
16

Dependable Data Repairing with Fixing Rules

JIANNAN WANG, School of Computing Science, Simon Fraser University, Canada
NAN TANG, Qatar Computing Research Institute, HBKU, Qatar

One of the main challenges that data-cleaning systems face is to automatically identify and repair data errors
in a dependable manner. Though data dependencies (also known as integrity constraints) have been widely
studied to capture errors in data, automated and dependable data repairing on these errors has remained
a notoriously difficult problem. In this work, we introduce an automated approach for dependably repairing
data errors, based on a novel class of fixing rules. A fixing rule contains an evidence pattern, a set of negative
patterns, and a fact value. The heart of fixing rules is deterministic: given a tuple, the evidence pattern and
the negative patterns of a fixing rule are combined to precisely capture which attribute is wrong, and the
fact indicates how to correct this error. We study several fundamental problems associated with fixing rules
and establish their complexity. We develop efficient algorithms to check whether a set of fixing rules are
consistent and discuss approaches to resolve inconsistent fixing rules. We also devise efficient algorithms
for repairing data errors using fixing rules. Moreover, we discuss approaches on how to generate a large
number of fixing rules from examples or available knowledge bases. We experimentally demonstrate that
our techniques outperform other automated algorithms in terms of the accuracy of repairing data errors,
using both real-life and synthetic data.

Categories and Subject Descriptors: H.2.m [Database Management]: Miscellaneous—Data cleaning

General Terms: Design, Algorithm, Performance

Additional Key Words and Phrases: Data repairing, fixing rules, dependable

ACM Reference Format:
Jiannan Wang and Nan Tang. 2017. Dependable data repairing with fixing rules. J. Data and Information
Quality 8, 3–4, Article 16 (June 2017), 34 pages.
DOI: http://dx.doi.org/10.1145/3041761

1. INTRODUCTION

Data quality is essential to all businesses, which demand dependable data-cleaning so-
lutions. Traditionally, data dependencies (a.k.a. integrity constraints) have been widely
studied to capture errors from semantically related values. However, automated and
dependable (a.k.a. reliable or trusted) data repairing on these data errors has remained
a notoriously hard problem.

A number of recent articles [Bohannon et al. 2005; Bertossi et al. 2011; Chu et al.
2013b; Geerts et al. 2013] have investigated the following data cleaning problem
[Arenas et al. 1999]: data repairing is to find another database that is consistent
and minimally differs from the original database. They compute a consistent database
by using different cost functions for value updates and various heuristics to guide

Authors’ addresses: J. Wang, School of Computing Science, Simon Fraser University, Burnaby, Canada;
email: jnwang@sfu.ca; N. Tang, Qatar Computing Research Institute, HBKU, Qatar; email: ntang@qf.org.qa.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1936-1955/2017/06-ART16 $15.00
DOI: http://dx.doi.org/10.1145/3041761

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

http://dx.doi.org/10.1145/3041761
http://dx.doi.org/10.1145/3041761

16:2 J. Wang and N. Tang

repairing. However, it is known that such heuristics may introduce data errors [Fan
et al. 2012]. In order to ensure that a repair is dependable, users have been involved as
first-class citizens in the process of data repairing [Fan et al. 2012; Raman and Heller-
stein 2001; Yakout et al. 2011], which is usually time-consuming and cumbersome.

In response to practical need for automated and dependable data repairing, in this
work, we propose new data-cleaning algorithms, based on a class of fixing rules. Given
a tuple, fixing rules are designed to precisely capture which attribute is wrong and
specify what value it should take.

Motivating example. We first illustrate by examples how existing solutions work.

Example 1.1. Consider a (denormalized) database D of travel records for a research
institute, specified by the following schema:

Travel (name, country, capital, city, conf),

where a Travel tuple specifies a person, identified by name, who has traveled to a
conference (conf), held at the city of the country with its capital. One Travel instance
is shown in Figure 1. All errors are highlighted and their correct values are given
between parentheses. For instance, r2[capital] = Shanghai is wrong, whose correct value
is Beijing.

We next illustrate two classes of the state-of-the-art data repairing algorithms. The
first class is about automated dependency-based data-repairing algorithms. The second
class is about user guided data-repairing approaches.

Data dependencies. A variety of data dependencies have been used to capture er-
rors in data, from traditional constraints (e.g., functional and inclusion dependencies
[Bohannon et al. 2005; Chomicki and Marcinkowski 2005; Wijsen 2005]) to their ex-
tensions (e.g., conditional functional dependencies [Fan et al. 2008]). Suppose that a
functional dependency (FD) is specified for the Travel table as

φ1 : Travel ([country] → [capital]),

which states that country uniquely determines capital. One can verify that in Figure 1
the two tuples (r1, r2) violate φ1, since they have the same country but carry different
capital values, so do (r1, r3) and (r2, r3).

