
DBAugur: An Adversarial-based Trend Forecasting
System for Diversified Workloads

Yuanning Gao†, Xiuqi Huang†, Xuanhe Zhou‡, Xiaofeng Gao∗†, Guoliang Li‡, and Guihai Chen†
†MoE Key Lab of Artificial Intelligence, Department of Computer Science and Engineering

† Shanghai Jiao Tong University, Shanghai, China
‡Department of Computer Science, TsingHua University, Beijing, China

Email: {gyuanning, huangxiuqi, gaoxiaofeng, chen-gh}@sjtu.edu.cn, {zhouxuan19@mails., liguoliang@}tsinghua.edu.cn

Abstract—Trend forecasting is vital to optimize the workload
performance. It becomes even more urgent with an increasing
number of applications and database configurations. However,
DBAs mainly target at historical workloads and may give sub-
optimal configuration advice when the workload trends have
changed. Although there are some studies on trend forecasting,
they have several limitations. First, they mainly predict the
changes of query numbers, which do not combine other critical
factors (e.g., disk utilization) and cannot fully reflect the future
workload trends. Besides, there are numerous queries in the
workloads and exact clustering algorithms like K-means cannot
effectively merge similar queries which contain noises like time
shifts. Second, basic machine learning models like RNN may have
relatively low prediction accuracy on complex workloads (e.g.,
no cycles but random bursts). Third, real-world workloads may
have diverse patterns, while previous models cannot efficiently
and reliably predict for all the different workload patterns.

To address these challenges, we propose a trend forecasting
system (DBAugur) that utilizes adversarial neural networks
to predict the trends of different workloads. First, DBAugur
collects the important features (e.g., queries, resource metrics)
to characterize workloads, and reduces the number of involved
queries by separately merging similar queries based on the SQL
semantics and trend patterns. Second, DBAugur utilizes Genera-
tive Adversarial Networks (GANs) to capture the latent patterns,
correlations between different metrics, and occasional bursts
within the complicated and time-varying workloads. Moreover,
we further propose a time-sensitive ensemble algorithm that takes
advantage of various machine learning models (e.g., generative
models, convolutional models, feed-forward models) to accom-
modate the various workload patterns. The experimental results
show that DBAugur outperformed state-of-the-art methods on
various real-world workloads.

Index Terms—Workload Forecasting, GAN, DBMS

I. INTRODUCTION

With the increase in data scales, applications, as well as var-
ious system configurations, the database management system
(DBMS) has become more sophisticated and demanding to
manage. Many database administrators (DBAs) devote roughly
25% of their time tuning the database system to improve
performance [1], which is time-consuming and expensive. To
relief the human burden and enhance tuning efficiency, various
database optimization methods are proposed to automatically
optimize the system configurations in different aspects (e.g.,
knobs [2]–[4], indexes [5], [6], materialized views [7], [8]),
which have become a hotspot of researches.

∗Xiaofeng Gao is the corresponding author.

200

Q
u

er
ie

s
/

m
in

Query Trace Disk Trace

High
Read Ratio

374
11%300

400

500

600

700

800

900
High

Disk Usage

0

5%

15%

20%

25%

30�

35%

D
is

k
U

ti
li

za
ti

o
n

10%

14%

798

688

31%

(query rewrite, …) (knob tuning, …)no optimization
T1 T2 T3

Fig. 1: Trend Forecasting Example. We trace the trends of
two workload metrics, i.e., query number and disk utilization,
which can benefit database optimization.

The first and most essential step towards optimizing the
performance is to accurately anticipate workload trends, i.e.,
the characteristics (e.g., queries, resource consumption) of
future workloads [1]. Traditional methods typically rely on
DBAs to collect historical workloads and optimize database
configurations by the empirical experience [9]. This hand-
crafted solution works effectively when the workload is stable
and does not fluctuate too much. However, in real-world
scenarios, workloads are diversified and tend to dynamically
change over time. For example, in Figure 1, the workloads
at T2 and T3 require different optimization solutions (e.g.,
the disk utilization ratio is high at T3 and we require to
increase the threshold of concurrent disk I/O operations) and
the configuration for workload at T1 is no longer optimal. In
this case, the manual method may take great time to analyze
the new workload patterns or pick suboptimal configurations
based on out-of-date historical workloads.
Limitations of Existing Methods. There are some machine
learning based (ML) methods that aim to predict the workload
changes and proactively adjust the configurations [1], [10].
They predict the occurrence frequency (i.e., query arrival
rates at each timestamp) of templated queries with classic
machine learning models like RNN. However, there are several
limitations. First, the query occurrence frequency cannot rep-
resent the workload trends well. Other important factors like
changes in resource usages are also vital to predict, which
cannot be directly inferred by the query frequency features.
In a distributed DBMS, for instance, if some SQL queries
involving lots of disk-I/Os (e.g., range scans) hit the same
server, that server will become a hotspot. In this case, we
require both query frequency features and resource utilization
ratios to perform load balancing, because such queries may

have low arrival rates. Besides, they cluster queries (by the
patterns of occurrence frequencies) with exact algorithms (like
K-means) to reduce the forecasting overhead. However, even
similar query traces may contain noises in real scenarios,
which should not direct them into different clusters. For
example, in planetarium, users always look up the number
of left tickets and the ticket prices together, whose queries
should be clustered together even if they have slight time
difference. Third, basic ML models mainly capture short-term
relations within workload traces. Whereas some workloads
are very complex and require to forecast based on a long-
term historical workload traces, for which basic ML models
may have low forecasting accuracy. Fourth, they utilize single
ML model like RNN to forecast for various workloads, which
are of different complexity and the RNN-based forecasting
model may perform bad on some workloads. Thus, we require
multiple models for comprehensive decision-making.

Challenges. To efficiently and precisely forecast for real-
world workloads. There are three main challenges. ❶ How
to combine similar workloads so as to reduce the forecasting
overhead (C1). There can be numerous workload traces and
forecasting for each trace may cause great resource waste.
Meanwhile, the noises and occurring time difference make
it more challenging to identify similar workloads. ❷ How to
learn from complex workload traces and forecast future traces
(C2). It is usually impossible to construct a “one-size-fits-all”
forecasting model because each model has its advantages. On
one hand, traditional statistic methods (e.g., Linear Regression
(LR) and ARIMA [11]) are explicit and simple to implement.
However, they are insufficient to learn complex workload pat-
terns. On the other, machine learning (ML) approaches (e.g.,
Multilayer Perceptron (MLP) [12], Long Short Term Memory
(LSTM) [13], Kernel Regression (KR) [14] and Temporal
Convolutional Networks (TCN) [15]) are good at learning
workload distribution across time series. However, current
ML-based algorithms suffer from the overfitting problem and
exist high-variance in prediction. Furthermore, when dealing
with more complex workload forecast scenarios, they are also
insufficient because of the lack of fitting ability. ❸ How to
generalize the forecast model to diversified workloads (C3).
Recap that there can be various workloads in real scenarios.
Existing methods only rely on single ML models to forecast
for each workload, which may cause bad prediction on some
workloads (e.g., sudden bursts and long-term patterns). Since
there are numerous available ML models, it is challenging
to choose a suite of effective models for trend forecasting
(e.g., learning the complex query/resource patterns, learning
the long-term pattern changes) and ensemble their learned
knowledge to give the final decisions. As a result, we expect
to update (train) the forecasting model in a dynamic manner.

Our Proposed Methods. To address the challenges, we
propose a robust learning-based workload forecasting system
(DBAugur) using generative adversarial networks. ❶ We first
collect the workload queries from the system logs, obtain the
runtime statistics (e.g., resource usages), and use both the

queries and resource usage to represent the workloads. Here
we adopt two strategies to reduce the forecasting overhead: (1)
We map the queries into query templates based on the semantic
features; (2) We cluster the workloads with similar trace
patterns together, where we propose dynamic time warping
to identify the similar patterns between any two traces (for
C1). ❷ With the featurized workloads, we develop WFGAN,
which exploits the strong generative potential of Generative
Adversarial Networks (GAN) [16] to capture complicated
and time-varying workload patterns. With adversarial learning,
we can learn a tailored loss function, which helps learn the
latent workload distribution and capture the correlation and
burstiness across time. Specifically, we leverage multi-task
learning [17] to jointly train WFGAN on query and resource
utilization workloads so that the knowledge learned in one
forecasting task can benefit the other forecasting task, improv-
ing the learning efficiency and prediction accuracy (for C2).
❸ Moreover, we further propose a time-sensitive ensemble
algorithm that takes advantage of both GAN (the generative
capability), TCN (the global view for complex workloads), and
MLP (the local view for simple workloads) to accommodate
the diversified workload patterns (for C3).

