CODED: Column-Oriented Data Error Detection with
Statistical Constraints

Jing Nathan Yanf, Oliver Schulte?, Jiannan Wang*, Reynold Chengf

tSimon Fraser University
H{jnwang, oschulte}@sfu.ca

ABSTRACT

Traditional integrity constraints (e.g., functional dependen-
cies and denial constraints) detect data errors by treating
each row as an entity and comparing two selected entities
to determine whether a constraint is violated or not. In this
paper, we introduce a class of column-oriented constraints,
called statistical constraints (SCs), which treat each column
as a random variable and enforce an independence or de-
pendence relationship between two random variables. We
find that SCs are expressive, and work harmoniously with
downstream statistical modeling. We develop the CODED
error detection system based on the proposed SCs, which
solves a number of challenging problems. First, we pro-
vide a novel algorithm for checking whether a given set
of SCs is consistent. Second, for a given dataset, an SC
does not hold absolutely, but only to a certain degree. We
show how well-established statistical metrics can be used
to quantify the degree to which an SC holds or fails in a
given dataset. Third, we propose an error-drill-down frame-
work, and devise efficient algorithms that identify the top-k
records that contribute the most to the violation of an SC.
Experiments on both synthetic and real-world data illustrate
how SCs can be applied for error detection, and provide ev-
idence that CODED performs better than state-of-the-art
approaches.

1. INTRODUCTION

Error detection is the problem of detecting erroneous (in-
consistent, inaccurate, incorrect) values in a database. It
has been extensively studied in the past but is still far from
being solved [3]|. Data errors can cause many serious issues,
such as wrong decision making and biased machine-learning
models. In 2016, IBM estimated that poor data quality
costs the U.S. economy around $3 trillion per year [1]. As
more and more companies assign data a central place in their
business, error detection will become an increasingly serious
problem.

In the database community, error detection is mostly solved
by detecting the violations of integrity constraints (ICs) [24].
Intuitively, a user first specifies an IC that describes what
the data should look like, and then detects which parts of
the data violate the constraint. Take functional dependen-
cies (FDs) as an example. Consider a restaurant database
with Name, Address, Zipcode, and City attributes. Suppose the
given FD is Zipcode — City, which means that if two records
have the same Zipcode, then they must have the same City.
By comparing each pair of records in the database, if two

"The University of Hong Kong
"{jyan,ckchengy@cs.hku.hk

Table 1: A comparison between ICs and SCs.

’ ‘ Data Model Violation Definition

IC | Row as an entity Between two (or a few) entities

SC | Column as a random variable | Between two (or a few) random variables

records have the same Zipcode but different City, then they
violate the constraint, thus an error is detected.

Traditional integrity constraints, such as functional de-
pendencies (FDs) |[7], conditional functional dependen-
cies (CFDs) [§], and denial constraints (DCs) [12], are row-
oriented constraints. That is, they model each row as an
entity and view a data table as a collection of entities. An
IC is used to enforce a relationship among two (or a few)
entities. For the above example, each row represents an
entity (i.e., restaurant) and the FD enforces a relationship
between two restaurants. That is, a violation is detected by
comparing two restaurants only.

The statistics community takes a different data model,
which treats each column as a random variable, and views a
data table as a sample drawn from the joint distribution
for these random variables. The joint distribution gives
rise to independence or dependence relationships among the
random variables. For example, consider a Car database
with Model, Fuel Efficiency, Price, and Color attributes. This
database represents a data sample from the joint distribu-
tion for the four random variables. Some example indepen-
dence/dependence relationships are that Fuel Efficiency and
Price are dependent, and Color and Fuel Efficiency are indepen-
dent. These constraints are column-oriented because, for
example, they treat Fuel Efficiency and Price as two random
variables and a violation is detected based on their entire
distributions.

We call this kind of constraint Statistical Constraints
(SCs). SCs are preferable to ICs in a number of situations.
First, a user may sometimes know that a set of columns are
(in)dependent but it may not be easy to express such rela-
tionships using ICs. For example, it is not easy to come up
with a set of ICs to express the dependence relationship be-
tween Fuel Efficiency and Price. Instead, she can easily specify
an SC to enforce this relationship.

Second, SCs enable error detection and statistical model-
ing, the two separate components in a data analysis pipeline,
to complement each other smoothly. This is due to the fact
that they use the same data model (i.e., modeling each
column as a random variable). Error detection tries to
highlight unreasonable relationships among random vari-
ables caused by dirty data; statistical modeling seeks to
learn correct relationships among random variables from

ID ‘ Price ‘ Model ID ‘ Model ‘ Color
al 31000 BMW X1 al BMW X1 White
a2 32000 BMW X1 a2 BMW X1 Black
a3 33000 BMW X1 a3 BMW X1 White
ad 34000 BMW X1 ad BMW X1 Black
bl 18000 Toyota Prius b1l I ToyotaPrius | White
b2 19500 Toyota Prius b2 1§ ToyotaPrius | White
b3 18300 Toyota Prius b3 § ToyotaPrius | White
b4 18300 Toyota Prius b4 Y ToyotaPrius | White

(a)SCy =“ID and Price are
independent given Model”

(b) SC, = “Model and Color are
independent”

Figure 1: Examples of data errors detected by SCs

clean data. For example, suppose a statistical model learns
that Fuel Efficiency and Price are independent. If a user thinks
that this relationship is unreasonable, she can construct an
SC like Fuel Efficiency and Price are dependent, and then en-
force the constraint on the data to detect errors.

Data errors, especially systematic errors across a set of
records, often affect the independence or dependence re-
lationship among columns. Figure [I] shows two examples.
In Figure a), consider SC; = “ID and Price are indepen-
dent given Model”. Suppose the data is integrated from
two sources, “bmw.com” and “toyota.com”. However, in
“bmw.com”, the data is sorted by Price. When merging
them together, ID and Price become highly dependent given
Model = “BMW Xl”EI, which violates SC:. In Figure),
consider SCy = “Model and Color are independent”. Suppose
the original data has some missing colors (e.g., the colors
of all Toyota cars are missing), and one replaces them with
“White” (highlighted in the figure). The consequence is that
Model and Color become highly dependent. That is, if the
Model is “Toyota Prius”, the Color must be “White”. Thus,
the data violates SCo

In this paper, we consider four kinds of SCs: (1) A and B
are dependent; (2) A and B are independent; (3) A and B
are dependent given C; (4) A and B are independent given
C, where A, B, and C are three columns. There are certainly
some other kinds of SCs that are more complex (e.g., A and
BC are independent given DE). We choose simple types
because they are easy to be interpreted and provided, and
they are useful to detect errors in many scenarios (e.g., see
the examples in Figure [1)). The expressive power of these
SCs is sufficient to evaluate the viability and effectiveness
of our statistical approach. Furthermore, even restricted
SCs give rise to challenging research problems, as follows.

Consistency and Implication. The consistency and im-
plication problems are fundamental to constraint-based data
cleaning approaches [39,|8,|13]. Given a set of SCs, the con-
sistency problem is to determine whether they have conflicts;
the implication problem is to determine whether they imply
another SC. The key to solve these problems is to develop
a sound and complete inference system. For row-oriented
constraints, the inference systems are mainly derived from
Armstrong’s Axioms [4]. Since SCs are column-oriented,
Armstrong’s Axioms are not applicable, thus we develop a
new inference system from the well-known Graphoid Ax-
ioms [18]. Our inference system is proved to be sound and
conjectured to be complete. We use it to develop efficient

'In fact, this kind of error has happened in a Kaggle competition.
A team found this error in the training set and utilized the dependence
relationship between ID and class label to win the competition |[2].

consistency-checking and implication algorithms, with the
time complexity of O(n?), where n is the number of given

SCs.

Error Detection. Given a (dirty) dataset and an SC, we
need to determine whether the dataset violates the SC or
not. We solve this problem using Hypothesis Testing. Note
that although hypothesis testing is a well-studied topic, to
the best of our knowledge, none of existing work has ap-
plied it in an error detection setting. We further study how
to drill down into erroneous values rather than just return
erroneous columns. We propose two effective top-k algo-
rithms, which aim to return the top-k most likely erroneous
values. For example, suppose a user knows that Model and
Color should be independent, but hypothesis testing shows
that they are highly dependent in the data. The user may
want to know which values in the Model and Color columns
cause the correlation. The top-k algorithms can identify the
top-k problematic records for the user.

To summarize, we make the following contributions:

e We formally define SCs, and present CODED, an SC-
based error-detection system.

e We propose a new inference system for SCs, which is
proved to be sound and conjectured to be complete. We
develop efficient consistency-checking and implication al-
gorithms based on the new inference system.

e We apply Hypothesis Testing to detect erroneous columns.
We further formalize the problem of drilling down into
erroneous values, and propose two top-k algorithms to
solve it.

e We conduct extensive experiments on real-world datasets
with both simulated errors and real errors. The results
demonstrate the superiority of our approaches over the
state-of-the-art approaches.

The remainder of this paper is organized as follows. We
formally define SCs in Section and study a number of
fundamental problems (inference system, consistency, and
implication) in Section |3| Section [4| presents how to detect
SC violations. Section [5] discusses how to drill down into
erroneous records. Section [6] reports our experimental find-
ings. Related work is reviewed in Section m and we present
conclusion and future work in Section

2. STATISTICAL CONSTRAINTS

In this section, we provide some background definitions,
and a formal definition of statistical constraints. We de-
scribe how CODED leverages SCs for error-detection.

2.1 Background Definitions

A variable X is an attribute or feature that can be as-
signed a value z from a fixed domain; we write X = z to
denote an assignment of a value to a variable. We use bold-
face vector notation for finite sets of objects. So for example
X =z = (X1 =x1,X2 = z2,...,Xn = zn) denotes the
joint assignment where variable X; is assigned value z;,
for each i = 1,...,n. In relational terms, a variable corre-
sponds to an attribute or column, and a joint assignments
to a tuple or row.

A random variable requires a distribution P(X = x)
that assigns a probability to each domain value in the do-
main of X. A joint distribution P(X = =z) assigns a

probability to each joint assignment. We often abbreviate
the probability assignment P(X = x) = P(x) when the
relevant set of variables is clear from context.

Given a joint distribution for a set of variables X, the
marginal distribution over a subset Y is defined by

P(Y=y)=) P(Y=y,Z=2).

