Parallel Structural Join Algorithm on Shared-memory Multi-core Systems

Le Liu, Jianhua Feng, Guoliang Li
Department of Computer Science and Technology
Tsinghua University
Beijing, China
{le-liu02@mails., fengjh@, liguoliang}@tsinghua.edu.cn

Qian Qian, Jianhui Li
Intel Corporation
Shanghai, China
{qian.qian, jian.hui.li}@intel.com

Abstract—The leap from single-core to multi-core has permanently altered the course of computing, enabling increased productivity, powerful energy-efficient performance, and leading-edge advanced computing experiences. Although traditional single-thread XPath query evaluation algorithms can run properly on multi-core CPUs, they cannot take full use of the computing resources of multi-core CPUs. To take advantage of multi-core, efficient parallel algorithms are fairly desirable to evaluate XPath in parallel. In this paper, we present, PSJ, an efficient Parallel Structural Join algorithm for evaluating XPath. PSJ can skip many ancestor or descendant elements by evenly and efficiently partitioning the input element lists into some buckets. PSJ obtains high performance by evaluating XPath step in each bucket in parallel. It is very efficient to partition the input lists and is effective to evaluate XPath step in buckets, and therefore PSJ achieves a high speedup ratio. We have implemented our proposed algorithm and the experimental results show that PSJ algorithm achieves high performance and outperforms the existing state-of-the-art methods significantly.

Index Terms—even partition, parallel, speedup ratio, structural join

I. INTRODUCTION

As XML becoming de facto standard of data presentation and exchange over the Internet, masses of data pour in the form of XML document. How to store and query XML documents is a hot topic for database researchers. Many XML query languages, such as XPath[1], XQuery[2], XML-QL[3], have been studied. One of the key techniques is to use a path expression to express and search particular structure patterns. An XML document can be labeled with some numbering schemes [4]. By incorporating labels numbering, we can quickly determine the parent-child or ancestor-descendant relationship of element nodes and attribute nodes without traversing the original XML document.

Many algorithms have been studied for XPath query processing. S. Al-Khalîfà et al. [5] proposed a structural join algorithm, which takes two ordered lists as input, one for ancestors and the other for descendants. To process the twigs in XPath and avoid large intermediate results, many holistic twig join algorithms are proposed, such as TwigStack [6], TSGeneric [7], TJFast [8], iTwigJoin [9] and so on.

In addition, the leap from single-core to multi-core has permanently altered the course of computing; enabling increased productivity, powerful energy-efficient performance, and leading-edge advanced computing experiences. All the above algorithms have a common characteristic: they are proposed for single-core CPU. Although they can run properly on multi-core CPUs, they can’t take fully use of the computing resources of multi-core CPUs. To take advantage of multi-core, efficient parallel algorithms are very desirable to evaluate XPath. In this paper, we present, PSJ, an efficient parallel algorithm for structural join on shared-memory multi-core systems.

We consider XPath query processing from two aspects: one is data partition, and the other is task partition. We only consider data partition in this paper. So when we consider parallel algorithm, we first need a method for partitioning XML elements into even parts. Guoliang Li et al. [10] proposed an even partition based method, which partitions the input XML element lists into buckets evenly and may skip many ancestor or descendant elements. Here we will borrow the idea of even partition from [10], and adapt it to be fit for our need. We use region based numbering scheme instead of BBTC [11], as region encoding is simple and useful, while BBTC is strong but complicated. Accordingly, we can adopt the rules of partition for region encoding. When we evenly partition XML data into some buckets, we can evaluate XPath step (Parent-Child or Ancestor-Descendant relationship) in each bucket in parallel. This is the idea of our PSJ algorithm proposed in this paper. And the experimental results prove that PSJ has a good speedup ratio, and even when in single-thread running state, it outperforms the standard structural join algorithm significantly.

Our main contributions are summarized as follows:

1) We adapt even partition approach from [10] on our problem and make it keeps the original excellence of skipping ancestor or descendant nodes and partition elements into buckets faster than the original.
2) We propose the algorithm PSJ, which evaluates XPath in each bucket in parallel and gets a very good speedup ratio. Optimize the algorithm PSJ. In the result, even when in single-thread running state, PSJ still outperforms the standard structural join algorithm.