Contributions. We make the following contributions:
(1) We develop a novel learning-based workload forecasting

system DBAugur, which can provide accurate and efficient
workload prediction for databases. To the best of our knowl-
edge, this is the first adversarial based database workload
forecasting system.

(2) To deal with the growing volume of workload data
and boost training efficiency, we propose an online workload
clustering method, where Dynamic Time Warping (DTW) [18]
is introduced to replace the traditional distance computation
method. It can handle distorted workload patterns and detect
underlying patterns with varying lengths and speeds. Besides,
Ball-Tree [19] is integrated in this clustering method to accel-
erate the nearest neighbor search.

(3) To accurately forecast complex workload, we design a
forecasting model that utilizes adversarial neural networks to
learn the internal distribution of these workload patterns.

(4) To adapt to diversified workloads, we present a dynamic
ensemble algorithm combining the advantages of WFGAN,
TCN, and MLP to improve the accuracy of forecasting vari-
ous workload traces. Specifically, we design a time-sensitive
weight calculation method to integrate the above three models
and result in improved forecasting performance.

(5) We compare DBAugur with other state-of-the-art fore-
casting models on real-world workloads, which demonstrates
the superiority of DBAugur in capturing diversified workload
patterns. Besides, we implemented DBAugur on PostgreSQL
to test its ability to optimize real-world database applications.

II. PRELIMINARIES

We first introduce database workloads and showcase typical
workload patterns (Section II-A), and then we formalize the
problem of workload forecasting (Section II-B).

ii

0 2500 5000 7500 10000 (mins)
0

200

400

600

800

Q
ue

ri
es

 /
m

in

(a) BusTracker Workload Trace

0 4000 6000 12000 (mins)

10
20
30
40
50

D
is

k
U

til
iz

at
io

n
(%

)

(b) Alibaba Cluster Workload Trace

Fig. 2: Workload Patterns – Examples of two real-world
workload patterns.

A. Database Workloads

Database workload traces are a collection of queries that
access the same database instance during a certain time period
(e.g., queries submitted in the past hour). From the view of
system burdens, we characterize database workloads in two as-
pects, i.e., query traces (e.g., the numbers of submitted queries)
and resource utilization traces (e.g., memory utilization ratios).
Query Trace. Query trace W (Q) refers to the changes of
query statements issued by the user’s applications over time,
which is typically measured by the occurrence frequencies.

Example 1: With the guidance of predicted query traces, we
can benefit downstream optimization tasks. For example, for
index management, we can create the corresponding index on
the predicted “hot” columns to accelerate the query execution.
Furthermore, the system configurations, such as buffer size,
number of thread connections, number of locks, and so on,
can also be optimized based on the forecasting knowledge.
Resource Utilization Trace. Resource trace W (R) refers
to the resource utilization, e.g., consumed memory (e.g., the
memory use of the database over a given period of time),
CPU (e.g., the number of instructions being executed by the
processor during the period), and storage space (e.g., a statistic
on the number of inputs and outputs gathered by the database).

Example 2: By forecasting the changes in required sys-
tem resources, we can judiciously release or allocate system
resources so as to meet the performance requirements and
improve the resource utilization for the incoming workloads.
Database Workload. Based on above observations, we need
both query and resource utilization traces to reflect actual
workload characters. Otherwise, it may lead to inaccurate
results by only forecasting either queries or resource usage.

Definition 1 (Database Workload): A database workload is
denoted as W = (Q,R), where Q and R separately denote the
query and resource utilization traces. Given a set of queries Q
in the workload, the queries are concurrently executed, which
consume some system resources R to obtain the desired data.

Example 3: As the demand for large distributed database
systems increases, different types of workloads need to be
considered coordinately. OLTP has concurrent queries and is

io-intensive; while OLAP has complex queries and is memory-
intensive. Therefore, it is necessary and critical to consider
both queries and resources to fully reflect future workloads.

With the historical workloads, it is still challenging to
accurately forecast the incoming workload traces since work-
load patterns present on a database instance can be highly
dynamic and time-varying [20]. First, the workload is non-
static. From the global view, the workload exhibits periodic
patterns. However, the period of these patterns can be very
long and less obvious, making it difficult to capture them.
Second, there are sudden bursts in workload, which require a
robust ability to detect bursts ahead of time and adapt rapidly
to these dynamic scenarios. Furthermore, because workload
patterns tend to vary over time, the forecasting model should
be able to adapt to the new patterns.

B. Workload Forecasting

Forecasting Horizon. To decide the time distance of future
workloads from current workloads, we define the forecasting
horizon.

Definition 2 (Forecasting Horizon): Forecasting Horizon
refers to how far the model predicts the future. Given current
workloads (x1, x2, . . . , xT) ∈ RT , of which xi, 1 ≤ i ≤ T ,
means the workload at time i, the forecasting horizon H means
that the model can predict the future workload xT+H at time
T +H .

Example 4: Given a database workload trace, the forecasting
horizon equals 1 hour means that we want to predict what
the workload looks like after 1 hour later. Increasing the
forecasting horizon will decrease the forecasting accuracy.
Forecasting Interval. Next to decide the granularity of work-
load forecasting, we define the forecasting interval.

Definition 3 (Forecasting Interval): Forecasting Interval
represents the time interval between two adjacent workload
values xi−1 and xi. The forecasting interval I equals to the
difference between time i− 1 and time i.

Example 5: When pre-processing the workload trace, if the
forecasting interval is set to 10 minutes, we will aggregate the
workloads by 10 minutes. If the forecasting interval is small,
the workload trace can contain more detailed information,
improving the prediction accuracy. The small interval, on the
other hand, will increase the volume of workload, making the
training process costly.
Workload Forecasting. Based on the forecasting horizon and
interval, database workload forecasting aims to predict the
workload trend changes (e.g., query and resource utilization
traces) during a certain period of future time.

Definition 4 (Single-Trace Forecasting): For any workload
trace X = (x1, x2, . . . , xT) with the forecasting horizon
H and forecasting interval I , where x denotes one type of
workload metrics (e.g., query arrival rate, resource usage),
workload forecasting is to predict the value of workload metric
x at time T+H , i.e., x̂T+H = F (x1, x2, . . . , xT), where F (·)
denotes any forecasting model.

Definition 5 (Multi-Trace Forecasting): Given a set of work-
load traces {X(1),X(2), · · · ,X(n)}, where X(j) denotes one

iii

Historical
Workloads

Workload Processor
SQL2Template

SELECT b,a FROM foo

SELECT a,b FROM foo

Semantic
Equivalence

SELECT *,* FROM foo

Workload Traces

Dynamic
Time

Warping

Distance Measure

Trace Clustering

Adversarial Training

Ensemble Model

Templatizelogs

Ensemble Forecaster

Ball-Tree

Traces
X TCN

MLP

WFGAN x'T+H

x'T+H

x'T+H

w1

w2

w3

x' T
+

H

Forecasted
Workloads

SQL Templates

CPU Disk
Memory

Resources

C
al

cu
la

te
 T

im
e

Se
ns

iti
ve

 W
ei

gh
ts

WFGAN Model

Discriminator

G
en

er
at

or

Real or fake
Back

propagation

Fig. 3: System Framework.

workload metric trace and n denotes the number of workload
metrics, for any future time T , workload forecasting is to infer
the workload trend at time T+H by predicting the metric val-
ues at time T+H , i.e., ŴT+H = {x̂(1)

T+H , x̂
(2)
T+H , · · · , x̂(n)

T+H}.
Example 6: As shown in Figure 2, real-world workloads

have various access patterns. BusTracker workload1 tracks the
public transit bus system in real time and records the number
of SQL queries executed every minute by the BusTracker
application. As shown in Figure 2(a), although this workload
roughly follows a one-day cyclic pattern, there are various
sudden crests and troughs as time going on. Figure 2(b)
presents Alibaba Cluster Workload Trace2, a collection of
resource utilization traces that are gathered from real world
production. As can be seen, the periodic pattern in this dataset
a is longer and less obvious. Moreover, there are many bursts
caused by complex queries. In these scenarios, both current
ML-based algorithms and QB5000 [1] are insufficient to
capture long-term patterns and sudden bursts.

