
CLAN: An Algorithm for Mining Closed Cliques from Large Dense

Graph Databases ∗

Jianyong Wang
†

, Zhiping Zeng
‡

, Lizhu Zhou
§

Department of Computer Science and Technology

Tsinghua University, Beijing, 100084, China

{
†

jianyong,
§

dcszlz}@tsinghua.edu.cn,
‡

cengzp03@mails.tsinghua.edu.cn

Abstract

Most previously proposed frequent graph mining al-
gorithms are intended to find the complete set of all fre-
quent, closed subgraphs. However, in many cases only
a subset of the frequent subgraphs with a certain topol-
ogy is of special interest. Thus, the method of mining
the complete set of all frequent subgraphs is not suitable
for mining these frequent subgraphs of special interest
as it wastes considerable computing power and space
on uninteresting subgraphs. In this paper we develop
a new algorithm, CLAN, to mine the frequent closed
cliques, the most coherent structures in the graph set-
ting. By exploring some properties of the clique pat-
tern, we can simplify the canonical label design and the
corresponding clique (or subclique) isomorphism test-
ing. Several effective pruning methods are proposed to
prune the search space, while the clique closure check-
ing scheme is used to remove the non-closed clique pat-
terns. Our empirical results show that CLAN is very
efficient for large dense graph databases with which the
traditional graph mining algorithms fail. The novelty
of our method is further demonstrated by the applica-
tion of CLAN in mining highly correlated stocks from
large stock market data.

1 Introduction

In recent years, frequent graph mining has attracted
much attention in the data mining community, due to
the ability of a graph to naturally model more generic
relationships among different objects and its wide ap-
plications, such as chemical compound classification,

∗The work was supported by National Natural Science
Foundation of China (NSFC) under Grant No. 60573061 and
60520130299.

and the discovery of activity-related groups of chemical
compounds or contrast fragment structures [4]. Vari-
ous frequent subgraph discovery algorithms have been
developed in recent years [6, 13, 16, 4, 19, 10, 20, 17].

Most of the above frequent graph mining algorithms
mine the complete set of frequent (or closed) sub-
graphs without considering the underlying topology
of these subgraphs. However, in some cases people
may only show special interest to a subset of the sub-
graphs with a certain topology, like cliques, bipar-
tites, or rings. In fact, computing cliques from a
graph has long been studied [7, 9], and identifying
the size of the largest clique in a graph is one of the
first problems shown NP-Hard. In recent years, re-
searchers have found more applications in computing
some specially chosen subgraphs, such as enumerating
and organizing all Web occurrences of cliques, bipartite
cores, and webrings in order to build Web knowledge
bases [12, 8], detecting massive cliques or quasi-cliques
from telephone call detail database to identify some
communities of interest [1], finding cliques from stock
market graphs in order to identify groups of highly-
correlated stocks [3], and mining cross-graph quasi-
cliques in gene-expression and protein interaction data
in order to identify the clusters of genes that are co-
expressed and also their proteins interact [15].

The clique subgraph is the most coherent and dense
substructure among all kinds of subgraphs if we assume
there is at most one edge between any two vertices:
each of its vertices has a connection to all the others.
The frequently occurring clique patterns can be used as
the dense cores to cluster (or classify) the graph trans-
actions, to condense the graph databases by treating
each clique as a supernode, or to give some insights
about the underlying structure or relationships among
different objects in the graph transactions (e.g., chem-
ical compounds or protein molecules). In [11], the au-
thors show the usefulness of finding cliques in searching

the maximal common structural features among pro-
tein molecular graphs. Although discovering frequent
cliques from a set of graph transactions is very use-
ful, to the best of our knowledge it has not been well
studied. One solution to this problem is to first mine
the complete set of all kinds of frequent subgraphs,
from which we can further identify the clique patterns.
However, this is inefficient due to the enumeration of a
large number of unwanted subgraphs, and once the in-
put graph database becomes a little dense, mining the
complete set of frequent subgraphs from it will be infea-
sible. A more efficient way should be to explore some
properties of the clique subgraph, design new meth-
ods, and directly mine the set of frequent clique pat-
terns. As the previous studies have shown that mining
closed patterns can generate more concise result set,
from which the complete set of frequent patterns can
be easily derived [14, 18, 20, 5], as a result, mining
the set of frequent closed clique patterns should be the
default task of mining frequent cliques.

In this paper we develop a new algorithm, CLAN1,
to mine the frequent closed cliques from large dense
graph transaction databases. In the CLAN algorithm,
we make full use of the properties of the clique graph
and propose a simple canonical label to uniquely rep-
resent a clique, which facilitates clique (or subclique)
isomorphism testing. Several effective pruning meth-
ods are also proposed to prune search space and speed
up the mining process, while the clique closure check-
ing scheme is used to remove the non-closed clique
patterns. We have also performed an extensive perfor-
mance study in order to evaluate the CLAN algorithm.

The rest of this paper is organized as follows. Sec-
tion 2 defines the problem. The related work is dis-
cussed in Section 3. Section 4 describes the algorithm
design of CLAN and Section 5 presents the empirical
results. Finally Section 6 gives the conclusion.

2 Problem Definition

A graph transaction database, D, consists of a set
of undirected graph transactions, and the cardinality
of D is denoted by |D|. Each graph transaction, G, is
defined as a tuple G = {V, E, LV , FV }, where V is the
set of vertices of G, E ⊆ V ×V is the set of edges of G,
LV is the set of vertex labels, and FV : V → LV maps
the vertices to their labels.

