p with respect to
an edit-distance threshold τ , if and only if (1) n is an active
node of p and (2) there exists a transformation from p to n
with ed(n, p) edit operations, and the operation on the last
character of n is a “match” operation. That is the operation on
character of n is neither deletion ed(n, p) 	= ed(n′, p) + 1
nor substitution ed(n, p) 	= ed(n′, p′) + 1, where n′ and p′
are respectively the prefixes of n and p which do not contain
the last character.

Next, we prove that the set of pivotal active nodes can be
used to compute all the similar words for a query keyword.
We will propose an incremental algorithm to efficiently com-
pute pivotal active nodes in Sect. 4.3.2.

Lemma 3 For a query keyword p, let A and P respectively
denote the active node set and pivotal active node set of the
query string, L(A) and L(P) respectively denote the set of
leaf nodes of nodes in A and P. We have L(A) = L(P).

Proof It is obvious that L(P) ⊆ L(A) as P ⊆ A. We only
need to prove L(A) ⊆ L(P). Consider a leaf node l ∈ L(A),
which is a descendant of an active node n. If n is a pivotal
active node, i.e., n ∈ P , then l ∈ L(P). If n is not a pivotal
active node, we can find one of its ancestors na , which is a
pivotal active node. As l is a descendant of na, l ∈ L(P).
Hence, L(A) ⊆ L(P).

Next, we present how to find pivotal active node na . Let
n = ny = d1d2 · · · dy and p = px = c1c2 · · · cx , where ds

and ct are characters for 1 ≤ s ≤ y and 1 ≤ t ≤ x . We
first check whether ny is a pivotal active node based on the
definition. If not, ny−1 must be an active node, since (1) if
ed(ny, px) = ed(ny−1, px) + 1, we have ed(ny−1, px) ≤
ed(ny, px)−1 ≤ τ ; (2) if ed(ny, px) = ed(ny−1, px−1)+1,
for each transformation ρ from ny−1 to px−1, we can con-
struct a transformation from ny−1 to px , which is the same
as ρ except that we delete character cx , and thus we have
ed(ny−1, px) ≤ ed(ny−1, px−1) + 1 ≤ ed(ny, px) ≤ τ .
Then we check whether ny−1 is a pivotal active node based
on the definition. Iteratively, we will find a pivotal active
node. Note that if each ni (for y ≥ i ≥ 1) is not a pivotal
active node, the root node must be.
�

123

626 G. Li et al.

Fig. 6 Incrementally
computing pivotal active nodes
(ci = dy and cx+1 = dz)

4.3.2 Incrementally computing pivotal active nodes

We now study how to compute pivotal active nodes effi-
ciently for a keyword as the user types in a keyword character
by character. We develop a caching-based algorithm, called
“ICPAN”, which stands for “Incrementally Computing Piv-
otal Active Nodes,” which extends the previous ICAN algo-
rithm. Given an query keyword px , we want to compute and
store a set of quadruples �px = {〈n, ξ

px
n , pi , ξ

pi
n 〉} . In each

quadruple, n is a pivotal active node of px . pi is a prefix of
px such that the last characters of n and pi match. If no such
prefix exists, pi = ε; if there are multiple such prefixes, we
select the one with the shortest length. ξ

pi
n ≤ τ is a transfor-

mation distance from node n to pi with a match operation
on the last characters of n and pi . ξ

px
n ≤ τ is a transforma-

tion distance from node n to px by first transforming node
n to pi and then appending the characters after pi , that is
ξ

px
n = ξ

pi
n + |px | − |pi |. We devise an algorithm to com-

pute �px and guarantee that every pivotal active node of px

appears as the “n” node in a quadruple in �px .

Algorithm description: Initially, before the user types in char-
acters, the query keyword is the empty string ε, and we ini-
tialize its corresponding set �ε = {〈r, 0, ε, 0〉}, where r is
the root node, since obviously the root is the only pivotal
active node for ε. In the running example, assume a user
types in a query “nlis” letter by letter, and the threshold τ

is 2. Table 3 shows the details of how to compute the pivotal
active node sets incrementally. The first step is to initialize
�ε = {〈n0, 0, ε, 0〉}, where n0 denotes the root node 0.

After the user types in a query string px = c1c2 . . . cx ,
we have computed the pivotal active node set �px for px .
Now the user types in a new character cx+1 and submits
a new query px+1. The ICPAN algorithm computes the

pivotal active node set �px+1 for px+1 by using �px as fol-
lows. The set �px+1 is initialized to be empty. For each qua-
druples

〈
n, ξ

px
n , pi , ξ

pi
n

〉
in �px , only the descendants of n

are examined as pivotal active node candidates for px+1 as
shown in Fig. 6.

Considering node n: Consider the pivotal active node n of
px . We can transform n to px+1 with ξ

px
n + 1 operations

by first transforming n to px (with ξ
px

n operations) and then
deleting the last character cx+1. If ξ

px
n + 1 ≤ τ , we add〈

n, ξ
px

n + 1, pi , ξ
pi

n
〉
to �px+1 . For example, assume the user

types in the first character “n”. For 〈n0, 0, ε, 0〉 ∈ �ε , since
we can apply a deletion operation on the character “n” with
1 edit operation, we add 〈n0, 1, ε, 0〉 into �n.

Considering descendants of node n: Consider n’s descen-
dants that have character cx+1 and are within τ − ξ

pi
n + 1

steps from node n. For each such node n′, we can trans-
form n′ to px+1 as follows: (1) transforming n to pi ; (2)
transforming the characters after n and before n′ to the char-
acters ci+1 · · · cx ; and (3) matching the character of n′ with
the character cx+1. Thus, we can transform n′ to px+1 with
ξ

px+1
n′ = ξ

pi
n + max(|n′| − |n|− 1, |px |− |pi |) operations. If

ξ
px+1

n′ ≤ τ , we add
〈
n′, ξ px+1

n′ , px+1, ξ
px+1

n′
〉

into �px+1 . For
example, assume the user types in the first character “n”. For
〈n0, 0, ε, 0〉 ∈ �ε , since the character of node n15(“lin”)
matches “n”, we add

〈
n15, 2, “lin′′, 2

〉
into �n.

Keeping the minimum transformation distance: During the
computation of the new set �px+1 , for the same trie node n,
we only keep the minimum transformation distance between
the node n and the query string px+1. In particular, whenever
we add a quadruple

〈
n, ξ

px+1
n , pi , ξ

pi
n

〉
to the set, there might

be already a quadruple
〈
n, ξ ′ px+1

n , p j , ξ
′ p j
n

〉
for the same trie

123

Efficient fuzzy full-text type-ahead search 627

node n in the set. If ξ ′ px+1
n > ξ

px+1
n , then the new quadruple

is not added. If ξ ′ px+1
n = ξ

px+1
n and |p j | < |pi |, then the new

quadruple will replace the original quadruple (keeping the
prefix with the shortest length). If ξ ′ px+1

n < ξ
px+1

n , then the
new quadruple will replace the original quadruple.

Removing non pivotal active nodes: For each quadru-
ple

〈
n, ξ

px+1
n , pi , ξ

pi
n

〉
, if pi 	= px+1, for each ancestor

node na 	= n of n, if
〈
na, ξ

px+1
na , pa, ξ

pa
na

〉 ∈ �px+1 and
ξ

pa
na + max(|px+1| − |pa |, |n| − |na |) < ξ

px+1
n , we remove〈

n, ξ
px+1

n , pi , ξ
pi

n
〉

from the set. The reason is that there is a
transformation from n to px+1 with smaller transformation
distance than ξ

px+1
n and the last character of node n does not

match, i.e., n is not a pivotal active node of px+1.

Complexity analysis: Given a query keyword p, we analyze
the complexity of the algorithm ICPAN for computing its
pivotal active node set from that of its prefix p′, which does
not have the last character of p. Consider the set of pivotal
active nodes of p, �p. Different from ICAN, ICPAN needs
to remove non-pivotal active nodes from �p. Considering
the removed tuples, all such tuples must be added into �p in
the deletion case (see Fig. 6). For each node in �p′ , consid-
ering the deletion case, ICPAN adds a tuple into �p. Thus,
ICPAN adds at most |�p′ | tuples for the deletion case, that is
ICPAN removes at most |�p′ | tuples from �p in the removal
step. As there are |�p| tuples in �p, ICPAN inserts at most
|�p| + |�p′ | tuples into �p totally. Similar to ICAN, each
tuple is added into �p at most τ times. Thus, the time com-
plexity of ICPAN is O (

τ ∗ (|�p| + |�p′ |)).
As ICPAN needs to maintain the pivotal active node sets

�p and �p′ , the space complexity is O(|�p| + |�p′ |).
In the running example where a user types in a query

“nlis” letter by letter, and the threshold τ is 2. Table 3
shows the details of how to compute the pivotal active
node sets incrementally. The first step is to initialize �ε =
{〈n0, 0, ε, 0〉} (Table 2a). When the user types in the first
character “n”, we apply edit operations on the character until
reaching the threshold. Its active node set �n can be com-
puted based on �ε as follows. For 〈n0, 0, ε, 0〉 ∈ �ε , as we
can apply deletion on character “n” with 1 edit operation,
we add 〈n0, 1, ε, 0〉 into �n. As the character of node n15

(“lin”) matches the last character of the query keyword, we
can apply a match operation and insert

〈
n15, 2, “lin′′, 2

〉
into

�n. Then, the user types in a character “l”. For 〈n0, 1, ε, 0〉 ∈
�n, as we can apply a deletion operation on character “l”
with 1 edit operation, we add 〈n0, 2, ε, 0〉 into �nl. As the
character of node n12 (“l”) matches the new character in the
query keyword, we can apply a match operation and insert〈
n12, 1, “l′′, 1

〉
into �nl. For

〈
n15, 2, “lin′′, 2

〉 ∈ �nl, as
it has no descendant, we will not insert any node. Similarly,
we can compute the sets for the prefix queries of “nlis”
incrementally.