Here Z = X — Y contains the set of variables outside of
Y. and the comma notation ¥ = y, Z = z denotes the
conjunction of two joint assignments. Here and elsewhere in
this paper, the summation applies to variables with discrete
domains, and should be replaced by integrals for variables
with continuous domains. The conditional probability of
an assignment X = @ given another assignment P(Y) =y
is defined as

PX=zl]Y =y =PX=a,Y =y)/P(Y =y).

A key notion of this paper is the concept of conditional
independence among sets of variables. Intuitively, a set of
variables X is independent of another set Y given a third
conditioning set Z if knowing the values of the variables in
Y adds no information about the values of the variables in
X, beyond what can be inferred from the values in the set
Z. Formally, for three disjoint sets X,Y, Z we define

X1Y|Z =
P X =2z,Y =y|Z =2) =
P X=z|Z=2)xPY =y|Z=2) forallzvy,z

This definition assumes that P(Z = z) > 0 for all possible
values z.

We call X 1L Y'|Z a (conditional) independence state-
ment. The negation of a conditional independence state-
ment is a (conditional) dependence statement, written
X L Y|Z. Thus conditional dependence holds if for some
values x,y, z, we have P(Y = y|Z = 2) > 0 and

P X =z|Y =y, Z =2) # P(X =z|Z = 2).
2.2 Statistical Constraints

A set of Statistical Constraints (SCs) comprises a set of
independence statements and dependence statements.

DEFINITION 1 (STATISTICAL CONSTRAINTS). Fiz a set
of variables V.= {Vi,...,V,}. A finite set of statistical
constraints X =ZUD comprises

1. a finite set of independence SCs, T = {¢1,...,0p},
where each ¢; is of the form X 1L Y |Z, and

2. a finite set of dependence SCs, D = {A1,...,Aq},
where each \; is of the form X L Y|Z

Please note in this paper, we investigate the statistical
constraints among two or three variables. We will extend
our approaches to more than three variables in the future
work. The main idea of this paper is to detect data quality
problems by finding contradictions with domain knowledge
supplied by the user in the form of dependence and indepen-
dence constraints. Such statistical constraints have several
advantages.

Interpretability. (In)dependencies are easily interpreted
by the user as ir(relevance) among attributes. Although the
probabilistic semantics of a statistical constraint refers to a

Erroneous \

Hypothesis Columns Error Drill

Testing Down

Wy

A set of [
SCs :

1

1

1

1

1

_. Detected
Dirty Errors
Dataset

Figure 2: CODED Architecture

quantitative probability distribution, specifying an (in)dependence

constraint does not require the user to specify or even con-
sider numeric values. The large field of graphical models is
based on the insight that (in)dependence constraints can be
represented in terms of purely qualitative graphical relations
among variables .

Detectability. The field of statistical hypothesis testing
has developed many methods for deciding whether a given
data set violates an independence constraint , These
methods provide parameters for controlling false positive
and false negative error rates.

Expressive power. Deterministic constraints such as func-
tional dependencies are powerful but also limited in the rela-
tionships among attributes that they allow a user to express.
Often they reflect definitions and data recording conven-
tions. In contrast, many important empirical facts about
a domain can be expressed as statistical (in)dependencies
among attributes. The next section considers the relation-
ship between statistical and integrity constraints in some
detail.

2.3 Integrity vs Statistical Constraints

Despite differences in tradition and terminology, integrity
and statistical constraints often share underlying intuitions.
Generally, integrity constraints enforce Boolean conditions
on sets (relations), whereas statistical constraints impose
(in)equalities on (conditional) distributions. For example, a
functional constraint X — Y entails an independence con-
straint X 1l Y| X — {Y'}. Whereas the functional constraint
says that the variables X determine a unique wvalue for Y
regardless of the Z values, the independence constraint says
that the variables X determine a unique distribution for Y
regardless of the Z values. For another example, a marginal
independence constraint X 1LY entails a multi-valued depen-
dency between columns X and Y . Unlike integrity con-
straints, the traditional application of statistical constraints
is to sample data, where we expect statistical constraints to
hold only approximately with exceptions. As will be dis-
cussed in Section [4] this is accomplished by defining degrees
of dependence (e.g. correlations in (0,1]).

2.4 CODED Architecture

Figure [2] shows the architecture of our SC-based error-
detection system. The system consists of three key com-
ponents: consistency checking, hypothesis testing, and error
drill down. In the following, we present an overview of each
component.

Consistency Checking. CODED takes a set of SCs and a
dirty dataset as input. It first checks whether the given SCs
are consistent or not. If not, it helps the user to resolve the
conflict. For example, consider the four SCs in Figure[3] As
will be explained in Section they are actually inconsistent,

ID | Model Color Price Fuel
rl BMW X1 White 31000 25
r2 BMW X1 Black 32000 26
r3 BMW X1 White 33000 24
rd4 BMW X1 Black 17000 22

r5 Toyota Prius Black 18000 30
ré Toyota Prius White 19500 29
r7 Toyota Prius White 18300 31
r8 Toyota Prius White 18300 30
SC1 = Model 1L Color SCs = Fuel 1L Model
SCs = Price L Fuel | Model ~ SC4 = Price JL Fuel

Figure 3: A Running Example (SC; could be re-
moved. The highlighted cells are the data errors
detected by CODED w.r.t. SC,.).

i.e., SC2 and SCjs implies Price 1L Fuel, which contradicts
SC4. CODED first tells the user that {SC1, SC2, SCs, SCy}
are inconsistent, and then guides the user to resolve the
conflict, e.g., removing SCs.

Hypothesis Testing. Once a set of consistent SCs are
obtained, the system enters the hypothesis-testing stage.
In this stage, the system checks for each SC, whether the
dataset violates the SC or not. For example, consider SC =
Model L Color and the dataset in Figure[3] The user expects
that Model and Color should have an independent relation-
ship. However, a x? hypothesis test on the data indicates
that Model and Color are highly correlated. The system will
mark Model and Color as erroneous columns. Section Ml be-
low discusses hypothesis testing process.

Error Drill Down. A user may want to drill down into
individual records so that she can understand why an SC
is violated. Therefore CODED provides an error-drill-down
component. The user chooses a violated SC and specifies
a threshold k. This component aims to return k records
that are most likely to cause the SC’s violation. Suppose
SC2 = Price L Fuel is violated. As will be shown in Section
if the user specifies k = 1, the system will return r4, which
is a cheap car with high fuel consumption. The user can
examine this record and may find out that unlike the other
cars, this is a used car. It is worth noting that given SCq
the user does not need to write a handcrafted rule like a
cheaper car tends to be more fuel-efficient.

3. PROPERTIES OF SCs

Before applying SCs to error detection, we need to inves-
tigate a number of basic properties of SCs. In this section,
we first present an inference system for SCs, and then study
two fundamental properties associated with SCs: (1) Con-
sistency: whether a set of SCs have conflicts; (2) Implica-
tion: whether a set of SCs imply (entail) another SC.

3.1 An Inference System for SCs

An inference system consists of a collection of inference
rules, where each rule is in the form of
SCy & SCs---

& SCn - SC’ﬂE’LUy

which states that if the left-hand side SCs hold, then the
right-hand side SC must hold. Having an inference system
is essential to solve the consistency problem. For example,
suppose we are given three constraints:

¥={SCi:AL B, SC;:ALC|B, SC3:AlLC}
Applying the rule (see Definition :
(ALB) & (ALCB) = AlC¢C,

shows that ¥ is inconsistent because SC; and SC> imply
-SCs.

For existing row-oriented constraints, FDs have a sound
and complete inference system that is known as Armstrongs
Axioms [4]. Wenfei et al. extend Armstrongs Axioms to
CFDs and prove that the new inference system is also sound
and complete [§]. Xu et al. develop a set of sound (but not
complete) inference rules for DCs [13]. A natural question is:
can we develop a sound and complete inference system for
SCs? In the following, we first introduce some background
knowledge about the well-known Graphoid Azioms |1§], and
then present our inference system derived from the axioms.

Graphoid Axioms. Geiger and Pearl [18] showed that
conditional independence statements satisfy the following
axioms.

DEFINITION 2. Let X,Y, Z, and W denote four disjoint
sets of random wvariables. The graphoid Axioms A are the
following:

Symmetry:
X1Y|Z << YLX|Z
Decomposition:
xuvwiz — {3147
Weak Union:

X1lYW|Z = XUY|ZW
Contraction:

(XJLY\Z)&(XJLW|YZ) = XULILYW|Z
Note that Z can be the empty set. For example, for the
symmetry axiom, we have X 1 Y =Y 1 X.

An Inference System for SCs. Graphoid Axioms A
are applicable to any conditional independence statement.
Since this paper only considers those conditional indepen-
dence statements with no more than three variables, we can
simplify A.

DEFINITION 3. Let A, B, C denote three random vari-
ables. The inference system G for SCs consists of the fol-
lowing rules.

Symmetry:

ALB|C < BldA|C

Contraction-weak-union-decomposition:

AlLC

(ALB) & (ALC|B) = {AJJ_B|C

T T T T F F F F
B T F T F T F T F
c T T F F T T F F

JC:W:Xemm 03 0.1 005 005 005 01 0.1 0.25

Figure 4: An example of a joint distribution that
satisfies ¥ = {A Il B, A Ll B|C}

We can prove that Definition [2]and Definition [3are equiv-
alent for SCs involving at most three random variables.
Therefore, we only need to consider the two inference rules
in G rather than all the rules in A. Lemmaformally proves
their equivalence.

LEMMA 1. For any set Z of SCs involving at most three
random variables, and any single SC v, we have that (i) if
Zrkawy, thenT g v; (2) if T bg vy, then T b4 v, where
Zta vy (resp. T tg «v) denotes that T implies v using A
(resp. G).

Proor. All the proofs of this paper can be found in Ap-
pendix. [J

We next discuss the soundness and completeness of the
new inference system G.

Soundness. Graphoid Axioms A have been proved to be
sound [34]. Since G and A are equivalent for SCs (Lemmall)),
we conclude that G is also sound.

Completeness. When Graphoid Axioms were first devel-
oped, they were conjectured to be a complete inference sys-
tem [34]. In 1990s, Studeny proved that the conjecture [3§]
was incorrect. However, Studeny’s proof assumes that each
independence statement is allowed to contain an arbitrary
number of random variables, thus it is still an open question
whether the system A4 is complete under the assumption that
each independence statement contains no more than three
variables. For this reason, we conjecture that when each in-
dependence statement contains no more than three variables,
Graphoid Azioms A are complete. If the conjecture is true,
Lemma [1| entails that G is complete.

