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Abstract—In Twitter, users can annotate tweets with hashtags
to indicate the ongoing topics. Hashtags provide users a conve-
nient way to categorize tweets. From the system’s perspective,
hashtags play an important role in tweet retrieval, event de-
tection, topic tracking, and advertising, etc. Annotating tweets
with the right hashtags can lead to a better user experience.
However, two problems remain unsolved during an annotation:
(1) Before the user decides to create a new hashtag, is there any
way to help her/him find out whether some related hashtags have
already been created and widely used? (2) Different users may
have different preferences for categorizing tweets. However, few
work has been done to study the personalization issue in hashtag
recommendation. To address the above problems, we propose
a statistical model for personalized hashtag recommendation
in this paper. With millions of <tweet, hashtag> pairs being
published everyday, we are able to learn the complex mappings
from tweets to hashtags with the wisdom of the crowd. Two
questions are answered in the model: (1) Different from tradi-
tional item recommendation data, users and tweets in Twitter
have rich auxiliary information like URLs, mentions, locations,
social relations, etc. How can we incorporate these features for
hashtag recommendation? (2) Different hashtags have different
temporal characteristics. Hashtags related to breaking events in
the physical world have strong rise-and-fall temporal pattern
while some other hashtags remain stable in the system. How
can we incorporate hashtag related features to serve for hashtag
recommendation? With all the above factors considered, we show
that our model successfully outperforms existing methods on real
datasets crawled from Twitter.

I. INTRODUCTION

Twitter is one of the most popular microblogging platforms

around the world[1]. Users can post text messages of up

to 140 characters to tell others “what they are doing” or

“what is happening”. User-generated short messages are called

tweets. By following others, users can keep up with their latest

posts. Tweets can contain URLs, embedded images/videos,

user mentions, locations, and hashtags. We will focus on the

hashtag adoption in this paper.

Hashtags are words prefixed with “#” and are used to

indicate the topics of tweets. For example, “#Election2012”

can be used in tweets related to United States presidential

election of 2012. An example tweet is “Why did Mitt Romney

lose the presidential election? Here’s a roundup of conservative

commentary: http://bit.ly/YZFQod #Election2012”.

Hashtags play an important role in Twitter. Popular hashtags

can become trending topics in the home page of Twitter. The

functions of hashtags are briefly summarized as follows: (1)

Users can categorize and search tweets by hashtags. (2) Hash-

tags can lead to temporary discussion groups driven by special

events or interests. (3) Hashtags are the core elements in event

detection and tracking [2], [3], [4], tweets retrieval [5], [6],

analysis of information diffusion [7], [8], and advertising [9],

[10], [11]. Thus annotating tweets with the right hashtags is

the foundation for many high-level applications.

Despite the great importance of hashtags, a few problems

remain unsolved when a user wants to annotate a tweet:

• Before creating a new hashtag, is there any way for

the user to find out whether some related hashtags have

already been created and widely used? Without hashtag

recommendation, hashtags can easily explode since dif-

ferent users may choose different words as hashtags to

describe the ongoing topic, although some of them may

represent similar meanings. On the other hand, users can

only handle a portion of information they receive[12].

Hashtag recommendations can help users reach consensus

on the adoption of hashtags, which not only controls

hashtag explosion but also facilitates topic detection and

tracking, hashtag-based retrieval tasks, and other hashtag

related tasks.

• Different users may have different preferences for cate-

gorizing tweets. Without personalized hashtag recom-

mendation, users will spend a lot of time on catego-

rizing tweets and maintaining their existing classification

systems.

• According to our dataset, only 20% tweets are annotated

with hashtags. This means 80% of the tweets are not as-

sociated with explicit topics and they cannot be retrieved

according to hashtags. Hashtag recommendation can help

reduce the number of un-annotated tweets.

To address the above problems, we face three challenges:

• Hashtags have strong rise-and-fall patterns. Some event-

specific hashtags may burst in a short time and disappear

when people are attracted by other hot events. Meanwhile,

we also have some general hashtags (e.g., “#travel”)

remain stable in the system. Thus we have to consider

temporal characteristics of different hashtags.

• Tweets are extremely short but they are not fully un-

structured. It calls for effective methods to incorporate

auxiliary information (e.g., user mentions, and Web page



links) to measure relevance between tweet content and

hashtags.

• Users’ hashtag adoption history, as well as their locations

and social network, provide valuable clues for predicting

hashtag adoptions. All the information must be incorpo-

rated into a unified model.

We propose a statistical model for Personalized Hashtag

Recommendation (PHR) in this paper. With millions of user-

generated <tweet, hashtag> pairs being published everyday,

we are able to learn the complex mapping from a tweet

to a hashtag. Our model tries to consider all sources of

information available in Twitter: (1) Content-related features

like terms, URLs and user mentions. (2) User-related features

like tweeting histories, social influence, and locations. (3)

Hashtag-related features which describes the temporal patterns

of hashtags adoptions.

To the best of our knowledge, this is the first paper to

study Personalized Hashtag Recommendation at the tweet

level. The differences between existing work and ours will be

dicussed in detail in Section II.

Our contributions are summarized as follows,

• We are among the first to study personalized hashtag
recommendation at the tweet level, which helps users

find the right hashtags according to their annotation

preferences.

• We propose a general hybrid recommendation model.

Explicit features and latent factor models are combined

together. The model is fully extensible to new features or

latent factors.

• We have conducted extensive experiments on real datasets

crawled from Twitter. Our model is empirically evaluated

to be more effective than existing models.

The rest of the paper is organized as follows: Related work

is introduced in Section II. In Section III, we introduce the

dataset for principle analysis and give a formal definition of

our problem. In Section IV, we discuss basic recommendation

strategies and introduce our framework. In Section V, we

discuss our model in detail, including various features we

adopt and the optimization process. Section VI describes our

experimental study on datasets crawled from Twitter, where

we show that our model is more effective than the existing

models. Finally, we conclude the paper in Section VII.

II. RELATED WORK

In this section, we will introduce some related work and

discuss the differences from ours.

First, we introduce two work that are considered most rele-

vant to this paper: content-based hashtag recommendation[13],

and user-level hashtag recommendation[14]. The comparison

between their work and ours has been summarized in Table I,

which will be explained in the following.