For each active node, the words corresponding to its leaf
descendants are similar words. For the query “nli”, there
are six active nodes as shown in Table 2c, and there are only
three pivotal active nodes as shown in Table 3c. We can get
the similar words of “nli” using the pivotal active nodes,
e.g., “li”.

4.3.3 Proof of correctness

We now prove that the set �px+1 computed by the ICPAN
algorithm is indeed the set of pivotal active nodes for the new
keyword px+1. For ease of presentation, we first prove that,
given a query keyword p and an active node n, if their last
characters are the same, n must be a pivotal active node of p
as follows.

Lemma 4 Given a query keyword p and an active node n, if
their last characters are the same, n must be a pivotal active
node of p.

Proof Let n = n j = d1d2 · · · d j and p = pk = c1c2 · · · ck ,
where ds and ct are characters for 1 ≤ s ≤ j and 1 ≤ t ≤ k.
Based on the classic dynamic programming algorithm [30],
ed(n j , pk) = min

(
ed(n j−1, pk−1), ed(n j−1, pk) + 1,

ed(n j , pk−1) + 1
)
. If ed(n j , pk) = ed(n j−1, pk−1), there

exists a transformation from n to pk with ed(n, pk) opera-
tions: first transforming n j−1 to pk−1 and then matching d j

with ck . Hence, n is a pivotal active node of pk .
Next, we prove ed(n j , pk) = ed(n j−1, pk−1). Based on

the dynamic-programming equation, we prove ed(n j−1,pk−1)

≤ ed(n j , pk−1) + 1, and ed(n j−1, pk−1) ≤ ed(n j−1, pk)

+1. Firstly, we prove ed(n j−1, pk−1) ≤ ed(n j , pk−1) + 1.
Suppose there is a transformation ρ from n j to pk−1 with
ed(n j , pk−1) operations. We consider the operation on d j in
ρ. If d j is deleted, we can construct a transformation from
n j−1 to pk−1 with the same operations in ρ except that we do
not delete n j . Thus, ed(n j−1, pk−1) ≤ ed(n j , pk−1) − 1.
If d j matches cs , we can construct a transformation from
n j−1 to pk−1 with the same operations in ρ except that
we delete cs . Thus, ed(n j−1, pk−1) ≤ ed(n j , pk−1) + 1.
If d j substitutes for cs , we can construct a transformation
from n j−1 to pk−1 with the same operations in ρ except
that we delete cs and do not do the substitution. Thus,
ed(n j−1, pk−1) ≤ ed(n j , pk−1). Based on the above three
cases, ed(n j−1, pk−1) ≤ ed(n j , pk−1) + 1.

Similarly, we can prove that ed(n j−1, pk−1) ≤ ed(n j−1,

pk) + 1. Thus, n must be a pivotal active node of p.
�
Next, based on Lemma 4, we prove the claim by providing

two lemmas corresponding to the completeness and sound-
ness, respectively.

Lemma 5 (Completeness) Let p be a query keyword. For
each pivotal active node n of p, the quadruple 〈n, ed(n, p) =

123

628 G. Li et al.

ed(n, p′) + |p| − |p′|, p′, ed(n, p′)
〉

must be in the set �p

computed by the ICPAN algorithm described above, where
p′ is a prefix of p. If there are multiple such prefixes, p′ is
the shortest one.

Proof We prove this lemma by induction. This claim is obvi-
ously true when p = p0 = ε. Suppose the claim is true for
p0, p1, . . . , px , and we want to prove this claim is also true
for px+1.

Suppose n′ is a pivotal active node of px+1 =c1c2 · · · cx+1.
By definition, ed(n′, px+1) ≤ τ . We want to prove〈
n′, ed(n′, px+1)=ed(n′, pi)+|px+1|−|pi |, pi , ed(n′, pi)

〉
will be added to �px+1 , where pi is a prefix of px+1 to n′
in the ICPAN algorithm. As n′ is a pivotal active node of
px+1, there must exist a transformation ρ from n′ to px+1

with ed(n′, px+1) edit operations, such that the character d
of node n′ matches a character in px+1 in the transformation.
There are two cases in the transformation.

Case 1 d matches the last character cx+1 of px+1. Suppose
n p is the parent of n′. We have ed(n p, px) = ed(n′, px+1)

based on Lemma 4. Thus, n p is an active node of px . We find
the nearest ancestor node n of n p, which is a pivotal active
node of px based on Lemma 3. Note that when finding n,
the letters after n before n p can be substituted and deleted
(otherwise, a descendant of n could be a pivotal active node).
Thus, there exists a transformation ρ from n′ to px+1 with
ed(n′, px+1) operations, in which the character of n matches
a character in px+1. Suppose the character of n matches ck .
(If there are multiple pk’s, we select the shortest one.) Thus,
the transformation ρ from n′ to px+1 includes the follow-
ing: (1) transforming n to pk with ed(n, pk) operations; (2)
transforming the characters after n and before n′ to the let-
ters ck+1 · · · cx with max(|n′| − |n| − 1, |px | − |pk |) opera-
tions; and (3) matching the character of n′ with the character
cx+1. Thus, ed(n, pk) + max(|n′| − |n| − 1, |px | − |pk |) =
ed(n′, px+1).

As ed(n, pk) ≤ ed(n′, px+1)−max(|n′|−|n|−1, |px |−
|pk |) ≤ τ , node n is an active node of pk . As the char-
acter of n matches ck , based on Lemma 4, n must be a
pivotal active node of pk . Based on the induction assump-
tion, 〈n, ed(n, pk), pk, ed(n, pk)〉 must be in �pk . As n
is a pivotal active node of px and the character of n
matches ck , we have ed(n, px)=ed(n, pk)+|px | − |pk |≤
ed(n′, px+1)≤τ . From node n, the ICPAN algorithm consid-
ers the deletion case and adds 〈n, ed(n, px), pk, ed(n, pk)〉
into �px . As n is a pivotal active node of px , the dis-
tance ed(n, px) is the minimum transformation distance,
thus this quadruple cannot be deleted in the ICPAN algo-
rithm. As pk is the shortest one that matches n, the quadru-
ple 〈n, ed(n, px), pk, ed(n, pk)〉 must be in �px . From node
n, the ICPAN algorithm considers the match case and adds〈
n′, ed(n′, px+1) = ed(n, pk) + max(|n′| − |n| − 1, |px |

−|pk |), px+1, ed(n′, px+1) = ed(n, pk) + max(|n′| − |n|
−1, |px | − |pk |)〉 into �px+1 , which is exactly

〈
n′, ed(n′,

px+1), px+1, ed(n′, px+1)
〉
.

Case 2 d matches character ci (i < x + 1). If there are mul-
tiple such ci characters, we select the smallest one. In this
case, we have ed(n′, px+1) = ed(n′, pi) + |px+1| − |pi |.
As ed(n′, px) = ed(n′, pi) + |px | − |pi | ≤ τ − 1, n′
is an active node of px . By definition, n′ is a pivotal
active node of px . Based on the induction assumption,〈
n′, ed(n′, px) = ed(n′, pi) + (|px | − |pi |), pi , ed(n′, pi)

〉
must be in �px . As n′ is a pivotal active node of px , the dis-
tance ed(n′, px) is the minimum transformation distance,
thus this quadruple cannot be deleted in the ICPAN algo-
rithm. As pi is the shortest one that matches n′, the quadruple〈
n′, ed(n′, px), pi , ed(n′, pi)

〉
must be in �px . From node n′,

as ed(n′, px+1) = ed(n′, px) + 1 = ed(n′, pi) + |px+1| −
|pi | ≤ τ , the ICPAN algorithm considers the deletion case,
and adds

〈
n′, ed(n′, px+1)=ed(n′, pi)+|px+1| − |pi |, pi ,

ed(n′, pi)
〉

into �px+1 . As n′ is a pivotal active node of
px+1, ed(n′, px+1) is the minimum transformation distance,
thus this quadruple cannot be deleted in the ICPAN algo-
rithm. As pi is the shortest one that matches n′, the quadruple〈
n′, ed(n′, px+1), pi , ed(n′, pi)

〉
must be in �px+1 .
�

Lemma 6 (Soundness) For each quadruple
〈
n, ξ

p
n , p′, ξ p′

n

〉

in �p, the node n is a pivotal active node of p, ξ
p

n =
ed(n, p), ξ

p′
n = ed(n, p′), and ed(n, p) = ed(n, p′) +

|p| − |p′|, where p′ is a prefix of p.