3.2 Consistency and Implication

Being able to check whether a given set ¥ of SCs is con-
sistent or not is important because if ¥ is not consistent,
a user will get contradictory error-detection results. In the
following, we first formally define the consistency problem,
and then present a consistency-checking framework. In or-
der to apply the framework, the key is to solve the implica-
tion problem. Therefore, we define the implication problem
and propose an efficient implication algorithm. Intuitively,
if ¥ is consistent, it means that ¥ has no conflict. That is,
there exists a joint distribution that satisfies ¥. Definition []
presents a formal definition.

DEFINITION 4 (CONSISTENCY). Given a set ¥ of SCs,
let V' denote the set of random variables that appear in 3.
The consistency problem is to determine whether there exists
a joint distribution P(V') that satisfies every SC in X.

For example, consider ¥ = {A1L B, AJ B|C}. Since there
are three random variables in 3, we have V. = {4, B,C}.
As shown in Figure [we can construct a joint distribution
P(A, B,C) that satisfies X, thus ¥ is consistent. If we are

given ' = {A Il B, A Jl B}, it is impossible to construct a
joint distribution that satisfies X', thus ¥’ is inconsistent.

Counsistency-checking Framework. Geiger and Pearl [1§]
proposed a framework to solve the consistency problem.
They first divide ¥ into two disjoint sets Z and D, where
T (resp. D) represents the set of independence (resp. de-
pendence) statements in ¥. For each A € D, it checks
whether Z implies —\. If the answer is no for all A, then
3. is consistent; otherwise, it is not consistent. The cor-
rectness of the framework was proved in [18]. For example,
consider ¥ = {A 1l B, A B|C}. We have Z = {A 1L B}
and D = {A JL B|C}. We can see that D does not imply
-A = A BJ|C, thus X is consistent.

To apply the above framework, we aim to determine whether
an independence SC « can be inferred from Z using G. Def-
inition [5] formally defines the implication problem.

DEFINITION 5 (IMPLICATION). Given a set I of inde-
pendence SCs, and another independence SC ~y, the impli-
cation problem is to determine whether v can be inferred
from T using G, i.e., check whether Z g v holds or not.

Implication Algorithm. We propose an iterative algo-
rithm. The algorithm starts with Z* = Z, and then iter-
atively expands Z* with new SCs. At each iteration, the
algorithm checks which inference rule in G can be used to
generate a new SC, and then adds it to Z*. The algorithm
terminates when Z* cannot be further expanded. After that,
the algorithm checks whether v € Z* holds. If so, then Z
implies v; otherwise, Z does not imply ~.

EXAMPLE 1. Given a set of independence SCsZ = {A 1L
B, A1 C|B,B1C,C1E|D} over attributes M = {A, B,C, D,
E}. To compute T, we initially set Z* = I, and then apply
the implication algorithm.

Step 1: Constructing Hash Table. H = {{A,B},{B,C}}
will be generated according to the marginal SCs in %, i.e.,
Al Band B 1 C.

Step 2: Employing Inference System G. We check each con-
ditional SC in Z*. For SCi : A 1L C|B, we first check
whether {A, B} or {B,C} exists. Obuviously, we have both
of them in the H. Applying the contraction-weak-union-
decomposition inference rule in G, we can obtain three new
SCs: A1 B|C, B1 C|A, and A 1L C. We add them into
Z*, and hash A 1L C as {A,C} and add it into H.

Step 3: Repeating. Repeat Step 1 and Step 2 till there are
no more SCs that can be inferred. In this example, we even-
tually arrive at T* ={AL B, A1 C,B1 C,A 1l B|C,A 1
C|B,B1 C|A,C 1L E|D}.

To analyze the time complexity of the implication algo-
rithm, we answer two questions:

Q1. What’s the time complexity of generating a new SC?

Q2. How many new SCs can be generated in total?

For 1, consider the two inference rules in Definition[3} The
algorithm first checks whether the symmetry rule can be
used to generate a new SC or not. The time complexity
of this process is O(]Z*|). For the contraction-weak-union-
decomposition rule, a naive way is to enumerate every pair
of SCs in Z* and then check whether the rule can be used or
not. It needs O(|Z*|?) time. In fact, we can utilize a hash
table to reduce the time complexity to O(|Z*|). Specifi-
cally, we build a hash table for marginal SCs (e.g., A 1L B),

Algorithm 1: Consistency-checking Algorithm

Input: A set of SCs: X
Output: Consistent or not (YES or NO)

Divide ¥ into Z and D;

Use the implication algorithm to obtain Z*;
for A € D do

L if =\ € Z* then

Uk W N

L return NO;

=]

return YES;

and then for each conditional SC (e.g., A 1L C|B), we check
whether A 1l B or C 1L B exists in the hash table.

For @2, we seek to compute an upper bound for the num-
ber of newly generated SCs. The key observation is that for
any inference rule in G, its right-hand side will not introduce
any new variable that is not on the left-hand side. For ex-
ample, consider the contraction-weak-union-decomposition
rule. The left-hand side has three variables {A, B,C'}, and
the right-hand side has the same three variables, without
introducing any new variable.

Based on this observation, we find that there is a rela-
tionship between |Z| and |Z*|. That is, |Z7| < 12|Z|. If we
consider symmetry SCs (e.g., A 1L B and B 1L A) are the
same, then |Z*| < 6|Z|. We give the intuition below, and
provide a formal proof in Lemma[2]

We say SC;i covers SCsy if the variable set of SC; is a
superset of the variable set of SCy. For example, suppose
SCi: A 1L B|C. Then, it covers 6 different SCs:

ALB, ALC, BLC, ALB|C, ALC|B, B1C|A

The above observation implies the SCs in Z can cover all the
SCs in Z*. Since each SC € Z can cover at most 6 different
SCs, then we have that |Z*| < 6|Z|. Lemma [2 formally
proves this result.

LEMMA 2. Given a set T of independence SCs, let T~
denote the set of all the independence SCs implied from T.
Then, we have |Z*| < 6|Z].

Consistency-checking Algorithm. We can develop a
consistency-checking algorithm using the implication algo-
rithm. See the pseudo-code in Algorithm [I] The algorithm
first computes Z*. Then, for each A € D, it checks whether
=\ € Z* holds or not. If no for all A\, then ¥ is consistent;
otherwise, 3 is inconsistent.

EXAMPLE 2. Given a set of SCs ¥ = {A 1l B/A 1
C|B,AJLC,B1LC,CJLDCLUEDEIF}, we check
the consistency of X as follows:

Step 1: Dividing. Divide ¥ intoZ = {A1L B, A1 C|B,B 1
C,CLE|D}andD={AJLC,CULDEILF};

Step 2: Computing Z*. By employing the implication algo-
rithm on Z, we are able to acquire T*. Similar to E:mmple.
we can obtain T* ={A 1L B,AL C,BI1 C,A 1l B|C,A L
C|B,B1 C|A,C 1L E|D}.

Step 3: Checking the Implication. Check that whether there
exists A\ € D such that =\ € Z* holds. We see that -\ :
ALl C isinI*, thus ¥ is inconsistent.

Time Complexity. The implication algorithm needs O(|Z7|)
iterations, and each iteration needs O(|Z7|) time. The total

time complexity is O(|Z*|?) = O((6|Z])*) = O(]Z|?). For
the consistency-checking algorithm, the main bottleneck is
spent in running the implication algorithm to compute Z*
(see Line 2 in Algorithm , thus the total time complexity
is O(|Z]%).

Resolving Inconsistency. Once an inconsistency is de-
tected, we help the user to resolve the inconsistency. Specif-
ically, suppose the consistency-checking algorithm finds a
conflict: Z implies A 1L B but A)l B is in 3. We ask the
user to check which one is correct. If the former is correct,
then A I B should not be in X, and we remove A L B from
Y. Otherwise, we show the derivation of A Il B from Z and
then ask the user to remove the incorrect SCs involved in
the derivation.

4. DETECTING SC VIOLATION

Evaluating whether a dataset satisfies an independence
constraint is a classic application of statistical hypothesis
testing. Hypothesis testing has been researched by statisti-
cians for over a century, and is well covered in a number of
sources |42, Ch.10]. To make the paper self-contained, we
will briefly review the basic ideas. Note that in traditional
hypothesis testing, the assumptions are that data is clean
and a hypothesis might be wrong. Thus, their use case is
not to apply hypothesis testing to detect data errors. Our
contribution is to bring the well-studied statistical hypoth-
esis testing to this new (error detection) problem domain.

A hypothesis test T is a procedure that takes as input a
dataset D and outputs either 0 (“the hypothesis is rejected”)
or 1 (“the hypothesis is not rejected”). In classic scientific
methodology, a deterministic hypothesis is rejected if it is in-
consistent with the data. A statistical hypothesis is rejected
when the probability of the data entailed by the hypothe-
sis is below a user-specified threshold. Most hypothesis tests
are based on test statistics. A test statistic ¢(D) returns a
real number for a given data set. Intuitively, the statistic is
an aggregate function that summarizes the degree to which
the dataset violates the independence hypothesis X 1 Y| Z.
The p-value specifies the probability of observing a value at
least as great as the test statistic for the dataset, assuming
the independence constraint:

p(D) = P(t > ¢(D)|X LY|Z).

In most applications, the user specifies a threshold « (e.g.
5%), known as the significance level, and rejects the hy-
pothesis if p(D) < a. This procedure ensures that the prob-
ability of a false positive (rejection) is below a.

Which test statistics are suitable for independence hy-
potheses depends on the data type. In the following, we
present commonly used statistics for the data types we con-
sider in this paper. Due to the space constraint, we de-
scribe independence tests only for unconditional indepen-
dence X 1 Y. In the case where the conditioning variable
set Z is discrete, the unconditional test is applied for each
setting Z = z.

4.1 Categorical/Discrete Data

Given an assignment X = «, each datapoint satisfies the
assignment or not. The observed count is the number
Np(X =) of datapoints that satisfy it. If the sets X and
Y were completely independent, the observed counts would
equal the product of the marginal counts; these products

are called the expected counts: EFp(X = z,Y = y) =
Np(X =) x Np(Y = y). Test statistics for independence
among discrete variables measure the difference between ex-
pected and observed counts. The most widely used statistic
for categorical data is Pearson’s chi-square statistic () in-
troduced in 1900. It sums the squared differences, weighted
inversely to the expected counts:

< [No(X==,Y=y) - Ep(X =a,Y =y)]?
QD)=>" - = .
o Ep(X =x,Y =vy)

The distribution of the chi-square statistic can be approx-
imated by the x? distribution. That is, we have p(D) ~
fg&o)) Xi(t)dt where k = (rx —1) x (ry —1) and rx resp. ry
is the number of possible assignments for X resp. Y. We
use the chi-square statistic for testing independence among
discrete (categorical) variables.