Content-based Hashtag Recommendation. Khabiri[13] has

recently proposed a content-based hashtag recommendation

method: recommending hashtags given the content of a tweet,

where a tweet is represented by a bag of words. The relevance

TABLE I
COMPARISON WITH GENERAL HASHTAG RECOMMENDATION. AUXILIARY

INFORMATION INCLUDES TEMPORAL AND SPATIAL CHARACTERISTICS OF

HASHTAG ADOPTIONS AND ANY OTHER KIND OF EXPLICIT FEATURES.

Method Yang[14] Khabiri[13] Ours

Content based
√ √ √

Collaborative Filtering
√

Auxiliary Information
√

Social Influence
√ √

User Level
√

Tweet Level
√ √

between a word and a hashtag is measured on a hashtag-

word co-occurrence graph. The final relevance score between

a tweet and a hashtag is computed as an aggregation of all the

hashtag-word relevance scores. However, this method cannot

provide personalized results since user information is ignored.

Moreover, it treats tweets as fully un-structured documents. In

contrast, our model makes use of auxiliary information such

as Web page links, mentions, and time-stamps to identify the

ongoing topics.

User-level Hashtag Recommendation. Yang[14] has pro-

posed a user-level hashtag recommendation method recently,

which predicts whether or not a hashtag may be adopted by the

target user in the future. Two types of features are studied: (1)

role-unspecific features which describes basic characteristics

of users and hashtags (e.g., the number of unique hashtags

used by user u, and the number of tweets containing hashtag

h); and (2) role-specific features which describe the relevance

between the target user u and a candidate hashtag h (e.g.,

cosine similarity between u’s profile and h’s profile, and sum

prestige of users who have used h). A SVM classifier with

the RBF kernel is used for prediction. However, since tweet-

specific information is ignored, it recommends the same set of

hashtags regardless of which tweet is being considered. More-

over, neither user locations nor social network information are

considered.

Personalized Tag Recommendation. In social tagging sys-

tems like Delicious1 and Flickr2, users can annotate items with

their own tags, in which case items are organized in their own

way. When a user wants to annotate an item, personalized

tag recommendation suggests hashtags by considering both

the users’s annotation preference and tags’ relevance to the

current item.

The state of the art methods are either based on graph

models[15], [16], [17] or tensor factorization[18], [19], [20],

where annotation behavior is represented by <user, item,

tag> triples. It seems that these methods can be adapted to

solve our problem if we treat tweets as general items in social

tagging systems. However, this cannot work for the following

reason. In personalized tag recommendation, item IDs are used

in graph construction or tensor factorization, which requires

that items should exist in both the training set and the test

set. But what we do is to recommend hashtags for new tweets

1delicious.com
2www.flickr.com



instead of existing tweets.

Besides the above methods, Lu[21] has proposed a content-

based method to recommend hashtags for Web pages, where

new Web pages are mapped to existing ones according to

their content similarity. However, this method does not take

personalization into account. Moreover, a tweet is usually

much shorter than a Web page, which makes it extremely

important to make good use of their rich auxiliary information

(e.g., mentions, links, and time stamps) for recommendation.

All the auxiliary information is not considered in their work

since it is proposed for annotating Web pages.

Text Classification. By treating hashtags as class labels, hash-

tag recommendation can also be considered as a traditional text

classification problem[22]. There are mainly two differences

between text classification and our problem: (1) Class labels

in text classification are considered to be constants in both

the training set and the test set, while hashtags often have

strong rise-and-fall patterns[23]. Some hashtags burst in the

training set may disappear in the test set. Similarly, some

rarely used hashtags in the training set may grow rapidly in

the test set. Meanwhile, hashtags like ‘#travel’ and ‘#sports’

may remain stable in the system. In other words, the temporal

characteristics of hashtag adoption is not considered in tradi-

tional text classification. (2) Tweets are not fully un-structured

documents. They contain rich auxiliary information. Tradi-

tional text classification tasks are not designed for categorizing

tweets.

Besides traditional text classification techniques, some re-

cent works have focused on short text classification [24],

[25]. [25] has extracted eight features for 5-class classification

(i.e., news, events, opinions, deals, and private messages).

Limited by its small parameter space, this method cannot

handle classification problem with millions of hashtags as class

labels. [24] has further considered changes in word probability

to classify Tweet stream, which is only based on texts. It does

not consider Twitter-specific features nor user’s preferences.

Other Hashtag Related Research. Besides general hashtag

recommendation problem, many work have been done in

studying the general patterns for hashtag propagation [26],

[27], [23], [7], [12]. [7] predicts the number of times that

a hashtag is used in a specific community in a time frame. It

studies various feature types in information diffusion. A linear

regression model is used to combine content features, temporal

features, and topological features. [26] studies the peaks in

the popularity of hashtags. By linking hashtags to events in

the physical world, [26] finds that hashtags are mostly driven

by external events instead of internal information spreads.

[27] predicts whether a hashtag will be popular in the next

day. [12] finds that the entropy of hashtags keeps growing

while users’ attention is limited to a small range of topics. It

proposes an agent-based model to study how limited attention

of individual users affects the popularity of hashtags. Recently,

[23] proposes a unified model to explain all the rise-and-fall

patterns during hashtag propagation.

TABLE II
DATASET STATISTICS: #TWEET+ REPRESENTS THE NUMBER OF TWEETS

THAT HAVE HASHTAGS. #MEANFREQ REPRESENTS THE MEAN

FREQUENCY THAT A HASHTAG IS ADOPTED.

#User #Tweet #Tweet+ #Hashtag #MeanFreq.

0.12M 8.1M 1.6M 0.11M 15
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Fig. 1. Hashtag Distributions in February and March, 2012

III. PRELIMINARIES

A. Dataset for Principle Analysis

We crawled 8.1 million tweets from 120,000 users with

breath-first strategy using Twitter’s REST API. For each user,

we crawled his/her profile, following list, and their most recent

3200 tweets3 before April 1st, 2012. Tweets were crawled in

reverse chronological order and recent tweets are preferred

over older tweets. In other words, we first crawled tweets

generated during March, then February and so on. According

to this strategy, tweets will become sparse if they were created

much earlier than March (we started to crawl at the first day

of April). To avoid this sampling bias, we only focused on

the dense part: tweets posted during February and March. The

basic statistics about the dataset are shown in Table II. We

can see that about 20% (1.6M/8.1M) tweets contain hashtags4.