Proof By definition, a transformation distance of two strings
in each added quadruple by the ICPAN algorithm is no less
than their edit distance. That is, ed(n, p) ≤ ξ

p
n ≤ τ and

ed(n, p′) ≤ ξ
p′

n ≤ τ . Therefore, n must be an active node
of p.

Next we prove that n must be a pivotal active node of p.
We prove it by induction. This claim is obviously true when
p = p0 = ε. Suppose the claim is true for p0, p1, . . . , px ,
and we want to prove this claim is also true for px+1. Sup-
pose n is a pivotal active node of px . Based on the com-
pleteness claim in Lemma 5, 〈n, ed(n, px), pi , ed(n, pi)〉
is in �px , where pi is a prefix of p and ed(n, px) =
ed(n, pi) + |px | − |pi |. The ICPAN algorithm considers
the following two cases to add nodes.

Considering node n. In this case, the ICPAN algorithm con-
siders the deletion case and adds. 〈n, ed(n, pi) + |px+1|−
|pi |, pi , ed(n, pi)〉 into �px+1 . For each 〈n, ed(n, pi) +
|px+1| − |pi |, pi , ed(n, pi)〉 ∈ �px+1 after removing non-
pivotal active nodes, we first prove that ed(n, px+1) =
ed(n, pi) + |px+1| − |pi |. As ed(n, px+1) ≤ ed(n, pi) +
|px+1| − |pi |, we only need to prove ed(n, px+1) ≥
ed(n, pi) + |px+1| − |pi |. We prove it by contradiction.

123

Efficient fuzzy full-text type-ahead search 629

Suppose ed(n, px+1) < ed(n, pi) + |px+1| − |pi |. Without
loss of generality, in the transformation ρ from n to px+1 with
ed(n, px+1) operations, let node na denote the nearest ances-
tor node of n, such that the character of na matches a char-
acter c j in px+1. We have ed(n, px+1) = ed(na, p j)+max
(|n| − |na |, |px+1| − |p j |). Based on the proof in Lemma 5,
na is a pivotal active node of p j . Based on the com-
pleteness claim, 〈na, ed(na, p j), p j , ed(na, p j)〉 is in �p j .
The ICPAN algorithm considers the deletion case and
adds 〈na, ed(na, px+1) = ed(na, p j) + |px+1| − |p j |, p j ,

ed(na, p j)〉 into �px+1 . As ed(na, p j) + max(|n| − |na |,
|px+1| − |p j |) = ed(n, px+1) < ed(n, pi) + |px+1| −
|pi |, the ICPAN algorithm will remove the quadruple
〈n, ed(n, pi) + |px+1| − |pi |, pi , ed(n, pi)〉, which contra-
dicts to the fact that 〈n, ed(n, pi)+|px+1|−|pi |, pi , ed(n,

pi)〉 is in �px+1 . Thus, ed(n, px+1)= ed(n, pi)+|px+1|−
|pi |.

As the character of n matches ci , there exists a transforma-
tion from n to px+1 with ed(n, px+1) operations, and the last
character of node n matches a character in px+1. Thus, node n
is a pivotal active node of px+1. For each node, as the ICPAN
algorithm only keeps the minimum transformation distance,
there is only one quadruple 〈n, ed(n, px+1), pi , ed(n, pi)〉
for node n in �px+1 . Based on the completeness claim,
we have ξ

px+1
n = ed(n, px+1), ξ

pi
n = ed(n, pi), and

ed(n, px+1) = ed(n, pi) + |px+1| − |pi |.

Considering descendants of node n: In this case, the IC-
PAN algorithm considers the match case. For a node n′ with
character cx+1, the ICPAN algorithm adds

〈
n′, ξ pi

n

+max(|n′|−|n|−1, |px |−|pi |), px+1, ξ
pi

n +max(|n′|−|n|−
1, |px |−|pi |)

〉
into �px+1 . As ξ

px+1
n′ = ξ

pi
n +max(|n′|−|n|−

1, |px | − |pi |) ≤ τ , node n′ must be an active node of px+1.
As the character of n′ matches cx+1, node n′ must be a pivotal
active node based on Lemma 4. Based on the completeness
claim, n′ must be in �px+1 . For each node, as the ICPAN algo-
rithm only keeps the minimum transformation distance, there
is only one quadruple

〈
n′, ed(n′, px+1), px+1, ed(n′, px+1)

〉
for node n′ in �px+1 Based on the completeness claim,
ξ

px+1
n′ = ed(n′, px+1),and ed(n′, px+1) = ed(n′, px+1) +

max(|n′| − |n′|, |px+1| − |px+1|).
�
Theorem 2 Given a query keyword p, the ICPAN algorithm
computes all the pivotal active nodes of p with their edit dis-
tances.

Proof It is a corollary of the two lemmas above.
�
In general, the user may modify the previous query string

by deleting multiple characters at the end or changing some
characters in the middle of the string. The user may also copy
and paste a completely different string to the search interface.
In this case, we can first identify the cached keyword that has
the longest prefix of the new query. We then use the cached

pivotal active nodes to incrementally answer the new query
by inserting the characters after the longest prefix one by one.

5 Type-ahead search using multiple keywords

In this section, we study how to support type-ahead search for
a query with multiple keywords (tokenized from the query
string by white space). Given a query consisting of a set of
keywords Q = {p1, p2, . . . , p�}, the query answer of type-
ahead search is a set of records r in R such that for each query
keyword pi , record r contains a word with pi as a prefix. The
query answer of fuzzy type-ahead search is a set of records r
in R such that for each query keyword pi , record r contains
a word with a prefix similar to pi . There are scenarios where
we want to use the semantics of multi-keyword completions.
For example, a user wants to search for a person, but only
vaguely remembers the first few letters of the name and the
first few letters of the telephone number. In this case, the user
needs multi-keyword completions. Our solutions also work
for the case where only the last keyword in a query is treated
as a prefix condition.

Our goal is to efficiently and incrementally compute the
relevant records. Given a query, each query keyword (treated
as a prefix) has multiple similar words as shown in Fig. 7.
To find the answers, a straightforward method first computes
the union list of each keyword, which is the union of inverted
lists of this keyword’s similar words. Then, it intersects the
union lists of every keyword and generates the final answers.
These operations can be computationally costly, especially
when each query keyword can have multiple similar prefixes.
In Sect. 5.1, we study various algorithms for computing the
answers efficiently. Note that in most cases, the user types the
query letter by letter, and subsequent queries append addi-
tional letters to previous ones. Based on this observation,
we study how to use the cached results of earlier queries to
answer a query incrementally (Sect. 5.2).

Fig. 7 Notations used in the paper

123

630 G. Li et al.

5.1 Intersecting union lists

For simplicity, we first consider exact search and then
extend the results to fuzzy search. Given a query Q =
{p1, p2, . . . , p�}, suppose Ki = {ki1, ki2 , . . .} is the set of
words that share the prefix pi . Let Li j = L(ki j) denotes
the inverted list of ki j , which is sorted-based record IDs, and
Ui = ⋃

ki j ∈Ki
L(ki j) be the union of the lists for pi . We study

how to compute the answer to the query, i.e.,
⋂

1≤i≤� Ui .

Simple methods: One method is the following. For each key-
word pi , we compute the corresponding union list Ui on-the-
fly and intersect the union lists of different keywords. The
time complexity for computing the unions is O(

∑
i, j |Li j |),

where |Li j | is the size of Li j . The shorter the keyword is,
the lower the performance could be, as inverted lists of more
similar words need to be traversed to generate the union list.
This approach requires the inverted lists of trie leaf nodes.
The space complexity of the inverted lists is O(|R| × ravg),
where |R| is the number of records and ravg is the average
number of distinct words of each record.

Alternatively, we can pre-compute and store the union list
of each keyword, and intersect the union lists of query key-
words when a query comes. The main issue of this approach
is that the pre-computed union lists require a large amount of
space, especially since each record occurrence on an inverted
list needs to be stored many times. The space complexity of
all the union lists is O(|R| × ravg × kavg), where kavg is the
average word length (i.e., the average number of letters of
each word).

There have been other approaches for answering keyword
intersection. For instance, Bast et al. [6] proposed a method
that groups ranges of keywords and builds document lists
separately for each range. Intersection is performed between
an existing document list and several ranges called “HYB
blocks.” The limitation of this approach is that, for most
queries, the ranges can include many irrelevant documents,
which require a lot of time to do a post-processing. We will
show experimental results in Sect. 7.