4.2 Numerical Data

We discuss independence tests for two numerical variables
X and Y. The main idea is to consider the degree to which
X and Y vary together: whether an increase in X tends
to correspond to an increase or decrease in Y. A number
of different formulas have been developed for capturing this
idea. Perhaps the best known is Pearson’s correlation co-
efficient p. The correlation coefficient measures the degree
to which X and Y are linearly related. The disadvantage
of the p statistic is that it is reliable only under certain as-
sumptions, including that the relationship between X and
Y is approximately linear. Since in the error detection prob-
lem, we have very little a priori knowledge of the exact form
of the statistical dependence between X and Y, we exam-
ine statistical tests that make minimal assumptions about
the nature of the dependence. Such tests are called non-
parametric, since they do not assume that the dependence
can be characterized by a fixed set of parameters known a
priori before data observation.

A well-established set of non-parametric tests for depen-
dence are known as rank correlations. Rank correlations
are based on a straightforward intuition: Each variable de-
fines an ordering over data points, and if the variables are
associated, the X-ordering should carry information about
the Y-ordering. In our car running example, if the most
expensive car is also the most fuel-efficient, the second-most
expensive car is the second-most fuel-efficient, ..., and the
cheapest car is the least fuel-efficient, then there is a positive
relationship between price and fuel efficiency. A rank corre-
lation test, therefore, considers how similar the X-ranking is
to the Y-ranking. A number of similarity metrics for rank-
ings have been proposed; the most common non-parametric
metric is Kendall’s 7.

The definition of the 7 statistic is as follows. Consider n
datapoints with two features D = (z1,y1) ..., (Zn,yn). For
now we assume there are no ties, meaning that all datapoints
have different values for X and different values for Y. Then
for two datapoints (z;,v;) and (z;,y;) with ¢ # j, there are
two possibilities.

1. ; > zj and y; > y;, or x; < x; and y; < y;. In this
case the two variables agree on the ordering of 7 and
j and the pair (i,5) is concordant. The number of
concordant pairs is denoted as n.(D).

Table 2: Supported data types and default hypoth-
esis testing methods

[A [B [C [Default Test |
Categorical | Categorical X X2 Test
Categorical | Categorical | Categorical X2 Test
Numerical Numerical X T Test
Numerical Numerical | Categorical T Test

2.2 > x5 and y; < yj, or &; < x; and y; > y;. In
this case the two variables disagree on the ordering of
i and j and the pair (7, j) is discordant. The number
of discordant pairs is denoted as nq(D).

The 7 statistic is then computed as
ne(D) — na(D)

(2)
The intuition behind the 7 statistic is that it represents the
difference in the proportion of concordant pairs and the pro-
portion of discordant pairs. To compute p-values, it is pos-
sible to define a rescaled denominator, still a function of
only n, such that the rescaled statistic has an approximately
Gaussian distribution.

If a dataset contains tied datapoints, a modified 7, statis-
tic can be used. Essentially, 7, computes the difference in
the number of concordant and discordant pairs without ties,
and rescales the denominator to achieve an approximately
Gaussian distribution. In our experiments below, we use
7, for datasets with ties, but still refer to 7 for simplicity.
Table 2] summarizes the hypothesis testing method and the
data types supported by them.

(D) =

5. ERROR DRILL DOWN

In this section, we study how to drill down into individual
records that are most likely to cause the violation of an SC.
We first propose a general framework in Section [5-I] and
then propose two efficient top-k algorithms for categorical
data and numerical data, respectively, in Section [5.2]

5.1 Error-Drill-Down Framework

There are two reasons that motivate the drill-down task.
Firstly, an SC violation helps a user to detect which columns
have errors, but it does not tell the user which values in the
columns may contain the errors. For example, suppose a
user specifies an SC: Model 1L Color on a car dataset. After
a hypothesis test, she finds that Model and Color violate the
independent relationship on the dataset. At this point, she
knows that there may be some errors in the Model and Color
columns. We want to help her to locate the errors in the
columns so that she can figure out why the violation happens
and then fix the errors.

Secondly, sometimes a dataset has errors, but the errors
are not of sufficient magnitude to violate a (in)dependence
relationship among columns. We want to leverage SCs to
detect the errors even in this situation. For example, con-
sider an SC: Fuel JL Price. Suppose that after a hypothesis
test, the test result indicates that that Fuel and Price are
dependent (i.e., no violation) but the dependent relation-
ship is weaker than what she expects. We want to help her
investigate why the correlation is weaker than expected.

To this end, we develop an interactive error-drill-down
framework. A user specifies an SC and a hypothesis test-
ing method (e.g., 7 test). The framework first applies the

hypothesis test to the data, and checks whether SC is vio-
lated. If yes, it will return k£ records whose column values
are most likely to cause the violation. If no, a user can check
whether the returned statistic (e.g., the 7 statistic) is larger
or smaller than her expectation. Suppose the 7 statistic
is smaller than what she expects. Then, she can use the
framework to identify k£ records whose column values are
most likely to cause the unexpected result.

Central to this framework is the top-k error detection prob-
lem. Let D denote a dataset, and S denote a hypothesis
testing statistic (e.g., the 7 statistic or the x? statistic).
Without loss of generality, we consider only the case where
the statistic is larger than a user’s expectation. In this situ-
ation, the goal is to find k records from D such that if they
were removed, the test statistic would decrease the most.
Definition [f] formally defines the problem.

DEFINITION 6
Given a dataset D, an SC, a hypothesis testing statistic S,
and a threshold k, we aim to identify a set of k records,
denoted by AD, such that S(D — AD) is mimized, i.e.,

argmin S(D — AD) st |AD|=k

ADCD
A naive solution is to enumerate all (‘f‘) possibilities, and
then return the best result. This is prohibitively expensive.
Even with a modest data size of 10,000 records, assuming a
reasonable k = 10, this approach would require enumerating
(*90%) = 2.7x10%® possibilities. Therefore, we adopt greedy
algorithms to reduce the cost. We propose two greedy al-
gorithms, K strategy and K¢ strategy. Intuitively, the K
strategy seeks to directly identify the best k records; the K°
strategy seeks to remove the worst n — k records and then
return the remaining k records as a result.

K Strategy. The algorithm first selects the best record
d* from D such that if it was removed, the statistic can
decrease the most. The algorithm removes d* from D, and
then repeats the above process to select the best record from
D—{d*}. After k iterations, the top-k records are identified.

K¢ Strategy. The algorithm first selects the worst record
d’ from D such that if it was removed, the statistic can
increase the most. The algorithm removes d’' from D, and
then repeats the above process to select the worse record
from D — {d’'}. After n — k iterations, where n = |D|, the
remaining k records are returned.

Remark. The K strategy is more efficient than the K¢
strategy because the former only needs to select k& records
but the latter needs to check n — k records. In terms of
effectiveness, the K strategy often leads to a better objective
value (i.e., smaller S(D — AD) because it directly optimizes
for that value. The K€ strategy is particularly useful in
identifying a set of k records that are highly correlated with
each other, thus it is more suitable to detect errors for the
violation of an independence SC.

5.2 Top-k Error Detection Algorithms

We describe top-k error detection methods for the two
statistics we examine in this paper, x> (Kendall’s) 7. We
discuss how to implement the K strategy for them efficiently.
The same implementation can be extended to the K¢ strat-
egy trivially.

5.2.1 Categorical Data

(Top-k INDIVIDUAL ERROR DETECTION).

BMW X1 Toyota Prius

192 200
213 189
54 369

Figure 5: Group counts of Model and Color

We use x? test as default method to detect errors for cat-
egorical data. We propose an optimization technique to re-
duce the time of selecting the “best” record at each iteration.
The key observation is that if two records have the same val-
ues on the tested columns, there is no difference to choose
either one of them. Therefore, we can group the records
based on the tested columns, and only need to spend time
in deciding which group (rather than which record) should
be selected at each iteration.

For example, consider an SC: Model L Color and a dataset
similar to Figure [3| but with more records. We first group
the records based on the tested columns (i.e., Model and
Color). Suppose there are 2 car models and 3 colors. Then,
there will be 6 groups in total. Figure [5| illustrates the 6
groups, where the number in each cell represents the total
number of the records that belong to that group. Each cell
has a x? value z. At each iteration, the K strategy only
needs to determine which group should be selected and then
randomly picks one record from that group based on the
statistic z. This optimization technique significantly reduces
the computational cost since the number of groups could
be orders of magnitude smaller than the total number of
records.

5.2.2 Numerical Data

We discuss how we employ the framework for numerical
data with the 7 test. We formally define the problem as
follows.

DEFINITION 7
a dataset D, an SC, and k, the T-test-based error detection
problem tries to find a subset AD of records from D that
contribute the most to the violation of the SC, i.e.,

ne(D — AD) —ng(D — AD)
|D\2—k)

argmin st. |AD|=k

ADCD (

For simplicity, we denote the count of concordant pairs,
discordant pairs, and tied pairs in D — AD as n., ng, and
n¢, respectively. We omit the denominator of the objective
function since it is a constant function of n only. The K
strategy works as follows. At each iteration, it calculates
the benefit of each record: Given a record r, find all the
pairs that contain the record, and then calculate the sum of
the weights of these pairs, denoted by benefit(r). At each it-
eration, we select the record with the biggest benefit. Once
a record is selected, we need to update the benefit of all
the remaining records. We use a priority queue to main-
tain the top-k records. Algorithm [2|shows the pseudo-code.
Example [3] illustrates the algorithm.

ExamMpPLE 3. Following the running example in Figure@,
we apply the tau testing method to detect data errors w.r.t.
SC1 = Price JL Fuel, and let k = 1.

(T-TEST-BASED ERROR DETECTION). Given

Algorithm 2: 7-test-based error detection algorithm

Input: An SC, Dataset D, k
Output: k records

1 Q + 0; // Priority Queue
2 R+ 0; // Returned List
3 W <« 0; // A hash table that maps a pair to its weight
4 benefit(r) =0 for r € D ;
5 // Initialization
6 for r; € D do
7 for riy1 € D do
8 if r;,r; are concordant then
9 benefit(r;) +=2;
10 benefit(riy1) +=2;
11 W(Ti,Ti+1) =2 ;
12 else if r;,r; are tied then
13 benefit(r;) +=1;
14 benefit(riH) +=1;
15 W(Ti,f‘i.H) =1;
16 Q.push((r;, benefit(r;)));
17 // Iteration
18 for i =1 to k do
19 Add Q.top() to R;
20 Update @Q; // Update the benefit of each record r € Q
that has a non-zero weight with r; (W (r,r;) =2 or 1)

21 return R;

Step 1: Initialization. We calculate the benefit of each record
on the entire dataset, and obtain the priority queue Q@ = {r4 :
0,75 : 9,77 : 9,71 : 10,72 : 10,78 : 10,73 : 12}. Intuitively,
the benefit of a record (e.g., benefit(rs) = 9) means that if
rs was selected and remowved, the objective value would be
decreased by 9.