In order to compute a consistent database w.r.t. φ1 with the minimum cost (e.g.,
the number of changes), many algorithms have been presented [Arenas et al. 1999;
Bohannon et al. 2005; Cong et al. 2007; Fellegi and Holt 1976; Chu et al. 2013b;
Beskales et al. 2010; Fan et al. 2012]. For instance, they can change r2[capital] from
Shanghai to Beijing, and r3[capital] from Tokyo to Beijing, which requires the changes
of two data values. One may verify that this is a repair with the minimum cost of
two changes. Though these changes correct the error in r2[capital], they do not rectify
r3[country]. Worse still, they mess up the correct value in r3[capital], by changing it from
the correct value Tokyo to a wrong value Beijing.

User guidance. While using data dependencies to detect errors is appropriate, depen-
dencies on their own are not sufficient to guide dependable data repairing. To improve
the accuracy of data repairing, users have been involved [Mayfield et al. 2010; Yakout
et al. 2011; Fan et al. 2012] and master data (a.k.a. reference data) has been used [Fan
et al. 2012].

Consider a recent work [Fan et al. 2012] that uses editing rules and master data.
Figure 2 shows master data Dm of schema Cap (country, capital), which is considered to
be correct. An editing rule eR1 defined on two relations (Travel, Cap) is

eR1 : ((country, country) → (capital, capital), tp1[country] = ()).

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

Dependable Data Repairing with Fixing Rules 16:3

Fig. 1. D of schema Travel. Fig. 2. Dm of schema Cap.

Fig. 3. Example fixing rules.

Rule eR1 states that: for any tuple r in a Travel table, if r[country] is correct and
it matches s[country] from a Cap table, then we can update r[capital] with the value
s[capital] from Cap. Note that its pattern tuple tp1 poses no constraint about the values
on country attributes. For instance, to repair r2 in Figure 1, the users need to ensure
that r2[country] is correct, and then match r2[country] and s1[country] in the master
data, so as to update r2[capital] to s1[capital]. It proceeds similarly for the other tuples.

Key challenge and observation. The above examples tell us that data dependencies
can detect errors but fall short of automatically guiding dependable data repairing.
On the other hand, involving users is generally cost-ineffective. Hence, one of the
main challenges in data cleaning is how to automatically detect and repair errors in a
dependable manner.

Data cleaning is not magic; it cannot guess something from nothing. What it does is
to make decisions from evidence. Certain data patterns of semantically related values
can provide evidence to precisely capture and rectify data errors. For example, when
the combination of values (China, Shanghai) for attributes (country, capital) appears in a
tuple, it suffices to judge that the tuple is about China, and Shanghai should be Beijing,
the capital of China. In contrast, the values (China, Tokyo) are not enough to decide
which value is wrong.

Fixing rules. Motivated by the observation above, in this work, we address the prob-
lem of automatically finding dependable repairs by using fixing rules. A fixing rule
contains an evidence pattern, a set of negative patterns, and a fact value. Given a tuple,
the evidence pattern and the negative patterns of a fixing rule are combined to pre-
cisely tell which attribute is wrong, and the fact indicates how to correct it. A salient
feature of fixing rules is the introduction of negative patterns, which is key to enabling
dependable data repairs. With their help, we can avoid mistakenly repairing the values
such as (China, Tokyo).

Example 1.2. Figure 3 shows two fixing rules. The braces mean that the correspond-
ing cell is multivalued, e.g., {capital−} in ϕ1.

For the first fixing rule ϕ1, its evidence pattern, negative patterns, and the fact are
China, {Shanghai, Hongkong}, and Beijing, respectively. It states that for a tuple t, if its
country is China and its capital is either Shanghai or Hongkong, then capital should be
updated to Beijing. For instance, consider the database in Figure 1. Rule ϕ1 detects that
r2[capital] is wrong, since r2[country] is China, but r2[capital] is Shanghai. It will then
update r2[capital] to Beijing.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

16:4 J. Wang and N. Tang

Similarly, the second fixing rule ϕ2 states that for a tuple t, if its country is Canada,
but its capital is Toronto, then its capital is wrong and should be Ottawa. It detects that
r4[capital] is wrong, and then will correct it to Ottawa.

After applying ϕ1 and ϕ2, two errors, r2[capital] and r4[capital], can be repaired. The
other two errors, r2[city] and r3[country], still remain. We will discuss later how they
are repaired, when more fixing rules are available.