III. SYSTEM OVERVIEW

DBAugur is an end-to-end workload forecasting framework
that can be utilized as an external auxiliary tool for DBAs or as
an in-kernel DBMS module for database optimization. In this
section, we present the system overview. As shown in Figure 3,
DBAugur consists of three main parts, including Workload
Processor, Ensemble Forecaster and Adversarial Training.
Workflow. Given a new workload being executed in the
database, after a period of time, the Workload Processor first
extracts the historical workload traces from database logs,
where queries with similar syntax formats are merged into a
small number of query templates, clusters similar traces with
dynamic time warping, and utilizes the processed traces to
represent historical workloads. With those workload traces,
next the Ensemble Forecaster trains a learned ensemble fore-
casting model to predict the future trend of the workload.
The ensemble model is composed of three parts, where MLP
is a full-connected neural network that captures the short-
term trace changes, TCN is a convolutional neural network
that captures the long-term trace patterns, and WFGAN is
a generative adversarial network that adopts the adversarial
training mechanism and can capture the bursts in workload
traces. The ensemble model predicts the workload trend at
any future time based on the forecasting results of the three
inference models.

1http://www.cs.cmu.edu/ malin199/data/tiramisu-sample
2https://github.com/alibaba/clusterdata

Workload Processor. To begin with, since there are numerous
database logs containing vital workload traces (e.g., queries
with timestamps) and the textual data in the logs cannot
be directly fed into the forecasting model, SQL2Template
introduces the template-based equivalence checking technique,
which converts raw query logs into various SQL templates.
Next, with the SQL templates and other resource workload
traces, Trace Clustering aims to efficiently group similar
workload traces into clusters to further reduce the forecast-
ing overhead and handle the continuously new query data.
To achieve that, we propose an online workload clustering
algorithm, which takes workload traces as input and output
clustered workloads. To efficiently cluster the data, we propose
a dynamic time warping (DTW) approach, which allows
comparisons of two distorted workload patterns. Ball-Tree is
also built in Trace Clustering as a storage structure for efficient
nearest neighbor search.
Ensemble Forecaster. Forecasting model is the core com-
ponent of DBAugur. It uses clustered workloads as training
data and provides predictions for workload characters at any
future time (i.e., different workload horizons and intervals).
To achieve that, we first propose a adversarial-based model
called WFGAN. In WFGAN, the generator learns the latent
distribution of workload patterns, while the discriminator
helps to capture the correlation and burstiness in time-varying
forecasting. We then put forward a time-sensitive ensemble al-
gorithm that fuses multiple forecasting models (i.e., WFGAN,
TCN and MLP) for more accurate prediction by dynamically
assigning different weighting factors to the models. Note that
the three models can be trained in parallel.
Adversarial Training. To well train the forecasting model on
complex workload traces (e.g., random bursts), we train the
generative forecasting model (WFGAN) with adversarial train-
ing. Adversarial training aims to ensure that the forecasting
model simulates all the important characters of the workload
traces so as to “cheat” the discriminator and gain relatively
high accuracy. Each time we sample a batch of workload traces
and rely on the generator-discriminator mechanism to learn
the internal distribution of those workload traces (e.g., typical
patterns like cycles and bursts).

IV. DTW-BASED WORKLOAD PROCESSOR

Due to the large number of workload traces, building
forecasting models for each of these traces are impractical.
Intuitively, we can cluster similar queries to reduce the fore-
casting overhead. However, existing methods mainly rely on

iv

exact distance computation strategy (e.g., cosine distance),
which cannot effectively merge similar queries with noises
like time shifts [1], [10]. Hence, in this section, we first extract
the workload information from database logs (Section IV-A);
and then we propose a robust distance computation method
to measure the similarity between any two workload traces
(Section IV-B), and cluster similar workload traces based on
the computed distances (Section IV-C).

A. Workload Trace Extraction

The gathered database logs are usually of the string type
and have messy formats and cannot be used as direct input
to the learning model. As a result, we should first extract
the numerical workload characteristics from the original logs,
including the query traces and resource utilization traces. For
query traces, they are extracted from the query logs, and there
are two observations.

(1) The SQL statements are ordered by execution times-
tamps, based on which we can generate the workload traces
for all the query statements, i.e., (x1, x2, · · · , xT), where xi

represents the workload value at time i (i.e., the arrival rate
of corresponding query), and T denotes the entire length.

(2) Many SQL statements have similar syntax format and
we can combine these statements as single query templates
so as to reduce forecasting overhead. To accomplish this,
we first format the statements by normalizing the statement
format (e.g., the same usage of spacing, case, bracket
placement). Next, we replace the variables in the SQL
queries with placeholders. For instance, the SQL statement
“SELECT * FROM Stu WHERE id=5 and age>21
and height<180” → query template “SELECT * FROM
Stu WHERE id=$ and age>& and height<#”,
whose trace equals to the sum of all the combined query
traces. Moreover, to further decrease the number of query
templates, semantic equivalence checking is also performed to
assort similar SQL templates into the same type. For example,
the statement “SELECT a,b FROM foo” is equivalent to
“SELECT b,a FROM foo”, and “SELECT * FROM A
JOIN B on A.id=B.id” is equivalent to “SELECT *
FROM B JOIN A on B.id=A.id”.

For resource utilization traces, they are extracted from
runtime statistics. For example, there are usually thousands of
virtual machines and containers running the database service
in a cloud environment. For each database instance, we can
obtain the corresponding workload series (x1, x2, · · · , xT)
for a specific resource (e.g., CPU, I/O, memory), where xi

represents the resource utilization ratio at time i.
After the above processing, the origin query and resource

utilization information are finally converted into much fewer
workload traces ordered by the timestamp attribute.

B. Similarity Measure of Workload Traces

To forecast the trend of database workloads (e.g., query
workloads or resource workloads), we should train a cor-
responding forecasting model for each workload trace. For
queries, there are large number of SQL templates within an

application and each SQL template corresponds to a work-
load trace. For utilized resources, there are numerous servers
running the database service on the cloud and each server
also records corresponding resource traces (e.g., I/O or CPU
utilization ratios on each server). As a result, the number of
traces is still large, training a model for each workload trace
is unfeasible. Before building forecasting models, the number
of workload traces should be further reduced. To this end, we
can group similar workload traces into clusters and train the
forecasting model for representative clustered workloads. This
strategy can be used without compromising the forecasting
accuracy. First, a small number of clusters can cover most
database workloads. Thus, building forecasting models on
the top-K clusters is fully capable of capturing the common
workload patterns. Second, many workload traces have similar
workload patterns and can be grouped together. For example,
a set of statements in a distributed transaction will generate
similar query and resource traces.

When clustering the workloads, a key problem is how
to efficiently measure the similarity of any two workload
traces. Traditional methods usually adopt Euclidean distance
or Cosine distance [1] to compute the distance between two
sequences. However, due to the possibility of temporal drift,
the above two methods are unable to precisely match two
warped workload traces, causing poor clustering results. In this
paper, we solve this problem by introducing a more powerful
distance computation technique called Dynamic Time Warping
(DTW) [18], which is widely used in the field of pattern
recognition, as illustrated in the second part of Figure 3. DTW
is a robust similarity measurement that allows comparisons of
two traces with varied lengths and speeds, which is superior
to the lock-step measures such as Euclidean distance [21].
Therefore, it distinguishes underlying patterns more efficiently
than searching for perfect matches in the raw traces, naturally
increasing the resistance of DBAugur to data drifting such as
amplitude shifting/scaling, linear increase/decrease, etc. The
DTW algorithm is shown in Algorithm 1. The primary idea
is to utilize dynamic programming to discover the optimum
alignment between two traces by warping the time dimension
with certain constraints, as shown in lines 6−9 in Algorithm 1.
The output in line 10 is the distance between X(1) and X(2)

with the best alignment. To improve the matching efficiency,
we add a window w in DTW to limit its search space.
Moreover, we adopt the LB keogh algorithm [22] to further
decrease the time complexity of DTW to linear time O(T).

C. Workload Trace Clustering

To efficiently cluster workload traces, based on DB-
SCAN [23], we propose an online workload clustering algo-
rithm called Descender (Density basEd Spatial ClustEriNg
with Dynamic timE waRping), which is a density based
method and is roust to arbitrary shaped clusters and outliers.