Step 2: Removing and Updating. Return the top element of
Q, in this case r4. Then remove r4, and update the prior-
ity queue. Since r4 shares a zero weight with every other
record, the benefit of each record keeps unchanged. The up-
dated queue will be Q@ = {rs : 9,77 : 9,71 : 10,72 : 10,75 :
10,73 : 12}.

Step 3: Repeating Step 2. We repeat Step 2 until k records
are returned. Here, since k =1, only r4 will be returned.

Efficiency Analysis. The main computational bottleneck
of the K strategy is the initialization phase. Consider a
dataset with two columns: D = (z1,y1), ", {Tn,Yn). We
need to initialize the benefit of each record. For a single
record, this requires comparing with the other n —1 records,
leading to a time complexity of O(n). Therefore the naive
implementation of the initialization phase needs O(n?) time.
This does not scale to large data sets (e.g. 1M records).
We find that the time complexity of the initialization
phase can be reduced to O(nlogn) with the help of a seg-
ment tree. A segment tree is a tree data structure, where
each node stores information about a segment. It allows
for inserting a segment and querying a segment with both
O(log n) time. To apply this idea, we first sort D by column
X and then scan the records in D based on this new order.
For each record (z;, y;), we can get the number of concordant
pairs of the record by querying the segment of (—o0, y;), and
the number of discordant pairs by querying the segment of
(yi, +00). Once the two numbers are obtained, we insert a

segment [y;, y;] (representing a single point) to the tree. We
need O(logn) time to process each record, thus the total
time complexity is O(nlogn). With this optimization, er-
ror drill-down can handle a dataset with millions of records.
Further details are in Appendix.

6. EXPERIMENTS

We evaluate the effectiveness and efficiency of our meth-
ods on real-life datasets with both synthetic errors and real
errors. Specifically, we examine (1) the computational ef-
ficiency of the consistency-checking methods, (2) the effec-
tiveness of our method compared to the state-of-the-art ap-
proaches on detecting synthetic and real-life errors, and (3)
the scalability of our error-detection method.

6.1 Experiment Setup

Datasets. We used four real-life datasets to evaluate our
approaches.

(1) BOSTUI\EI. The Boston dataset was taken from the
Boston Standard Metropolitan Statistical Area (SMSA) in
1970. This dataset was first used in [19] to study the rela-
tionship between clean air quality and household’s willing
to pay. There are 506 instances, and each instance has 14
attributes. We used 6 attributes: Distance to CBD area-
Distance (D), Nitric Oxides Concentration-N_oxide (N), and

Crime Rate-Crime (C), Black index of population(B), Rooms(R)

and Tax Rate(T).

(2) CARE|. The Car Evaluation dataset is from UCI Ma-
chine Learning repository. This dataset contains seven at-
tributes. We used 4 attributes: Buying price(BP), Car Class
(CL), Doors(DR) and Safety level(SA).

(3) SENSUY%. The Sensor dataset collected the sensor re-
ports from the Berkeley/Intel Lab. The dataset has more
than 2 million records, containing the humidity and temper-
ature reports from 54 different sensors.

(4) HOCKEYEI The Hockey dataset collected the records of
each NHL game from 1998-2010. It has more than ten
attributes which variously describe player attributes and
player performance statistics for a season.

Simulated Errors. In Section [I} we introduced two types
of errors: sorting error and imputation error (see Figure|l)).
We simulated them on the Boston dataset. We also simulate
the Imputation Error on the CAR dataset.

To simulate the sorting error on column A = {a1,a2, - ,an},

we first select a sub-sequence of A, then sort them in an as-
cending order, denoted by A" = {aj, -+ ,a}} (a;i < ajy; <
--- < a%). After that, we put the sorted values back to the
original column, i.e., A = {a1, -
We say that A has sorting error with the error rate of %
Note that the sorting error may either make two columns A
and B more independent or less independent. If the orig-
inal data is randomly shuffled, then A and B tend to be
more independent; if the original data is sorted by B, then
A and B tend to be less independent. We used the former
for dependence SCs, the latter for independence SCs.

To simulate the imputation error on column A = {a1, a2, - - -
we assume that A has a set of m missing values (i.e., error
rate = 7¢), and the missing values are replaced by the mean

2 https://www.cs.toronto.edu/ delve/data/boston/bostonDetail.html

3 https://archive.ics.uci.edu/ml/datasets/Car+Evaluation.
4http://db.csail.mit.edu/labdata/labdata.html
“https://github.com/liuyejia/Model Trees_Full_Dataset

! /
y Bi—1, Qgyc =t 5 Ay A1, 7a’ﬂ}'

Table 3: Constraints used by different error detection methods

[Attributes [CODED | Denial Constraints
Rooms(R), Black Index(B) R1 B X
N_oxide(N), Distance(D) NI D For any two records r1 and ro, if r1[N] > ra[N], then r1[D] < r3[D]
N_oxide, Black Index, Tax rate (T) NUB|T X
Tax rate, Black Index, Crime(C) TLB|C For any ry and ro with r1[C] = r2[C], if r1[T] > ra[T], then r[B] < r2[B]
Buying Price(BP), Class(Cl) BP L Cl X
Safety(SA), Doors(DR) SA 1L DR X
Temperatures (T) of Sensor 8 and Sensor 9 Tz) To For any rq and ro, if r1[T8] > ro[Ts], then r1[To] > r2[To]
Games(G), Goal Plus-Minus(GPM), Year(Y) | GIL GPM |Y | x

value of column A. Let A denote the new column. Like
the sorting error, the imputation error may either make two
columns more independent or less independent. If the miss-
ing values are randomly selected, A and B tend to become
more independent; if the missing values are selected based
on a range condition on B, A and B tend to become less
independent. We used the former (latter) for dependence
(independence) SCs.

We also explored the combined impact of the two error
types because combining errors is not rare in practice. Our
combination error consists of 80% sorting error and 20%
imputation error.

Real-life Errors. For the Sensor dataset, we first aggre-
gated the mean value of sensor reports by hours. Reported
mean temperatures higher than 60 degrees or lower than 15
degrees were assumed to be erroneous and removed, as in
[32]. We replaced these missing values by mean value impu-
tation to obtain an input dataset. We adopted the method
in [26] for defining outliers: Keep a time window of neigh-
boring sensors, and label as an outlier any sensor report
that deviates by more than a factor of 3 from the region’s
mean value. After the pre-processing, the goal becomes to
to detect the imputed values and the outliers as erroneous.

For the Hockey dataset, the dataset creators performed
imputations to support machine learning analysis. The im-
putations were found by comparing their dataset with the
original data from hockey data websites. We aim to detect
the imputed values.

Error-Detection Approaches. We compared CODED
with two state-of-the-art error detection approaches, De-
nial Constraints(DC) [12] and DBoost [31]. Table [3| sum-
marized the constraints used by CODED and DC. For the
CODED hypothesis testing, we used the x? test for categori-
cal data, and the 7 test for numerical data. We implemented
the error-drill-down framework, and adopted the K strategy
for dependence SCs and the K€ strategy for independence
SCs. DC is a constraint-based error detection approach.
We counted the DC violations of each record, and returned
the top-k records that involve the most number of viola-
tions. DBoost is an outlier detection approach. We used an
implementation available on-linﬂ We applied DBoost with
three models: GMM, Gaussian and Histogram. For categor-
ical data, we employed the bin width that achieves the best
f-score results. For numeric data, we employed Gaussian
and GMM with the mixture parameter n_subpops threshold
set at 3,0.001, and the statistical epsilon to be 0.

Quality Measurement. We used Precision@K, Precision,
and Recall to measure the quality of error-detection ap-
proaches. Precision is the ratio of the number of correctly
detected records to the number of total returned records, Re-

6https: //github.com/cpitclaudel/dBoost

10

(a) Varying # of Independence SCs (b) Varying # of Dependence SCs

0125 0.5 Times —+— 05 0.5 Times —+— Jai
- 0.1 1 Times —%— - 04 1 Times —%—
[2 Times —&— ,E{ [2Times —H—
E 0075 { E o3 A
[0} / [} /
£ 0.05 e 02 4
F 0025 F oo A
0 0 —
0 10 20 30 40 50 0 10 20 30 40 50

of Independence SCs (*10) # of Dependence SCs (*10)

Figure 6: Time for consistency checking of SCs

call is the ratio of the number of correctly detected records
to the number of total erroneous records. Precision@K is
the precision among the k£ returned records.

6.2 Experimental Results

Exp-1: Efficiency of Consistency Checking. We exam-
ined the efficiency of the consistency-checking algorithm.
Note that consistency checking is not related to data. There-
fore, randomly generating SCs is appropriate to test the
scalability of our consistency-checking algorithm. We ran-
domly generated |Z| independence SCs and |D| dependence
SCs from |D|/2 variables. We measured the runtime of con-
sistency checking by varying |Z| and |D|, respectively. The
results are shown in Figure [} Each figure has three lines,
which represent different ratios of |Z| to |D|.

We make two interesting observations. First, our consistency-
checking algorithm scales well by varying either |Z| or |D|.
Even with 500 independence (dependence) SCs, the algo-
rithm can terminate within 0.5 ms. Second, the efficiency is
more related to |Z| than |D|. This is because the consistency-
checking algorithm proposed comprises two parts: implica-
tion and checking, where the implication algorithm needs
O(|Z?)) time, which typically dominates the whole process.

Exp-2: Impact of Errors. To illustrate the impacts of data
errors on independence and dependence relationships among
variables, we varied the rates of sorting error, imputation
error, and combination error, and tested how the 7 value
changed accordingly.

Figure |Z| shows the results w.r.t. an independence SC.
All errors tend to raise the tau value, indicating a viola-
tion of the independence SC. The sorting error has a consis-
tent effect on the tau value (Figure[7(a)). Imputation error
has a strong negative impact at lower error rates, then the
tau value reverses (Figure [7{b)). This can be explained as
follows. Starting with independent data, imputing a con-
stant value induces correlations among the two columns.
Once many data points have been imputed with a constant
value, the correlation decreases until one column contains
the same constant everywhere, implying zero correlation be-
tween them.