Remark. Fixing rules are designed to both capture semantic errors for specific do-
mains (e.g., (China, Shanghai) is an error for (country, capital)), and specify how to fix
it (e.g., change Shanghai to Beijing), in a deterministic and dependable manner. They
are also conservative: they tend to avoid repairing ambiguous errors such as (China,
Tokyo), which is also difficult for users to repair, since it could be either (China, Beijing),
(Japan, Tokyo), or other value combinations.

Contributions. We propose fixing rules and an associated framework for automati-
cally and dependably repairing data errors with the following notable contributions.

(1) We formally define fixing rules and their repairing semantics (Section 3). Given a
tuple t, fixing rules tell us which attribute is wrong and what value it should take.

(2) We study fundamental problems of fixing rules (Section 4). Specifically, given a set
� of fixing rules, we determine whether these rules have conflicts. We show that
this problem is in PTIME. We also study the problem of whether some other fixing
rules are implied by �. We show that this problem is coNP-complete, but it is down
to PTIME when the relation schema is fixed.

(3) We devise efficient algorithms to check whether a set of fixing rules is consistent,
i.e., conflict-free (Section 5). We also discuss solutions to resolve inconsistent rules.

(4) We propose two repairing algorithms for a given set � of fixing rules (Section 6).
The first algorithm is chase-based. It runs in O(size(�)|R|) for one tuple, where
|R| is the cardinality of relation R and size(�) is the size of �. The second one
is a fast linear algorithm that runs in O(size(�)) for one tuple, by interweaving
inverted lists and hash counters. The difference between size() and cardinality will
be explained at the end of Section 5.2.

(5) We discuss the problem of generating fixing rules (Section 7). We first present how
a large number of fixing rules can be obtained from examples, inspired by the work
of Singh and Gulwani [2012]. We also describe how to generate fixing rules from
available knowledge bases in a batch fashion.

(6) We experimentally verify the effectiveness and scalability of the proposed algo-
rithms (Section 8). We find that algorithms with fixing rules can repair data with
high precision. In addition, they scale well with the number of fixing rules.

Organization. Section 2 discusses related work. Section 3 introduces fixing rules.
Section 4 studies fundamental problems associated with fixing rules. Section 5 de-
scribes algorithms to check consistency of fixing rules and ways to resolve inconsistent
rules. Section 6 presents repairing algorithms using fixing rules. Section 7 discusses
how to generate fixing rules. Section 8 reports our experimental findings, followed by
concluding remarks in Section 9.

2. RELATED WORK

The current submission is an extended version of our conference article [Wang and Tang
2014]. This submission includes the following new materials: (1) proofs of fundamental
problems in connection with fixing rules (Section 4); (2) techniques on how to generate
fixing rules from external resources such as large-scale knowledge bases (Section 7); (3)
an empirical evaluation of using the fixing rules generated from the above techniques
(Section 8); and (4) a more detailed explanation of algorithms and examples and a

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

Dependable Data Repairing with Fixing Rules 16:5

summary of notations for the ease of reference (Section 3.2). None of the detailed
proofs of (1) was presented in the conference article. Some of the proofs are nontrivial
and are interesting in their own right. The discussion of (2) on generating fixing rules
from available knowledge bases was not addressed in the conference article, which is
important for any application to employ fixing rules. The experimental study of (3) was
not given before.

Despite the need for dependable algorithms to automatically repair data, there has
been little discussion about data-cleaning solutions that can both capture semantic
data errors and explicitly specify an action to correct these errors, without interacting
with users and without any assumption about confidence values placed on the data.

In recent years, there has been an increasing amount of literature on using data
dependencies in cleaning data (e.g., Arenas et al. [1999], Chomicki and Marcinkowski
[2005], Bravo et al. [2007], Fan et al. [2008], Kolahi and Lakshmanan [2009], and Wijsen
[2005]; see Fan [2008] for a survey). They have been revisited to better capture data
errors as violations of these dependencies (e.g., conditional functional dependencies
(CFDs) [Fan et al. 2008] and conditional inclusion dependencies (CINDs) [Bravo et al.
2007], and metric functional dependencies [Koudas et al. 2009]). As remarked earlier,
fixing rules differ from those dependencies in that fixing rules can not only detect
semantic errors but also explicitly specify how to fix these errors.

Editing rules [Fan et al. 2012] have been introduced for the process of data moni-
toring to repair data that is guaranteed correct. However, editing rules require users
to examine every tuple, which is expensive. Fixing rules differ from them in that they
do not depend on users to trigger repairing operations. Instead, fixing rules use both
evidence pattern and negative patterns to automatically trigger repairing operations.