The Descender algorithm is described as follows. Given
a set of workload traces W , a similarity threshold ρ and a
similarity measurement function, we intend to group the traces
with similar patterns together. The main idea is that a trace

v

Algorithm 1: DTW Based Distance function

Input: Workload traces X(1) and X(2)

Input: Historical length T and Window size w
Output: Distance between two workload traces

1 Initial DTW as a T × T matrix;
2 foreach i := −1 to T do
3 foreach j := −1 to T do
4 DTW [i, j] = infinity;

5 DTW [−1,−1] := 0;
6 foreach i := 0 to T do
7 foreach j := max(0, i− w) to min(T, i+ w) do
8 dist = (X(1)[i]−X(2)[j])2;
9 DTW [i, j] = dist+min(DTW [i−

1, j], DTW [i, j − 1], DTW [i− 1, j − 1)]);

10 Out: Sqrt(DTW [T − 1, T − 1]);

belongs to a cluster if it is close to many other traces from
that cluster. Descender first builds a Ball-Tree [19] on the
current workload traces, which partitions traces into a nested
set of hyperspheres known as “balls” to speed up discovery
of neighborhood workload traces. Compared with KD-Tree,
Ball-Tree is more efficient especially in situations when the
number of dimensions is very large.
Workflow. When the clustering process begins, Descender will
iterate over each trace X and uses Ball-Tree to quickly find
its neighbors under radius ρ. If there are at least MinSize
traces in its neighbors (i.e., this trace and its neighbors may
form a cluster), the trace X will be identified as a core point.
Otherwise, it is marked as an outlier. Descender then generates
a new cluster CX based on the new trace X . In this case,
all the traces in the neighbors NX also become a part of
that cluster. In the same way, if these neighbors are also core
points, the traces in their immediate vicinity are also added to
the same cluster CX . In this way, the Descender algorithm is
capable of grouping the workload traces into different clusters.
Online Clustering. Descender also supports online clustering.
For a new trace, Descender will update the environment, merge
or split the clusters based on the current clustering density. If
the new trace fails to become a core point, we will create a
new cluster with that trace as its sole member.

After the clustering processing, all the workload traces
have been grouped into separate clusters. The majority of the
database workload can be characterized by a a small number
of clusters, leaving the other clusters to have little impact
on the forecasting task. Therefore, we only select the top-K
representative clusters (i.e., clusters with the largest workload
volumes) and build a forecasting model for each cluster, for
which we use average workload of traces within each cluster
as the training data. During the clustering, we also track each
trace and its proportion in the corresponding cluster to which
it belongs. Accordingly, we can infer the trend for each trace
once we forecast the cluster’s future workload tendency.

V. FORECASTER

In order to improve forecasting performance, we first pro-
pose Workload Forecasting GAN (WFGAN), the first adver-
sarial based model that exploits the ability of GAN to generate
real workload values from latent space (Section V-A, V-B).
The reasons are as follows. ❶ Unlike the previous models,
which only optimize one single objective [24] such as the
likelihood loss, the hinge loss or other losses, WFGAN uses
an adversarial training procedure to directly model the latent
distribution of the workload traces, which can detect the
underlying patterns of random workload traces and eliminate
the error accumulation problem. ❷ Under the supervision
and criticism of the discriminator, WFGAN is capable of
building a more sufficient non-linear mapping through neural
networks, which can capture the correlation and burstiness
across long-term workload patterns. ❸ During training and
inference phases, the discriminator performs like a tailored loss
function, which sufficiently exploits the workload information
to regularize and guide the generator for adaptive and precise
forecasting. Next, we further present a time-sensitive ensemble
algorithm to generalize the forecasting model to diversified
workloads. The ensemble algorithm employs multiple models
to ensure that forecasting results are accurate and robust in a
variety of scenarios (Section V-C).

Database
Workload

LSTMLSTM

......

LSTM

History Workload
Condition Window T

Forecast Workload
Horizion H

LSTM... ...

...

Generator

Temporal
Attention

Mechanism

OR

P(real) Discriminator

Update

Full Connection Layer

...

Fig. 4: Model Architecture (WFGAN).

A. WFGAN for Workload Forecasting

A generative adversarial network (GAN) [16] is a type of
machine learning framework that is designed for modeling the
latent data distribution given a set of samples from the true data
distribution. GAN consists of two neural network components:
a Generator G and a Discriminator D. To be specific, the
generator G generates fake data from the noise space z and
passes it to the discriminator. The purpose of the generator is
to deceive the discriminator, even though they are fake. On the
other hand, D has been trained to determine whether or not a
given data sample is authentic. Finally, as denoted in Eqn. (1),
GAN engages a min-max game between the generator G and
the discriminator D based on a cost function. When using
GAN to solve the workload forecasting problem, G is in

vi

charge of generating future workloads and trying to “cheat”
D, while D maximizes the ability to distinguish between real
and forecasted workloads. Based on the basic framework of
GAN, we propose WFGAN. The framework of WFGAN is
shown in Figure 4, and we will introduce these components
in the follows.

min
G

max
D

Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]

(1)
As discussed before, to accurately characterize the database

workloads, we should take advantage of both query and
resource utilization traces. To this end, we first merge query
traces W (Q) and resource traces W (R) into a single workload
collection W , where W contains a set of workload traces
{X(1),X(2), · · · ,X(n)}. We then propose to employ multi-
task learning (MTL) [17] to jointly learn two tasks. In MTL,
multiple learning tasks are solved at the same time by shar-
ing some network layers, which exploits commonalities and
differences across tasks and thus improve learning efficiency
and prediction accuracy. Specifically, the input layer receives
training samples from query and resource workloads and the
output layer has two output units with one for each task.
The shallow network parameters in the hidden layer will be
shared by both forecasting models, while their deep network
parameters will be optimized separately. By this way, we can
learn more robust and universal representations for two work-
load forecasting tasks, which can leverage useful information
contained in these tasks to help improve the generalization
performance of all the tasks.
Generator. In the standard GAN, the generator samples data
from the noise space z using a normal or uniform distribution,
which reflects the latent features of the generated data. This
procedure, however, will result in an uncontrolled output, i.e.,
the generator will not be able to output the target workload
that we require. To address this issue, we leverage a modified
GAN called Conditional GAN (CGAN) [25], which uses
external data as the condition window to improve the model’s
performance. By this mechanism, instead of sampling data
from the noise space, we directly feed a workload trace X =
(x1, x2, · · · , xT) as a condition window into the generator.
In this case, the output x̂T+H of the generator represents
the predicted workload at time T + H . Figure 4 depicts the
WFGAN’s structure.

Initially, the generator will generate random data in early
stages. However, during the continuous adversarial training of
G and D, D will guide G to generate a more accurate work-
load x̂T+H . For example, if G makes inaccurate predictions
for future workload trends, D will catch this error and return a
large loss value to further optimize the network parameters of
G. In this situation, the condition window (i.e., the historical
workload trace X) offers WFGAN an explicit head start in
terms of the learning target.
Discriminator. For the discriminator, real and forecasted
workloads are respectively input into D. As shown in Fig-
ure 4, we separately concatenate the real workload xT+H and
the forecasted workload x̂T+H to X to form a new trace

Xreal = X◦xT+H and Xfake = X◦x̂T+H with length T+1,
which represents the real data and the fake data respectively.
The goal of the discriminator is to try its best to determine if
the input workload is real or not. In this case, D will output a
probability value indicating the likelihood that the data is real,
i.e., P (real). Then we can train the discriminator to be like
a two-class classifier. If the input is a real workload trace, the
D(Xreal) should equal 1. Otherwise, it should be 0.

As discussed in the above section, the generator tends to
produce fake data in order to trick the discriminator as much
as possible, i.e., D(G(X)) = 1. As a result, we can use
the probability output by D to train the generator through
the back-propagation algorithm. Finally, the discriminator D
can only identify the tiny difference between the real and the
generated workloads, i.e., the generator G predicts the future
workload that the discriminator cannot tell the difference.
The WFGAN model eventually converges and can accurately
forecast the workload xT+H .

Internal Structure. The internal structure of G and D adopts
a similar RNN-based neural network, as illustrated in Figure 4.
Given a workload trace X = (x1, x2, · · · , xT), the RNN
network can learn a non-linear mapping from xt to ht, i.e.,
ht = f(ht−1, xt), where ht represents the hidden state of xt

(i.e., the output of RNN at time t). To better capture workload
patterns and improve forecasting efficiency, WFGAN adopts a
modified RNN called LSTM (Long Short Term Memory) [13].
LSTM is made up of a number of memory units that can selec-
tively cache the historical information for current prediction.

We can regard the last hidden state hT of LSTM as the pre-
dicted workload. However, relying only on the last output may
lose information. To fully exploit the historical knowledge,
we introduce the temporal attention mechanism [26], which
can pick elementary stimulus features in the early stages of
workload trends. For the final output, we add an attention-
layer as shown in Figure 4. For the generator, we summarize
all the hidden states from h1 to hT to produce the predicted
workload x̂T+H , as denoted in Equation (2), where fattention
is a weighting function to integrate the hidden states:

x̂T+H = fG
attention(h1, h2, · · · , hT) (2)

For the discriminator, we concatenate hT+H to the first
T hidden states. Then the neural network will output the
probability to denote whether the input sample is real or not,
as shown in Equation (3).