Figure 1 shows a graph database that contains two

1 In English, the word ‘clan’ has a very close meaning to
the word ‘clique’, that is ‘a group united by a common interest
or common characteristics’. Here we use CLAN to stand for
‘frequent closed CLique pAtterN mining’.

c

a

d

b

b

e

b

a

d

c

b

e

G
 r
a
p
h
 G
1
 G
r
a
p
h
 G
2

u
1
 u
2

u
3

u
4

u
5

u
6

v
1
 v
4

v
3

v
2

v
5

v
6

Figure 1. An example graph database D.

a
 1
 1
 1
 1
 0

1
 b
 0
 1
 1
 0

1
 0
 b
 1
 1
 1

1
 1
 1
 c
 1
 0

1
 1
 1
 1
 d
 1

0
 0
 1
 0
 1
 e

u
1
 u
2

u
3

u
4

u
5

u
6

u
1

u
2

u
3

u
4

u
5

u
6

a
 1
 1
 1
 1
 0

1
 b
 0
 1
 1
 0

1
 0
 b
 0
 1
 1

1
 1
 0
 c
 1
 0

1
 1
 1
 1
 d
 1

0
 0
 1
 0
 1
 e

v
1
 v
2

v
3

v
4

v
5

v
6

v
1

v
2

v
3

v
4

v
5

v
6

A
d
j
a
c
 e
 n
c
 y

m
 a
t
r
 i
x

f
o
 r
 G
1
 A
d
j
a
c
 e
 n
c
 y

m
 a
t
r
 i
x

f
o
 r
 G
2

Figure 2. Adjacency matrix representation of
G1 and G2 in our running example.

graph transactions G1 and G2 (i.e., |D|=2), which will
be used as our running example. As in [13, 10], we use
an adjacency matrix M to represent a graph G: Each
row (or column) represents a vertex, each diagonal el-
ement M [i, i](for 1 ≤ i ≤ |V |) is the corresponding la-
bel of the ith vertex vi, and each non-diagonal element
M [i, j](for i 6= j) indicates the presence (denoted by 1)
or absence (denoted by 0) of edge eij between vertices
vi and vj . Figure 2 shows the adjacency matrix repre-
sentation of G1 and G2 in our running example. Note
that the graphs we study here are undirected, thus the
lower triangle of any adjacency matrix is symmetric to
its upper triangle.

A clique, C, is defined as a set of fully connected la-
beled vertices and denoted by a tuple C = {V, LV , FV },
where V is the set of vertices, LV is the set of ver-
tex labels, and FV : V → LV maps the vertices to
their labels. The size of a clique is defined as the
number of vertices it contains, i.e., |V |. A clique of
size n is also called a n-clique and contains exactly
n×(n−1)

2 edges. A clique C1 = {V1, LV 1, FV 1} is iso-
morphic to another clique C2 = {V2, LV 2, FV 2} iff
|V1| = |V2| and there exists a bijection f : V1 → V2

such that ∀v ∈ V1, FV 1(v) = FV 2(f(v)). If a clique
C = {V, LV , FV } is isomorphic to a subgraph of an-
other clique C

′

= {V
′

, L
′

V , F
′

V }, C is called a subclique

of C
′

, while C
′

is called a superclique of C. We use

c

a
 d

b

c

a

d

b

b

a

d

c
u
1
 u
2

u
4

u
5

v
1
 v
4

v
2

v
5

(
a
)

A

4
 -
c
 l
 i
q
u
e

(
d
)

T
h
e

s
 e
 c
 o
 n
d

e
m
 b
e
 d
d
i
n
g

i
n
 G
1
 (
e
)

A
n

e
m
 b
e
 d
d
i
n
g

i
n
 G
2

w
1

w
2

w
4

w
3

c

a

d
 b

u
1

u
3

u
4

u
5

(
c
)

T
h
e

f
 i
 r
 s
 t

e
m
 b
e
 d
d
i
n
g

i
n
 G
1

Figure 3. A 4-clique structure with vertex la-
bels a, b, c, and d, and its embeddings in G1

and G2 of our running example.

C v C
′

or C @ C
′

(i.e., C v C
′

but C 6= C
′

) to denote
the subclique or proper subclique relationship.

A fully connected subgraph g of a graph G can form
a clique and if g is isomorphic to a clique C, we call g

an embedding of C in G. C is supported by a graph
G, if there is at least one embedding of C in G. The
number of graph transactions in graph database D that
support C is called the absolute support (or simply
called support) of C in D, denoted by supD(C). Given
an absolute support threshold min sup, if supD(C) ≥
min sup, C is called a frequent clique in D. If there
does not exist another clique C

′

such that C @ C
′

and
supD(C) = supD(C

′

), C is called a closed clique in D.
Given a graph transaction database D and a mini-

mum support threshold min sup, the problem of fre-
quent closed clique mining is to find the complete set
of cliques in D that are both frequent and closed.

Example 2.1 Given min sup=2, the 4-clique shown
in Figure 3(a) with vertex labels a, b, c, and d is a
frequent clique structure in the database D shown in
Figure 1, as it is supported by both G1 and G2: it has
two embeddings in G1 (see Figure 3(c)-(d)) and one
embedding in G2(see Figure 3(e)). And we cannot find
any proper superclique of it with the same support,
thus it is also closed. From Figure 1 we can get the
complete set of frequent closed cliques: one 4-clique
with vertex labels a, b, c, and d, and one 3-clique with
vertex labels b, d, and e. ALL the other cliques are
frequent but not closed. �

Notice that in the above example we have not con-
sidered the edge label in computing a frequent closed

clique. We made this decision due to the following ob-
servations. First, many real-life databases do not have
edge labels. Second, this means we mainly concern
about the clique topology and its associated vertex la-
bels, which enables us to find some hidden clique pat-
terns that may not be found when we require the exact
match of the edge labels.