Closer to this work is Chu et al. [2015] and Interlandi and Tang [2015]. KATARA
[Chu et al. 2015] is powered by knowledge bases and crowdsourcing, which cleans a
table T based on a knowledge base K. KATARA uses a table pattern to explain the
semantic matching between the table and the given knowledge base. In fact, table
patterns are used analogously to matching dependencies for tables. That is, when a
full match is found between a tuple t in T and a subgraph g in K for the given table
pattern, KATARA can say that t is correct for the attributes that appear in the table
pattern. However, if there is no full match, there are two cases: (1) t is wrong; or (2) the
knowledge base is incomplete. For both cases, KATARA needs users, i.e., crowdsourcing,
to resolve the ambiguity. The essential difference between KATARA and fixing rules is
that, given a tuple t, each error is annotated by crowd users, but fixing rules identify
errors automatically. Moreover, KATARA does not repair the error. Instead, it finds
some possible values from the knowledge bases, which are called possible repairs, and
it stops there. In contrast, fixing rules will automatically find the unique repair for
an error. Sherlock rules [Interlandi and Tang 2015] focus on the following two issues:
(1) annotate data as correct or wrong, which is called proof positive and negative, and
repair is another functionality; and (2) they rely on reference tables. Indeed, when
reference tables are available for Sherlock rules, we can generate fixing rules but not
the other way around.

Data repairing algorithms have been proposed [Bohannon et al. 2005; Cong et al.
2007; Fan et al. 2012; Fellegi and Holt 1976; Mayfield et al. 2010; Yakout et al. 2011;
Beskales et al. 2009; Fan et al. 2011; Chu et al. 2013b]. Heuristic methods are developed
in Beskales et al. [2010], Bohannon et al. [2005], Cong et al. [2007], and Fellegi and
Holt [1976], based on FDs [Beskales et al. 2010; Kolahi and Lakshmanan 2009], FDs
and INDs [Bohannon et al. 2005], CFDs [Fan et al. 2008], CFDs and MDs [Fan et al.
2011], denial constraints [Chu et al. 2013b], edit rules [Fellegi and Holt 1976], and
neighborhood constraints [Song et al. 2014]. There also exists a generalized data-
cleaning system that treats data quality rules as black boxes and repairs detected
violations holistically using SAT-solver-based approaches [Dallachiesa et al. 2013].

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

16:6 J. Wang and N. Tang

Another line of work in data repairing studies the problem of repairing both data and
dependencies in a unified framework [Volkovs et al. 2014; Chiang and Miller 2011;
Beskales et al. 2013]. Statistical inference is studied in Mayfield et al. [2010], to derive
missing values, and in Beskales et al. [2009], to find possible repairs. Lian et al. [2010]
studies the problem of finding consistent query answers from inconsistent probabilistic
databases. In contrast to these prior articles, fixing rules are more conservative to
repair data, which target at determinism and dependability, instead of computing a
consistent database. Indeed, our method can be treated as a complementary technique
to heuristic methods; i.e., one may compute dependable repairs first and then use
heuristic solutions to find a consistent database.

In order to improve the accuracy of data repairing, a number of studies employ
confidence placed by users to guide a repairing process [Bohannon et al. 2005; Cong
et al. 2007; Fan et al. 2011] or use master data [Fan et al. 2012]. Some other works
involve users as first-class citizens in data repairing [Mayfield et al. 2010; Yakout
et al. 2011; Fan et al. 2012]. Different from them, fixing rules neither consult the
users nor assume the confidence values placed by the users. That is, the repairing
process of employing fixing rules is fully automated. Note that machine-learning-based
approaches, which take predefined confidence values or user feedback as input, have
been studied [Volkovs et al. 2014; Yakout et al. 2011, 2013]. In fact, machine-learning
tools are complementary to data repairing and this work, e.g., the evidence, negative,
and fact information of fixing rules can be directly used as training data to train
machine-learning tools.

There has also been a lot of work on more general data cleaning: data transformation,
which brings the data under a single common schema [Naumann et al. 2006]. Extract,
translate, load (ETL) tools (see Batini and Scannapieco [2006] and Herzog et al. [2009]
for a survey) provide sophisticated data transformation methods, which can be em-
ployed to merge data sets and repair data based on reference data. Some recent work
has been studied for both syntactic string transformations [Arasu et al. 2009] and se-
mantic string transformations [Singh and Gulwani 2012]. However, they are designed
for value transformation instead of capturing semantic errors from multiple attributes
as fixing rules do. Hence, they can be treated as orthogonal techniques, which prepare
data first that is in turn to be repaired by other data-cleaning approaches.

3. FIXING RULES

In this section, we first give the formal definition of fixing rules and their semantics
(Section 3.1). We then describe the repairing semantics for applying a set of fixing rules
(Section 3.2).