Efficient intersection using forward lists: We develop a new
solution based on the following ideas. Among the union
lists U1,U2, . . . ,U�, we identify the shortest union list. Each
record ID on the shortest list is verified by checking if it
appears on all the other union lists (following the ascend-
ing order of their lengths). Notice that these union lists are
not materialized in the computation. We can enumerate the
record IDs on the shortest union list by accessing the leaf
nodes of the corresponding keyword and visiting the record
IDs in their inverted lists. The length of each union list
can be pre-computed and stored in the trie or estimated on-
the-fly. To verify record occurrences efficiently, we maintain
a forward list for each record r , which is a sorted list of IDs of

words in r , denoted as Fr . A unique property of the word IDs
is that they are encoded using the alphabetical order of the
words. Therefore, each keyword pi has a range of word IDs
[MinI di , Max I di]. Moreover, if pi is a prefix of word w,
then the ID of w must be within this range.

An interesting observation is that, for a record r on
the shortest union list, the problem of verifying whether r
appears on (non-materialized) union list Uk of a query key-
word pk is equivalent to testing if pk appears on the forward
list Fr as a prefix. We can do a binary search for MinI dk on
the forward list Fr to get a lower bound I dlb and check if I dlb

is no larger than Max I dk . The probing succeeds if the con-
dition holds, and fails otherwise. The time complexity for
processing each single record r is O

(
(� − 1) ∗ log(ravg)

)
,

where � is the number of keywords in the query, and ravg is
the average number of distinct words in each record. A good
property of this approach is that the time complexity of each
probing does not depend on the lengths of inverted lists, but
on the number of unique words in a record.

Figure 8 shows an example when a user types in a query
{“vldb”, “l”}. The words for “l” are “li”, “lin”, “liu”,
“lu”, and “luis”. The keyword-ID range of each query
keyword is shown in brackets. For instance, the keyword-
ID range for “l” is [3, 7] (Fig. 3), which covers the ranges
of “li”, “lin”, “liu”, “lu”, and “luis”. To intersect
the union list of “vldb” with that of “l”, we first identify
“vldb” as the one with the shorter union list. The record IDs
(6, 7, 8) on the list are probed one by one. Take record 7 as
an example. Its forward list contains word IDs {2, 7, 8, . . .}.
We use the range of “l” to probe the forward list. By doing
a binary search for the word ID 3, we find word with ID 7 on
the forward list, which is then verified to be no larger than
MaxID = 7. Thus, record 7 is an answer to the query, and the
word with ID 7 (“luis”) has “l” as a prefix.

Extension to fuzzy search: The algorithm described earlier
naturally extends to the case of fuzzy search. Since each
query keyword has multiple active nodes of similar prefixes,
instead of considering the union of the leaf nodes of one pre-

Fig. 8 Intersection using forward lists. (Numbers with underlines are
word IDs, and numbers without underlines are record IDs.)

123

Efficient fuzzy full-text type-ahead search 631

Fig. 9 Computing k results using cached answers and resuming unfin-
ished traversal on a list

fix node, now we need to consider the unions of the leaf nodes
for all active nodes of a keyword. For each record r on the
shortest union list, we use r ’s forward list to test whether the
record contains a word having a prefix of an active node (or
a pivotal active node) for every other query keyword. Note
that the lengths of these union lists can be estimated in order
to find the shortest one as follows. Given a trie node, we can
store the number of distinct records with words having a pre-
fix of the trie node, i.e., the length of the union list of the
trie node. Given a query keyword, for fuzzy search, we can
take the sum of lengths of union lists of its active nodes as
an estimation of its union-list length.

5.2 Cache-based intersection

In Sects. 3 and 4, we presented algorithms for incrementally
computing similar prefixes for a query keyword as the user
types the keyword letter by letter. Now, we show that inter-
section can also be performed incrementally using previously
cached results. Here, we use an example to illustrate how to
cache query results and use them to answer subsequent que-
ries. Suppose a user types in a keyword query Q1 = {“cs”,
“co”}. All the records in the answers to Q1 are computed and
cached. For a new query Q2 = {“cs, conf”} that appends
two letters to the end of Q1, we can use the cached results of
Q1 to answer Q2, because the second keyword “conf” in
Q2 is more restrictive than the corresponding keyword “co”
in Q1. Each record in the cached results of Q1 is verified to
check whether “conf” can appear in the record as a prefix.
In this way, Q2 does not need to be answered from scratch,
and this observation was also made in [6]. As in this example,
in the following discussion, we use “Q1” to refer to a query
whose results have been cached and “Q2” to refer to a new

query whose results we want to compute using those of Q1.

Cache miss: Often the more keywords the user types in, the
more typos and mismatches the query could have. Thus, we
dynamically increase the edit-distance threshold τ as the
query string is getting longer. Then, it is possible that the
threshold for the new query Q2 is strictly larger than that of
the original query Q1. In this case, the active nodes of key-
words in Q1 might not include all those of keywords in Q2.
Thus, we cannot use the cached results of Q1 (active nodes
and answers) to compute those of Q2. This case is a cache
miss, and we compute the answers of Q2 from scratch.

Reducing cached results: The cached results of query Q1

could be large, which could require a large amount of time
to compute and space to store. There are several cases where
we can reduce the size. The first case is when we want to
use pagination, i.e., we show the results in different pages. In
this case, we can traverse the shortest list partially, until we
have enough results for the first page. As the user browses
the results by clicking “Previous” and “Next” links, we can
continue traversing the shortest list to compute more results
and cache them. The second case is when the user is only
interested in k records. We can compute the answers to the
query Q1 without traversing the entire shortest list. When
using k results of Q1 to compute k results of Q2, it is pos-
sible that the cached results do not provide enough answers,
since Q2 contains a more restrictive keyword. In this case,
we can continue the unfinished traversal on the shortest list,
assuming that we have remembered the place where the tra-
versal stopped on the shortest list when answering query Q1,
and stop the traversal when we get k records.

Figure 9 shows an example of incrementally computing
k answers using cached results. A user types in a query
string “cs conf vanc” letter by letter, and the server
receives queries {“cs”, “co”}, {“cs”, “conf”}, and {“cs”,
“conf”, “vanc”} in order. (Notice that the client does not
need to send a query to the server for each keystroke of the
user.) The answer to the first query {“cs”, “co”} is com-
puted. Assuming the union list of keyword “cs” is the shorter
one. The traversal stops at the first vertical bar. Each record
accessed in the traversal is verified by probing the word range
of {“cs”, “co”} using the forward list of the record. Records
that pass the verification are cached. When we want to answer
the query {“cs”, “conf”} incrementally, we first verify each
record in the cached result of the previous query by probing
the word range of “conf”. Some of these results will become
results of the new query. If the results from the cache are not
enough to compute k results of the new query, we resume the
traversal on the list of “cs”, starting from the stopping posi-
tion for answering the previous query, until we have enough
k results for the new query. The next query {“cs”, “conf”,
“vanc”} is answered similarly.

123

632 G. Li et al.

In the case of cache miss, i.e., earlier cached results cannot
be used to compute the answers of a new query, we need to
answer the new query from scratch. We may choose a dif-
ferent list as the shortest one, and subsequent queries can be
answered similarly.

6 Improving search by supporting additional features

In this section, we discuss various features to improve the
results and user interface in type-ahead search.

6.1 Highlighting best prefixes

When displaying records to the user, we want to highlight
the most similar prefixes for an input prefix. This highlight-
ing feature is straightforward to implement for the exact-
match case. For fuzzy search, a query keyword could be
similar to several prefixes of the same similar word. Thus,
there could be multiple ways to highlight the similar word.
For example, suppose a user types in “lus,” and there is
a similar word “luis.” Both prefixes “lui” and “luis”
are similar to “lus.” There are several ways to highlight
them, such as “luis” or “luis,” where underlined characters
are highlighted. To address this issue, we use the concept
of normalized edit distance. Formally, given two prefixes pi

and p j , their normalized edit distance is as follows:

ned(pi , p j) = ed(pi , p j)

max(|pi |, |p j |) , (1)

where |pi | denotes the length of pi . Given a query key-
word and one of its similar word, the prefix of the sim-
ilar word with the minimum ned to the query is high-
lighted. We call such a prefix a best matched prefix and
call the corresponding normalized edit distance the “min-
imal normalized edit distance,” denoted as “mned.” This
prefix is considered to be most similar to the query keyword.
For example, for the keyword “lus” and its similar word
“luis,” we have ned(“lus”, “l”) = 2

3 , ned(“lus”, “lu”)
= 1

3 , ned(“lus”, “lui”) = 1
3 , and ned(“lus”, “luis”) =

1
4 . Since mned(“lus”, “luis”) = ned(“lus”, “luis”),
“luis” will be highlighted.

6.2 Using synonyms

We can utilize a priori knowledge about synonyms to find rel-
evant records. For example, “William = Bill” is a com-
mon synonym in the domain of person names. Suppose in the
underlying data, there is a person called “Bill Gates.” If a
user types in a query string “William Gates,” we can also
find this person. One way to support this feature is the fol-
lowing. On the trie, the node corresponding to “Bill” has

a link to the node corresponding to “William” and vice
versa. When a user types in a keyword “Bill”, in addition
to retrieving the records for “Bill”, we also identify those
of “William” following the link.