3 Related Work

Computing the maximum clique (or maximal
cliques) or enumerating all the cliques from a single
graph have been very well studied for many years [7, 9],
and become active again in recent years since the ad-
vent of the Web, digital libraries, data mining, and
bio-informatics [12, 11, 1]. However, most of this re-
search only studies mining clique patterns from a single
graph, which is different from the problem studied in
this paper, that is, mining frequent closed cliques from
a set of graph transactions. In [15], cross-graph quasi-
clique mining in gene-expression and protein interac-
tion data was proposed and shows an application in
identifying the clusters of genes that are co-expressed
and also their proteins interact. Their problem formu-
lation is also different from ours.

Because the set of frequent closed patterns is usually
more concise than the set of all frequent patterns while
retaining completeness, since the introduction of the
closed itemset mining in [14], mining ‘closed patterns’
has received much interest. Several algorithms have
been proposed to mine closed sequences, trees, and
graphs [18, 5, 20]. Due to the complexity of the struc-
tural pattern mining, designing some efficient pattern
closure checking scheme or search space pruning meth-
ods is especially challenging for closed structural pat-
tern mining. Like the existing methods used in [20, 5],
the closure checking scheme of CLAN is straightfor-
ward and is directly based on the definition of a closed
clique, i.e., check every possible extension to see if there
is any extension with the same support. Because the
same subgraph may have more than one embedding in
the same graph transaction, designing some pruning
methods for closed structure mining needs special cau-
tion. As the pruning methods previously proposed for
closed structure mining cannot work in closed clique
mining, in CLAN we proposed a new pruning method.

4 CLAN: An Efficient Algorithm to

Mine Frequent Closed Cliques

In this section, we will introduce the CLAN algo-
rithm in detail. First we describe the canonical form

of a clique graph that we choose in order to uniquely
represent a clique and simplify the clique (or subclique)
isomorphism testing. Then we focus on how to effi-
ciently enumerate the complete set of frequent cliques
by applying the structural redundancy pruning and
pseudo low-degree vertex pruning methods. We also
propose the clique closure checking scheme and non-
closed prefix pruning methods in order to mine the set
of frequent closed clique structures efficiently.

4.1 Canonical Representation of a Clique

Due to the high complexity of graph isomorphism
problem, one of the key issues in frequent graph min-
ing is how to choose a good canonical form that can
uniquely represent a graph. Usually the ‘goodness’
of a canonical form is judged by whether it has low
computational complexity or not, in order to facilitate
the graph isomorphism test. Currently there exist two
popular classes of solutions to this problem. In the first
category, the canonical form of a graph is defined as the
minimum (or maximum) adjacency matrix code among
all the possible codes in terms of a certain global or-
dering (e.g., lexicographic ordering) for the correspond-
ing graph [13, 10], where an adjacency matrix code is
the sequence of the upper (or lower) triangular entries
in the matrix. In the second class of solutions, some
kind of DFS (abbreviated for Depth First Search) codes
(e.g., the minimum DFS code in lexicographic order-
ing [19]) are used as the canonical form [21].

Although both the adjacency matrix code and DFS
code can be used as the canonical form of a clique,
they have very high computational complexity and are
not efficient representations of a clique graph. Because
any clique graph is completely connected, if two cliques
with the same size have the same bag of vertex labels,
their topology will be identical according to our clique
isomorphism definition. Given a clique graph of a size
k, Ck , we call any sequence of all its vertex labels a
clique string (Note here we allow the same vertex label
to appear in the same string multiple times as in the
traditional sequence definition [18]). There will be to-
tally k! different strings if each of Ck’s vertex labels is
distinct. Assume there is a lexicographic ordering on
the vertex labels, we define the following global order
of any two strings p and q with the same size k. We
use p

i
to denote the i-th vertex label in string p, then

p is said to be smaller than q if ∃l (0 < l ≤ k) such
that ∀i (0 < i < l), p

i
= q

i
and p

l
< q

l
, otherwise p is

said to be greater than or equal to q.

Definition 4.1 (Canonical form) Given a clique
C, its canonical form is defined as the minimum string

among all its possible strings and denoted by CFC .

According to the above definition, the canonical
form of a clique Ci is aac (i.e., CFCi

= aac), if it has
three vertices, among which two vertices have a label
a, the other has a label c. Once we know the canon-
ical forms of two cliques, it will be straightforward to
test if they are isomorphic: if their canonical forms
are identical, they are isomorphic, otherwise, they are
not. The definition of the canonical form as the min-
imum string also facilitates the subclique relationship
test, which is very helpful in clique closure checking.
A string Sa=a1a2 . . . an is called a substring of another
string Sb=b1b2 . . . bm (denoted by SavSb), if there exist
integers 1 ≤ i1 < i2 < . . . < in ≤ m such that a1=bi1 ,
a2=bi2 , . . . , an=bin

. Given the definition of substring,
we have the following lemma that can be used to test
if a clique is a subclique of another clique.

Lemma 4.1 (subclique relationship test) Given
any two cliques, Ca and Cb, with canonical forms CFCa

and CFCb
, respectively. CavCb holds iff CFCa

vCFCb

holds. �

This lemma can be directly obtained from the defi-
nitions of the subclique, canonical form of a clique and
the substring, and it provides an efficient way to check
if a clique is a subclique of another clique by simple
substring relationship test among their corresponding
canonical forms.

a
:
2

c
 :
2

e
 :
2

Ø�
 L
e
v
 e
 l

1

2

3

4

b
:
2

d
:
2

a
b
:
2
 a
c
 :
2
 a
d
:
2
 b
c
 :
2
 b
d
:
2
 b
e
 :
2
 c
 d
:
2
 d
e
 :
2

a
b
c
 :
2
 a
b
d
:
2
 a
c
 d
:
2
 b
c
 d
:
2
 b
d
e
 :
2

a
b
c
 d
:
2

Figure 4. A lattice-like structure built from the
frequent cliques in our running example.