The rest of the paper is organized as follows. Section II gives some previous work on XML query processing in parallel. We give the preliminary of PSJ algorithm in Section III. Section IV presents the parallel structural join algorithm PSJ and analyzes the complexity of PSJ. In section V, we give experimental results of PSJ. And we conclude in section VI and acknowledge in section VII.

II. RELATED WORK

Many studies have been proposed for XML processing in parallel. In the context of semi-structured and XML databases, structural join was essential to XML query processing as XML queries usually imposed certain structural relationships.

For binary structural join, Zhang et al. [19] proposed a multi-predicate merge join (MPMGJN) algorithm based on <start,end,level> labeling of XML elements. Li et al. [20] proposed EE/EA Join, which decomposed the structure join into element-element join and element-attribute join. Stack-tree-Desc/Anc was proposed in [5], which was the first stack-based algorithm. [21], [22], [23] are index-based approaches. They examined the indices of B∗-tree, R-tree and XR-tree to improve the efficiency of XML queries processing. The later work by Wu et al. [24] studied the problem of binary join order selection for complex queries on a cost model, which took into consideration factors such as selectivity and intermediate results size. Although structure join is more efficient than the navigation based methods, it will involve huge intermediate results.

To address this problem, holistic twig join is proposed. Bruno et al. [6] proposed a holistic twig join algorithm, namely TwigStack, to avoid producing a large intermediate results. With a chain of linked stacks to compactly represent partial results of individual query root-to-leaf paths, TwigStack merged the sorted lists of participating element sets altogether, without creating large intermediate results. TwigStack had been proved to be optimal in terms of input and output sizes for twigs with only A-D (Ancestor-Descendant) edges.

Jiang et al. [7] studied the problem of holistic twig joins on all/partly indexed XML documents. Their proposed algorithms used indices to efficiently skip the elements that do not contribute to final answers, but their method cannot reduce the size of intermediate results. Choi et al. [25] proved that the optimality evaluation of twig patterns with arbitrarily mixed A-D and P-C (Parent-Child) edges was not feasible. Lu et al. [26] proposed the algorithm TwigStackList, which was better than any of previous work in term of the size of intermediate results for matching XML twig patterns with both P-C and A-D edges. Chen et al. [27] proposed an algorithm iTwigJoin, which was still based on region encoding, but worked with different data partition strategies (e.g. Tag+Level and Prefix Path Streaming). Tag+Level streaming can be optimal for both A-D and P-C only twig patterns whereas PPS streaming could be optimal for A-D only, P-C only and one branch node only twig patterns assuming there was no repetitive tag in the twig patterns. Lu et al. [8] proposed a novel algorithm, TJFast, on extended Dewey that only used leaf nodes' streams and saved I/O consumption.

More recently, Mathis et al. [28] presented a set of new locking-aware operators for twig pattern query evaluation to ensure data consistency. Chen et al. [29] presented Twig2Stack algorithm to avoid huge intermediate results. However, Twig2Stack reduced the intermediate results at the expense of a huge memory requirement and it was restricted by the fan-out of the XML documents. Our prior work TJEssential [30] proposed a root-to-leaf combining with leaf-to-root way to improve the performance of XML query processing.

In addition, Wei Lu et al. [12] proposed a parallel approach for XML parsing, which is the first to use an initial pass to determine the logical tree structure of an XML document and then divide the document between the chunks occur at well-defined points in the XML grammar. Wei Lu et al. [13] proposed the concept of work stealing. If a thread is idle, it will choose a busy thread, and steal a half of work from the busy thread. Xiaogang Li [14] distributed XML data into several different machines according to common path prefix of XQuery queries, evaluated on each machine, and finally combined the distributed results. Distributed evaluation is not what we need, but we focus on parallel evaluation on memory-shared and multi-core systems.