3.1. Definition

Consider a schema R defined over a set of attributes, denoted by attr(R). We use A ∈ R
to denote that A is an attribute in attr(R). For each attribute A ∈ R, its domain is
specified in R, denoted as dom(A).

Syntax. A fixing rule ϕ, which is defined on a schema R, is formalized as
((X, tp[X]), (B, T −

p [B])) → t+
p [B], where

(1) X is a set of attributes in attr(R), and B is an attribute in attr(R) \ X (i.e., B is not in
X). Here, “\” means set minus;

(2) tp[X] is a pattern with attributes in X, referred to as the evidence pattern on X, and
for each A ∈ X, tp[A] is a constant value in dom(A);

(3) T −
p [B] is a finite set of constants in dom(B), referred to as the negative patterns of

B; and
(4) t+

p [B] is a constant value in dom(B) \ T −
p [B], referred to as the fact of B.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

Dependable Data Repairing with Fixing Rules 16:7

Intuitively, the evidence pattern tp[X] of X, together with the negative patterns T −
p [B]

impose the condition to determine whether a tuple contains an error on B. The fact
t+
p [B] indicates how to correct this error.

Note that condition (4) enforces that the correct value (i.e., the fact) is different from
known wrong values (i.e., negative patterns) relative to a specific evidence pattern.

We say that a tuple t of R matches a rule ϕ : ((X, tp[X]), (B, T −
p [B])) → t+

p [B], denoted
by t � ϕ, if (i) t[X] = tp[X] and (ii) t[B] ∈ T −

p [B]. In other words, tuple t matches rule ϕ

means that ϕ can identify errors in t.

Example 3.1. Consider the fixing rules in Figure 3. They are expressed as follows:

ϕ1 : (([country], [China]), (capital, {Shanghai, Hongkong})) → Beijing,
ϕ2 : (([country], [Canada]), (capital, {Toronto})) → Ottawa.

In both ϕ1 and ϕ2, X consists of country and B is capital. Here, ϕ1 states that, if the
country of a tuple is China and its capital value is in {Shanghai, Hongkong}, its capital
value is wrong and should be updated to Beijing. Similarly for ϕ2.

Consider D in Figure 1. Tuple r1 does not match rule ϕ1, since r1[country] = China
but r1[capital] �∈ {Shanghai, Hongkong}. As another example, r2 matches rule ϕ1, since
r2[country] = China, and r2[capital] ∈ {Shanghai, Hongkong}. Similarly, we have r4 � ϕ2.

Semantics. We next give the semantics of one fixing rule.
We say that a fixing rule ϕ is applied to a tuple t, denoted by t →ϕ t′, if (i) t matches ϕ

(i.e., t � ϕ); and (ii) t′ is obtained by the update t[B] := t+
p [B].

That is, if t[X] agrees with tp[X], and t[B] appears in the set T −
p [B], then we assign

t+
p [B] to t[B]. Intuitively, if t[X] matches tp[X] and t[B] matches some value in T −

p [B],
then it is evident to judge that t[B] is wrong and we can use the fact t+

p [B] to update
t[B]. This yields an updated tuple t′ with t′[B] = t+

p [B] and t′[R \ {B}] = t[R \ {B}].
Example 3.2. As shown in Example 1.2, we can correct r2 by applying the fixing rule

ϕ1. As a result, r2[capital] is changed from Shanghai to Beijing, i.e., r2 →ϕ1 r′
2, where

r′
2[capital] = Beijing and the other attributes of r′

2 remain unchanged.
Similarly, we have r4→ϕ2r

′
4, where the only updated value is r′

4[capital] = Ottawa.

Remark. (1) fixing rules are different from traditional data dependencies e.g., FDs
[Abiteboul et al. 1995] and CFDs [Fan et al. 2008]. Data dependencies only detect
violations. In contrast, a fixing rule ϕ specifies an action: applying ϕ to a tuple t yields
an updated t′.

(2) Editing rules [Fan et al. 2012] also have dynamic semantics. However, they
differ in the way of repairing errors. (a) Editing rules need users to trigger the action
of repairing. That is, when matching some values from dirty data to values in master
data, editing rules by themselves cannot tell if the values used for matching are correct,
without which the repairing operation cannot be executed. (b) Fixing rules encode
evidence pattern and negative patterns to decide the correct and erroneous values,
which then automatically triggers the repair operation. Please refer to Example 1.2 for
more details.

(3) We have also investigated how to generate fixing rules. Inspired by the work
of Singh and Gulwani [2012], which learns transformation rules from examples, we
discuss in Section 7 how to generate fixing rules from examples. Moreover, we describe
how to generate fixing rules by leveraging available knowledge bases, also in Section 7.