P (real) = fD
attention(h1, h2, · · · , hT , hT+H) (3)

B. Adversarial Training for WFGAN

To efficiently train the model, traditional neural networks
require a hand-crafted loss function. As a result, an incorrect
loss function will severely damage the performance of the
model. For WFGAN, we adopt adversarial training to optimize
the model, in which the discriminator will perform as an
tailored loss function to drive the training of the generator. The
discriminator (i.e., the loss function) can learn from the current

vii

workload patterns, which is robust and flexible compared to a
hand-crafted loss function.
Loss Function. As previously stated, the duty of the dis-
criminator is to distinguish between the real and predicted
workloads. Xfake is the concatenation of the workload trace
X and the predict workload G(X) by the generator G.
Here WFGAN measures the discriminator’s loss using cross-
entropy, as denoted in Equation (4), which means that D seeks
to maximize the probability of distinguishing between the real
and the predicted workloads:

max
D

EX∼pX
[logD(Xreal)] + EX∼pX

[log(1−D(Xfake)]

(4)
On the other hand, the generator tries to deceive the

discriminator with the highest probability value, as denoted
in Equation (5):

min
G

EX∼pX
[log(1−D(Xfake))] (5)

Finally, the cost objective function of WFGAN is shown in
Equation (6), where D attempts to maximize the value while
G tries to minimize it:

min
G

max
D

EX∼pX
[logD(Xreal)]+EX∼pX

[log(1−D(Xfake))]

(6)
Algorithm Outlines. Once the objective function is defined,
the network parameters of G and D can be learned jointly
by the alternating gradient descent. WFGAN first fixes the
parameters of the generator and perform gradient descent by
D-steps on D using the real and the predicted workloads. Then
we switch sides. Fix the discriminator and train the generator
by G-steps. Two neural networks are trained in alternating
steps until the generator can forecast the workload accurately.
The algorithm 2 shows the back-propagation algorithm used
for the gradients in WFGAN training.

C. Forecasting for Diversified Workloads

As described earlier, when dealing with a variety of work-
load scenarios, we need to build a versatile forecasting model.
As discussed in [27], a model should take account of different
granularities of workload data, such as short-term and long-
term trend patterns, as well as dynamic and complex patterns.

• Short-term prediction requires the model to capture local
and linear features. However, There may still be some
nonlinear features that interfere with the prediction.

• Long-term prediction requires the model with a global
view to capture long-term features in the trace. Mean-
while, we need to alleviate the problem of gradient
explosion during model training.

• Complex patterns require the model to have strong non-
linear fitting capabilities to deal with unexpected situa-
tions (e.g., the bursts in the trace).

In order to meet the above requirements, we further develop
an ensemble algorithm that integrates MLP, TCN, and WF-
GAN to form the Forecaster module. Next, we will elaborate

Algorithm 2: Adversarial Training for WFGAN

Input: Learning rate µD for D and µG for G

1 Initialize gradients θD and ϕG ;
2 foreach number of train iterations do
3 Sample minibatch m traces

{X(1)
real,X

(2)
real, · · · ,X

(m)
real} from training

workloads;
4 Compute X

(i)
fake by the generator G:

X
(i)
fake = X

(i)
real[1 : T] ◦G(X

(i)
real[1 : T]);

5 foreach D-steps do
6 Update the discriminator by ascending its

gradient:
7 θD = θD + µD▽θD

1
m

∑m
i=1[logD(X

(i)
real) +

log(1−D(X
(i)
fake))]

8 foreach G-steps do
9 Update the generator by descending its

gradient:
10 ϕG =

ϕG − µG▽ϕG

1
m

∑m
i=1[log(1−D(X

(i)
fake))];

on the rationality of model selection and the design of the
ensemble algorithm.

TABLE I: Comparison of Forecasting Models
Model Structure Feature Advantage

MLP fully connection local short term
TCN dilated convolution global long term

WFGAN adversarial structure potential complex and burst

1) Comparison of Models: As shown in Table I, the se-
lected models correspond to the requirements listed above.
Multilayer Perceptron (MLP) [12]. MLP is a fully connected
feedforward neural network. MLP is simple and good at
capturing local trend patterns, which is suitable for short-term
forecasting. Compared with other linear models such as LR
and ARIMA, the activation function in MLP enables it to
capture the local nonlinear patterns in short-term prediction.
Moreover, it can be trained quickly.
Temporal convolutional network (TCN) [15]. TCN is a vari-
ation on convolutional neural networks (CNN) for sequence
modeling tasks, in which the output at time t is convolved
solely with elements from time t and earlier in the previous
layer. TCN employs dilated convolutions that helps cover the
longer workload information from the output obtained with
every convolution operation. Compared with general CNN,
TCN offers a wider field of view at the same computational
cost. Moreover, it can avoid the gradient explosion problem
that exists in RNN. As a result, TCN has a good global view
and can forecast long-term patterns effectively.

Recap WFGAN is good at modeling the bursts and learn-
ing complex workload patterns. However, it works poor in
scenarios like longer-term prediction. In this case, if we make

viii

a potent brew of WFGAN, TCN, and MLP to take advantage
of each model, the Forecaster module will be able to handle
diversified workloads and gain higher forecasting ability. Note
that we only consider the above three models for ensemble
because they are enough to catch patterns. Adding more
models to the ensemble will increase the training cost with
tiny performance improvement.

2) Ensembled Workload Forecasting: In this section , we
propose a time-sensitive ensemble algorithm based on fuzzy
and statistics theories [28], [29] to generate the final prediction
of DBAugur.

Let x̂t(i) be the predicted workload value at time t, with
i = 1, 2, 3 indicating that this forecasting value is produced
using WFGAN, TCN, or MLP. Correspondingly, for the i-th
forecasting model, we use et(i) = (xt − x̂t(i))

2 to represent
its prediction error at time t. A small et(i) means that the
prediction accuracy of the i-th model is high at time t.
Therefore, when fusing the models at time t + H , we are
supposed to provide a higher ensemble weight to models with
a small et(i). However, a static et(i) is insufficient to be highly
sensitive to time, because it cannot fully account for a model’s
future forecasting ability.

In this paper, we introduce a time-varying forecasting
distance with an attenuation factor δ to ensure that mod-
els with strong predictive abilities have higher ensemble
weights at the forecasting moment. For the i-th model, let
e(i) = (e1(i), e2(i), · · · , et(i)) denote the prediction error
vector from time 1 to t, which is a dynamically changing
and rising vector as time goes on. The forecasting distance is
then defined as follows.

Definition 6: For the error vector e(i), its forecasting
distance is

Γ(e(i), t) =

t∑
j=1

δt−jej(i) (7)

Γ(e(i), t) uses the most recent information to measure a
model’s forecasting ability, which is time-sensitive and robust.
Moreover, such diversified dynamic weighted function can
efficiently handle incoming workload traces that have varying
conceptual distributions [30]. Correspondingly, to determine
the ensemble weight for each model, we normalize the fore-
casting distance, take the inverse, and get the time-varying
weight of each model over time t.

wt(i) =

∑3
j=1 Γ(e(j), t)− Γ(e(i), t)

2×
∑3

j=1 Γ(e(j), t)
(8)

At this stage, the final ensemble forecasting value at time
t + H can be expressed by Equation (8), where wt(i) and
x̂t+H(i) respectively represent the ensemble weight and the
predicted workload value of the i-the forecasting model, i.e.,
x̂t+H =

∑3
i=1 wt(i) · x̂t+H(i).

Discussions. So far, we have covered all the components of
the framework. There are primarily three points to distinguish
it from traditional time series prediction. First, DBAugur
inlucdes data preprocessing, trace clustering, and workload

forecasting, in which the forecasting module is only one
component of DBAugur. To perform database workload fore-
casting, we need to preprocess diversified workload traces,
including extracting, cleaning, and transforming them into
standard forms. Then we cluster the traces to select the top-
K representative clusters so that the forecasting process can
be efficiently carried out. Second, the workload patterns are
implicit. For example, for an application with thousands of
queries, it is tricky to capture the trace pattern of a single
query. Alternatively, we characterize each group of traces
by clustering the traces together and extracting timing infor-
mation. Although the clustering topology evolves over time,
DBAugur is able to react quickly and capture the changes
of workload patterns. Lastly, the primary goal of database
workload forecasting is to assist downstream modules, such
as knobs tuning and index selection. In contrast to traditional
time series prediction (e.g., electric demand forecasting and
sales prediction [31], [32]), downstream modules focus more
on workload trend in the near future, where there are sudden
bursts. As a result, DBAugur further employs an ensemble
algorithm to handle these problems.