III. PRELIMINARIES

Even partition approach [10] divides AList (the input list of ancestor elements) and DList (the input list of descendant list) into different buckets, ALi (the i-th bucket of AList) and DLi (the i-th bucket of DList) respectively, and only structure joins of suited buckets are useful to the join results. It makes sure $AList \bullet DList = \bigcup_{i=1}^{n_b} (AList_i \bullet DList_i)$, where AList, and DList denote the element sets of AList and DList respectively in i-th bucket after partition, and n_b denotes the number of buckets. In other words, only AList_i-DList is helpful to the final result and AList_i-DList (i≠j) is not useful. In the algorithm PRIAM proposed in [10], first partition DList into different buckets DList, and the size of each bucket (except the last one) is constant, denoted with b. And then partition AList into the buckets AList, accordingly to DList. $\forall n_b \in \text{AList}$, $n_b \in \text{AList}$, as long as n_b maybe has one or more descendants in DList. In most cases, this partition approach can assure that all elements, except the root, in different documents don’t have the ancestor-descendant or parent-child relationship, that is, $\text{AList}_i \bullet \text{DList}_i = \emptyset \ (i \neq j)$. Even if $\text{AList}_i \bullet \text{DList}_i \neq \emptyset$, the partitioning conditions assures $\text{AList}_i \bullet \text{DList}_i \subseteq \text{AList}_j \bullet \text{DList}_i$.
The partitioned buckets satisfy the following conditions:

1) $\bigcup_{i=1}^{N} DList$, and $DList_i \cap DList_j = \emptyset (i \neq j)$

2) $\forall i, 1 \leq i < n_b = \lceil |DList| / b_s \rceil, |DList_i| = b_s$ and $|DList_n| = |DList| - b_s * (n_b - 1)$

3) $\bigcup_{n=1}^{N} AList_n \subseteq AList$

4) $AList \cdot DList = \bigcup_{n=1}^{N} AList_n \cdot DList_n$

For example, suppose $AList = \{\text{all the elements whose local name is A in Fig. 1(a)}\}$ and $DList = \{\text{all the elements whose local name is D in Fig. 1(a)}\}$. Then $AList$ and $DList$ can be partitioned into different buckets as shown in Fig. 1(b), 1(c). In Fig. 1(b), each bucket contains four D elements, and in Fig. 1(c) each bucket contains two D elements. In Fig. 1(c) the first A element will be put into both $AList_1$ and $AList_2$. Although $AList_1$-$DList_1 = \{D_1\}$, $AList_2$-$DList_2 = \{D_2, D_3\}$, that is, $AList_1$-$DList_2 \subseteq AList_2$-$DList_2$, so we can safely ignore the operation $AList_1$-$DList_2$. The same occurs with $AList_2$ and $DList_1$.

PRIAM uses the BBTC encoding [11]. The approach of coding an XML document using BBTC is: the code of root node is 1, and code of the leftmost child is its parent’s code multiplied by 2; orders of other children except the leftmost child are their preceding siblings’ code multiplied by 2 plus 1. From the approach we can know if an XML document is of large size, its BBTC code will improper much storage. So in this paper we will use region encoding and then describe algorithm PSJ in detail. We will also analyze the algorithm complexity of PSJ.

A. Even Partition

We employ region encoding $<\text{start}, \text{end}, \text{level}>$ to encode XML documents. With region encoding, we can determine quickly the relationship between two nodes, such as parent-child or ancestor-descendant relationship. And as the size of XML document increases, the space cost by region encoding increases linearly. Suppose $AList$ and $DList$ denote the ancestor list and the descendant list respectively, and they are in document order. We will partition $AList$ and $DList$ into different buckets $bucket$ and $bucket$, which contain both $AList$ and $DList$.

Now we introduce two Rules to partition $DList$ and $AList$ into different buckets.