4.2 Frequent Clique Enumeration

From Lemma 4.1 we know that the subclique re-
lationship between two cliques can be converted to
a substring relationship between their corresponding
canonical forms. Thus once given a global lexico-
graphic ordering on the vertex labels, we can represent

the frequent cliques by their corresponding canonical
forms and conceptually organize them into a lattice-like
structure: each node represents a clique in the form of
‘canonical form:support ’ (Note: for simplicity, in the
following we will denote a clique by its canonical form
plus its support), and each edge between two nodes
represents a direct subclique (that is, with exactly one
fewer vertex) relationship between the two correspond-
ing cliques. All the frequent k-cliques are at level k

and are arranged according to the lexicographic order-
ing of their canonical forms. In our running example in
Figure 1, assume the lexicographic order of the vertex
labels is a ≤ b ≤ c ≤ d ≤ e, all the 19 frequent cliques
can be organized into a lattice-like structure as shown
in Figure 4. For example, the 4-clique in Figure 3(a)
is represented by the node with a label ‘abcd:2’ and it
has four 3-cliques as its direct subcliques, i.e., abc:2,
abd:2, acd:2, and bcd:2. In addition, all the nodes with
the dotted ellipses are the non-closed cliques. Figure 4
shows that among the 19 frequent cliques, only abcd:2
and bde:2 are closed.

By conceptually organizing the frequent cliques into
a lattice-like structure, the problem of mining frequent
cliques becomes how to traverse the lattice-like struc-
ture to enumerate frequent cliques. Previous studies
have shown two popular search strategies: breadth-first
search [13] and depth-first search [4, 19, 10]. In CLAN,
we adopt the depth-first search strategy. However, our
method is slightly different from the previous ones. The
previous depth-first search methods like the right most
extension [2, 21, 19], grow the current graph of size k

by one edge in order to get the graph of size (k+1),
while CLAN grows the current k-clique by one vertex
plus the corresponding k edges in one step to generate
a (k+1)-clique.

Structural redundancy pruning. By depth-
first traversing the lattice-like structure, we can mine
a list of frequent cliques in the following order: a:2,
ab:2, abc:2, abcd:2, abd:2, abcd:2, ac:2, abc:2, abcd:2,
acd:2, abcd:2, From this list we can see there
exist a lot of redundancy in the sense that some cliques
are generated multiple times. For example, the clique
abc:2 can grown from ab:2 by adding a new vertex c, or
from ac:2 by adding vertex b, or from bc:2 by adding
vertex a. A simple way to remove the redundant cliques
can be implemented by maintaining the set of already
mined cliques. Upon getting a new clique, we check
if there is any already mined clique that has the same
canonical form as the new one, if so, we just throw away
the newly generated clique. However, this does not
help in removing the redundant computing. A more
efficient way can be based on the following property of
the canonical form of a clique.

Lemma 4.2 (Prefix closure property of canoni-
cal form) Given any clique C and its canonical form
CFC , any non-empty prefix of CFC represents the
canonical form of a certain clique.

Proof.We will prove it by contradiction. Let P (CFC)
denote any prefix of CFC , and S(CFC) denote the suf-
fix by removing P (CFC) from CFC . Assume P (CFC)
is not in canonical form, then there must exist another
string, X, which contains the same bag of vertex la-
bels as P (CFC) and X < P (CFC). This means the
concatenation of X and S(CFC) is smaller than CFC ,
that is, X�S(CFC) < CFC . This contradicts with the
fact that CFC is the canonical form of clique C. �

From this lemma we propose a clique enumeration
method which can eliminate the structural redundancy
while maintaining the completeness of the result set.
For any clique C with canonical form CFC , we can
get the direct prefix of CFC by removing the last ver-
tex label from CFC . In CLAN, we require a clique
C be mined by only growing its direct subclique with
C’s direct prefix as its canonical form. Because the
canonical form uniquely represents a clique, thus this
method eliminates the redundancy in clique enumera-
tion. This structural redundancy pruning method can
be implemented in another equivalent way. For the
current prefix clique C with canonical form CFC , let
the last vertex label of CFC be c. When we want to
grow C in order to mine larger cliques, we require C

be extended only with vertices whose labels are lexi-
cographically no smaller than c. For example, if the
current prefix clique is ac:2, we can only grow it with
vertices whose labels are from {c, d, e} in our exam-
ple. In such a way clique abc:2 will not be generated
from ac:2. In Figure 4, we use the dotted edges and
solid edges to denote the redundant extensions and the
valid extensions, respectively.

For any a current prefix k-clique, Cp (initially k = 0
and Cp = ∅), which has a canonical form CFCp

, the
CLAN algorithm first finds all the ‘valid’ vertex labels
which are lexicographically no smaller than the last
label of CFCp

by scanning the database, and records
their corresponding embeddings in each graph trans-
action. Here by a ‘valid’ vertex label, we mean it fre-
quently fully connects to Cp and is lexicographically
no smaller than the last label of CFCp

. The list of
valid vertex labels are sorted in lexicographic ascend-
ing order, denoted by <l1, l2, ..., ln>. Each valid vertex
label will be used to extend Cp in order to get a fre-
quent (k+1)-clique and before we mine all the frequent
cliques with prefix Cp � li+1 we should first mine all the
frequent cliques with prefix clique Cp � li in a recursive
way according to the depth-first search order. Under

the depth-first search strategy and the structural re-
dundancy pruning method, the 19 frequent cliques in
our running example will be mined in such an order:
a:2, ab:2, abc:2, abcd:2, abd:2, ac:2, acd:2, ad:2, b:2,
bc:2, bcd:2, bd:2, bde:2, be:2, c:2, cd:2, d:2, de:2, e:2.
Pseudo low-degree vertex pruning. One of the
most costly operations in clique enumeration is the
database scan in order to find the valid extensions. A
nice property of a k-clique is that any of its vertex de-
grees is at least k−1. The following simple observation
has been used extensively in clique enumeration from
a single graph and can be also adopted to reduce the
overhead of database scan in frequent clique enumera-
tion.