Figure [§] shows the results for a dependence SC. We can
see that as more errors were generated, the 7 value de-
creased, i.e., the columns became more independent. With

(a) Sorting Error

(b) Imputation Error

(c) Combination Error

(0] [0} ()
% 0.8 R/B = % 0.8 R/B = % 0.8 R/B =
Z 06 Z 06 Z 06
© /— © ©
=04 -/ =04 - =04
> o2 3 o2 3 o2
2 2 _ 3
2 0 2 0 2 0
0 0.2 0.4 0.6 0.8 0 02 04 06 038 0 0.2 0.4 0.6 0.8
Error Rate Error Rate Error Rate
Figure 7: Different error impact on independence SCs (Boston dataset)
(a) Sorting Error (b) Imputation Error (c) Combination Error
S os S os 3 o8
= NG — = NG — = NG —
Z 06 Z 06 N2 Z 06
© © ©
04 ™ Eo04 ~ =04 N
5 o2 ASNTN 5 o2 O\ 2 o 1\
(o] (o] o
i AN i =
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
Error Rate Error Rate Error Rate
Figure 8: Different error impacts on dependence SCs (Boston dataset)
(a) Sorting Error (b) Imputation Error (c) Combination Error
T [coDED-p m— [CoDED-P mm— _ CODED-P
T 08 8 o0s K
(5] (5] (¢}
% 0.6 |- DBoost-R £x<=I D\C: 0.6 |- DBoost-R £x<= n\c:
o o o
@ 04 B 04 @
(8] [&] [
© o2 2 o2 ol
a a o

Figure 9: Effectiveness of error

Precision/Recall

0.

@

0.6

0.4

0.2

Minor

Moderate

Error Rate Level

(a) Sorting Error

Major

CODED-P
CODED-R £==%
- DBoost-P mm—
DBoost-R £===1

Precision/Recall

0.8

0.6

0.4

0.2

Minor

Moderate

Major

Error Rate Level
detection methods for dependence SCs (Boston dataset, K = 50)

(b) Imputation Error

CODED-P
CODED-R £==%1
- DBoost-P mm—
DBoost-R £===1

Minor

Moderate Major

Error Rate Level

(c) Col

mbination Error

Minor

Moderate
Error Rate Level

Minor

Major

Moderate
Error Rate Level

CODED-P mmmm
= CODED-R £&==<1
g 0.8 | DBoOSt-P m—
to) DBoost-R £===1
T o6
c
o
5 04|
o
2 o2}

o
0

Moderate
Error Rate Level

Minor

Major

Major

Figure 10: Effectiveness of error detection methods for independence SCs (Boston dataset, K = 50)

the error rate at 0.8, the 7 value approached zero, indicating
an independence relationship.

Exp-3: Evaluation of Error-Detection Approaches. We

compared CODED with existing error-detection methods on
the Boston dataset. For dependence SCs, we compared with
DC and DBoost; for independence SCs, since DC cannot
express independence relationships, we compared only with
DBoost. We considered all four common forms of SCs: (1)
RUB; 2)NJLD; By NLB|T; 4 TLB]|C, as
summarized in Table Bl
R1 Band N D. Figurel?land Figureshow the results
for R B and N JL D, respectively. We consider three error
levels, depending on the average error rate: minor error
1% — 20%, moderate error = 20% — 45%, and major error
50% — 80%. We set k = 50, and reported the corresponding
precision and recall in these figures.

We first examine CODED’s performance. CODED’s pre-
cision increases with the error level. The reason is that

11

when there is a larger portion of errors, the degree of de-
pendence/independence changes more, thus it is easier for
CODED to detect violations. In terms of recall, CODED’s
decreases with the error level. This is because that we set
k = 50 for all error levels. In terms of error types, CODED
performed averagely good across all error types.

We next compared the performance of CODED, DC and
DBoost. As shown in Figure [J] and Figure [[0] CODED
outperformed the other two approaches. DC did not perform
well because the specified denial constraint (i.e., if r1[N] >
rg[N], then r1[D] < r2[D]) did not always hold, which led
to many false positives. DBoost calculated correlations from
dirty data, and then leveraged the calculated relationships to
detect errors. However, the errors in the data led to errors in
the estimated correlations. In comparison, CODED employs
SCs specified by the user, not estimated from the data.

To compare CODED, DC and DBoost succinctly, we re-
ported their F-score (the harmonic mean of precision and

(a) Sorting Error

25

50 75

K

100 125 150 175 200

(b) Imputation Error

25 50 75

100 125 150 175 200

K

(c) Combination Error

cénsg J— céogg B cénsg —

0-8 " pBoost 0-8 | pBoost 0-8 " bBoost
< <4 o
S 0.6 - S 0.6 S 0.6 =
P 04 P 04 P 04 —
w — w L L _—

0.2 0.2 0.2

o et e ap—

25

50

75

100 125 150 175 200

K

Figure 11: Effectiveness of error detection methods for dependence SCs by varying k (Boston dataset)

(a) Sorting Error

CODED ——

(b) Imputation Error

CODED ——

(c) Combination Error

CODED ——

o 0.8 | DBoost // o 0.8 | DBoost o 0.8 | DBoost - —
8 0.6] 0.6 - g 0.6
¢ 04 L 04 ¢ 04 —
w L — w _— — w _——
0.2 — 0.2 0.2 |7
_—— — o —
25 50 75 100125150 175200 25 50 75 100125150 175200 25 50 75 100125150 175200
K K K

Figure 12: Effectiveness of error detection methods for independence SCs by varying k (Boston dataset)

(a)lmputation Error(dependence SCs) (b)Imputation Error(Independence SCs) (a) Varying K (b) Varying Data Size
1 q T 1 ey ; r IONE:] ; @ 05+
CODED —— CODED —— > CODED —— > CODED ——
0.8 - DBoosf 0.8 |- DBoosf g 6 g 100
e 5 — 2 X — [= E 5
5 06 5 06
3 o4 7 3 04 o é ‘ -§ 50
w — w — 3 2 3 25
02 [0.2 8]
= Re 3 0 I o
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200 0 50 100 150 200 0 025 05 075 1
K K K # Records(Million)

Figure 13: Effectiveness of error detection methods
for categorical data (Car dataset)

recall) under different K values (moderate error level). Re-
sults are shown in Figure 11| and Figure [12|for H 1 B and
N JL D, respectively. We can see that CODED achieved
significant higher F-score than DC and DBoost for all set-
tings. However, we also notice that CODED’s performance
is not as stable as the other two approaches across different
error types. CODED performed better for sorting error and
combination error, where the average F-score is 0.6 and the
max f-score is around 0.8. But for imputation error, the av-
erage F-score and the max F-score decrease to 0.5 and 0.6,
respectively. As we explained above, if the errors have a
small impact on SCs, the power of using SCs to detect the
error decreases.

N 1 B |T and T)L B | C. We also examined the effective-
ness of CODED for conditional independence and condi-
tional dependencies, with moderate error level. The results
are very similar to non-conditional cases (see Appendix for
more detail).

Exp-4: Effectiveness on Categorical Data. So far, we
have only focused on numerical data using the 7 test. Next,
we use the x? test and evaluate the effectiveness of CODED
on categorical data. We selected two SCs (BP JL Cl and
SA 1 DR) on the Car dataset. DC is not applicable here be-
cause there are too many violations for the feasible DCs that
we constructed. We compared the performance of CODED
and DBoost at the moderate error level. Figure [[3] shows
the results. Due to the space limit, we just focus on the im-
putation errors in this experiment. The average F-score of
CODED and DBoost are 0.45 and 0.24, respectively. Similar
to exp-3, CODED outperforms DBoost in terms of f-score
in both independence SC and dependence SC.

Exp-5: Scalability. We evaluate the scalability of CODED
in terms of error drill down. We replicated the Boston

12

Figure 14: Scalability of CODED (Boston dataset)
dataset to enlarge its data size, and chose a dependence

SC N L D. We examined the performance of CODED by
varying k and n (# of records). The results are shown in
Figure

In Figure a), we set # of records to 10,000, and re-
ported the execution time by varying k from 0 to 200. It
can be found that the execution time grows linearly. Re-
call that the time complexity of the K strategy is O(nlogn)
for initialization, and is O(knlogn) for selecting k records.
The results are consistent with the complexity analysis, and
demonstrates the scalability of CODED w.r.t. k.

In Figure[T4{b), we fix k = 50, and explore the scalability
of CODED with different data sizes. The computation time
of CODED scales well w.r.t. data size. CODED took less
than 1 min (60 seconds) when there are 0.6 million records,
and took around 2 min where there are 1 million records.

Exp-6: Effectiveness with Real-life Errors. We evalu-
ate the performance of CODED on the datasets with real-
life errors.

Sensor Dataset. Neighboring sensors tend to report sim-
ilar temperatures, which means that their reports of the
temperature should be dependent. The constraint is sum-
marized in Table @ The results are shown in Figure

The average precision of CODED, DC, and DBoost were
0.93, 0.65 and 0.47, respectively. Unlike the other two meth-
ods, the precision of CODED increased continuously, and
maintained a high precision around 0.95. For Recall and F-
score, all three approaches increased continuously. CODED
outperformed the other two methods with a higher increas-
ing speed. Recall that the dataset has two types of errors.
We conclude that CODED has the potential ability to detect
diverse error types.

Hockey Dataset. For the Hockey dataset, the Goal plus-
minus column contains many missing values from 1998 to

(a) Precision Varying K

(b) Recall Varying K

(c) F-score Varying K

1 1

1

coogg . CODDég —_
g 0.8 _ 0.8 g8 ® 08 | pgoost _—
g 06 \— S 06 - g o6 =
o 04\ £ 04 — ? 04
T oo CoDED — | 0o = Lo, _—
O DB‘OOSt : O j/ 0 —
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
K K K
Figure 15: Detecting real-world errors on the Sensor dataset
(a) Precision Varying K (b) Recall Varying K (c) F-score Varying K
! [copep — ! [copep —
- 0.8 0.8 |- DBoost (0.8 |- DBoost
k) Y — = o
g 06| ~ g 06 5 06
3 04 / 2 o4 P 04
& o2 CODED —— - 0.2 0.2 =
DBoost
0 : 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
K K K

Figure 16: Detecting real-world errors on the Hokey dataset

2004. The curators of the dataset imputed 0 to replace
the missing entries in order to build machine learning mod-
els. From domain knowledge, we know that the columns
Games(G) and Goal Plus-Minus(GPM) should be indepen-
dent given Draft Year(Y), because the total number of pro-
fessional games played by a player is independent of their
Plus-Minus before they joined the professional league. How-
ever, the imputations made these two columns more depen-
dent. We used CODED and DBoost to detect these er-
rors. The results are shown in Figure We can see that
CODED outperformed DBoost in terms of precision, recall,
and F-Score. In particular, when k = 50, DBoost only got
a precision of 0.28, but the precision of CODED was 0.68
(around 2.5 x) higher.