These annotated tweets are the foundation for connecting a

tweet to its relevant hashtags.

Before delving into the prediction algorithm, a question

needs to be answered first: Is it possible to predict hashtags

based on the past data? If hashtags change greatly from month

to month, then a statistical model based on the last month

would absolutely fail. To have a deeper insight into how

hashtags evolve over time, we compared hashtag distributions

in February and March, 2012. The results are shown in Fig-

ure 1. We have two observations: (1) The overall distribution

is similar. (2) The tail part of hashtag distribution in March is

quite different from that of February. This is mainly because

popular events differ from month to month. New hashtags and

some rarely used hashtags may become popular in March.

To quantify how quickly hashtags evolve over the two

months, we analyze the results in different granularity. The

results are shown in Table III. Now we discuss the results in

detail:

• Comparison of February and March. This is used

to test whether we can predict hashtags for the next

month given the knowledge of the current month. We

can draw several conclusions from the result: (1) 99%

3The number is limited by Twitter.
4Retweets are also considered.



TABLE III
HASHTAG’S EVOLUTION OVER TIME. “TOP-100”, “TOP-500” AND “TOTAL” REPRESENT THE NUMBER OF HASHTAGS SHARED IN COMMON BETWEEN

THE TRAINING SET AND THE TEST SET WHEN TAGS ARE SORTED IN DESCENDING ORDER OF THEIR FREQUENCY, RESPECTIVELY. “TRAINING%” AND

“TEST%” REPRESENT THE PROPORTION OF HASHTAGS IN COMMON IN THE TRAINING SET AND THE TEST SET, RESPECTIVELY.

Training Set #Hashtag Test Set #Hashtag Top-100 Top-500 Total Training% Test%

February 91,821 March 114,453 62(62%) 416(83%) 91,020 99% 80%

Last Week of February 35,578 1st Week of March 36,955 69(69%) 419(84%) 34,875 98% 94%

February 91,821 1st Week of March 36,955 71(71%) 389(78%) 36,835 40% 99%

hashtags in February also appear in March. This means

that the global-level hashtag dictionary remains stable

from month to month. (2) With the fast development of

Twitter, the number of hashtags in March is 1.2 times

bigger than that in February. This is in consistent with

a recent research[12] which states that the entropy of

hashtags keeps increasing. (3) The overlap of the top 100

hashtags (denoted by top-100) is much smaller than that

of the top 500 hashtags (denoted by top-500). This means

there are some new burst events in each month. These

burst events are mainly influenced by our physical world

and are very hard to predict, since future events are hardly

predictable.

• Comparison of Last Week of February and the First

Week of March. This comparison focuses on whether

hashtags are predictable from week to week, in which

case the model is trained and updated by week instead of

by month. Compared with the former situation, we can

draw the following conclusions: (1) The overlap of top-

100 increased from 62% to 69%. This indicates updating

model with a higher frequency can benefit predictions

for new events. (2) The overlap of hashtags with the test

data has been improved from 80% to 94%. In addition,

hashtags remain more stable from week to week than

month to month.

• Comparison of February and the First Week of

March. This experiment tries to answer an important

question: Given more data about the past (expanded from

one week to one month), can we improve the prediction

performance? As we can see from Table III, the overlaps

with top-100 and the test data are both improved while

the overlap with training data drops sharply from 98% to

40%. The benefit brought by more data is not so obvious.

More evaluation will be covered in our experiments.

B. Problem Statement

Given a tweet d ∈ D and its publisher u ∈ U , Personalized

Hashtag Recommendation ranks hashtags h ∈ H according

to both (1) the relevance to the content of the tweet, and (2)

the publisher’s preference of annotation.

Personalized Hashtag Recommendation facilitates users

in two ways: (1) find out whether some suitable hashtags

have already been created to describe the current tweets; (2)

categorize tweets with the user’s preference. From the system’s

perspective, our work can also help control the explosion of

hashtags.

Note that hashtag set H is constructed from the past data.

Thus we do not aim to extract new hashtags from the content,

TABLE IV
THE TOP THREE PRIVATE HASHTAGS, BURST HASHTAGS, AND GENERAL

HASHTAGS

Private Burst General

#myweekendride #wikipediaBlackout #ff

#WorstBuy #2012OlympicCeremony #jobs

#ClusterofThoughts #letstalkiphone #travel

and this work can be considered as a complement for some

NLP techniques like keyphrase extraction and named entity

recognition, etc. As discussed in the previous section, although

the overlap of the top 100 hashtags ranges from 62% to 71%,

the overall overlaps for top-500 and the test dataset still remain

high. This means that it is still possible to recommend hashtags

for partially new events as long as the model is updated at a

reasonable frequency (by week or even by day).

IV. FRAMEWORK

A. Recommendation Strategies

We first introduce several recommendation strategies for

personalized hashtag recommendation:

Content-Relevant Strategy. This strategy ranks hashtags

according to their relevance to tweet content regardless of

publishers’ personal annotation preferences. [13] adopts this

strategy for content-based tweet-level hashtag recommenda-

tion.

User-Relevant Strategy. This strategy ranks hashtags ac-

cording to the publisher’s annotation preference regardless of

which tweet is being annotated. [14] uses this strategy for user-

level hashtag recommendation. Although this strategy cannot

be directly used for tweet-level hashtag recommendation, it is

an important component in our model.

According to the relation between hashtags’ lifetime length
and frequency, we classify hashtags into the following three

categories and discuss the corresponding recommendation

strategies. Some typical example hashtags of each category

are shown in Table IV.

Private Hashtags with User-Relevant Strategy. A pri-

vate hashtag has a long lifetime but a low frequency. As

Table IV shows, these hashtags are only limited by personal

usage. To find hashtags belonging to this category, we define

personalness as the degree of being private as the ratio

between lifetime length and frequency. If we rely heavily

on content-relevant strategy, hashtags from popular tweets

will dominate the results, making it almost impossible to rec-

ommend private hashtags. In contrast, user-relevant strategy
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Fig. 2. The relation between lifetime length and frequency.

puts more emphasis on the user’s annotation history, which

can promote these private hashtags.