Observation 4.1 (Low-degree vertex pruning)
No vertex with a degree lower than (k−1) can be con-
tained in a k-clique. �

From Observation 4.1 we know that when we want
to extend a k-clique, we only need to scan the database
in which the vertices whose degrees are lower than k

have been pruned. The pruning of low degree vertices
can be done in a recursive way, this is because the prun-
ing of some low degree vertices may make more vertices
have a low degree. For example, when we want to mine
the frequent 4-cliques, the removal of node v6 in the
graph G2 of Figure 1 will make v3 have a degree 2,
which can be pruned further. To accelerate the clique
enumeration, one method is that we maintain a set of
graph databases with various low-degree vertices phys-
ically pruned, and just scan the database whose ver-
tices all have a degree no lower than k upon extending
a k-clique in order to mine the (k+1)-cliques. Let the
largest frequent clique contains N vertices, in the worst
case we need to maintain (N−1) such databases, which
will consume much memory. To save space usage, in
CLAN algorithm, we do not physically construct all
such databases, instead, we only need to record the
indices of the left high-degree vertices, by which we
can locate the needed matrix entries in the original
database.

4.3 Frequent Closed Clique Discovery

Using the above frequent clique enumeration
method, we can mine the complete set of frequent
cliques in the lexicographic order in terms of their cor-
responding canonical form. Upon getting a new fre-
quent clique, we need to check if it is closed or not
based on the following clique closure checking scheme,
in order to generate the set of closed cliques.
Clique closure checking scheme. Assume the cur-
rent prefix clique, C, contains k vertices with a canoni-

cal form CFC = α1α2...αk . According to the definition
of a closed clique, if there exists any vertex with a label
β, which can be used to grow C to get a (k+1)-clique,
C

′

, such that supD(C) = supD(C
′

), C must be non-
closed. In this case β is called a new extension vertex
if β ≥ αk, or an old extension vertex if β < αk. Ac-
cording to the following lemma, to check if a clique is
closed or not we only need to check if there exists any
new (or old) extension vertex.

Lemma 4.3 (Clique closure checking) If there ex-
ists no new extension vertex nor old extension vertex
w.r.t. a prefix k-clique C, C must be closed, otherwise
C must be non-closed.

Proof. In considering the downward-closure property
of a clique, this lemma can be easily derived from the
definition of a closed clique.�

Because the canonical form of a clique is a spe-
cial type of sequence, the clique closure checking in
Lemma 4.3 is very similar to the BI-Directional Ex-
tension sequence closure checking scheme used in the
BIDE algorithm [18]. Both the new extension vertex
and the old extension vertex checking can be com-
bined with the clique enumeration phase by scanning
the database and see if there is any extension vertex
that has the same support as the current prefix clique.
While Lemma 4.1 offers another viable way for old ex-
tension vertex checking, that is, if there is any already
mined frequent clique which is a superclique of the cur-
rent clique C and has the same support, there must
exist at least one old extension vertex, and thus C

is not closed. In addition, all the canonical forms of
the already mined cliques can be organized into a hash
structure in order to accelerate the checking.

Non-closed prefix pruning. Mining only closed
cliques provides more chance to prune some unpromis-
ing search space. For example, as shown in Figure 4
there is no hope to grow the prefix clique c:2 to get any
closed cliques, and thus should be pruned as quickly
as possible. However, designing some efficient prun-
ing methods in graph mining is especially challenging.
Because a subgraph may have more than one embed-
ding in a graph transaction, the support-based prun-
ing methods used in closed itemset mining algorithms
no longer hold. Some carefully designed methods like
the Early Termination method seem straightforward
and intuitively correct, but may still face several fail-
ure cases [20]. Chi et al proposed a nice occurrence-
matched based pruning methods in [5], which works
well for mining frequent closed rooted unordered trees.
However, when we extend it to prune search space in
mining closed cliques, it still encounters difficulties. For

example, let bd:2 be the current prefix clique, it has to-
tally four occurrences in the example graph database
D as shown in Figure 1, and for each occurrence of
bd:2, we can always find one corresponding occurrence
of another clique abd:2. As a result, bd:2 and its su-
perclique abd:2 are occurrence-matched. In addition,
from Figure 4 we can see that clique abd:2 is generated
earlier than bd:2, which means abd:2 is not a right-
most extension of bd:2. According to [5], bd:2 can be
pruned. However, as Figure 4 shows that bd:2 is on
the critical path (i.e., the darker solid path in Figure 4,
‘∅ → b:2 → bd:2 → bde:2’) leading to the closed clique
bde:2. If we prune clique bd:2, bde:2 will be never dis-
covered. As a result, we need to design some new prun-
ing method(s) for mining closed cliques.

Let the current prefix clique be C, the number of ver-
tices in C be k, its canonical form be CFC = α1α2...αk.
Assume there are totally m embeddings of C in the
graph database G and the set of embeddings is de-
noted by EMB(C)={embC

1 , embC
2 , ..., embC

m}. For any
embedding embC

i , a vertex v is an extension to embC
i ,

if there exists an edge between v and every vertex in
embC

i . Let V C
i denote the set of extension vertices of

the ith embedding embC
i . A vertex v

′

∈ V C
i is called

a fully connected vertex in V C
i , if there is an edge be-

tween vertex v
′

and any vertex in V C
i −{v

′

}. The set of
fully connected vertex labels in V C

i is denoted by FV C
i ,

and let FV C=FV C
1 ∩ FV C

2 ... ∩ ...FV C
m . If FV C 6= φ,

and ∃β, β ∈ FV C and β < αk, we call β a non-closed
extension vertex label w.r.t. clique C.