Rule 1: Partition $DList$

$$bucket, startpos = i * b_s$$

if $i < b_s - 1$

$$bucket, endpos = (i+1) * b_s - 1;$$

else

$$bucket, endpos = |DList| - 1$$

end for

Rule 2: Partition $AList$

$$bucket, startpos = \min \{p | a_p.end > bucket, minstart, 0 \leq p < |AList|, a_p \in AList\}$$

$$bucket, endpos = \max \{p | a_p.start < bucket, maxend, 0 \leq p < |AList|, a_p \in AList\}$$

end for
bucket, dstartpos means the start position of descendant elements in DList contained by i-th bucket.

bucket, dendpos means the end position of descendant elements in DList contained by i-th bucket.

bucket, astartpos means the start position of ancestor elements in DList contained by i-th bucket.

bucket, aendpos means the start position of ancestor elements in DList contained by i-th bucket.

$\text{bucket, minstart } = d_s, \text{start, } d_s, \text{start } \leq d_s, \text{end, }$
$\forall j \in \{\text{bucket, dendpos, bucket, aendpos}\}.$ In fact, as elements in DList are in document order, bucket, minstart equals the bucket, dstartpos-th element’s start value in DList.

$\text{bucket, maxend } = d_s, \text{start, } d_s, \text{end } \geq d_s, \text{end, }$
$\forall j \in \{\text{bucket, dendpos, bucket, aendpos}\}.$ In fact, we can use DList’s bucket, dendpos-th element’s end value as the value of bucket, maxend.

b_i denotes the number of descendant elements each bucket contains.

n_b denotes the number of buckets.

Rule 1 means that DList is partitioned into n_b buckets, each one (except the last one) contains b_i descendant elements and the last one contains $\lfloor|\text{DList}| - (n_b-1)b_i\rfloor$ elements. The elements from bucket, dstartpos-th to bucket, dendpos-th of DList belong to bucket,

Rule 2 means that if more than one ancestor elements have descendants in bucket, there is a start position and end position in AList. The elements between astartpos and aendpos are contained by bucket. If aendpos < astartpos, there are not ancestor elements in bucket, the structural join result in bucket, will be empty.

For example, the XML document in Fig. 1(d) will be partitioned below:

bucket: dstartpos=0, dendpos=3, astartpos=0, aendpos=1, minstart=3, maxend=16

bucket: dstartpos=4, dendpos=7, astartpos=2, aendpos=2, minstart=21, maxend=34

B. Work Balance

The purpose of even partition is to evaluate XPath in parallel. Thus we should consider work balance when partitioning.

We can see that Rule 1 in Section IV (A) makes size of each bucket is the same, except the last one. In most cases, Rule 1 will assure the work load between each bucket balanced.

Only balance between buckets is not enough, we should also consider the balance between threads in parallel. In other words, the number of buckets assigned to each thread should be the same. To solve this problem, we determine n_b and b_i as below:

$n_b=|\text{DList}|/n_b$

while $b_i < 3500$

if $b_i == 1$

break

else

$n_b = n_b/2$

$b_i = |\text{DList}|/n_b$

end while

From the pseudo code above, we partition DList into n_b buckets, and n_b is power of 2, such as 2, 4, 8, 16 and so on. As multi-core CPUs inside computers commonly have 2, 4 or 8 cores, and then each thread on a core will get the same number of buckets. And b_i is between 3500 and 20000. If $|\text{DList}| < 3500$, there is only one bucket. The numbers 3500 and 20000 are experiential values for structural join in this paper. If b_i is too large, it will make against work balance; if b_i is too small, it will make against the exertion of parallel predominance, because parallel scheduling needs extra cost.

C. The Parallel Structural Join Algorithm PSJ

In this section, we describe the parallel structural join algorithm PSJ, which is the key part of this paper.

Fig. 2 describes the PSJ algorithm in detail. The algorithm PSJ first determines the size of each bucket and the number of buckets in line 1; then partitions DList into n_b buckets according to Rule 1 in line 2; in fact it gets the values of bucket, minstart and bucket, maxend, bucket, dstartpos and bucket, dendpos and doesn’t cost any I/O. In line 3, PSJ partitions AList according to Rule 2; in fact, it only gets the values of bucket, astartpos and bucket, aendpos. After partitioning, each bucket holds AList, and DList, and then we evaluate ancestor-descendant relationship in each bucket in parallel in line 4. We use the openmp technology [15] to implement parallel execution. Openmp uses thread pool technology, and it can execute “for loop” perfectly in parallel.