Burst Hashtags with Content-Relevant Strategy. Burst

hashtags describe events happening in the physical world.

They usually burst in a short time with a global discussion in

Twitter. When a hot event fades out, its related hashtags will

also disappear. We define burstiness as the ratio of frequency

and lifetime length, which is the reciprocal of personalness.

As shown in Table IV, all the hashtags of this category are

event-specific. To recommend such hashtags, we focus more

on finding content-relevant hashtags instead of user-relevant

hashtags, since burst hashtags only represent users’ temporary

interests.

General Hashtags with Two Strategies Combined. Gen-

eral hashtags lie between private hashtags and burst hashtags.

They have long lifetimes as well as high frequencies. As

shown in Table IV, these hashtags describe high-level topics

that can last long in the system. We define generality as

the product of lifetime length and frequency. Unlike burst

hashtags, general hashtags represent users’ general interests.

To recommend such hashtags, we should use a hybrid method

that combines content-relevant strategy and user-relevant

strategy.

The overall relation between lifetime length and frequency
is shown in Figure 2. In Figure 2a, the first peek is caused

by extremely short-lived hashtags, which corresponds to burst

hashtags. The second peek is caused by extremely long-lived

hashtags, which represents general hashtags. As shown in

Figure 2b, frequency follows a power-law distribution, which

tells that most hashtags have low frequencies. Finally, we show

how hashtag density changes by varying lifetime length and

frequency in Figure 2c. The density pattern can be easily

explained by mixing the distribution of frequency along the

x-axis and the distribution of lifetime length along the y-axis.

In this section, we have discussed content-relevant strat-

egy and user-relevant strategy on three types of hashtags. In

this paper, we combine both strategies for personalized hashtag

recommendation.

Ranking Function

Tweet

Terms

Web Page Links

User Mentions

User ID

Location

Social Relation

User Hashtag

Length

Expected Frequency
Uptrend and Other 

Temporal Features

Content Relevance User Relevance Hashtag Features

Fig. 3. Framework

B. Framework

Different from traditional recommender systems which only

deal with <user, item> pairs, personalized hashtag rec-

ommendation handles <user, tweet, hashtag> triples with

rich auxiliary information:

• Tweet-Related Features. They are terms, Web links, and

user mentions, and we will discuss them in Section V-A.

• User-Related Features. They are user IDs, locations, and

social relations, which will be covered in Section V-B.

• Hashtag-Related Features. They are hashtag IDs,

length, popularity, recency, stability, uptrend and time-

decay, which will be discussed in Section V-C.

The overall framework is shown in Figure 3. These features

can be grouped into two categories and are handled with

different approaches:

Numeric Features with Linear Discriminative Models. Nu-

meric features include hashtag length, popularity, and uptrend,

etc. The final ranking score is a linear combination of these

numeric features. Suppose we have a user u, a tweet d and a

candidate hashtag h. Let x denote the feature vector composed

of numeric features and θ denote the feature weights, the

ranking score rudh is defined as

rudh = θ
T x (1)

Categorical Features with Latent Factor Models. These

features include user IDs, term IDs, and hashtag IDs, etc.

All of them have high dimensions and are very sparse. For

example, the i-th term is represented by a long sparse vector

(0,...,1,...,0)T with ‘1’ at the i-th entry. Some of the recent

work[28], [29] have shown that latent factor models are very



TABLE V
TOP-3 HASHTAGS FOR POPULAR LINKS AND MENTIONS

Amazon BBC Tech.

#Win #Apple

#VideoGame #Google

#GiftCard #Twitter

(a) Links

@BarackObama @JLin7

#Obama2012 #Knicks

#Iran #Linsanity

#Israel #JeremyLin

(b) Mentions

effective in handling sparse categorical features, particularly

in computing the relevance score between two objects (such

as a user and a hashtag) represented by their IDs. Let u and

h denote the latent factors for user u and hashtag h (which

are both low-dimension vectors), respectively. Let Rel(u, h)
denote the relevance score between u and h. According to

latent factor models, Rel(u, h) is computed as follows:

Rel(u, h) = uT h (2)

where both u and h are learned to fit the data (whether user

u has adopted hashtag h). Similarly, let w denote the latent

factor for term w, the relevance score between term w and

hashtag h is computed as wT h.

Our model combines linear discriminative models with

latent factor models since we both have numeric features and

categorical features. Formally, given a tweet d ∈ D composed

by user u ∈ U and a hashtag candidate h ∈ H , the ranking

score rudh for hashtag h is

rudh = θ
T x + Rel(u, h) + Rel(d, h) (3)

where θ
T

x measures the contribution from explicit numeric

features, Rel(d, h) and Rel(u, h) measure the content-

relevance and the user-relevance, respectively. They both use

latent factor models. This equation is a natural extension

of Equation 1. In the next section, we will discuss each

component in detail.

V. PERSONALIZED HASHTAG RECOMMENDATION

A. Measuring Content Relevance

The first and most intuitive principle is to recommend

content-relevant hashtags. Besides basic terms, tweets can also

contain Web links and user mentions. All of them can be used

to measure the content-relevance.

Measuring Relevance by Terms. The basic idea is to find

highly co-occurred <term, hashtag> pairs. Suppose an un-

annotated tweet is talking about the United States presidential

election of 2012. It has terms like “Barack Obama” and “Mitt

Romney”5. Meanwhile, thousands of tweets with “Barack

Obama” and “Mitt Romney” are annotated with hashtag

“#Election2012”. Then there is a high probability that tweet

d should also be annotated with “#Election2012”.

Measure Relevance by Links. Besides pure textual descrip-

tions, we can also insert Web links to tweets to provide more

information. We find that different webpages or websites are

described with different hashtags. We show the top-3 frequent

hashtags for two popular websites in Table Va.

5Mitt Romney is the major challenger in this election.

TABLE VI
TOP-3 HASHTAGS FOR POPULAR USERS AND LOCATIONS.