Lemma 4.4 (Non-closed prefix pruning) If there
exists at least one non-closed extension vertex label, β,
w.r.t. a prefix k-clique C, C can be safely pruned.

Proof. Let the canonical form of C be CFC =
α1α2...αk, and use CFC

′ = α1α2...αkγ1...γj (j ≥ 1) to

denote any proper superclique C
′

with C as the prefix
clique. Under the structural redundancy pruning strat-
egy, ∀i, γi ≥ αk must hold. Because C

′

is a clique,
all the vertices corresponding to vertex labels γ1, ..., γj

must be fully connected vertices w.r.t. clique C. As a
result, vertex label β fully connects to each vertex in
C

′

and can be used to extend C
′

to get a superclique
of C

′

, denoted by C
′′

. Because β < αk, C
′′

must have
been mined before C

′

. Also, according to the defini-
tion of the non-closed extension vertex label, we know
supD(C

′

) = supD(C
′′

). This means that C
′

is always
non-closed. As a result, we cannot generate any closed
cliques from prefix clique C and thus can be pruned. �

We use an example to illustrate how to use
Lemma 4.4. Assume the current prefix clique C con-
tains one vertex with a label c. In our running example

shown in Figure 1, there are two embeddings of C in
database D. The embedding in G1 (i.e., vertex u4) has
four neighbors, u1, u2, u3, and u5, among which u1

has a label a and connects to all the other neighbors of
u4. Similarly, the embedding in G2 (i.e., vertex v4) has
three neighbors, v1, v2, and v5, and v1 also fully con-
nects to all other neighbors and has a label a. Because
a < c, a is a non-closed extension vertex label w.r.t.
clique C, and clique C with canonical form c can be
pruned. Similarly, from Figure 1 we can see that both
vertex labels b and d are non-closed extension vertex
labels w.r.t. prefix clique e:2, thus e:2 can be pruned.
However, if the current prefix clique is b:2, we will not
be able to find any non-closed extension vertex label,
as a result, we cannot prune b:2. In fact, if we prune
b:2, we will no longer find the closed clique bde:2.

ALGORITHM 1: CLAN(D, CFC , EMBC , min sup)

INPUT: (1) D : the pruned graph transaction database, (2) CFC :
the canonical form of the current prefix clique C, (3) EMBC :
the set of embeddings of clique C in the database D, and (4)
min sup: the minimum support threshold.
OUTPUT: (1) SFCC : the set of frequent closed cliques.
BEGIN

01. Scan D according to EMBC to find the set of frequent valid
vertex labels, Sfv;

02. Sort the labels in Sfv in lexicographic order;
03. Scan D again to find the embeddings for vertices in Sfv;
04. If there exists any non-closed extension vertex label
05. return;
06. If there exists no extension vertex
07. SFCC=SFCC ∪ {CFC};
08. For each l ∈ Sfv and l ≥ the last label of CFC

09. Call CLAN(D, CFC � l, EMBC�l, min sup);
10. return;
END

4.4 The Algorithm

The CLAN algorithm is shown in Algorithm 1. Be-
fore we run CLAN, we apply the pseudo low-degree
vertex pruning methods to generate a series of pseudo
databases corresponding to cliques of different size. By
scanning the original database, we can find the set
of frequent 1-cliques and their corresponding embed-
dings. For each 1-clique, we can then use Algorithm
1 to mine all the frequent closed cliques with this 1-
clique as prefix. For a prefix k-clique C with canonical
form CFC , we scan the pruned database correspond-
ing to size k, and find the frequent valid vertices (by
valid, we mean the vertex fully connects to C) and
their corresponding embeddings (lines 01 and 03). The
non-closed prefix pruning method(lines 04-05) and the
closure checking scheme(line 06) are then applied. If
C is closed, the algorithm output it (line 07). Each
frequent valid vertex label l which is lexicographically

no smaller than the last label of CFC will be used to
extend C. The CLAN algorithm will be called with the
new prefix clique whose canonical form is CFC�l(lines
08-09).

5 Empirical Results

In this section, we present empirical results. We will
first show one application of the CLAN algorithm us-
ing the US stock market database. We mainly discuss
how to convert the original US stock market database
to the graph representation, and use CLAN to discover
some highly correlated stocks and present some empiri-
cal results. We will also evaluate the CLAN algorithm’s
efficiency and scalability. All the experiments were per-
formed on a 1GHz AMD PC with 256MB memory and
linux installed.

5.1 Application - Mining Correlated Stocks

Several previous studies have shown some applica-
tions of clique graph mining [11, 3, 15]. Here we il-
lustrate one of the applications: discover sets of cor-
related stocks by mining frequent closed cliques. Ac-
cording to [3], the stock market data w.r.t. a certain
period of time can be converted to a graph based on
the cross correlations of price fluctuations. More specif-
ically speaking, each stock is represented by a vertex
whose label is the corresponding stock index, and two
vertices are connected by an edge if the correlation co-
efficient of the corresponding pair of stocks exceeds a
specified threshold θ, −1 ≤ θ ≤ 1. As pointed out
in [3], analyzing cliques in market graph can give a
very valuable knowledge about the internal structure
of the stock market. This is because a clique in the
graph represents a set of stocks whose prices evolve
synchronously over time and a change of the price of
any stock in a clique implies a similar change of the
prices of all other stocks in the same clique.