Notations. For convenience, we introduce some notations. Given a fixing rule ϕ :
((X, tp[X]), (B, T −

p [B]))→ t+
p [B], we denote by Xϕ the set X of attributes in ϕ. Similarly,

we write tp[Xϕ], Bϕ , T −
p [Bϕ] and t+

p [Bϕ], relative to ϕ.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

16:8 J. Wang and N. Tang

3.2. Repairing Semantics with Multiple Fixing Rules

We next describe the semantics of applying a set of fixing rules. Note that when applying
a rule ϕ to a tuple t, we update t[Bϕ] with t+

p [Bϕ]. To ensure that the change makes
sense, the corrected values should remain unchanged in the following process. That is,
after applying ϕ to t, the set Xϕ ∪{Bϕ} of attributes should be marked as correct. As will
be seen later, the order becomes irrelevant, if these rules have certain properties (see
Section 4 for more details).

In order to keep track of the set of attributes that has been marked correct, we
introduce the notion assured attributes to represent them, denoted by At relative to
tuple t. We simply write A when t is clear from the context.

Consider a fixing rule ϕ, we say that a fixing rule ϕ is properly applied to a tuple t
w.r.t. the assured attributes A, denoted by t →(A,ϕ) t′, if (i) t matches ϕ; and (ii) Bϕ �∈ A.

This shows when it is correct to apply a fixing rule ϕ to a tuple. As A has been
assured, we do not allow it to be changed by enforcing Bϕ �∈ A (condition (ii)).

Example 3.3. Consider rule ϕ1 in Example 3.1 and the tuple r2 in Figure 1. Initially,
Ar2 = ∅. The rule ϕ1 can be properly applied to r2 w.r.t. Ar2 , since r2[country] = China
and r2[capital] = Shanghai ∈ {Shanghai, Hongkong} (i.e., r2 matches ϕ1); and moreover,
capital �∈ Ar2 . This yields an updated tuple r′

2 where r′
2[capital] = Beijing.

Observe that if t →(A,ϕ) t′, then Xϕ and Bϕ will also be marked as correct. Thus, the
assured attributes A should be extended as well, to become A ∪ Xϕ ∪ {Bϕ}.

Example 3.4. Consider Example 3.3. After ϕ1 is applied to r2, the assured attribute
Ar2 will be expanded correspondingly, by including Xϕ1 (i.e., {country}) and {Bϕ1} (i.e.,
{capital}), which results in an expanded assured attribute set Ar2 = {country, capital}.

We write t
=−→(A,ϕ) t if ϕ cannot be properly applied to t, i.e., t is unchanged by ϕ

relative to A, if either t does not match ϕ, or Bϕ ∈ A.
Consider a set � of fixing rules defined on R. Given a tuple t of R, we want a unique

fix of t by using �. That is, no matter in which order the fixing rules of � are properly
applied, � yields a unique t′ by updating t.

To formalize the notion of unique fixes, we first recall the repairing semantics of
fixing rules. Notably, if ϕ is properly applied to t via t →(A,ϕ) t′ w.r.t. assured attributes
A, it yields an updated t′, where t[Bϕ] ∈ T −

p [Bϕ] and t′[Bϕ] = t+
p [Bϕ]. More specifically,

the fixing rule ϕ first identifies t[Bϕ] as incorrect, and as a logical consequence of the
application of ϕ, t[Bϕ] will be updated to t+

p [Bϕ], as a validated correct value in t′. Once
an attribute value t′[B] is validated, we do not allow it to be changed, together with the
attributes Xϕ that are used as the evidence to assert that t[Bϕ] is incorrect.
Fixes. We say that a tuple t′ is a fix of t w.r.t. a set � of fixing rules, if there exists a
finite sequence t = t0, t1, . . . , tk = t′ of tuples of R such that for each i ∈ [1, k], there
exists a rule ϕi in �, such that

(1) ti−1 →(Ai ,ϕi) ti, where A1 =∅, Ai =Ai−1∪Xϕi ∪{Bϕi }; and
(2) for any ϕ ∈ �, � ∃t′′ : t′ =−→(Ak,ϕ) t′′ and t′ �= t′′.

Condition (1) ensures that each step of the process is justified; i.e., a fixing rule
is properly applied. Condition (2) ensures that t′ is a fixpoint and cannot be further
updated.

We write t
∗−→(A,�) t′ to denote that t′ is a fix of t.

Unique fixes. We say that an R tuple t has a unique fix by a set � of fixing rules if
there exists a unique t′ such that t

∗−→(∅,�) t′.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

Dependable Data Repairing with Fixing Rules 16:9

Fig. 4. Summary of notations.