The function SJ_Stack_Tree_Desc is borrowed from the algorithm Stack-Tree-Desc structural join in [5], but we make a little modification. In a word, the algorithm here is more detailed. In line 6 we change the primary conditions (the input lists are not empty or the stack is not empty) to (DList, is not empty and (AList, is not empty or the stack is not empty)). And in line 16 we add a condition (a.end > d.start) to push the ancestor element a into the stack. Because only element whose end value is larger than current descendant’s start value, it may be an ancestor of current descendant. This skips directly ancestor elements which do not have a descendant and avoid these elements entering the stack.

Consider the XML document tree in Fig. 1(d). Suppose we want to evaluate the XPath //A//D on a machine with a two-core CPU. And suppose the tree is partitioned as in Section IV(A). Then we get two buckets, and create two threads. Each thread evaluates one bucket. In theory the time it costs is a half of that in serialization execution. In actual environments, it is impossible, because creating and scheduling multi-threads will cost extra time. We will discuss the factors which affect the performance of execution in parallel in next section D.
PSJ (AList, DList, ResultList)
Input:
 AList: an ancestor list in document order
 DList: a descendant list in document order
 ResultList: a list for holding results
Output:
 ResultList={((a, d) | a ∈ AList, d ∈ DList, and a is an ancestor of d)}

Begin
1. Determine the value of \(n_b \) and \(b_c \) according to Section IV(B)
2. Partition DList according to the Rule 1
3. Partition AList according to the Rule 2
4. #pragma omp parallel for
 // the line above is the syntax of openmp [15]
 // execute “for loop ” in parallel
 for i=0 to n-1
 SJ_Stack_Tree_Desc(bucket, AList, DList, tempRListi)
 ResultList=ResultList ∪ tempRListi
 end for
5. return ResultList

SJ_Stack_Tree_Desc (bucket, AList, DList, tempRListi) [5]
Input:
 bucketi: the i-th bucket
 AList: the ancestor list
 DList: the descendant list
 tempRListi: the list for holding results
Output:
 tempRListi: the structural join result in the i-th bucket

Begin
6. a=AListi, firstNode, d=DListi, firstNode
7. while(DListi is not empty and (AListi is not empty or the
 stack is not empty))
8. if (the stack is not empty)
9. tempend = stack.top()
10. else
11. tempend.start=INT_MAX, tempend.end=INT_MAX
12. end if
13. if(a.start>=tempend.end && d.start>tempend.end)
14. stack.push(a)
15. else if(a.start<d.start)
16. if(a.end>d.start) stack.push(a)
17. if(AListi is not empty) a=a->nextNode
18. else a.start=INT_MAX, a.end=INT_MAX
19. else
20. for(a1=stack.bottom; a1!=NULL; a1=a1->up)
21. append (a1, d) to tempRListi
22. d=d->nextnode
23. end if
24. end while
25. return tempRListi

Figure 2 PSJ: A Parallel Structural Join Algorithm

D. Analysis of PSJ

In this section we discuss the factors which affect the performance of execution in parallel.

In Section IV(B) Work Balance we have discussed is a factor which affects the performance of execution in parallel. That’s the work balance. To achieve a good speedup ratio, we should assure the work load of each thread is approximately the same, and the complete same is best.

Besides work balance, we should also reduce communications among threads and accessing shared memory. In the algorithm PSJ, there is almost none communication between threads. And only AList and DList, which store XML encoding data, are shared data among threads. It looks like nothing can be done to improve the performance. However, But it’s not true.

Let’s check the function SJ_Stack_Tree_Desc in Fig. 2. We find that PSJ will write data into main memory in line 16 and 21. If every time writing data into memory it needs applying a new main memory area for storing data, many main memory accessing conflicts may occur, which will involve much more time than serially accessing. Our solution is applying a large enough memory area in advanced. We can initialize the stack in line 16 with a capacity of 100, as almost all XML documents have a depth less than 100 (The largest depth of Treebank dataset is 36). And we can initialize the tempRListi in line 21 with a capacity of size of DList, as the size of results is not large than that of DList. With this solution, although simple, the performance of PSJ improves a lot. Even when with single-thread, PSJ outperforms the standard structural join algorithm. The experimental results in Section V will prove this.