SAP IBMBigData

#SAP #bigdata

#HANA #hadoop

#BI #analytics

(a) Users

New York Toronto

#Knicks #Toronto

#nyfw #cdnpoli

#Oscars #TTC

(b) Locations

Measure Relevance by Mentions. To explicitly inform other

users of a new post, we can add user mentions to tweets

with the format of “@username”. There are three scenarios

for using user mentions: (1) The tweet is talking about the

mentioned user. (2) The publisher wants to notify her/him

since she/he might be interested. (3) Starting a conversation

or replying to someone. We are only interested in the former

two scenarios. We list the top 3 frequent hashtags for the

two well-known users in Table Vb. We can see that the US

president Obama and the NBA player Jeremy Lin are related

with different topics. Thus user mentions can also indicate the

ongoing topics.

Now we give a formal description on how to compute

content relevance. Suppose the target tweet d ∈ D contains

k(w) words {w1, w2, ..., wk(w)}, k(l) links {l1, l2, ..., lk(l)},

and k(m) mentions {m1, m2, ..., mk(m)}, the content-relevance

score between tweet d and hashtag h is computed by

Rel(h, d) = [

k(w)∑

i=1

α
(w)
i wT

i +

k(l)∑

i=1

α
(l)
i lTi +

k(m)∑

i=1

α
(m)
i mT

i ]h (4)

where

• wi, li, mi, h represent the latent factors for term wi, link

li, mention mi, and the candidate hashtag h, respectively.

• α
(w)
i , α

(l)
i , and α

(m)
i are weights of each latent vectors.

We require
∑k=k(∗)

k=1 α
(∗)
i = 1, otherwise a tweet with

many terms will dominate the other latent factors.

•

∑k(w)

i=1 α
(w)
i wT

i ,
∑k(l)

i=1 α
(l)
i lTi , and

∑k(m)

i=1 α
(m)
i mT

i rep-

resent weighted average of terms, links, and mentions,

respectively.

Choices of α
(∗). For terms, α

(w)
i is defined to be TF-IDF(wi)

/ (
∑k(w)

k=1 TF-IDF(wk)). In this way, we can punish common

words and promote informative words. Since most tweets

contain one or two links or mentions, α
(l)
i and α

(m)
i are defined

to be the reciprocal of k(l) and k(m), respectively. In other

words, links and mentions are both equally weighted.

Term-Hashtag Affinity. Besides latent factors, we also use

probability p(h|w) to model the relevance between hashtag h
and term w, which is estimated as the ratio of the number of

times that h and t co-occurred and the number of times

that t co-occurred with each term. Suppose a tweet contains

k terms, i.e., d = {w1, ..., wk}, term-hashtag affinity is defined

to be the average of p(h|wi) (i = 1, .., k). This explicit feature

is in θ
T x term in Equation 3.

B. Measuring User Relevance

We measure user relevance from three aspects: (1) the

preference of the user herself/himself; (2) the preferences of
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her/his friends; (3) the location of the user.

Measuring User Preference by User IDs. Since different

users are interested in different topics, annotation behaviors

differ from user to user. The top 3 most popular hashtags for

“SAP” and “IBMBigdata” are shown in Table VIa. The result

reflects the fact that SAP uses HANA6 as its solution for big

data analysis while IBM is focused on Hadoop. We can also

see that each user has his/her own way to categorize tweets,

even for tweets of a particular topic (big data analysis). We

also find that users prefer to use hashtags which have been

used before. For a single user, he/she uses about 2.6 hashtags

he/she used last month. In contrast, this overlap drops sharply

to 0.03 for different users.

Incorporating Social Influence. Since users mostly receive

tweets from their followees, their adoptions of hashtags are

influenced by their neighbors. We compute the similarities

of hashtags for neighbors and non-neighbors, respectively.

We find that a user has 1.5 hashtags in common with their

followees while only has 0.3 hashtags in common with non-

neighbor users. Moreover, for users who have retweeted each

other, the number of hashtags in common increases to 7.5.

Measuring Relevance by Locations. Users provide their lo-

cation information in their profiles, including countries, states,

and cities. Since local events differ from city to city, different

places may have different hashtag distributions. We analyzed

the hashtag distributions of New York and Toronto, the results

are shown in Figure 4. We can see that the two distributions

are very different. The top 3 hashtags are shown in Table VIb,

where #nyfw represents New York Fashion Week. #cdnpoli

represents generic Canadian political issues. #TTC represents

Toronto Transit Commission. We find that people in New York

are talking about “New York fashion week” (with hashtag

#nyfw) while users in Toronto are talking about “Generic

Canadian political issues” (with hashtag #cdnpoli).

Now we give a formal description on how to compute user

relevance. Suppose user u has k(f) friends {u1, u2, ..., uk(f)},

and k(p) locations {p1, p2, ..., pk(p)}. The user-relevance score

between user u and hashtag h is

Rel(h, u) = [βuT + (1 − β)

k(f)∑

i=1

α
(f)
i uT

fi
+

k(p)∑

i=1

α
(p)
i pT

i ]h (5)

6http://www.saphana.com/welcome
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where

• u, ufi
, pi, h represent the latent factors for user u, her/his

i-th friend ufi
, location pi, and the candidate hashtag h,

respectively. u and ui use the same latent vector space.

• α
(f)
i and α

(p)
i are weights of the corresponding latent

vectors. We require
∑k=k(∗)

k=1 α
(∗)
i = 1, otherwise a user

with many friends or with many locations will dominate

the other latent factors.

• βuT +(1−β)
∑k(f)

i=1 uT
fi

combines u’s personal preference

with her/his friends. β ∈ [0, 1] controls the biases.

Choices of α
(∗). For friends, α

(f)
i is defined as

RT COUNT(u, ufi
) / (

∑k(f)

k=1RT COUNT(u, ufk
)), where

RT COUNT represents the times of u retweeting ufi
. u is

considered to trust ufi
more if she/he retweets ufi

more.

In this way, the strength of a relation is considered. For

locations, we set them to be equally weighted since most

users have only one or two locations.

C. Incorporating Hashtag Features

In this section, we will introduce some numeric features that

describe the basic property of a hashtag.

Character Length. We analyzed how character length of a

hashtag affects its adoption. The result is shown in Figure 5.

We can see that hashtags of length 3 to 10 are more preferred.