7. RELATED WORK

There are many row-oriented constraints proposed for er-
ror detection (see for a survey). Unlike these works,
SCs are column-oriented constraints (i.e., treat each col-
umn as a random variable). Outlier detection often enforces
a column-oriented constraint on a single column (e.g., any
datapoint that is more than 3 standard deviation is an out-
lier) . There are also some outlier detection approaches
that leverage the relationships between columns to detect
outliers . However, none of them allows the user
to specify a set of SCs explicitly and then guides the user to
detect the errors based on the SCs.

As discussed in Section@ SCs, and ICs share some un-
derlying intuitions, thus it is not surprising to see that some
of the ideas in SCs have been explored in the context of
ICs. For example, the multi-valued dependencies can
be used to express independence relationships; approximate
and soft FDs were proposed to relax the hard
constraint of FDs and make them tolerate exceptions. How-
ever, these methods do not leverage the well-studied hypoth-
esis testing method to detect violations, which complements
well downstream statistical modeling. Our approach there-
fore can be naturally combined with approaches that apply
statistics, data mining and machine learning to data clean-
ing, which have recently attracted significant attention [28
|§|7 . The SampleClean
project studies how to use statistical inference to obtain
reliable answers from dirty data [29]. The Holo-
clean project builds a statistical inference engine to impute,

13

clean, and enrich data [36]. Single-Column detection meth-
ods are also proposed to detect data errors and
data types for one single column using external resources.
Different from the existing works, CODED aims to leverage
user-specified statistical constraints.

This paper is focused on constraint-based error detection
approaches. There are some other kinds of error detection
approaches such as pattern enforcement and deduplication
algorithms . It is an interesting future direction to study
how to combine different approaches.

There are also some works on automatic IC discovery
EI, . In this paper, we assume that SCs are pro-
vided by domain experts. There might be some ways to fa-
cilitate this process. For example, we can learn a Bayesian
Network from the given data, and then automatically gener-
ate SCs based on the network. We defer this study to future
work.

Error explanation, which aims to provide intuitive expla-
nations to the user about the errors, is another hot topic in
data cleaning . In this paper, we returns the top-
k erroneous records to help the user understand why an SCs
violation happens. We will investigate more advanced tech-
niques (e.g., visualization and Bayesian analysis) in
this aspect.

8. CONCLUSION AND FUTURE WORK

This paper proposed a new class of constraints for error
detection, called statistical constraints (SCs). Unlike tradi-
tional integrity constraints (ICs), SCs treated each column
as a random variable and enforced the (in)dependence rela-
tionship between random variables. We discussed the advan-
tages of SCs over ICs, and identified the challenges to build
an error detection system based on SCs. We proposed a
new inference system for SCs: we proved its soundness, and
conjectured it to be complete. We developed efficient algo-
rithms for the consistency and implication problems. We
discussed how to detect SC violations using hypothesis test-
ing methods for both numerical and categorical data. We de-
veloped an error-drill-down framework, and devise efficient
top-k algorithms for the framework. We conducted exten-
sive experiments on both synthetic and real-world datasets.
The results showed that (1) SCs were effective in detecting
errors that violate them compared to DCs and DBoost; (2)

the consistency algorithm was very efficient; (3) the top-k
algorithm was scalable w.r.t. k and data size.

Our work represents an initial approach to use SCs for
error detection. In addition to future directions mentioned
in the previous section, other important topics include the
following. (1) Extensions. Utilize SCs with more than three
variables, more data types, and more independence statis-
tics. (2) Human-in-the-Loop. Help the user to discover and
validate SCs more efficiently. (3). Error Repair. Extend
CODED to the error-repairing stage, to automatically re-
pair errors so that the cleaned data satisfies a set of given
SCs. Statistical constraints represent a novel approach to
leverage powerful statistical methods for error detection. It
has great potential to be useful in practice, and opens a new
set of research directions in the intersection of statistics and
data management.

9.

(12]

(13]

(14]

(15]

(16]

REFERENCES

The Four V’s of Big Data. Accessed: 2018-02-28.

Working With Data and Machine Learning in Advertising.
https://soundcloud.com/talkingmachines/episode-thirteen-wor
king-with-data-and-machine-learning-in-advertising.
Accessed: 2018-02-28.

Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas,

M. Ouzzani, P. Papotti, M. Stonebraker, and N. Tang.
Detecting data errors: Where are we and what needs to be
done? Proceedings of the VLDB Endowment, 9(12):993-1004,
2016.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of
databases: the logical level. Addison-Wesley Longman
Publishing Co., Inc., 1995.

L. Akoglu, H. Tong, J. Vreeken, and C. Faloutsos. Fast and
reliable anomaly detection in categorical data. In Proceedings
of the 21st ACM international conference on Information
and knowledge management, pages 415-424. ACM, 2012.

L. Berti—Equille, T. Dasu, and D. Srivastava. Discovery of
complex glitch patterns: A novel approach to quantitative data
cleaning. In Proceedings of the 27th International Conference
on Data Engineering, ICDE 2011, April 11-16, 2011,
Hannover, Germany, pages 733-744, 2011.

P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A
cost-based model and effective heuristic for repairing
constraints by value modification. In Proceedings of the 2005
ACM SIGMOD international conference on Management of
data, pages 143-154. ACM, 2005.

P. Bohannon, W. Fan, F. Geerts, X. Jia, and

A. Kementsietsidis. Conditional functional dependencies for
data cleaning. In Data Engineering, 2007. ICDE 2007. IEEE
23rd International Conference on, pages 746—755. IEEE, 2007.
F. Chiang and R. J. Miller. Discovering data quality rules.
Proceedings of the VLDB Endowment, 1(1):1166-1177, 2008.
F. Chiang and R. J. Miller. A unified model for data and
constraint repair. In Data Engineering (ICDE), 2011 IEEE
27th International Conference on, pages 446—457. IEEE, 2011.
X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang. Data cleaning:
Overview and emerging challenges. In Proceedings of the 2016
International Conference on Management of Data, pages
2201-2206. ACM, 2016.

X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial
constraints. Proceedings of the VLDB Endowment,
6(13):1498-1509, 2013.

X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning:
Putting violations into context. In Data Engineering (ICDE),
2013 IEEE 29th International Conference on, pages 458—469.
IEEE, 2013.

K. Das, J. Schneider, and D. B. Neill. Anomaly pattern
detection in categorical datasets. In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 169-176. ACM, 2008.

K. Das and J. G. Schneider. Detecting anomalous records in
categorical datasets. In Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Jose, California, USA, August 12-15,
2007, pages 220-229, 2007.

T. Dasu and J. M. Loh. Statistical distortion: Consequences of
data cleaning. Proceedings of the VLDB Endowment,
5(11):1674-1683, 2012.

14

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

38]

(39]

[40]

[41]

R. Fagin. Multivalued dependencies and a new normal form for
relational databases. ACM Transactions on Database Systems
(TODS), 2(3):262-278, 1977.

D. Geiger and J. Pearl. Logical and algorithmic properties of
conditional independence and graphical models. The Annals of
Statistics, pages 2001-2021, 1993.

D. Harrison and D. L. Rubinfeld. Hedonic housing prices and
the demand for clean air. Journal of environmental economics
and management, 5(1):81-102, 1978.

J. M. Hellerstein. Quantitative data cleaning for large
databases. United Nations Economic Commission for Europe
(UNECE), 2008.

Z. Huang and Y. He. Auto-detect: Data-driven error detection
in tables.

Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen.
Efficient discovery of functional and approximate dependencies
using partitions. In Data Engineering, 1998. Proceedings.,
14th International Conference on, pages 392-401. IEEE, 1998.
Y. Huhtala, J. Karkkédinen, P. Porkka, and H. Toivonen. Tane:
An efficient algorithm for discovering functional and
approximate dependencies. The computer journal,
42(2):100-111, 1999.

I. F. Ilyas and X. Chu. Trends in cleaning relational data:
Consistency and deduplication. Foundations and Trends in
Databases, 5(4):281-393, 2015.

I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga.
Cords: automatic discovery of correlations and soft functional
dependencies. In Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages
647-658. ACM, 2004.

S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and

J. Widom. Declarative support for sensor data cleaning. In
International Conference on Pervasive Computing, pages
83-100. Springer, 2006.

S. Krishnan, M. J. Franklin, K. Goldberg, J. Wang, and E. Wu.
Activeclean: An interactive data cleaning framework for
modern machine learning. In Proceedings of the 2016
International Conference on Management of Data, pages
2117-2120. ACM, 2016.

S. Krishnan, J. Wang, M. J. Franklin, K. Goldberg, and

T. Kraska. Privateclean: Data cleaning and differential privacy.
In Proceedings of the 2016 International Conference on
Management of Data, pages 937-951. ACM, 2016.

S. Krishnan, J. Wang, M. J. Franklin, K. Goldberg, T. Kraska,
T. Milo, and E. Wu. Sampleclean: Fast and reliable analytics
on dirty data. IEEE Data Eng. Bull., 38(3):59-75, 2015.

S. Lopes, J.-M. Petit, and L. Lakhal. Efficient discovery of
functional dependencies and armstrong relations. In
International Conference on Extending Database Technology,
pages 350-364. Springer, 2000.

Z. Mariet, R. Harding, S. Madden, et al. Outlier detection in
heterogeneous datasets using automatic tuple expansion. 2016.
C. Mayfield, J. Neville, and S. Prabhakar. Eracer: a database
approach for statistical inference and data cleaning. In
Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 75-86. ACM, 2010.
T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert, J.-P.
Rudolph, M. Schonberg, J. Zwiener, and F. Naumann.
Functional dependency discovery: An experimental evaluation
of seven algorithms. Proceedings of the VLDB Endowment,
8(10):1082-1093, 2015.

J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Elsevier, 2014.