6.3 Supporting updates

We discuss how to deal with data updates, specifically inser-
tions, deletions, and updates of records.

Insertion: Assume a record is inserted. We first assign it a
new record ID. For each word in the record, we insert the
word into the trie as follows. For each prefix of the word, if
the prefix is not in the trie, we add a trie node for the prefix.
For the leaf node corresponding to the word, we append the
record ID on the inverted list of this leaf node. In addition,
if we use forward indexes, we create a forward list for the
record. For the word-range encoding of the trie structure, we
can reserve extra space for word ids to accommodate future
insertions [45]. We only need to do global reordering when
all the reserved spaces are consumed.

Deletion: Assume a record is deleted. For each word in the
record, on the inverted list of the word, we use a bit to denote
whether a record is deleted. Here, we use the bit to mark the
record to be deleted. We do not update the trie structure until
we need to rebuild the index. For the range encoding of the
trie, we can use the deleted word ids for future insertions.

Update: Assume a record is updated. We first delete (using a
bit to mark the record to be deleted) and insert a new record
based on the above methods.

7 Experiments

We deployed several prototypes in different domains to sup-
port type-ahead search. In addition, we conducted a thor-
ough experimental evaluation of the developed techniques
on real data sets, such as publications and people directo-
ries. Here, we report the results on the following two data
sets. (1) DBLP: It included about 1.1 million computer sci-
ence publication records, with six attributes: authors, title,
conference or journal name, year, page numbers, and URL.
(2) MEDLINE: It had about 4 million latest publication
records related to life sciences and biomedical information.
We used five attributes: authors, their affiliations, article title,
journal name, and journal issue. Table 4 shows the data sizes,
index sizes, and index-construction times.

For each data set, we set up a Web server using Apache2
on a Linux machine with an Intel Core 2 Quad processor
Q6600 (2.40 GHz) and 8 GB memory. We implemented the

123

Efficient fuzzy full-text type-ahead search 633

Table 4 Data sets and index costs

Data set DBLP MEDLINE

Record number 1.1 million 4 million

Dataset size 190 MB 1.25 GB
of distinct words 392 K 1.79 million

of words 21.9 million 136.7 million

Avg. length of records 20.1 34.34

Index-construction time 50 s 588 s

Trie size 36 MB 165 MB

Inverted-list size 52 MB 445 MB

Forward-list size 54 MB 454 MB

backend as a FastCGI server process, which was written in
C++ compiled with a GNU compiler.

7.1 Efficiency of single-keyword queries

7.1.1 Exact search

We first evaluated the efficiency of exact search. For the
DBLP data set, we randomly selected 1,000 real queries
from the logs of our deployed systems. For the MEDLINE
data set, we generated 1,000 single-keyword queries by ran-
domly selecting keywords in the data set. We implemented
two methods to find the trie node for a query keyword using
methods discussed in Sect. 3. (1) Incremental: We incremen-
tally found the trie node. (2) Non-Incremental: We found
the trie node from scratch. For each query, for each of its pre-
fixes, we computed its running time and evaluated the aver-
age running time for prefixes with the same length. Figure 10
shows the results. As the prefix length increased, the running
time of the Incremental method decreased, while that of
the Non-Incremental method increased. This is because the
Incremental method can use previously computed results.

7.1.2 Fuzzy search

We evaluated the efficiency of computing the prefixes on the
trie that are similar to a query keyword. For the DBLP data
set, we selected the same 1,000 real queries from the logs of
our deployed systems. For the MEDLINE data set, we gen-
erated 1,000 single-keyword queries by randomly selecting
keywords in the data set and applying a random number of
edit changes (0–2) on the keyword. The average length (num-
ber of letters) of keywords was 9.9 for the DBLP data set and
10.2 for the MEDLINE data set. For each prefix of a query,
we measured the time to find similar prefixes within an edit
distance of 2, not including the time to retrieve records. We
computed the average time for the prefix queries with the
same length.

Computing active nodes: We implemented three methods to
compute similar prefixes. (1) Incremental: We computed the
active nodes of a query using the cached active nodes of previ-
ous prefix queries, using the incremental algorithm presented
in Sect. 4. This algorithm is applicable when the user types
a query letter by letter. (2) Non-Incremental: We computed
active nodes from scratch. This case happens when a user
copies and pastes a long query, and none of the active nodes
of any prefix queries has been computed. It also corresponds
to the traditional search case, where a user submits a query
and clicks the “Search” button. (3) Gram-Based: We built
gram inverted lists on all prefixes with at least three letters
using the method described in [36]. We used the implemen-
tation in the Flamingo release,4 using a gram length of 3 and
a length filter. The total number of such prefixes was 1.1 mil-
lions for the DBLP data set and 4 millions for the MEDLINE
data set. The index structure can be used to compute simi-
lar prefixes for keywords with at least four letters. Figure 11
shows the performance results of these three methods.

The method Incremental was most efficient. As the user
types in letters, its response time first increased slightly (less
than 5 ms) and then started decreasing quickly after the fourth
letter. The main reason is that the number of active nodes
decreased, and the cached results made the computation effi-
cient. The method Non-Incremental required longer time
since each query needed to be answered from scratch, without
using any cached active nodes. The method Gram-Based
performed efficiently when the query keyword had at least
seven letters. But it had a very poor performance for shorter
keywords, since the count filter had a weak power to prune
false positives.

In addition, we evaluated the memory used for the three
methods. Table 5 gives the results. We see that the Gram-
Based method involved large index size as it needs to store
large numbers of grams and the corresponding gram inverted
lists. The Incremental method involved a bit larger memory
space than that of the Non-Incremental method, as it needs
to cache active nodes. The Gram-Based method also con-
sumed memory space for maintaining heap structures and
larger numbers of candidates that need to be verified. In sum-
mary, the Gram-Based method involved the largest mem-
ory, and the Incremental method used a bit larger memory
space than the Non-Incremental method.

Improving performance using pivotal active nodes: We eval-
uated the ICPAN algorithm for computing pivotal active
nodes. We compared the number of active nodes and that of
pivotal active nodes. Figure 12 shows the results. The number
of pivotal active nodes was much smaller than that of active
nodes. For example, on the MEDLINE data set, when the
prefix length was 3, the number of active nodes was 140,000,

4 http://flamingo.ics.uci.edu/releases/2.0.

123

http://flamingo.ics.uci.edu/releases/2.0

634 G. Li et al.

Fig. 10 Efficiency of exact
search. a DBLP, b MEDLINE

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10 12

A
vg

 S
ea

rc
h

T
im

e
(m

s)

Prefix Length

Non-Incremental
Incremental

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2 4 6 8 10 12

A
vg

 S
ea

rc
h

T
im

e
(m

s)

Prefix Length

Non-Incremental
Incremental

(b)

Fig. 11 Computing prefixes
similar to a keyword (τ = 2). a
DBLP, b MEDLINE

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14

A
vg

 S
ea

rc
h

T
im

e
(m

s)

Prefix Length

Incremental
Non-Incremental

Gram-Based

(a)

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14

A
vg

 S
ea

rc
h

T
im

e
(m

s)

Prefix Length

Incremental
Non-Incremental

Gram-Based

(b)

Table 5 Memory size for computing prefixes similar to a keyword
(τ = 2)

Memory for Memory for Total memory
storing computing usage
indexes similar

words

(a) DBLP dataset

Incremental 36 4 40

Non-Incremental 36 0.2 36.2

Gram-Based 187 5 192

(b) MEDLINE dataset

Incremental 165 12 177

Non-Incremental 165 0.5 165.5

Gram-Based 713 21 733

All numbers are in MBs

while the number of pivotal active nodes was only 20,000.
Thus, using pivotal active nodes can reduce the storage space,
especially for short query strings.

We then evaluated the efficiency of the ICPAN algorithm
for computing pivotal active nodes as described in Sect. 4.3.
We also compared it with the ICAN algorithm in Sect. 4.2
and the similar method in [15]. (We did not used the pre-
computation techniques and took examining the impact of
pre-computation as a future work.) Figure 13 shows the
results. As we used edit-distance threshold 3, the perfor-
mance was lower than that on Fig. 11. We can see that the

ICPAN algorithm achieved the best performance and was
2–4 times faster than the other two methods. For example,
on the MEDLINE data set, when the prefix length was 3,
the running time of ICPAN was 40 ms, while the other two
methods needed more than 80 ms. Thus, the pivotal active
node-based method ICPAN not only reduced the space, but
also improved the efficiency, especially for short queries.

7.1.3 Performance of single-keyword queries

We evaluated the performance of single-keyword queries
by varying the edit-distance threshold τ . We implemented
our best algorithms and computed the answers in two steps:
(1) computing similar prefixes and (2) computing answers
based on similar prefixes. Figure 14 shows the results. Our
methods could answer a query within 50 ms.

7.2 Efficiency of multi-keyword queries

In this section, we evaluated the performance of answering
keyword queries with multiple keywords.