VI. EXPERIMENTS

In this section, we evaluate the performance of DBAugur
for workload forecasting.

A. Workloads, Setup and Baselines

Workloads. We use two real-world workload traces as follows.
- BusTracker Trace [1]. This dataset is collected from a

mobile phone database application, which is used for timely
tracking of the public transit bus system. The dataset size is
about 800MB and it contains SQL queries from Nov. 29, 2016
to Jan. 25, 2017.

- Alibaba Cluster Trace.3 This dataset is sampled from a
production cluster and includes about 4000 machines in a
period of 8 days. The dataset size is 8GB and it contains
batch workloads collected in every machine in the cluster. We
use the Disk utilization about six days as the third dataset.
Learning Setup. We implement the forecasting framework
using Python3 and Keras with Tensorflow 2.0 as its backend.
The experiments are performed on a Centos server with an
Intel Xeon E5-2620 v3 CPU and 62 GB RAM. Adam [33]
is used as stochastic gradient-based optimization to train the
models. We use the first 70% of the dataset as the training set
and the rest as the test set.

Baselines. We compare the performance of DBAugur with
other classic and state-of-the-art models. The parameters of
each model are determined by Grid Search [34]. Specifically,
the learning rate is set to 1e− 3.

- Linear Regression (LR). LR is a linear approach to model
the relationship between history and future workload series.

- Autoregressive Integrated Moving Average (ARIMA) [11].
This method combines autoregressive (AR) and moving aver-
age (MA). In the experiment, we set the parameters (p, d, q)
in ARIMA to be (2, 1, 2) respectively.

3https://github.com/alibaba/clusterdata

ix

- Multilayer Perceptron (MLP) [12]. We build a two layer
MLP, with 32 units and 16 units respectively.

- Long Short-Term Memory (LSTM) [13]. LSTM is a
variation of RNN. The input length is set to 30, and the output
dimension is set to 16 with a dense layer to get the final result.

- Temporal Convolutional Networks (TCN) [15]. We create
a five-layer TCN, where the dilated convolution factors are
1, 2, 4, 8, 16 respectively.

- QB5000 [1]. QB5000 makes the forecast by equally
averaging the results of LR, LSTM and KR.

- WFGAN. Both the generator and the discriminator are
implemented by one LSTM layer with 30 cells, following a
temporal attention layer.

- DBAugur4. DBAugur fuses the features of WFGAN,
TCN, and MLP. As discussed in Section V-C, the value of
attenuation factor δ is 0.9.

10mins 20mins 30mins 40mins 50mins 60mins

4000

6000

8000

10000

12000

!
"

#$

%$& %

 #'

#!(

()*

+,-%*

./0111

2/%3435

(a) BusTracker Workload

10mins 30mins 60mins 90mins 120mins 150mins500

750

1000

1250

1500

M
SE

(b) Alibaba Cluster Workload

Fig. 5: Forecasting Model Evaluation

B. Forecasting Accuracy

In this section, we focus on DBAugur’s ability to fore-
cast the database workload. Mean Square Error (MSE) is
used to quantify the forecasting accuracy, i.e., the average
squared difference between the predicted workloads and real
workloads, as is the case with other forecasting tasks [1],
[35]. Figure 5 shows the results on traces of BusTracker
and Alibaba Cluster, of which the forecasting interval is
set to 10 minutes. The horizontal axis in the figure denotes
the forecasting horizon, which is determined based on the
distribution of each dataset.

As denoted in Figure 5(a), when the forecasting horizon
is small, there is no significant difference in prediction ac-
curacy for all the models. The reason is that both the linear
models and the machine-learning based models can efficiently
catch the workload patterns, allowing for reliable short-term
prediction. However, traditional models, such as LR and
ARIMA, lack the ability to match more complex workload
patterns, leading to decreasing forecasting accuracy as the
prediction horizon gets longer. Differently, machine-learning
based models, such as MLP, LSTM, and TCN, demonstrate
a higher capacity to fit workload patterns. As for QB5000,
it is unable to maintain a high prediction accuracy as the
forecasting horizon becomes larger. The reason is that LR’s
performance degrades sharply, thereby impacting the total

4github.com/gaoyuanning/DBAugur

prediction accuracy of QB5000. Different from Figure 5(a),
traditional schemes, especially the LR model, make the good
forecasting accuracy as denoted in Figure 5(b). The reason
is that Alibaba Cluster Trace has good local linearity. As
a result, a simple model can fit workload patterns effectively
(except for bursts). Similarly, QB5000 that equipped with LR
is slightly better than DBAugur when the horizon is small.

For WFGAN, it is able to fit data distribution by adversarial
learning. With the strong generative ability and attention
mechanism, WFGAN develops an efficient mapping to capture
the correlation and burstiness of workload patterns. WFGAN
achieves similar forecasting performance to TCN on Bus-
Tracker Trace while obtaining excellent forecasting accu-
racy on Alibaba Cluster Trace because of its specialty for
bursts. Finally, the DBAugur model, which fuses WFGAN,
TCN, and MLP, outperforms all the models under different
prediction horizons on all of datasets. From Figure 5, we
can see that DBAugur is capable of accurately forecasting
the workload over both short and long term horizons. For
diversified workloads, DBAugur can adapt to each model’s
strengths. DBAugur performs consistently and competitively
for both simple and complicated workloads, demonstrating its
generalization and adaptability.

C. Forecasting Horizon Evaluation

In this section, we explore the performance of DBAugur
under different forecasting horizons on BusTracker Trace.
The forecasting interval is set to 10 minutes. We respectively
set the forecasting horizon to 60-minutes, 12-hours and 1-day.
The result is shown in Figure 6. Figure 6(a) demonstrates
forecasting results under 60-minutes horizon. We can see that
the predicted workloads closely match the actual workloads,
which means that DBAugur is adequate to make accurate
forecasting ahead of time. Besides, DBAugur is able to adjust
quickly to optimize its forecasts when the workload patterns
change rapidly, i.e., the sudden spike in the figure.

Figure 6(b) shows forecasting results under 12-hours. Under
this circumstance, DBAugur can fairly forecast the workload
trend when the workload pattern is stable and less complex. As
discussed before, if the forecasting horizon is large, learning
the relationship between the historical workload data and the
future workload is difficult. Therefore, the learning model
cannot capture the accurate and sufficient knowledge from the
historical workload in order to generate a precise prediction,
causing forecasting capacity to deteriorate. For example, as
denoted in Figure 6(b), we cannot respond quickly when
workload patterns change suddenly. This scenario becomes
more apparent in Figure 6(c) under 1-day horizon.

D. Computation and Storage Efficiency

In this section, we study the computation and storage cost
of forecasting models. Since ARIMA is an on-time algo-
rithm, we do not consider this algorithm. Besides, QB5000
and DBAugur can be can be derived from other models.
Therefore, these two models are also not denoted. The results
are shown in Table II. We record the CPU time of one epoch

x

Dec 21 Dec 23 Dec 25 Dec 27 Dec 29
0

200

400

600

800
Q

ue
rie

s /
 1

0m
in

s

(a) 60-Minutes Horizon

Dec 21 Dec 23 Dec 25 Dec 27 Dec 29
0

200

400

600

800

Q
ue

rie
s /

 1
0m

in
s

Actual Prediction

(b) 12-Hours Horizon

Dec 21 Dec 23 Dec 25 Dec 27 Dec 29
0

200

400

600

800

Q
ue

rie
s /

 1
0m

in
s

(c) 1-Day Horizon

Fig. 6: Forecasting Horizon Evaluation – The horizontal axis denotes the time line.

during the training process, as well as the storage size of the
trained models. Specifically, we set the number of epochs for
LR and MLP to be 40, and the number of epochs for the
remaining models to be 50.

TABLE II: Computation and Storage Efficiency
CPU Time Inference StorageBusTrac AliClus

LR 1.471s 0.113s 4ms 29KB
MLP 2.638s 0.207s 5ms 29KB

LSTM 8.159s 1.454s 30ms 23KB
TCN 8.849s 1.577s 42ms 185KB

WFGAN 9.281s 3.707s 30ms 28KB

Table II demonstrates that simple models take less time to
train. For example, LR takes only 1.471s and 0.113s when
trained on two workloads respectively. Machine learning based
models typically require more time to train. This training cost,
however, is acceptable. To further improve training efficiency,
we can early terminate the training as soon as models start to
converge. As for the model storage cost, we can see that all
of the models only use a little amount of memory to perform
forecasting. Since the TCN model is deep and complex, it
takes up a bigger space than other models. Besides, as shown
in Table II, model inference is very fast compared to training
process, which is negligible.