Now we focus on how to incorporate temporal aspects of

hashtags. Remind that we classify hashtags into three cate-

gories in Section IV-A, i.e., private hashtags, burst hashtags,

and general hashtags. We find that burst hashtags and general

hashtags have more stronger temporal patterns than private

hashtags. The temporal patterns of #wikipediablackout and

#travel are shown in Figure 6a and 6b. We can see that

#wikipediablackout has a sharp rise pattern and a power-law

fall pattern. This is consistent with the recent work[23]. In

contrast, the frequency of #travel increases slowly from month

to month, which can be explained by the development in

Twitter. The overall temporal pattern averaged by all hashtags

is shown in Figure 6c, which can be well fitted by power-law

distribution.

According to the characteristics of these temporal patterns,

we introduce the following numeric features:

Expected Frequency by Time Decay. Suppose a hashtag

is used for N times in total. Let Nt denote the expected
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frequency at day t. According to the power-law distribution,

the expected frequency at day t is Nt = Nt−λ, where λ
controls the speed of decay and is fitted to 1.65 according

to our data. Since we cannot know the real N , we replace N
with the highest frequency N0 of the target hashtag.

Time Span since Last Occurrence. This feature is used to

filter out the out-dated hashtags and promote the currently used

hashtags.

Uptrend. Uptrend measures whether a hashtag will grow or

decend in the future. It is defined as N(tn)/N(tn−1), where

tn and tn−1 are two consecutive sampling time stamps. The

interval is a day in this paper.

Frequency of Last Day of Occurrence. This feature repre-

sents whether the hashtag is popular according to the newest

data.

All the introduced numeric features are combined together

as the feature vector x in Equation 3. Before we annotate

a tweet, these features will help us filter out the out-dated

hashtags and promote the hashtags created recently.

D. Learning Parameters

We have introduced all the features needed for the ranking

function defined in Equation 3. In this section, we employ an

optimization framework to learn the best feature weights from

the data.

The basic idea of our optimization framework is to account

for a loss whenever our recommended hashtag is not adopted

in the training data. Minimizing the total loss through the

training data will lead us to the best feature weights.

Loss Function First we model our task as a binary classifi-

cation problem. Given a tweet d composed by user u and a

candidate hashtag h, if u adopts h in tweet d, then the triple

<u, d, h> is treated as a positive example. Otherwise this

triple is a negative example. Let rudh ∈ {0, 1} denote the

class label of triple <u, d, h>, where 0 represents a negative

example and 1 represents a positive example. Suppose the

ranking score is r̂udp, the loss function is defined as follows:

loss = (rudh−1) log(1−r̂udh)−rudh log(r̂udh)+regularzation
(6)

where

• r̂udh=sigmoid(rudh), where rudh is the ranking score

defined by Equation 3, and sigmoid(x) = 1 / (1 + e−x)

maps rudh to the range of (0, 1).
• the regularzation term is used to prevent over-fitting,

which will be discussed later.

Now we describe the intuition behind this loss function. If

r̂udh is close to the real label rudh, the loss is close to 0.

However, if r̂udh is close to 0 while rudh is 1, the loss will

go to positive infinity. By minimizing the loss function, we

can push the predicted label r̂udh to be close to the real label

rudp.

Regularization. We use L2 regularization and it is defined as

follows

regularzation = λθ||θ||
2 + λu||u(∗)||

2 + λp||p(∗)||
2

+ λw||w(∗)||
2 + λl||l(∗)||

2 + λm||m(∗)||
2 + λh||h(∗)||

2
(7)

where λ(∗) are constants that control the sensitiveness to big

parameters. We put different λ on different group of feature

weights. A good practice is to set λ(∗) proportional to the

square of number of parameters they punish.

Sampling Negative Examples. Both positive and negative

examples are needed since we use a discriminative model. For

each positive example <u, d, h> (u ∈ U , d ∈ D, h ∈ H),

we randomly choose an unused hashtag u′ to replace the

original hashtag u. Each time we meet the positive example,

the corresponding negative example is constructed. We find

this simple strategy works well for our problem in practice.

Minimize the Loss Function. We adopt stochastic gradient
descent to minimize the loss function. Training instances

are loaded one by one into the main memory, in which case

loading all the instances is nearly impossible for large scale

data. Stochastic gradient descent consists of three steps:

(1) load a training instance <u, d, h> and its class label

rudh. (2) compute the gradients with respect to each parameter

related to <u, d, h>. The gradients will tell us how much the

loss function changes when the parameters change. (3) Update

parameters with a tiny step towards the descending gradient

to minimize the loss function.

We take hashtag latent factor h as an example to illustrate

the idea of stochastic gradient descent. Given a training

instance <u, d, h> and its label rudh, we first need to compute



TABLE VII
DATASET STATISTICS

Dataset #User #Social Relation #Tweet #Hashtag #Links #Mention #Location

Week-Day 56,968 584,018 465,373 20,137 23,931 15,108 10,647

Week-Week 69,537 670,966 910,790 35,047 39,478 31,529 12,053

Month-Week 91,896 1,092,634 1,889,186 43,678 76,559 105,246 15,454

the gradient with respect to h according to the loss function

defined in Equation 6. We have

∂l

∂h
= (rudh − r̂udh)

∂rudh

∂h
+ 2λhh (8)

According to the chain rule, we need to further compute ∂rudh

∂h
.

According to Equation 4 and Equation 5, we have

∂rudh

∂h
=(

k(w)∑

i=1

α
(w)
i wT

i +
k(l)∑

i=1

α
(l)
i lTi +

k(m)∑

i=1

α
(m)
i mT

i )

+ [βuT + (1 − β)

k(f)∑

i=1

α
(f)
i uT

fi
+

k(p)∑

i=1

α
(p)
i pT

i ]

(9)

Plug the above equation into Equation 8, we get the gradient

with respect to h.

The final step is to update h according to the gradient:

h(t+1) = h(t) − lr
∂l

∂h(t)
(10)

where lr represents the learning rate and is empirically set to

0.1 for our task. We repeat the above process for each training

instance from training data until the parameters converge.

VI. EXPERIMENTAL STUDY

A. Datasets

We use three subsets of the raw dataset for evaluation:

• The Last Week of February vs The First Day of

March, 2012. This is used to test whether we can predict

for the next day using data from last week. Models need

to be updated every day.