Example 3.5. Consider Example 3.3. Indeed, r′
2 is a fix of r2 w.r.t. rules ϕ1 and ϕ2 in

Example 3.1, since no rule can be properly applied to r′
2, given the assured attributes

to be {country, capital}.
Moreover, r′

2 is also a unique fix, since one cannot get a tuple different from r′
2 when

trying to apply rules ϕ1 and ϕ2 on tuple r2 in other orders.

In Figure 4 we summarize the notations to be used in this article.

4. FUNDAMENTAL PROBLEMS

We next identify fundamental problems associated with fixing rules and establish their
complexity.

4.1. Termination

One natural question for rule-based data-repairing processes is the termination prob-
lem that determines whether a rule-based process will stop. In fact, it is easy to verify
that the fix process, by applying fixing rules (see Section 3.2), always terminates.

Consider the following. For a sequence of updates t0 →(A1,ϕ1) t1 . . . →(Ai ,ϕi) ti . . ., each
time a fixing rule ϕi (i ≥ 1) is applied as ti−1 →(Ai ,ϕi) ti, the number of validated
attributes in A is strictly increasing bounded by |R|, the cardinality of schema R.
Hence, a fix process will always terminate.

4.2. Consistency

The problem is to decide whether a set � of fixing rules does not have conflicts. We say
that � is consistent if for any input tuple t of R, then t has a unique fix by �.

Example 4.1. Consider a fixing rule ϕ′
1 by adding a negative pattern to the ϕ1 in

Example 3.1 as the following:

ϕ′
1 : (([country], [China]), (capital, {Shanghai, Hongkong, Tokyo})) → Beijing.

The revised rule ϕ′
1 states that, for a tuple, if its country is China and its capital value

is Shanghai, Hongkong, or Tokyo, its capital is wrong and should be updated to Beijing.
Consider another fixing rule ϕ3 as: for t in relation Travel, if the conf is ICDE, held at

city Tokyo and capital Tokyo, but the country is China, its country should be updated to
Japan. This fixing rule can be formally expressed as follows:

ϕ3 : (([capital, city, conf], [Tokyo, Tokyo, ICDE]), (country, {China})) → Japan.

We show that these two fixing rules, ϕ′
1 and ϕ3, are inconsistent. Consider the tuple

r3 in Figure 1. Both ϕ′
1 and ϕ3 can be applied to r3. It has the following two fixes:

(1) r3 →(∅,ϕ′
1) r′

3: It will change attribute r3[capital] from Tokyo to Beijing. This will result
in an updated tuple as

r′
3 : (Peter, , Tokyo, ICDE).

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

16:10 J. Wang and N. Tang

It also marks attributes {country, capital} as assured, such that ϕ3 cannot be properly
applied; i.e., r′

3 is a fixpoint.
(2) r3 →(∅,ϕ3) r′′

3 : It will update r3[country] from China to Japan. This will yield another
updated tuple as

r′′
3 : (Peter, , Tokyo, ICDE).

The attributes {country, capital, conf} will be marked as assured, such that ϕ′
1 cannot

be properly applied; i.e., r′′
3 is also a fixpoint.

Observe that the above two fixes (i.e., r′
3 and r′′

3) lead to different fixpoints, where
the difference is highlighted above. Therefore, ϕ′

1 and ϕ3 are inconsistent. Indeed, r′
3

contains errors while r′′
3 is correct.

Consistency problem. The consistency problem is to determine, given a set � of fixing
rules defined on R, whether � is consistent.

Intuitively, this is to determine whether the rules in � are dirty themselves. The
practical need for the consistency analysis is evident: we cannot apply � to repair data
before � is ensured consistent itself.

This problem has been studied for CFDs, MDs, and editing rules. It is known that the
consistency problem for MDs [Fan et al. 2009] is trivial: any set of MDs is consistent
[Fan et al. 2011]. They are NP-complete (resp. coNP-complete) for CFDs [Fan et al.
2008] (respectively, editing rules [Fan et al. 2012]). We shall show that the problem for
fixing rules is PTIME, lower than their editing rules counterparts.

THEOREM 4.2. The consistency problem of fixing rules is PTIME.

We prove Theorem 4.2 by providing a PTIME algorithm for determining if a set of
fixing rules is consistent in Section 5.2.

The low complexity from the consistency analysis tells us that it is feasible to effi-
ciently find consistent fixing rules.

A dual problem of consistency is the determinism problem.
Determinism problem. The determinism problem asks whether all terminating
cleaning processes end up with the same repair. From the definition of consistency
of fixing rules, it is trivial to get that, if a set � of fixing rules is consistent, for any t
of R, applying � to t will terminate, and the updated t′ is deterministic (i.e., a unique
result).