Now we analyze the algorithm complexity of PSJ.

In Fig. 2, it costs the complexity of \(O(\log(|DList|/(8*b_c))) \) in line 1 to determine the value of \(n_b \) and \(b_c \). As \(b_c \) is between 3500 and 20000, even size of [DList] equals 1 million (Treebank has 435689 NPs), \(\log(|DList|/(8*b_c)) \) is less than 10; it’s so small, thus we just ignore it. Also we ignore the complexity of partitioning DList in line 2.

In line 3 when partitioning AList, if the XML document does not contain nesting homonymy elements, we can use binary search to find values of bucketi.aendpos and bucketi.astartpos. When finding the values of bucketi.aendpos, the search end position is the end of AList; while bucketi.astartpos with the end bucketi.aendpos. Both start positions are bucketi.aendpos. So the average total complexity is

\[
\log \frac{|AList|}{n_b} + \log \frac{2^n}{n_b} \frac{|AList|}{n_b} + \cdots + \log \frac{n_b^n}{n_b} \frac{|AList|}{n_b} + n_b \log \frac{2^n}{n_b} \frac{|AList|}{n_b} \\
= \log n_b \cdot \left(\frac{|AList|}{n_b} \right)^n + n_b \log \frac{2^n}{n_b} \frac{|AList|}{n_b} \\
< 2n_b \log |AList|
\]

If the XML document contains nesting homonymy elements, we can only use binary search to find value of bucketi.aendpos,
Figure 3 Elapsed time and speedup ratio with different datasets

SJ: the standard Stack_Tree_Desc structural join algorithm;
n-t: the PSJ algorithm with n threads, n=1,2,4,8

because the elements’ end values are not in document order. To find the value of bucket.astartpos, we can use linear search, but it’s not efficient. Instead, we can extend region encoding to the form <start, end, level, sibpos>, in which sibpos denotes the position of current node’s first right sibling’s position in AList. For example, the first A element in Fig. 1(d) can be encoded with <2, 13, 1, 1>. With this extended region encoding method, we can find value of bucket.astartpos much more efficiently, than linear search. And the existence of sibpos can help skip more ancestor element in line 16.

From [5], we know that the function SJ.Stack_Tree_Desc in line 4 costs |AList|+|DList|+|ResutList| in serial mode, and ideally (|AList|+|DList|+|ResutList|)/n in parallel, where n is the number of threads. As n_b (the number of buckets) is small in general, the cost of partitioning is much less than that of structural join in each bucket. Accordingly our algorithm can get a good speedup ratio. Our experimental results in Section V will prove this.

V. EXPERIMENTAL ANALYSIS

We conducted a set of extensive experiments to study the performance of PSJ in this section. We tested totally 9 XPath queries on three different datasets, which are XMark[16], DBLP[17], and Treebank[18]. All the experiments are carried out on a computer with Intel Xeon (8-core) CPU, 4G main memory and Windows Server 2003 operating system, and we
used C++ for programming and Visual Studio 2005 as the compiler. And we used OpenMP [15] for parallel programming, which is contained in VS 2005 and whose version is 2.0.

The dataset DBLP is a set of bibliography files, and the size of the raw text files is around 420M. We generated the XMark dataset with scale factor = 4 and the raw text file is about 454MB. And the size of Treebank dataset is about 82MB. Table I lists the XPath queries tested on the three datasets. There are four XPath queries for XMark, two for DBLP and three for Treebank. And Table II lists the number of element nodes used in the queries in Table I. As the three dataset are all of large sizes, the numbers of element nodes are large, except the node regions for XMark. We choose large datasets because for conveniently analyzing performance of the algorithm PSJ.