E. Ensemble Method Evaluation

10mins 20mins 30mins 40mins 50mins 60mins3000

3500

4000

4500

5000

5500

6000

6500

M
SE

Fixed Weights
Dynamic Weights

Fig. 7: Different Ensemble Methods

In this section, we evaluate the ensemble method on
BusTracker Trace. Correspondingly, we respectively using
dynamic ensemble weights and the fixed weights to generate
the forecasting results. As discussed in Section V-C, we
propose a time-sensitive ensemble algorithm that integrates the
capabilities of WFGAN, TCN and MLP to produce the final
forecasting results. As shown in Fig. 7, the dynamic ensemble
method outperforms the fixed method both on short and
long term forecasting horizons. This is because our algorithm
dynamically calculates the ensemble weights based on each
model’s immediate forecasting ability, which is more adaptive.
On the other hand, the static ensemble method is unable to

fully utilize the capabilities of high-accuracy models in terms
of the current workload patterns.

F. Case Study: Index Selection

We use a test case (i.e., automatic indexing selection) to
illustrate how workload forecasting can facilitate the DBMS.
In order to speed up query execution, it is necessary to create
indexes on the database table. The index recommendation
algorithm will select one or more indexes based on the
historical workload, which we refer to as the Static strategy
in this paper. In contrast, we can also leverage the predicted
workload to make the index recommendation, which we refer
to as the Auto strategy. In the experiment, AutoAdmin [36] is
employed as the index recommendation algorithm. In the ex-
periment, we leverage the simulator to perform SQL queries in
BusTracker Trace on PostgreSQL-12, and input the historical
and predicted workload to AutoAdmin respectively.

00:00
0

250

500

750

1000

1250

Q
ue

rie
s /

 s

Static QB5000 DBAugur

02:00 04:00 06:00 08:00 10:00 12:00 14:00

(a) Throughput

0.0

0.1

0.2

0.3

99
th

 %
-ti

le
 (m

s)

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00

(b) Latency

Fig. 8: Index Selection

Figure 8 shows the results. In the experiment, the future
workload generated by QB5000 or DBAugur is input into
AutoAdmin after time 08:00. As a result, the query throughput
under the Auto strategy is very low at the beginning of the
time period in Figure 8(a). In contrast, the Static strategy
achieves higher query performance because AutoAdmin will
build the appropriate indexes for it in the beginning. Similarly,
the Static strategy has a low latency in Figure 8(b). However,
after time 08:00, AutoAdmin gradually builds the indexes with
the guidance of the predicted workload. Correspondingly, the
query performance under the Auto strategy improves over time
and eventually surpasses that of the Static strategy. This is
because with the input of the predicted workload, AutoAdmin
can guide the database to build more precise indexes on proper
columns to accelerate the query process, which demonstrates
that accurate workload forecasting is beneficial to the database

xi

tuning process. Besides, as shown in Fig. 8(a), DBAugur is
superior to QB5000 since it is more capable of forecasting
long-term and complicated workloads.

1 2 3 4 5
Periods

3000

3250

3500

3750

4000

4250

4500

Lo
ad

 B
al

an
ci

ng
 D

iff
er

en
ce

Static QB5000 DBAugur

(a) The Periodic Pattern

1 2 3 4 5
Periods

2000

3000

4000

5000

6000

7000

Lo
ad

 B
al

an
ci

ng
 D

iff
er

en
ce

Static QB5000 DBAugur

(b) The Complex Pattern

Fig. 9: Data Region Migration

G. Case Study: Data Region Migration

In this section, we conduct another case study. Assume that
the database is partitioned horizontally into non-overlapping
regions that assigned to each server. However, some servers
may get overloaded from processing too many query requests.
Therefore, we need to dynamically balance the system load by
migrating data regions from the overloaded servers to slightly
loaded ones. Traditionally, we input the historical workload
data (i.e., Static strategy) into the load balancing algorithm
to infer a global migration strategy. Historical workload,
however, may be lagging and unadaptable to changing states.
Alternatively, we can leverage forecasted workload to facilitate
system load balancing (i.e., Auto strategy).

We generate two synthetic workloads in the experiment. The
first workload follows periodic patterns. The second one has
more complex patterns that incorporate linear trends, white
noise, as well as seasonal, holiday, and weekday factors.
At each period, we calculate the system’s load balancing
difference. We then use the Static or the Auto strategy to
guide data migration in the next period. As shown in Fig. 9,
the load balance of the system is bad when only using
historical workload data, both for periodic workloads (i.e.,
Fig. 9(a)) and complex workloads (i.e., Fig. 9(b)). On the
other hand, the system adopting the forecasted workload (i.e.,
QB5000 and DBAugur) to migrate data regions enjoys a
good load balancing degree, because the migration scheme
is prospective and thus adaptable to future states. Moreover,
DBAugur outperforms QB5000 because it can offer more
accurate future information, which aids the load balancing
algorithm in making wise decisions.

VII. RELATED WORK

Previous works on DBMS workload prediction include trend
and performance prediction.

(1) Trend prediction. It mainly includes query arrival rate
prediction and resource utilization prediction. Ma et al. [1]
utilize clustering methods to deal with SQLs and propose
an ensemble learning method that combines LR and RNN
to predict the arrival rates. Huang et al. [37] leverage the
multi-head attention mechanism and convolution operations
to make probabilistic predictions. Taft et al. [38] adopt sparse

periodic auto-regression to find out if load spikes occur. Liu
et al. [39] propose a RNN based encoder-decoder model to
predict future workload but they do not combine query arrival
rates and resource utilization.

(2) Performance prediction. Raza et al. [40] propose a case-
based reasoning approach to predict and adapt the DBMS
workload performance. Singhal et al. [41] utilize a modular
approach to estimate SQL query execution time for high data
volumes. Marus et al. [42] generate a tree-structured neural
network to model query execution plans and predict SQL
performance. Zhou et al. [43] use a graph embedding network
to encode the features and a prediction network to predict
query performance. DBSeer [44] looks into the performance
metrics (e.g., query latency and throughput) using statistical
regression methods.

However, the above studies on trend prediction fail to
effectively combine both query and resource forecasting, or
use simple yet insufficient methods to model short- and
long-term workload. Others focus on performance prediction
incompatible with our research goals, but their workload-based
features can still benefit from this work. Our work differs from
existing studies as it provides an end-to-end framework that
comprehensively considers more aspects of database work-
loads, enabling more workload temporal characteristics and
leaving more space for other optimization tasks.

VIII. CONCLUSIONS

In this paper, we propose DBAugur, an adversarial-based
trend forecasting system designed to predict the trends of
diversified workloads. First, DBAugur collects query logs
and resource utilization statistics, and formalizes them into
different workload traces. To reduce the number of traces,
DBAugur proposes an online DTW-based clustering algo-
rithm which employs the DTW technique to efficiently cluster
the workload traces according to their trend patterns. Next,
we develop WFGAN that leverages the generative capability
of GAN to forecast the database workload. To further capture
the diversified workload patterns, a time-sensitive ensemble
algorithm that fuses WFGAN, TCN, and MLP is proposed
to produce the final prediction. Experiments on two real-
world datasets demonstrate the efficiency and effectiveness
of the proposed model. Furthermore, two case studies on
index selection and data migration denote that DBAugur can
effectively facilitate the management of the DBMS.

ACKNOWLEDGMENT

This work was supported by the National Key R&D
Program of China [2020YFB1707900], the National Nat-
ural Science Foundation of China [62272302, 61972254,
61925205, 62232009, 62102215], Shanghai Municipal Sci-
ence and Technology Major Project [2021SHZDZX0102],
the Huawei Research Project [TC20220718012, CCF-Huawei
DBIR2019002A], TAL education, and Beijing National Re-
search Center for Information Science and Technology (BN-
Rist). We also thank Gauss Department (Huawei Company)
for their early contributions.

xii

REFERENCES

[1] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane, A. Pavlo, and G. J.
Gordon, “Query-based workload forecasting for self-driving database
management systems,” in ACM International Conference on Manage-
ment of Data (SIGMOD), 2018, pp. 631–645.

[2] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic
database management system tuning through large-scale machine learn-
ing,” in ACM International Conference on Management of Data (SIG-
MOD), 2017, pp. 1009–1024.