• The Last Week of February vs The First Week of

March, 2012. Compared with the first dataset, the test set

is expanded from a day to a week while the training set

remains unchanged. This is used to test how the amount

of the test data affects the predicting performance. Models

are updated every week.

• February vs The First Week of March, 2012. This is

used to test whether we can predict for the next week

given the data from the last month. Models need to be

updated every week. Compared with the second dataset,

the test data remains unchanged while the training data

is expanded from a week to a month. We can find how

the amount of training data affects the final performance.

The basic statistics of the datasets are shown in Table VII.

We preprocessed the data as follows: (1) All the words and

hashtags in tweets are stemmed and transformed to lowercase.

Stopwords are removed. Retweets and replies are removed

since we only focus on annotation on originally composed

tweets. (2) Due to the limited space of tweets, most URLs are

shortened using short URL services like TinyURL, bitly. We

followed the redirects of each shorten URL and crawled the

original long URL. Since URLs change frequently from day

to day, we only used the truncated address at the last level.

For example, “www.bbc.co.uk/food/ pageName” is truncated

to “www.bbc.co.uk/food”. (3) Like [14], we used retweet

network as the social network. The relation is directed and

the weight of a link is the retweet count. (4) Since we only

recommend hashtags that are learned from the training data,

new hashtags are removed from the test data. Among all the

tweets in the test set, only 12% tweets are annotated by brand

new hashtags.

B. Evaluation Metric

We use Mean Average Precision (MAP) to measure the per-

formance, which is a widely used metric in ranking problems.

First we introduce the definition of Average Precision (AP).

Given a ranked list of n hashtags (h1, h2, ..., hn), AP is defined

as

AP =

∑n
k=1 Precision@k × isAdopted(hk)

number of hashtags adopted
(11)

where the indicator function isAdopted(hk) is 1 only if

hashtag hk is adopted, otherwise isAdopted(hk) is 0. Suppose

we have N recommendation lists and the AP score of the i-th
list is denoted as APi, MAP is defined as the mean of all APs:

MAP =

∑N
i=1 APi

N
(12)

All the experiments were conducted on a server with Intel

Xeon E5310 1.60GHz CPU (8 cores) and 20G memory. We

implemented the algorithms in C++ with the support of Eigen

libary7 for fast vector/matrix manipulations.

C. Baseline Methods

TensorFac. Rendle[19] has proposed a tensor factorization

method that considers pairwise interactions among users, items

(tweets) and tags, which can be considered as the state of

the art method for personalized tag recommendation. Since

the original version cannot handle new tweets. we make the

following adaption: (1) For each new tweet in the test set,

find the top-5 similar tweets according to the cosine similarity

of their term vectors. (2) The latent vector for the new tweet

is computed as a weighted average of the latent vectors of

the top-5 similar tweets. The averaged latent vector is used

for prediction. Since latent vectors are learned for both users

and tweets, this baseline considers both content and user

preference.

GraphRec. Khabiri[13] proposed a general hashtag recom-

mendation method based on the content of the tweet. To

7http://eigen.tuxfamily.org



the best of our knowledge, this is the most relevant work.

GraphRec is summarized as follows: (1) Build a directed

graph based on the co-occurrences of terms and hashtags. The

weight of a link is initialized as the co-occurrence of the two

corresponding nodes. (2) Normalize link weights so that the

total out-link weights are summed to one, which is very similar

to PageRank. (3) Compute the relevance between terms and

hashtags according to the links. Readers can find more details

about this step in [13]. (4) Given a tweet of k terms, the

ranking score for hashtag h is the summation of relevance

scores between h and each term. Since this is a graph-based

method, we call this model GraphRec. This baseline only

considers tweets’ content.

UserLevelRec. Yang[14] proposed a user-level hashtag rec-

ommendation model that predicts which hashtags may be

adopted by the target user in the future regardless of which

tweet is being considered. Two types of features are studied:

(1) role-unspecific features which describes the basic char-

acteristics of users and hashtags (e.g., the number of unique

hashtags used by user u, and the number of tweets containing

hashtag h), and (2) role-specific features which describe the

relevance between the target user u and a candidate hashtag

h (e.g., cosine similarity between u’s profile and h’s profile,

and sum prestige of users who have used h). A SVM classifier

with the RBF kernel is used for prediction. This baseline only

considers users’ preference.

Baseline+. This model combines GraphRec and User-

LevelRec, which uses node weights computed in GraphRec
as additional features in UserLevelRec. This baseline consid-

ers both tweets’ content and users’ preference.

To have a deeper insight into our model, we decompose our

model into several parts:

Content-based. This model considers all content related

features, i.e., terms, links, and mentions as discussed in

Section V-A.

User-based. This model considers all user related features,

which include personal preferences, social relations, and loca-

tions as discussed in Section V-B.

Hybrid. This model is a combination of Content-based and

User-based without hashtag features.

Hybrid+. Based on Hybrid, this model further incorporates

hashtag specific features (e.g., temporal characteristics) dis-

cussed in Section V-C. This is our final model.

D. Overall Results

The overall results are shown in Figure 7 and Table VIII.

Analysis of Results on “Week-Day” Dataset. First we ana-

lyze the performance of the baselines. We have the following

observations: (1) Since TensorFac considers both content and

user preference, it is better than both Content-based and

User-based. However, it is slightly worse than Baseline+.

(2) UserLevelRec is surprisingly better than GraphRec. By

intuition, UserLevelRec should not be so effective since it

recommends the same hashtags for all tweets. However, the
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test set only contains tweets for one day and users only use

1.2 hashtags on average on this day. Since interest drifting

is unlikely to happen in such a short time, recommending

hashtags most preferred by the user or her/his neighbors is still

a good strategy. On the other hand, recommending hashtags

based on the content of a single tweet is still difficult since

a tweet can only have 140 characters at most. (3) Since

Baseline+ considers both content and user preferences, it

achieves the best performance among all the baselines.

Now we discuss the results of Content-based and User-

based. We have the following observations: (1) Although

GraphRec and Content-based are both purely content-based

models, Content-based is slightly better than GraphRec.

This is mainly because Content-based makes use of two

more indicators, i.e., web links and mentions. This indicates

that auxiliary information can help improve the performance.