List intersection: We evaluated several methods for inter-
secting union lists of multiple keywords, as described in
Sect. 5.1. For the DBLP data set, we selected the same 1,000
real queries from the logs of our deployed systems. For the
MEDLINE data set, we generated 1,000 queries by randomly

123

Efficient fuzzy full-text type-ahead search 635

Fig. 12 Number of active
nodes for a keyword (τ = 3).
a DBLP, b MEDLINE

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12#
of

 A
ct

iv
e

N
od

es
(*

10
00

0)

Prefix Length

of Active Nodes
of Pivotal Active Nodes

(a)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 2 4 6 8 10 12#
of

 A
ct

iv
e

N
od

es
(*

10
00

0)

Prefix Length

of Active Nodes
of Pivotal Active Nodes

(b)

Fig. 13 Time for computing
active nodes for a keyword
(τ = 3). a DBLP, b MEDLINE

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12

A
vg

 S
ea

rc
h

T
im

e
(m

s)

Prefix Length

ICAN
SIGMOD09

ICPAN

(a)

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12

A
vg

 S
ea

rc
h

T
im

e
(m

s)

Prefix Length

ICAN
SIGMOD09

ICPAN

(b)

Fig. 14 Efficiency of
single-keyword queries
(varying τ). a DBLP,
b MEDLINE

 0

 10

 20

 30

 0 1 2 3

A
vg

 S
ea

rc
h

T
im

e
(m

s)

Edit-Distance Threshold (τ)

Compute Answers
Find Similar Words

(a)

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3

A
vg

 S
ea

rc
h

T
im

e
(m

s)

Edit-Distance Threshold (τ)

Compute Answers
Find Similar Words

(b)

selecting records from the data set and choosing keywords
from each record. We implemented the following methods
to intersect the union lists of keywords. (1) ForwardLists:
It traverses the shortest union list and uses the other query
keywords to probe the forward lists of records on the shortest
list as discussed in Sect. 5.1. The union list was “generated”
on the fly without being materialized. (2) HashProbe: The
shortest union list was materialized as a hash table at query
time. Each record ID on the other union lists was searched
on the hash table. (3) MaterializedUnions: We materialized
the union lists of all the query keywords and their prefixes,
and computed an intersection by using the record IDs of the
shortest list to probe the other union lists. We measured the
intersection time only. (4) MergeJoin: It used the merge-sort
algorithm to on-the-fly generate the union list (by getting the

next record of each union list of query keywords) and com-
puted an intersection using the merge-join algorithm on top
of the generated records. (5) HYB: We implemented a struc-
ture called “HYB” as described in [6]. We used an in-memory
implementation, and all IDs were stored without any encod-
ing and compression. The number of HYB blocks was 47 for
the DBLP data set and 285 for the MEDLINE data set, using
the parameters recommended in [6].

We evaluated these methods on queries with two key-
words, assuming no previous query results were cached.
Figure 15 shows the average time of each method as the
length of the second keyword increased.

The intersection operation was very time consuming
when the second keyword had no more than two letters,
since the union lists of the prefixes were too long. The

123

636 G. Li et al.

Fig. 15 List intersection of
multiple keywords. a DBLP,
b MEDLINE

 0

 1

 2

 3

 4

 2 3 4 5 6 7 8 9 10

A
vg

 S
ea

rc
h

T
im

e
(m

s)

Prefix Length

ForwardLists
HashProbe

MaterializedUnions
HYB

MergeJoin

(a)

 0

 30

 60

 90

 120

 2 3 4 5 6 7 8 9 10

A
vg

 S
ea

rc
h

T
im

e
(m

s)

Prefix Length

ForwardLists
HashProbe

MaterializedUnions
HYB

MergeJoin

(b)

HashProbe method performed relatively poorly due to the
cost of building the hash table for the shorter list and tra-
versing the other list. The MaterializedUnions method per-
formed well, but with a high memory cost as discussed
in Sect. 5.1. The MergeJoin algorithm performed worse
than the MaterializedUnions method and the HashProbe
method, as it needs to generate the union list on-the-fly. The
ForwardLists algorithm achieved an excellent performance,
at the cost of storing the forward lists. The HYB method also
achieved high performance, and our method and the HYB
method provide different ways to improve the performance
of type-ahead search. An interesting finding in the results is
that ForwardLists even outperformed MaterializedUnions
on the MEDLINE data set. This is because as the data set
became larger, the average time of each binary search on the
union lists increased, while that of each binary probe on the
forward lists did not change much.

Cache-based intersection: We evaluated the performance
of different methods of cache-based prefix intersection, as
described in Sect. 5.2. We allowed at most one typo for each
prefix with at most five letters and two errors for prefixes with
more than five letters. As a consequence, for a query with two
keywords, when the sixth letter of the second keyword was
typed in, a cache miss occurred. We implemented the follow-
ing methods. (1) NoCache: No query results are cached. A
query is computed without using any cached query results.
(2) Complete Traversal: It traverses the shortest union list
completely to compute the results of the current query. (3)
Partial Traversal: It traverses the shortest union list partially
until it finds the first k results for the current query as fol-
lows. For each record on the shortest union list, it first uses
the active nodes with smaller edit distances to probe the for-
ward list of the record. The algorithm terminates if it gets k
records. Figure 16 shows the query time of the methods on the
DBLP data set. Complete Traversal outperformed the No
Cache method for relatively long prefixes (with more than
six letters) mainly due to the smaller set of cached results.
The Partial Traversal method was the most efficient one in
most cases, since it can stop early during the traversal of the

 0

 4

 8

 12

 16

 2 3 4 5 6 7 8 9 10
A

vg
 S

ea
rc

h
T

im
e

(m
s)

Prefix Length

68.7 38.7 32.8
NoCache

CompleteTraversal
PartialTraversal

Fig. 16 Performance of prefix intersection (DBLP)

list, and a new query can be incrementally computed using
earlier results. All these methods required a relative long time
when the prefix had six letters due to the cache miss.

7.3 Evaluation on per-query time

We evaluated the per-query time of our algorithms on the
DBLP data set. We randomly selected 1,000 queries with 1
keyword and 1,000 queries with 2–6 keywords. Each key-
word has at leat 2 characters. We used the forward list-based
method for multi-keyword intersection and ICPAN algo-
rithm for incrementally computing similar words. Table 6
shows the results. We see that for single-keyword queries,
our method can answer a query about 2 ms in terms of exact
search and 8 ms in terms of fuzzy search (τ = 1). For multi-
keyword queries, the elapsed time respectively increased to
4 and 19 ms as we needed to do multi-keyword intersection.

7.4 Space and time scalability

We evaluated the scalability of our algorithms. As an exam-
ple, we used the MEDLINE data set. Figure 17a shows how
the index size increased as the number of records increased.
It shows that all the sizes of the trie structures, inverted lists,
and forward lists increased linearly.

We measured the query performance of computing the
first 10 answers (as described in Sect. 7.2) as the data size

123

Efficient fuzzy full-text type-ahead search 637

Table 6 Evaluation on
per-query time on the DBLP
dataset

Exact search Fuzzy search (τ = 1)

1 keyword Multi-keyword 1 keyword Multi-keyword

Find trie nodes (ms) 0.01 0.01 1.02 1.13

Find answers (ms) 1.84 3.65 7.25 18.34

Total (ms) 1.85 3.66 8.27 19.47

Fig. 17 Scalability
(MEDLINE). a Index size,
b single keyword (return 10
answers), c multiple keywords
(return 10 answers)

 0

 200

 400

 600

 800

 1000

 1200

 0.5 1 1.5 2 2.5 3 3.5 4

In
de

x
S

iz
e

(M
B

)
Record Number (million)

Forward Lists
Inverted Lists

Trie

(a)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0.5 1 1.5 2 2.5 3 3.5 4

A
vg

 S
ea

rc
h

T
im

e
(m

s)

Record Number (million)

Queries with errors
Queries with no errors

(b)

 0

 10

 20

 30

 40

 50

 0.5 1 1.5 2 2.5 3 3.5 4

A
vg

 S
ea

rc
h

T
im

e
(m

s)

Record Number (million)

Queries with errors
Queries with no errors

(c)

increased. We first evaluated queries with a single keyword
and tested the scalability of our incremental algorithm. We
considered two types of queries: the first type was generated
by randomly selecting keywords in the data set; the second
type was obtained by modifying the first type by adding edit
errors (0–2). Figure 17b shows the results for the MEDLINE
data set as we increased the number of records. It shows
that the algorithms can answer a single-keyword query very
efficiently (within 3 ms), for both types of queries.

We next evaluated the algorithms for queries with multiple
keywords and tested the scalability of our forward list-based
algorithm. We measured the average query time of each key-
stroke on the last keyword. Figure 17c shows that our algo-
rithms can process such queries very efficiently. For instance,
when the data set had 4 million records, the average search
time for queries without errors was 20 ms and the variance
was 5 ms, while the average search time for queries with
errors was 55 ms and the variance was 9 ms. The variance
was similar on other data sets.