As in [3], we used 11 sets of US stock market data,
each of which consists of daily prices of a set of stocks
over a different period of 500 consecutive trading days.
The number of distinct stocks in the 11 sets of stock
market data is 6556, 6399, 6262, 6104, 6013, 5866,
5768, 5666, 5593, 5507, and 5430 stocks, respectively.
Although the number of stocks in each of the 11 sets
of stock market data is different, most of the stocks
are common in all the 11 sets of stock market data.
We converted the 11 sets of stock market data to 11
market stock graphs based on the correlations of the
stock prices. The correlation coefficient CS2

S1
between

two stocks, S1 and S2, w.r.t. a certain period of time
T is defined as follows.

CS2

S1
=

1
|T |

∑|T |
i=1(S

i
1 × Si

2 − S1 × S2)

σ
S1

× σ
S2

(1)

In Equation 1, |T | denotes the number of days in
period T , Si

1 and Si
2 denote the ith day’s price of

stock S1 and S2 respectively, and S1 = 1
|T |

∑|T |
i=1 Si

1,

S2 = 1
|T |

∑|T |
i=1 Si

2, σ
S1

=
√

1
|T |

∑|T |
i=1(S

i
1)

2 − S1
2
, and

σ
S2

=
√

1
|T |

∑|T |
i=1(S

i
2)

2 − S2
2
.

D
M
 F

I
Q
M

M
 E
N

M
 N
P

N
P
 X

N
U
V

P
 P
 M

V
C
F

V
K
L

V
M
 O

V
N
V

X
A
A

Figure 5. The maximum frequent closed
clique in the stock market database with corre-
lation coefficient threshold 0.9 and minimum
relative support threshold 100%.

By setting the correlation coefficient threshold at 0.9
and using Equation 1, we converted the original 11 sets
of US stock market data into a graph database contain-
ing 11 graphs (We will denote this graph database by
the stock market-0.9 from now on). There are totally
6018 distinct vertex labels in this graph database, on
average there are 206,747 edges and 3,636 vertices in
each graph, the maximal number of edges in a graph
is 408,135, the maximal number of vertices in a graph
is 4,085, and the maximal vertex degree is 823. It is
obvious that the stock market-0.9 graph database is
large and dense, as it contains a large number of ver-
tex labels, vertices, and edges, and the average vertex
degree is also large. Due to the combinatorial explosion
problem, mining frequent subgraphs from such kind of
large dense graph databases is especially challenging.
As we will show later that even the state of the art al-
gorithm like ADI-Mine [17] cannot run with the stock
market-0.9 database at the highest possible minimum
relative support threshold, 100%.

We set the minimum support threshold at 100% in
order to find sets of stocks that are always highly cor-
related with each other over all the 11 periods (i.e.,

11×500 days). CLAN found totally 327 frequent closed
cliques with a size no smaller than three, among which
the maximum clique has a size 12. As shown in Fig-
ure 5, the maximum clique contains 12 stocks whose
index names are DMF, IQM, MEN, MNP, NPX, NUV,
PPM, VCF, VKL, VMO, VNV, and XAA, respectively.
Because we have adopted a very high correlation coeffi-
cient threshold, 0.9, and a minimum support threshold,
100%, it is quite safe to say that the prices of these 12
stocks evolve in a similar way and a price change of
any stock in the clique can be used to predict a similar
change of the prices of all other 11 stocks.

5.2 Algorithm Evaluation

We evaluated the performance of CLAN using sev-
eral real databases. The CA database in Table 1
is a chemical compound database which can be de-
rived from the DTP AIDS Antiviral Screen database
from National Cancer Institute and was used in pre-
vious studies [20, 10]. It was provided by the author
of [13]. The other real databases can be derived from
the stock market data by setting the correlation coeffi-
cient threshold at different values from 0.9 to 0.95. Ta-
ble 1 depicts some characteristics of the real databases,
such as the number of the graph transactions (column
2), the average number of vertices (column 3), and the
average number of edges (column 4).

5.2.1 Efficiency Test

To evaluate the efficiency of the algorithm, we com-
pared CLAN with ADI-Mine, which is one of the latest
frequent subgraph mining algorithm [17]. The result
set of CLAN is a subset of the result set of ADI-Mine,
their performance is not directly comparable. However,
our purpose here is to show that mining the complete
set of frequent subgraphs as a first step to generate the
set of frequent closed cliques is inefficient, and is in fact
not a feasible way for large dense graph databases.

We first compared the two algorithms using the
dense stock market series of databases. However, ADI-
Mine could not complete after running for several days
for these databases even with 100% minimum support,
thus no result of ADI-Mine is shown in Figure 6. Figure
6(a) shows the runtime of CLAN for the six stock mar-
ket databases by varying the support threshold from
100% to 85%, while Figure 6(b) shows the number of
closed cliques against the size of closed cliques w.r.t.
the six stock market databases at the support threshold
of 100%. These results illustrate that although on av-
erage each graph of the stock market databases is very
large and dense (e.g., for stock market-0.9 database, on
average each graph contains several thousand vertices

and more than 200K edges), CLAN can still handle it
efficiently.

Database # graphs Avg. # vertices Avg. # edges

CA 422 39 42

Stock Market-0.95 11 1683 20074

Stock Market-0.94 11 2182 40008

Stock Market-0.93 11 2618 68608

Stock Market-0.92 11 2999 106156

Stock Market-0.91 11 3331 152356

Stock Market-0.90 11 3636 206747

Table 1. Real database characteristics.