Table I XPath queries tested on datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>XPath Number</th>
<th>XPath</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMark</td>
<td>Q1</td>
<td>description/emph</td>
</tr>
<tr>
<td></td>
<td>Q2</td>
<td>description/keyword</td>
</tr>
<tr>
<td></td>
<td>Q3</td>
<td>item//mailbox//from</td>
</tr>
<tr>
<td></td>
<td>Q4</td>
<td>regions/item//mail</td>
</tr>
<tr>
<td>DBLP</td>
<td>Q5</td>
<td>book/author</td>
</tr>
<tr>
<td></td>
<td>Q6</td>
<td>incollection/title</td>
</tr>
<tr>
<td>Treebank</td>
<td>Q7</td>
<td>NP//NN</td>
</tr>
<tr>
<td></td>
<td>Q8</td>
<td>NP//VP//PP//DT</td>
</tr>
<tr>
<td></td>
<td>Q9</td>
<td>S//NP//NN</td>
</tr>
</tbody>
</table>

Table II Number of nodes in datasets

<table>
<thead>
<tr>
<th>Tag Name</th>
<th>Number</th>
<th>Tag Name</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>description</td>
<td>178,000</td>
<td>NN</td>
<td>186,597</td>
</tr>
<tr>
<td>emph</td>
<td>280,290</td>
<td>VP</td>
<td>154,298</td>
</tr>
<tr>
<td>keyword</td>
<td>281,234</td>
<td>PP</td>
<td>135,771</td>
</tr>
<tr>
<td>item</td>
<td>87,000</td>
<td>DT</td>
<td>115,863</td>
</tr>
<tr>
<td>mailbox</td>
<td>87,000</td>
<td>S</td>
<td>153,270</td>
</tr>
<tr>
<td>from</td>
<td>83,527</td>
<td>book</td>
<td>1,248</td>
</tr>
<tr>
<td>regions</td>
<td>1</td>
<td>author</td>
<td>2,410,223</td>
</tr>
<tr>
<td>mail</td>
<td>83,527</td>
<td>incollection</td>
<td>2,610</td>
</tr>
<tr>
<td>NP</td>
<td>435,689</td>
<td>title</td>
<td>987,075</td>
</tr>
</tbody>
</table>

Fig. 3 shows the experimental results on different datasets. First, the algorithm PSJ on 1-t (PSJ with 1 thread, the same below) is better than SJ on all the three datasets. On XMark, 1-t outperforms SJ by as much as nearly 95% for Q3 in Fig. 3(a). And on DBLP, 1-t amazedly outperforms SJ by 36.93 times for Q5 and 19.91 times for Q6 in Fig. 3(b). And on Treebank, 1-t outperforms SJ by 81% for Q7 in Fig. 3(c). There are two reasons: that outperforms SJ. The first is that the even partitioning as described in Section IV (A) skips many ancestor elements, and the second is applying a large enough memory area in advance when calling the function SJ_Stack_Tree_Desc in line 4 in Fig. 2, which will avoid frequently applying memory space and save much time.

Let’s analyze Q5 in detail. DBLP has 1,248 elements with tag name book, and 2,410,223 elements with tag name author. Then author list is partitioned into 128 different buckets. The size of last bucket is 189,40, and the size of other buckets is 18829. We find that the first bucket contains 1,239 book elements; the 74-th bucket contains 1; the 84-th bucket contains 7, and the last bucket contains 1; other buckets contain none book elements. So PSJ only needs to evaluate four buckets, i.e. 4/128 of author list, and the evaluation time cost in the 74-th, 84-th and last bucket is less than average evaluation time for bucket because there are only few book elements in these buckets, but SJ needs to evaluate the entire author list. Thus it’s absolutely possible that PSJ with 1 thread outperforms SJ by 36.93 times for Q5, which is larger than 128/4=32 times. Similarly for Q6, DBLP has 2,610 elements with tag name incollection, and 987,075 with title. The title list is partitioned into 64 buckets. The size of last bucket is 15,426, and the size of others is 15,423. The first bucket contains 2526 title elements, the 35-th contains 16, the 40-th bucket contains 52, and the 56-th bucket contains 17. Then PSJ only need to evaluate 4 buckets. And because the 35-th, 40-th and 56-th buckets contain very few incollection elements, the evaluation time cost in these buckets is less than average evaluation time for bucket. Thus it’s absolutely possible that 1-t outperforms SJ by 19.91 times for Q6, which is larger than 64/4=16 times.