Table 7 Queries and saved typing effort

ID Query Saved typing
effort (%)

Q1 sunta sarawgi 42

Q2 surajit chuardhuri 50

Q3 nick kodas approxmate 41

Q4 flostsos icde similarity 38

Q5 similarty search icde 55

Q6 divsh srivstava search 41

7.5 Round-trip time

The round-trip time of type-ahead search consists of three
components: server processing time, network time, and
JavaScript running time. Different locations in the world
could have different network delays to our servers in southern
California. We measured the time cost for a sample query

123

638 G. Li et al.

 0

 100

 200

 300

US/West US/East China Israel Australia

R
ou

nd
-T

rip
 T

im
e

(m
s)

Location

Network
Javascript

Server

Fig. 18 Round-trip time for different locations (return 10 answers)

“divsh srivstava search” on the DBLP prototype
from five locations around the world: US west coast, US
east coast, China, Israel, and Australia. Figure 18 shows the
results for finding first 10 answers. We can see that the server
running time was less than 1/5 of the total round-trip time.
JavaScript took around 40–60 ms. The relative low speed at
some locations was mainly due to the network delay. For
example, it took about 4/5 of the total round-trip time when
our system was tested from China. For all the users from
different locations, the total round-trip time for a query was
always below 250 ms, and all of them experienced an inter-
active interface. For large-scale systems processing queries
from different countries, we can solve the possible network-
delay problem by using distributed servers.

7.6 Saved typing effort

Type-ahead search can also save users’ typing effort, since
results can be found before a user types in complete words. To
evaluate the saving of typing effort, we constructed six que-
ries on the DBLP data set as shown in Table 7. The keywords
in italic font are mistyped keywords. Each query was typed in
letter by letter, until the system found the expected records in
first 10 answers. We measured how much letter-typing effort
the system can save for the user. For each query Qi , let N (Qi)

be the number of letters the user typed before the relevant
answers are found. We use 1 − N (Qi)|Qi | to quantify the relative
saved effort. For example, for query Q6, the user could find
relevant answers right after typing in “divsh sri sea”.
The saved effort of Q6 is 1 − 13

22 = 41%, as the user only
needed to type in 13 letters, instead of 22 letters in the full
query. Table 7 shows that this paradigm can save the user
40–60% typing effort on average.

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10

In
de

x
T

im
e

(s
)

Record Number (*10000)

Reindex(ForwardList)
Reindex(Trie+InvertedList)

Incremental(ForwardList)
Incremental(Trie+InvertedList)

Fig. 19 Update

7.7 Data updates

We tested the cost of updates on the DBLP data set. We first
built indexes for 1 million records and then inserted 10,000
records at each time. We compared the time of re-indexing
the data from scratch and incrementally indexing using the
data. Figure 19 shows the results. We see that the incremental
method only took 0.1 s to update the index while it took more
than 20 s to re-index the data. This result shows the advantage
of the incremental-computation indexing method.

8 Other related work

Prediction and autocomplete: There have been many stud-
ies on predicting queries and user actions [18,33,49,50,59]
in information search. With these techniques, a system pre-
dicts a word or a phrase the user may type in next based
on the sequence of partial input the user has already typed.
Many prediction and autocomplete systems5 treat a query
with multiple keywords as a single string, thus they do not
allow these keywords to appear at different places in the
answers. For instance, consider the search box on the home
page of Apple.com, which allows autocomplete search on
Apple products. Although a keyword query “itunes” can
find a record “itunes wi-fi music store,” a query
with keywords “itunes music” cannot find this record
(as of January 2010), simply because these two keywords
appear at different places in the record. The techniques pre-
sented in this paper focus on “search on the fly,” and they
allow query keywords to appear at different places in the
answers. As a consequence, we cannot answer a query by

5 The word “autocomplete” could have different meanings. Here we use
it to refer to the case where a query (possibly with multiple keywords)
is treated as a single prefix.

123

Efficient fuzzy full-text type-ahead search 639

simply traversing a trie index. Instead, the backend inter-
section (or “join”) operation of multiple lists requires more
efficient indexes and algorithms.

Approximate string search and similarity join: There have
been recent studies to support efficient fuzzy string search [2,
11,12,14,21,22,29,32,36,37,62,65]. Many algorithms use
grams for efficient fuzzy string search. A gram of a string is a
substring that can be used as a signature for efficient search.
These algorithms answer a fuzzy query on a collection of
strings using the following observation: if a string r in the
collection is similar to the query string, then r should share a
certain number of common grams with the query string. This
“count filter” can be used to construct gram inverted lists for
string ids to support efficient search. In Sect. 7, we evaluated
some of the representative algorithms. The results showed
that, not surprisingly, they are not as efficient as trie-based
incremental-search algorithms, mainly because it is not easy
to do incremental computation on gram lists, especially when
a user types in a relatively short prefix, and count filtering
does not give enough pruning power to eliminate false posi-
tives. In addition, there have been many studies for similarity
join [2,8,13,19,52,60,61], estimating selectivity of approx-
imate string queries [23,27,34,35], and approximate entity
extraction [1,11,58].

Keyword search in databases and XML data: There have
many studies on keyword search over XML data [3,16,20,
31,38,39,43,44,46–48,53,55,56,63,64] and relational dat-
abases [9,17,24,25,28,40,51,54]. Our work is orthogonal to
these studies since it focuses on type-ahead search.

Compared to our previous work in [26], this article
includes the following additional materials. (1) In Sect. 4.3,
we presented new optimization techniques based on the
concept of pivotal active node and conducted additional
experiments to evaluate the techniques. (2) We included for-
mal proofs of the claims. (3) We discussed how to support
updates in Sect. 6.3 and conducted additional experiments in
Sect. 7.7.

9 Conclusion and future work

We studied a new information-access paradigm, called type-
ahead search, which finds answers to queries as a user types in
keywords character by character, even allowing minor errors.
We proposed an efficient incremental algorithm to answer
single-keyword queries that are treated as fuzzy prefix con-
ditions. We studied various algorithms for computing the
answers to a query with multiple keywords. We developed
efficient algorithms for incrementally computing answers to
queries by using cached results of previous queries in order to
achieve a high interactive speed on large data sets. We studied

several useful features such as highlighting results, utilizing
synonyms, and supporting data updates. We deployed several
real systems to test the techniques and conducted an thorough
experimental study of the algorithms. The results proved the
practicality of our techniques to enable this new computing
paradigm.

There are several open problems for type-ahead search.
One is about how to support ranking queries efficiently.
Another one is how to deal with large amounts of data when
the index structures cannot fit into the memory.

Acknowledgments This work is partly supported by the National
Natural Science Foundation of China under Grant No. 61003004
and No. 60873065, the National High Technology Development 863
Program of China under Grant No. 2009AA011906, the National
Grand Fundamental Research 973 Program of China under Grant No.
2011CB302206, National S&T Major Project of China, the Scientific
Research in Inner Mongolia under Grant No. NJzy08152, the US NSF
awards IIS-0742960 and IIS-1030002, and a Google research award to
UC Irvine.

References

1. Agrawal, S., Chakrabarti, K., Chaudhuri, S., Ganti, V.: Scalable
ad-hoc entity extraction from text collections. PVLDB 1(1), 945–
957 (2008)

2. Arasu, A., Ganti, V., Kaushik, R.: Efficient exact set-similarity
joins. In: VLDB, pp. 918–929 (2006)

3. Bao, Z., Ling, T.W., Chen, B., Lu, J.: Effective XML keyword
search with relevance oriented ranking. In: ICDE, pp. 517–528
(2009)

4. Bast, H., Chitea, A., Suchanek, F.M., Weber, I.: Ester: efficient
search on text, entities, and relations. In: SIGIR, pp. 671–678
(2007)

5. Bast, H., Mortensen, C.W., Weber, I.: Output-sensitive autocom-
pletion search. In: SPIRE, pp. 150–162 (2006)

6. Bast, H., Weber, I.: Type less, find more: fast autocompletion search
with a succinct index. In: SIGIR, pp. 364–371 (2006)

7. Bast, H., Weber I.: The completesearch engine: interactive, effi-
cient, and towards IR & DB integration. In: CIDR, pp. 88–95 (2007)

8. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity
search. In: WWW, pp. 131–140 (2007)

9. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan,
S.: Keyword searching and browsing in databases using BANKS.
In: ICDE, pp. 431–440 (2002)

10. Celikik, M., Bast, H.: Fast error-tolerant search on very large texts.
In: SAC, pp. 1724–1731 (2009)

11. Chakrabarti, K., Chaudhuri, S., Ganti, V., Xin, D.: An efficient filter
for approximate membership checking. In: SIGMOD Conference,
pp. 805–818 (2008)

12. Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R.: Robust and
efficient fuzzy match for online data cleaning. In: SIGMOD Con-
ference, pp. 313–324 (2003)

13. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for
similarity joins in data cleaning. In: ICDE, pp. 5–16 (2006)