10

100

1000

10000

100000

86889092949698100

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Relative support threshold

CLAN (Stock Market-0.90)
CLAN (Stock Market-0.91)
CLAN (Stock Market-0.92)
CLAN (Stock Market-0.93)
CLAN (Stock Market-0.94)
CLAN (Stock Market-0.95)

a) Runtime

1

10

100

2 4 6 8 10 12

N
u

m
b

e
r

o
f

fr
e
q

u
e
n

t
c
lo

se
d

 c
li

q
u

e
s

Size of frequent closed cliques

Stock Market-0.90, min_sup=100%
Stock Market-0.91, min_sup=100%
Stock Market-0.92, min_sup=100%
Stock Market-0.93, min_sup=100%
Stock Market-0.94, min_sup=100%
Stock Market-0.95, min_sup=100%

b) Distribution

Figure 6. Varying the support and correlation
thresholds (Stock Market).

As Table 1 shows, the CA database contains some
small and sparse graphs. From Figure 7(a) we can
see that even for such a sparse graph database, CLAN
outperforms ADI-Mine significantly. The performance
gain for CLAN stems from the fact that CLAN only
mines frequent closed cliques, and the newly proposed
search space pruning methods can effectively remove
some unpromising search space from consideration.

1

10

100

5101520253035404550

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Relative support threshold

ADI-Mine
CLAN

a) Efficiency (CA)

-200

0

200

400

600

800

1000

1200

1400

1600

2 4 6 8 10 12 14 16

R
u

n
ti

m
e
 i

n
 s

e
c
o

n
d

s

Replication factor

ADI-Mine, Data=CA, min_sup=10%
CLAN, Data=stock market-0.94, min_sup=85%
CLAN, Data=stock market-0.95, min_sup=85%

CLAN, Data=CA, min_sup=10%

b) Scalability

Figure 7. Efficiency and Scalability test.

5.2.2 Scalability Study

We also evaluated CLAN’s scalability using several
real databases in terms of the base size. We first
chose two dense graph databases, stock market-0.95
and stock market-0.94, and fixed the minimum support
at 85%. As ADI-Mine cannot run with these two dense
databases, we also used the sparse CA database in or-
der to compare CLAN’s scalability against ADI-Mine
by fixing the minimum support at 10%. In Figure 7(b)
we replicated the graphs from 2 to 16 times. It is evi-
dent that CLAN shows a linear scalability in runtime
against the number of graphs in the database.

6 Discussions and Conclusion

In this paper we introduced the CLAN algorithm,
which mines closed cliques from large dense graph
databases. By focusing on the underlying clique topol-
ogy and vertex labels, we first proposed a simple canon-
ical form to uniquely represent a clique graph. By fully
exploring some nice properties of the clique structure,
we also proposed several pruning methods, pseudo low-
degree vertex pruning, structure redundancy pruning,
and non-closed prefix pruning, which can be used to ac-
celerate the frequent closed clique mining. As in some
cases people may also be interested in mining quasi-
cliques besides the exact cliques, in future, we plan to
explore how to extend the techniques proposed in this
paper to mine closed quasi-cliques.

Acknowledgements.

The authors are grateful to Vladimir L. Boginski,
Panos M. Pardalos, and Sergiy Butenko for providing
us the US stock market database. We thank Michihiro
Kuramochi for sending us several real graph databases,
Wei Wang and Chen Wang for sending us their ADI-
Mine algorithm, and Beng Chin Ooi for his valuable
comments to this paper. Thanks also go to the anony-
mous ICDE’06 conference reviewers for their invaluable
suggestions and detailed comments which helped a lot
in improving the paper.

References

[1] J. Abello, et al. Massive quasi-clique detection.
LATIN’02.

[2] T. Asai, et al. Efficient substructure discovery
from large semi-structured data. SDM’02.

[3] V. Boginski, et al. On structural properties of
the market graph. In A. Nagurney (editor), In-
novations in Financial and Economic Networks,
Edward Elgar Publishers, Apr. 2004.

[4] C. Borgelt and M. Berthold. Mining molecu-
lar fragments: finding relevant substructures of
molecules. ICDM’02.

[5] Y. Chi, et al. CMTreeMiner: mining both closed
and maximal frequent subtrees. PAKDD’04.

[6] L. Dehaspe, et al. Finding frequent substructures
in chemical compounds. KDD’98.

[7] U. Feige, et al. Approximating Clique is Almost
NP-Complete. FOCS’91.

[8] M. Garofalakis, et al. Data mining and the Web:
past, present and future. WIDM’99.

[9] J. Hastad. Clique is hard to approximate within
n1−ε. FOCS’96.

[10] J. Huan, et al. Efficient mining of frequent sub-
graphs in the presence of isomorphism. ICDM’03.

[11] H. Kato, and Y. Takahashi. Automated identifica-
tion of three-dimensional common structural fea-
tures of proteins. In Journal of Chemical Software,
Vol. 7, No. 4, 2001.

[12] R. Kumar, et al. Extracting large-scale knowledge
bases from the Web. VLDB’99.

[13] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. ICDM’01.

[14] N. Pasquier, et al. Discovering frequent closed
itemsets for association rules. ICDT’99.

[15] J. Pei, et al. Mining Cross-graph Quasi-cliques
in Gene Expression and Protein Interaction Data.
ICDE’05.

[16] N. Vanetik, et al. Computing frequent graph pat-
terns from semistructured data. ICDM’02.

[17] C. Wang, et al. Scalable mining of large disk-based
graph databases. KDD’04.

[18] J. Wang and J. Han. BIDE: Efficient mining of
frequent closed sequences. ICDE’04.

[19] X. Yan and J. Han. gSpan: Graph-based substruc-
ture pattern mining. ICDM’02.

[20] X. Yan and J. Han. CloseGraph: Mining closed
frequent graph patterns. KDD’03.

[21] M. Zaki. Efficiently mining frequent trees in a
forest. KDD’02.