Second, let’s consider the speedup ratio of PSJ. The definition of speedup ration of n-t is below:

$$\text{speedup_ratio} = \frac{\text{time_cost_by_1-t}}{\text{time_cost_by_n-t}}$$

where time_cost_by_1-t denotes the elapsed time cost by 1-t and time_cost_by_n-t denotes the elapsed time cost by n-t.

In order to scale the efficiency of parallel, we define Relative Parallel Efficiency (RPE).

$$\text{RPE} = \frac{\text{speedup_ratio}}{n}$$

where speedup_ratio is the speedup ratio of PSJ with n threads, and n is the number of threads.

For Q1, the speedup ratio is 1.74 for 2-t, 2.68 for 4-t and 3.06 for 8-t. The corresponding RPE is 87%, 67% and 38.25%. We can see that with the number of used threads increases, the value of RPE decreases sharply. The same case occurs with the other XPath queries. For Q5, the speedup ratio values of 2-t, 4-t and 8-t are 1.06, 0.66 and 0.59 respectively. As the number of used threads increases, the value of speedup ratio doesn’t increase but decreases. There are two main reasons for this. Firstly, as the amount of computing is not enough, we can’t take full advantage of all threads, and starting and scheduling more threads cost more time. For Q6, there are only two valid buckets after partitioning, if we use two threads to evaluate it, each thread can be assigned to one valid bucket; and if we use four threads, at least two threads can’t be assigned to valid buckets, but starting and scheduling these threads need extra more time. So 4-t and 8-t for Q6 even perform worse than 2-t. The same case occurs with Q5. Secondly, when using more threads, we must spend more time in keeping correctly accessing memory, specially writing into memory. In the function SJ_Stack_Tree_Desc there are many operations of writing into memory in line 21 in Fig. 2, and for 4-thread or 8-thread, the program will cost much extra time to schedule all threads accessing the shared memory.

From Fig. 3 we can know that algorithm PSJ obtains a good speedup ratio. All the speedup ratio values of 2-t on XMark and Treebank are beyond 1.62, for Q7 the value reaches 1.90. The average ratio for Q1~Q4, Q7~Q9 reaches 1.76, and RPE reaches 88%. And the speedup ratio value of 4-t for Q7 reaches...
3.45, 8-t 4.97, and the corresponding RPE reaches 86.3% and 62.1% respectively.

To summarize, the experimental results in this section show that PSJ is an efficient parallel algorithm which outperforms traditional structural join algorithms.

VI. CONCLUSION
As multi-core CPUs become more and more popular, parallel algorithms for XPath and XQuery processing become more and more stringent and important. We have had a good attempt in this paper in the aspect of parallel processing. We proposed the algorithm PSJ to address this problem, which is an efficient algorithm for shared-memory multi-core systems. PSJ first partitions AList and DList into different buckets, and then evaluates structural join in each bucket in parallel. We also present some optimization techniques. PSJ outperforms the standard structural join even with only one thread. And PSJ obtains a good speedup ratio. Our experiments have shown that PSJ is a good parallel algorithm for evaluating XPath.

For future works, we want to devise much stronger algorithms to evaluate complex XPath and XQuery queries in parallel. We want to implement twig join algorithm in parallel.

VII. ACKNOWLEDGEMENT
This work is partly supported by the Intel Semiconductor (US) Ltd., the National Natural Science Foundation of China under Grant No.60573094, the National High Technology Development 863 Program of China under Grant No. 2006AA01A101, and the National Grand Fundamental Research 973 Program of China under Grant No.2006CB303103.

REFERENCES
[29] Songting Chen and Hua-Gang Li and Junichi Tatamura and Wang-Pin Hsiung and Divyakant Agrawal and K. Selcuk Candan. TwigStack: Bottom-up Processing of Generalized Tree Pattern Queries over XML Documents. VLDB 2006