(2) User-based is slightly better than UserLevelRec. This

is mainly because latent factor model is very effective in

measuring the relevance between two objects. Compared with

UserLevelRec, User-based further makes use of Twitter-

specific features like social relation and user locations. (3)

Like results of GraphRec and UserLevelRec, User-based
is surprisingly better than Content-based, which again proves

that user relevance is an effective factor in predicting hashtag

adoptions.

Finally, we analyze the results of Hybrid and Hybrid+.

Since Hybrid is a combination of Content-based and User-

based, it is not surprised to see that Hybrid has a bet-

ter performance than both its individual components. This

proves our assumption that recommended hashtags should be

both user-relevant and content-relevant. By further considering

temporal patterns of hashtag adoption, the performance of

hybrid+ is again improved and has successfully outperformed

all baselines. This proves that it is very effective to combine

the numeric feature-based linear discriminative model with the

ID feature-based latent factor models.

Analysis of Results on “Week-Week” Dataset. Instead of

predicting for the next day on the “Week-Day” dataset, we

are predicting for the next week with the same training data.



TABLE VIII
COMPARISON OF DIFFERENT MODELS IN MAP. THE FIRST FOUR

METHODS ARE BASELINES.

Method Week-Day Week-Week Month-Week

TensorFac 0.273 0.169 0.191

GraphRec 0.135 0.111 0.142

UserLevelRec 0.258 0.157 0.178

Baseline+ 0.301 0.182 0.216

Content 0.154 0.127 0.163

User 0.272 0.173 0.211

Hybrid 0.325 0.205 0.233

Hybrid+ 0.355 0.220 0.264
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Comparing the results between two datasets, we have the

following observations: (1) The performance on “Week-Week”

is generally worse than that on the “Week-Day” dataset. This

indicates users’ interest may get drifted during a week (e.g.,

users may pay attention to some new events happened in that

week instead of old events). Thus predicting for the next week

is more difficult then predicting for the next day. (2) The

gap between content-based and User-based is smaller in

the “Week-Week” dataset. As time passes by, User-based
becomes less reliable since the test set now contains seven days

instead of only one day. In this case, recommending content-

relevant hashtags becomes more and more important.

Analysis of Results on “Month-Week” Dataset. Compared

with the “Week-Week” dataset, the training set is expanded

from one week to one month. We find that the performance on

this dataset is generally better than that on the “Week-Week”

dataset. This indicates more training data can lead to more

reliable recommendations. Content-based has more data to

measure the relevance between hashtags and tweets and User-

based is supported by richer user interaction histories.

To summarize, our method successfully outperforms exist-

ing methods on three datasets by combining explicit numeric

features and latent factors into a single model.

E. Analysis of Each Component

In this section, we identify the most valuable features in

Content-based and User-based by building models on each

feature alone on the “Week-Day” dataset.

Analysis of Content-Based. Content-based consists of

four components: affinity score, factorization on term-hashtag
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relation, factorization on link-hashtag relation, and factor-

ization on mention-hashtag relation. The results are shown

in Figure 8. As we can see, affinity is the most effective

feature. Remind that affinity is calculated based on the co-

occurrences of hashtags and terms, which is considered to

be more reliable. By introducing latent factors, factorization

on term-hashtag makes it possible to measure the relevance

between any pair of <term, hashtag>. However, when all the

hashtags have relevance scores, the results become less reliable

than the results given by affinity. Links and mentions have

poor performance when used alone. This is mainly because

only 50% tweets contain links and 30% contain mentions. And

hashtags for these links change over time. So they can only

be used as weak indicators. Finally, when all the features are

combined together, the performance is further improved.

Analysis of User-Based. User-based contains three com-

ponents: factorization on user-hashtag relation, factorization

on neighbor-hashtag relation, and factorization on location-

hashtag relation. The results are shown in Figure 9. As we can

see, factorization on user-hashtag relation contributes most to

the model. It represents the preference of the owner. Repre-

senting users by her/his neighbors, factorization on neighbor-

hashtag relation is the second effective component. This in-

dicates that users’ preferences can be partially inferred from

their neighbors. By factorization on location-hashtag relation,

we can recommend hashtags that are preferred by a specific

location. However, it does not consider user information nor

tweet information. Thus this is a weak indicator. It is not sur-

prised to see factorization on location-hashtag gives the worst

performance among all the components. Finally, when all the

components are combined, we can get a better performance.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the problem of personalized
hashtag recommendation, which suggests both content-

relevant and user-relevant hashtags when users are composing

tweets. Our work can help users reach consensus on hashtag

adoptions, which can further control the hashtag explosion. In

the meanwhile, our personalized recommendations also help

users maintain their own classification system. To achieve

this, we explored (1) content-related features including terms,



links, and mentions; (2) user-related features including user

IDs, locations, and social relation; and (3) hashtag-related

features which describe temporal characteristics of hashtag

adoption. Finally, we proposed a unified model to incorporate

both latent factors and explicit features, which is proved to

be effective on the real dataset crawled from Twitter. We

find that recommending hashtags that are both content-relevant

and user-relevant achieves the best performance. User-related

features are found to be particularly effective when we are

predicting for the next day. On the other hand, limited by

length of tweets, content-related features are found to be less

effective than user-related features. Hashtag-related features

are found to be effective in all three datasets, which indicates

that modeling temporal patterns of hashtag adoptions plays an

important role in the final model.

Our work is an initial study of personalized hashtag
recommendation. It can be extended in many directions.

Firstly, a new hashtag that does not exist in the training set

cannot be recommended in the test set. Our work addresses

the problem by updating the model at a higher frequency

(i.e., by day). However, a more elegant solution is to develop

an online learning algorithm to extract new hashtags based

on the tweet content, in which case novel hashtag extraction

techniques are further needed. Secondly, many recommenda-

tion tasks in Twitter such as tweet recommendation, location

recommendation, and user attribute inference, share the same

framework with our work (that is, recommendation based on

numeric features and ID features). Since all these tasks can be

considered as different aspects of user modeling, they may

reinforce each other when they are trained jointly with a

shared framework. (3) Our work can also be extended to topic

recommendation, which aims at finding interesting topics from

the Twitter stream for users.
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