14. Chaudhuri, S., Ganti, V., Motwani, R.: Robust identification of
fuzzy duplicates. In: ICDE, pp. 865–876 (2005)

15. Chaudhuri, S., Kaushik, R.: Extending autocompletion to tolerate
errors. In: SIGMOD Conference, pp. 707–718 (2009)

16. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: Xsearch: a semantic
search engine for XML. In: VLDB, pp. 45–56 (2003)

123

640 G. Li et al.

17. Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding
top-k min-cost connected trees in databases. In: ICDE, pp. 836–845
(2007)

18. Grabski, K., Scheffer, T.: Sentence completion. In: SIGIR, pp. 433–
439 (2004)

19. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N.,
Muthukrishnan, S., Srivastava, D.: Approximate string joins in a
database (almost) for free. In: VLDB, pp. 491–500 (2001)

20. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: ranked
keyword search over XML documents. In: SIGMOD Conference,
pp. 16–27 (2003)

21. Hadjieleftheriou, M., Chandel, A., Koudas, N., Srivastava, D.:
Fast indexes and algorithms for set similarity selection queries.
In: ICDE, pp. 267–276 (2008)

22. Hadjieleftheriou, M., Koudas, N., Srivastava, D.: Incremental
maintenance of length normalized indexes for approximate string
matching. In: SIGMOD Conference, pp. 429–440 (2009)

23. Hadjieleftheriou, M., Yu, X., Koudas, N., Srivastava, D.: Hashed
samples: selectivity estimators for set similarity selection queries.
In: VLDB (2008)

24. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-style
keyword search over relational databases. In: VLDB, pp. 850–861
(2003)

25. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in
relational databases. In: VLDB, pp. 670–681 (2002)

26. Ji, S., Li, G., Li, C., Feng, J.: Efficient interactive fuzzy keyword
search. In: WWW, pp. 371–380 (2009)

27. Jin, L., Li, C., Vernica, R.: Sepia: estimating selectivities of approx-
imate string predicates in large databases. VLDB J. 17(5), 1213–
1229 (2008)

28. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R.,
Karambelkar, H.: Bidirectional expansion for keyword search on
graph databases. In: VLDB, pp. 505–516 (2005)

29. Kim, M.-S., Whang, K.-Y., Lee, J.-G., Lee, M.-J.: n-gram/2l: a
space and time efficient two-level n-gram inverted index structure.
In: VLDB, pp. 325–336 (2005)

30. Knuth D., The Art of Computer Programming, Sorting and Search-
ing, third edition, Addison-Wesley (1998)

31. Kong, L., Gilleron, R., Lemay, A.: Retrieving meaningful relaxed
tightest fragments for XML keyword search. In: EDBT, pp. 815–
826 (2009)

32. Koudas, N., Li, C., Tung, A.K.H., Vernica, R.: Relaxing join and
selection queries. In: VLDB, pp. 199–210 (2006)

33. Kukich, K.: Techniques for automatically correcting words in
text. ACM Comput. Surv. 24(4), 377–439 (1992)

34. Lee, H., Ng, R.T., Shim, K.: Extending q-grams to estimate selec-
tivity of string matching with low edit distance. In: VLDB, pp.
195–206 (2007)

35. Lee, H., Ng, R.T., Shim, K.: Power-law based estimation of set
similarity join size. PVLDB 2(1), 658–669 (2009)

36. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for
approximate string searches. In: ICDE, pp. 257–266 (2008)

37. Li, C., Wang, B., Yang, X.: VGRAM: improving performance of
approximate queries on string collections using variable-length
grams. In: VLDB, pp. 303–314 (2007)

38. Li, G., Feng, J., Wang, J., Zhou, L. Effective keyword search for
valuable LCAs over XML documents. In: CIKM, pp. 31–40 (2007)

39. Li, G., Feng, J., Wang, J., Zhou, L.: KEMB: a keyword-based XML
message broker. In: TKDE (2011)

40. Li, G., Feng, J., Zhou, X., Wang, J.: Providing built-in keyword
search capabilities in RDBMS. VLDB J. 20(1), 1–19 (2011)

41. Li, G., Feng, J., Zhou, L.: Interactive search in XML data. In:
WWW, pp. 1063–1064 (2009)

42. Li, G., Ji, S., Li, C., Feng, J.: Efficient type-ahead search on
relational data: a tastier approach. In: SIGMOD Conference,
pp. 695–706. (2009)

43. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: Ease: an effective
3-in-1 keyword search method for unstructured, semi-structured
and structured data. In: SIGMOD Conference, pp. 903–914 (2008)

44. Li, G., Zhou, X., Feng, J., Wang, J.: Progressive keyword search in
relational databases. In: ICDE (2009)

45. Li, Q., Moon, B.: Indexing and querying XML data for regular path
expressions. In: VLDB, pp. 361–370 (2001)

46. Li, Y., Yu, C., Jagadish, H.V.: Schema-free xquery. In: VLDB,
pp. 72–83. (2004)

47. Liu, Z., Chen, Y.: Identifying meaningful return information for
XML keyword search. In: SIGMOD Conference, pp. 329–340
(2007)

48. Liu, Z., Chen, Y.: Reasoning and identifying relevant matches for
XML keyword search. PVLDB 1(1), 921–932 (2008)

49. Motoda, H., Yoshida, K.: Machine learning techniques to make
computers easier to use. Artif. Intell. 103(1–2), 295–321 (1998)

50. Nandi, A., Jagadish, H.V.: Effective phrase prediction. In: VLDB,
pp. 219–230. (2007)

51. Qin, L., Yu, J., Chang, L.: Scalable keyword search on large data
streams. VLDB J. 20(1), 35–57 (2011)

52. Sarawagi, S., Kirpal, A.: Efficient set joins on similarity predicates.
In: SIGMOD Conference, pp. 743–754 (2004)

53. Shao, F., Guo, L., Botev, C., Bhaskar, A., Chettiar, M., Yang, F.,
Shanmugasundaram, J.: Efficient keyword search over virtual XML
views. VLDB J. 18(2), 543–570 (2009)

54. Simitsis, A., Koutrika, G., Ioannidis, Y.E.: Précis: from
unstructured keywords as queries to structured databases as
answers. VLDB J. 17(1), 117–149 (2008)

55. Sun, C., Chan, C.Y., Goenka, A.K.: Multiway sLCA-based key-
word search in XML data. In: WWW, pp. 1043–1052 (2007)

56. Theobald, M., Bast, H., Majumdar, D., Schenkel, R., Weikum, G.:
Topx: efficient and versatile top-k query processing for semistruc-
tured data. VLDB J. 17(1), 81–115 (2008)

57. Wang, J., Li, G., Feng, J.: Automatic URL completion and predic-
tion using fuzzy type-ahead search. In: SIGIR, pp. 634–635 (2009)

58. Wang, W., Xiao, C., Lin, X., Zhang, C.: Efficient approximate entity
extraction with edit distance constraints. In: SIGMOD Conference,
pp. 759–770 (2009)

59. Williams, H.E., Zobel, J., Bahle, D.: Fast phrase querying with
combined indexes. ACM Trans. Inf. Syst. 22(4), 573–594 (2004)

60. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for
similarity joins with edit distance constraints. PVLDB 1(1), 933–
944 (2008)

61. Xiao, C., Wang, W., Lin, X., Shang, H.: Top-k set similarity joins.
In: ICDE, pp. 916–927 (2009)

62. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for
near duplicate detection. In: WWW (2008)

63. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest
LCAs in XML databases. In: SIGMOD Conference, pp. 537–538
(2005)

64. Xu, Y., Papakonstantinou, Y.: Efficient LCA based keyword search
in XML data. In: EDBT, pp. 535–546 (2008)

65. Yang, X., Wang, B., Li, C.: Cost-based variable-length-gram selec-
tion for string collections to support approximate queries effi-
ciently. In: SIGMOD Conference (2008)

123

	Efficient fuzzy full-text type-ahead search
	Abstract
	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Problem formulation
	2.2 Indexing

	3 Exact search for single keyword
	3.1 Non-incremental method
	3.2 Incremental algorithm

	4 Fuzzy search for single keyword
	4.1 Active nodes
	4.2 Incrementally computing active nodes
	4.2.1 Algorithm description
	4.2.2 Proof of correctness

	4.3 Improvement by pruning active nodes
	4.3.1 Pivotal active nodes
	4.3.2 Incrementally computing pivotal active nodes
	4.3.3 Proof of correctness

	5 Type-ahead search using multiple keywords
	5.1 Intersecting union lists
	5.2 Cache-based intersection

	6 Improving search by supporting additional features
	6.1 Highlighting best prefixes
	6.2 Using synonyms
	6.3 Supporting updates

	7 Experiments
	7.1 Efficiency of single-keyword queries
	7.1.1 Exact search
	7.1.2 Fuzzy search
	7.1.3 Performance of single-keyword queries

	7.2 Efficiency of multi-keyword queries
	7.3 Evaluation on per-query time
	7.4 Space and time scalability
	7.5 Round-trip time
	7.6 Saved typing effort
	7.7 Data updates

	8 Other related work
	9 Conclusion and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