N. Prokoshyna, J. Szlichta, F. Chiang, R. J. Miller, and

D. Srivastava. Combining quantitative and logical data
cleaning. PVLDB, 9(4):300-311, 2015.

T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean:
Holistic data repairs with probabilistic inference. PVLDB,
10(11):1190-1201, 2017.

F. Riahi and O. Schulte. Model-based outlier detection for
object-relational data. In Computational Intelligence, 2015
IEEE Symposium Series on, pages 1590-1598. IEEE, 2015.

M. Studeny. Conditional independence relations have no finite
complete characterization. 1990.

J. Wang and N. Tang. Towards dependable data repairing with
fixing rules. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pages
457-468. ACM, 2014.

X. Wang, X. L. Dong, and A. Meliou. Data x-ray: A diagnostic
tool for data errors. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data,
Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages
1231-1245, 2015.

X. Wang, A. Meliou, and E. Wu. Qfix: Diagnosing errors

https://soundcloud.com/talkingmachines/episode-thirteen-working-with-data- and-machine-learning-in-advertising
https://soundcloud.com/talkingmachines/episode-thirteen-working-with-data- and-machine-learning-in-advertising
https://soundcloud.com/talkingmachines/episode-thirteen-working-with-data- and-machine-learning-in-advertising

through query histories. In Proceedings of the 2017 ACM
International Conference on Management of Data, pages
1369-1384. ACM, 2017.

L. Wasserman. All of statistics: a concise course in statistical
inference. Springer Science & Business Media, 2013.

E. Wu and S. Madden. Scorpion: Explaining away outliers in
aggregate queries. Proceedings of the VLDB Endowment,
6(8):553-564, 2013.

C. Wyss, C. Giannella, and E. Robertson. Fastfds: A
heuristic-driven, depth-first algorithm for mining functional
dependencies from relation instances extended abstract. In
International Conference on Data Warehousing and
Knowledge Discovery, pages 101-110. Springer, 2001.

M. Yakout, L. Berti—}i}quille7 and A. K. Elmagarmid. Don’t be
scared: use scalable automatic repairing with maximal
likelihood and bounded changes. In Proceedings of the 2013
ACM SIGMOD International Conference on Management of
Data, pages 553-564. ACM, 2013.

C. Yan and Y. He. Synthesizing type-detection logic for rich
semantic data types using open-source code. In Proceedings of
the 2018 ACM SIGMOD International Conference on
Management of data. ACM, 2018.

(42]

(43]

(44]

45]

[46]

APPENDIX
A. PROOF OF LEMMA

PrROOF 1 (PROOF OF LEMMA 1). The core idea of this
proof is to prove that by applying the G. Given a set of
independence SCs S = {SC1,SCs,..SC,},

(1). We first prove SCs S% entailed by S using A and SCs
Sg entailed by S using G salisfy the relationship: S§ C Sh.
As A covers all the SCs that G can infer at each iteration.
Obviously, S; C 5.

(2). We next prove new SCs S§ entailed by S using G and
new SCs S entailed by S using G satisfy the relationship:
S €55

To prove this, we first define a sequence of applying G and
A.

A contains four azioms: Symmetry(a), Decomposition(b),
Weak union(c) and Contraction(d). In this paper, we limit
the form of SC to be in either AL (JL)B or AL (JL)B | C.
Obviously, if there expects to have more SCs entailed by
given SCs, we need to apply Contraction axiom first. The
Decomposition axiom and Weak Union axiom can bring new
SCs independently. Therefore, the sequence of applying the
azioms become (b) — (¢)/(d) (we omit (a) here as (a) didn’t
essentially bring new SCs).

We also find that given a SCs set in the form of A 1L
(UH)B,A 1L (JL)B | C,A 1 BC, no more new SC can be
entailed by A 1L BC' (Conclusion 1). It is trivial to prove
this. It is obviously to see by A 1L BC' can never satisfy the
sequence of inferring more SCs with A 1L BC'. Hence, no
more new SCs entailed by A 1L BC can be found.

Following the sequence to compute S, there are two sit-
uations describing the relationship between given two initial
SCs,

(I1) There are no SCs satisfies Contraction azioms and
the sequence cannot start. Obviously, Sg = S = S. Hence,
the conclusion Sg C S holds.

(I2) two SCs satisfies Contraction axioms should be matched.

So at least there exists two SCs in the form: A I B or
AL C | B. For the two SCs, we follow the implication se-
quence, and apply (d) first. Then we get one new SChe,, =
A 1L BC. The next step is two applying both (b) and c.
By applying (c) and d, we get SC2., = AL B | C and
SC3.., = A1 C. As we expect SCs to be in three vari-
able setting, we can draw the conclusion from (Conclusion
1) and delete SC}.,, = A 1L BC. Apparently, two SCs can

15

be covered by applying A. And the process can be repeated se-
quentially till no more new SCs entailed by the given set can
be found. At each step i, Sx)* - Sg;* Therefore, S C S§.

Combing (1) and (2), we can have S; = S4. Hence
Lemma 1 s proved.

PROOF 2 (PROOF OF LEMMA 2). To prove this, we first

prove given two independence SCs S = {SC1,SCs}, the in-
volving variable set V- = {v1,v2,..,vn} w.r.t. S. There are
following two situations describing the relationship between
SCl and SCQ
(1). SCi and SCy don’t satisfy the condition of G. That
means no more SC can be entailed by S. Obviously, no
more variables beyond V' will be added;
(2). SC1 and SCa2 satisfy the condition of G. That means,
they can be rewritten as S = {A 1 B,A 1 C|B} and V =
{A, B,C}. Therefore, we apply Z, we have s = {ALB, A1l
C,A 1L C|B,A 1L B|C} and V' = {A,B,C}. Obviously,
V=V

Combing (1) and (2), we can prove that after applying Z,
no more variables beyond the original V will be generated.
This implies for one single SC, it only generate new SC
within the variables it and its matching SC.

Furthermore, we apply the combination theory. As no
more variables between where there are 2(‘;’) possible out-
comes. And for a single SC it can at most generate 6 SC.
Therefore, it is proved that I* implied by I at most contains
61| number of SCs, which means |I*| < 6]I].

B. EFFICIENTIMPLEMENTATIONFOR x
STRATEGY

We discuss the efficient Implementation of the K strategy
detailed here. As illustrated in Section [5.2} we choose an-
other data structure segment tree in the initialization phase
so as to greatly reduce the time complexity. Before apply-
ing this idea, some pre-processing is needed. We first sort
dataset D =< x1,y1 >, ... < Tn,Yn > by X column. Then
we scan the new data set to obtain the concordant pairs,
and non-concordant pairs. Later, we insert a segement tree
[yi, ys] to the segment tree. After the initialization phase,
we continue do the iterations as shown in the Algorithm
Algorithm [3] illustrates the pseudo-code. This efficient im-
plementation is also applicable to K¢ strategy.

C. EXPERIMENTAL ANALYSISFOR CON-
DITIONAL scs

N1 B |T and T JL B | C. We also examined the effective-
ness of CODED for conditional independence and condi-
tional dependencies, with moderate error level. Constraints
used for CODED, DC and DBoost are summarized in Ta-
ble[fl To accommodate the variables of constraints to CODED
framework, we further bucket the value of Taxr Rate into
categorical values. We categorize the numerical value into 6
buckets following its distribution. We reported their F-score
under different K values at moderate error level, which is
similar to Exp-3. Results are shown in Figure [I7] and Fig-
ure [18| respectively. CODED obtained a higher F-score than
another two state-of-art methods, which is even more signif-
icant under independence SCs. Also, similar to Exp-3 and
Exp-4, the detection effectiveness of imputation error is not
as stable as that of another two types errors. The average F-
score of CODED under independence SCs is 0.55 and with

(a) Sorting Error (b) Imputation Error (c) Combination Error

1 1
CODEg‘ CODEg cooEg‘—
DC —— DC —— DC ——
0-75 |~ DBoost 075 |~ DBoost 0-75 I DBoost
o o o
o o [e]
o 0.5 o 0.5 - o 0.5
o o @ —
w w w
0.25 ; 0 [0.25 —
. _——
0 0 0
0 50 100 150 0 50 100 150 0 50 100 150
#K #K #K

Figure 17: Effectiveness of error detection methods for conditional dependence SCs (Boston dataset, K = 50)

(a) Sorting Error (b) Imputation Error (c) Combination Error
1 1 1
CODED' CODED' CODED ——
0.75 DBoost 075 DBoost 0.75 DBoost
<4 — < < _
g 05 _—— 8 05 g 05 —
[— L — W
— —
0.25 e 0.25 / 0.25 /
0 0 0
0 50 100 150 0 50 100 150 0 50 100 150
#K #K #K

Figure 18: Effectiveness of error detection methods for conditional independence SCs (Boston dataset, K = 50)

Algorithm 3: Efficient 7-test-based error detection al-
gorithm

Input: An SC =X 1 (J1)Y, Dataset
D={<z1,y1 >,... <Tn,yn >} k

Output: k records

T < 0; //Segment Tree

Q < 0; // Priority Queue

R < 0; // Returned List

benefit(< z;,y; >) = 0 for < z;,y; >€ D ;

Sort D by X column value ;

// Initialization

for < z;,y; >€ D do

ne = T.query([—oo, yi]);

na = T.query([y:, +0|);

benefit(< zi,y; >) = 2nc + (|D| — ne — na);

T.insert([y:, yi]);

12 | Q.push(< @i,y >, benefit(< i,y >);

13 // Iteration

14 for i =1 to k do

15 Add Q.top() to R;

16 Update @Q; // Update the weight of each record

benefit(< z;,y; >) € Q by querying the segment tree T

© 0Nk WN R

-
(==

17 return R;

max F-score 0.69, however the two results will decrease to
0.43 and 0.51 with imputation error inserted. This again
demonstrates that the CODED can detect the power of er-
rors as if the power is not as significant, CODED is not that
powerful.

16

	Introduction
	Statistical Constraints
	Background Definitions
	Statistical Constraints
	Integrity vs Statistical Constraints
	CODED Architecture

	Properties of SCs
	An Inference System for SCs
	Consistency and Implication

	Detecting SC violation
	Categorical/Discrete Data
	Numerical Data

	Error Drill Down
	Error-Drill-Down Framework
	Top-k Error Detection Algorithms
	Categorical Data
	Numerical Data

	Experiments
	Experiment Setup
	Experimental Results

	Related Work
	Conclusion and Future Work
	References
	Proof of Lemma
	Efficient Implementation for K Strategy
	Experimental Analysis for Conditional SCs