[3] G. Li, X. Zhou, S. Li, and B. Gao, “Qtune: A query-aware database
tuning system with deep reinforcement learning,” Proceedings of the
VLDB Endowment (PVLDB), vol. 12, no. 12, pp. 2118–2130, 2019.

[4] J. Wang, I. Trummer, and D. Basu, “Udo: Universal database op-
timization using reinforcement learning,” Proceedings of the VLDB
Endowment (PVLDB), vol. 14, no. 13, pp. 3402–3414, 2021.

[5] L. Ma, B. Ding, S. Das, and et al, “Active learning for ML enhanced
database systems,” in ACM International Conference on Management of
Data (SIGMOD). ACM, 2020, pp. 175–191.

[6] J. Kossmann, S. Halfpap, M. Jankrift, and R. Schlosser, “Magic mirror
in my hand, which is the best in the land? an experimental evaluation
of index selection algorithms,” Proceedings of the VLDB Endowment
(PVLDB), vol. 13, no. 11, pp. 2382–2395, 2020.

[7] X. Liang, A. J. Elmore, and S. Krishnan, “Opportunistic view material-
ization with deep reinforcement learning,” CoRR, vol. abs/1903.01363,
2019.

[8] H. Yuan, G. Li, L. Feng, and et al, “Automatic view generation with deep
learning and reinforcement learning,” in IEEE International Conference
on Data Engineering (ICDE), 2020, pp. 1501–1512.

[9] Z. Yan, J. Lu, N. Chainani, and C. Lin, “Workload-aware performance
tuning for autonomous dbmss,” in IEEE International Conference on
Data Engineering (ICDE), 2021, pp. 2365–2368.

[10] L. Ma, W. Zhang, J. Jiao, W. Wang, M. Butrovich, W. S. Lim, P. Menon,
and A. Pavlo, “MB2: decomposed behavior modeling for self-driving
database management systems,” in ACM International Conference on
Management of Data (SIGMOD), 2021, pp. 1248–1261.

[11] G. P. Zhang, “Time series forecasting using a hybrid arima and neural
network model,” Elsevier Neurocomputing, vol. 50, pp. 159–175, 2003.

[12] M.-C. Popescu, V. E. Balas, L. Perescu-Popescu, and N. Mastorakis,
“Multilayer perceptron and neural networks,” WSEAS Transactions on
Circuits and Systems, vol. 8, no. 7, pp. 579–588, 2009.

[13] L. Yunpeng, H. Di, B. Junpeng, and Q. Yong, “Multi-step ahead time
series forecasting for different data patterns based on lstm recurrent
neural network,” in IEEE Web Information Systems and Applications
Conference (WISA), 2017, pp. 305–310.

[14] W. Härdle and P. Vieu, “Kernel regression smoothing of time series,”
Journal of Time Series Analysis, vol. 13, no. 3, pp. 209–232, 1992.

[15] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems (NeurIPS), 2014,
pp. 2672–2680.

[17] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE
Transactions on Knowledge and Data Engineering (TKDE), 2021.

[18] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.” in KDD workshop, vol. 10, no. 16, 1994, pp.
359–370.

[19] S. M. Omohundro, Five balltree construction algorithms. International
Computer Science Institute Berkeley, 1989.

[20] P. A. Dinda and D. R. O’Hallaron, “An evaluation of linear models
for host load prediction,” in IEEE International Symposium on High
Performance Distributed Computing (HPDC), 1999, pp. 87–96.

[21] A. Abanda, U. Mori, and J. A. Lozano, “A review on distance based time
series classification,” Data Mining and Knowledge Discovery, vol. 33,
no. 2, pp. 378–412, 2019.

[22] C. A. Ratanamahatana and E. Keogh, “Making time-series classification
more accurate using learned constraints,” in SIAM International Confer-
ence on Data Mining (SDM), 2004, pp. 11–22.

[23] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in ACM Conference on Knowledge Discovery and Data Mining (KDD),
vol. 96, no. 34, 1996, pp. 226–231.

[24] S. Wu, X. Xiao, Q. Ding, P. Zhao, W. Ying, and J. Huang, “Adversarial
sparse transformer for time series forecasting,” in Advances in Neural
Information Processing Systems (NeurIPS), vol. 33, 2020, pp. 17 105–
17 115.

[25] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems (NeurIPS), 2017, pp. 5998–
6008.

[27] M. Hou, C. Xu, Z. Li, Y. Liu, W. Liu, E. Chen, and J. Bian, “Multi-
granularity residual learning with confidence estimation for time series
prediction,” in Proceedings of the ACM Web Conference (WWW), 2022,
pp. 112–121.

[28] L. Xuecheng, “Entropy, distance measure and similarity measure of
fuzzy sets and their relations,” Elsevier Fuzzy Sets and Systems, vol. 52,
no. 3, pp. 305–318, 1992.

[29] Y. Yang and K. Chen, “Temporal data clustering via weighted clustering
ensemble with different representations,” IEEE Transactions on Knowl-
edge and Data Engineering (TKDE), vol. 23, no. 2, pp. 307–320, 2010.

[30] A. Cano and B. Krawczyk, “Kappa updated ensemble for drifting data
stream mining,” Machine Learning, vol. 109, no. 1, pp. 175–218, 2020.

[31] V. Ekambaram, K. Manglik, S. Mukherjee, S. S. K. Sajja, S. Dwivedi,
and V. Raykar, “Attention based multi-modal new product sales time-
series forecasting,” in ACM Conference on Knowledge Discovery and
Data Mining (KDD), R. Gupta, Y. Liu, J. Tang, and B. A. Prakash, Eds.
ACM, 2020, pp. 3110–3118.

[32] Z. Wang, X. Xu, G. Trajcevski, K. Zhang, T. Zhong, and F. Zhou,
“Pref: Probabilistic electricity forecasting via copula-augmented state
space model,” AAAI Conference on Artificial Intelligence (AAAI), pp.
12 200–12 207, 2022.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR Poster),
2015.

[34] Y. Sun, S. Ding, Z. Zhang, and W. Jia, “An improved grid search
algorithm to optimize svr for prediction,” Soft Computing, vol. 25, no. 7,
pp. 5633–5644, 2021.

[35] A. S. Higginson, M. Dediu, O. Arsene, N. W. Paton, and S. M. Embury,
“Database workload capacity planning using time series analysis and
machine learning,” in ACM International Conference on Management
of Data (SIGMOD), 2020, pp. 769–783.

[36] S. Chaudhuri and V. R. Narasayya, “An efficient, cost-driven index
selection tool for microsoft sql server,” in International Conference on
Very Large Data Bases (VLDB), vol. 97, 1997, pp. 146–155.

[37] X. Huang, S. Cao, Y. Gao, X. Gao, and G. Chen, “Lightpro: Lightweight
probabilistic workload prediction framework for database-as-a-service,”
in IEEE International Conference on Web Services (ICWS), 2022, pp.
1–13.

[38] R. Taft, N. El-Sayed, M. Serafini, Y. Lu, A. Aboulnaga, M. Stonebraker,
R. Mayerhofer, and F. Andrade, “P-store: An elastic database system
with predictive provisioning,” in ACM International Conference on
Management of Data (SIGMOD), 2018, pp. 205–219.

[39] C. Liu, W. Mao, Y. Gao, X. Gao, S. Li, and G. Chen, “Adaptive
recollected rnn for workload forecasting in database-as-a-service,” in In-
ternational Conference on Service-Oriented Computing (ICSOC), 2020,
pp. 431–438.

[40] B. Raza, Y. J. Kumar, A. K. Malik, A. Anjum, and M. Faheem, “Per-
formance prediction and adaptation for database management system
workload using case-based reasoning approach,” Information Systems,
vol. 76, pp. 46–58, 2018.

[41] R. Singhal and M. K. Nambiar, “Predicting SQL query execution time
for large data volume,” in ACM International Database Engineering &
Applications Symposium (IDEAS), 2016, pp. 378–385.

[42] R. Marcus and O. Papaemmanouil, “Plan-structured deep neural network
models for query performance prediction,” Proceedings of the VLDB
Endowment (PVLDB), vol. 12, no. 11, pp. 1733–1746, 2019.

[43] X. Zhou, J. Sun, G. Li, and J. Feng, “Query performance prediction for
concurrent queries using graph embedding,” Proceedings of the VLDB
Endowment (PVLDB), vol. 13, no. 9, pp. 1416–1428, 2020.

[44] B. Mozafari, C. Curino, A. Jindal, and S. Madden, “Performance
and resource modeling in highly-concurrent oltp workloads,” in ACM
International Conference on Management of Data (SIGMOD), 2013,
pp. 301–312.

xiii