4.3. Implication

Given a set � of consistent fixing rules, and another fixing rule ϕ that is not in �, we
say that ϕ is implied by �, denoted by � |= ϕ, if

(1) � ∪ {ϕ} is consistent; and
(2) for any input t where t

∗−→� t′ and t
∗−→�∪{ϕ} t′′, t′ and t′′ are the same.

Condition (i) says that � and ϕ must agree with each other. Condition (ii) ensures
that for any tuple t, applying � or � ∪ {ϕ} will result in the same updated tuple, which
indicates that ϕ is redundant.
Implication problem. The implication problem is to decide, given a set � of consistent
fixing rules, and another fixing rule ϕ, whether � implies ϕ.

Intuitively, the implication analysis helps us find and remove redundant rules from
�, i.e., those that are a logical consequence of other rules in �, to improve performance.

No matter how desirable it is to remove redundant rules, unfortunately, the implica-
tion problem is coNP-complete.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

Dependable Data Repairing with Fixing Rules 16:11

THEOREM 4.3. The implication problem of fixing rules is coNP-complete. It is down to
PTIME when the relation schema R is fixed.

PROOF. We first show that the implication problem for fixing rules is coNP-complete
for general case, and then show it is PTIME when the relational schema R if fixed.

(A) General case. We first show it is in coNP and then show it is coNP-hard.
Upper bound. The coNP upper bound is verified by providing an NP algorithm for its

complement problem, based on the following small model property:
Given a consistent set � of fixing rules and another rule ϕ defined on the same relation

schema R, � implies ϕ (i.e., � |= ϕ) iff (a) � ∪ {ϕ} is consistent; and (b) for any tuple t of
R that draws values from active domain adom, t has the same unique fix by both � and
� ∪ {ϕ}, where adom is the set of all constants appearing in � and ϕ.

The small model property states that, while there may exist infinitely many t, it
suffices to inspect those t constructed with those values in adom only.

We next present an NP algorithm for the complement of the implication problem,
i.e., the algorithm returns “Yes” iff � �|= ϕ.

In a nutshell, the NP algorithm works as follows:

(1) Check whether � ∪ {ϕ} is consistent; if no, return “Yes” (i.e., � �|= ϕ); otherwise,
continue;

(2) Guess a tuple t that draws values from adom;
(3) Check whether t has the same unique fix by � ∪ {ϕ} and �; if yes, go to step 2;

otherwise, return “Yes” (i.e., � �|= ϕ); and
(4) return “No” if all tuples constructed with values from adom pass the check in step 3

(i.e., � |= ϕ).

Step 1 is in PTIME. In step 3, the check is in PTIME by the semantics of fixing rules.
The algorithm returns “Yes” iff there exists a tuple t that has distinct fixes by � and
� ∪ {ϕ}. Thus, it is an NP algorithm for the complement of the implication problem.
That is, the implication problem is in coNP.

Lower bound. We next show the implication problem is coNP-hard by reduction from
the 3SAT problem, which is NP-complete (cf. [Papadimitriou 1994]), to the complement
of the implication problem.

An instance φ of the 3SAT problem is a well-formed Boolean formula φ = C1 ∧· · ·∧Cr,
where all variables in φ are x1, . . . , xm and Cj is of the form �

j
1 ∨ �

j
2 ∨ �

j
3, and �

j
i is

either xk or xk, for k ∈ [1, m]. The problem is to determine whether there exists a truth
assignment such that φ is true; i.e., φ is satisfiable.

Given an instance φ of the 3SAT problem, we define an instance of the implication
problem for fixing rules, namely, a relation schema R, a set � of consistent fixing rules
on R and another fixing rule ϕ on R, such that � �|= ϕ iff φ is satisfiable.

(1) We define the relation schema R to be (X1, . . . , Xm, C, S), where the data type
of each attribute is Boolean. In other words, the possible values of each attribute are
true and false. Intuitively, for each tuple t in an instance I of R, t[X1, . . . , Xm] encodes
a truth assignment of the variables x1, . . . , xm. We next define the consistent set � of
fixing rules where |�| = r and an extra fixing rule ϕ, and we illustrate attributes C
and S below.

(2) We define � to be a set of fixing rules, where |�| = r, is of the following form:

((X j, tp[X j]), (C, {true})) → false,

where for each clause C j = �
j
1 ∨ �

j
2 ∨ �

j
3 (j ∈ [1, r]), X j = [ind(� j

1), ind(� j
2), ind(� j

3)],
where ind(� j

i) = Xk if �
j
i = xk or xk. For each attribute Xk in X j , tp[Xk] = false

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

16:12 J. Wang and N. Tang

if xk appears in C j , and tp[Xk] = true if xk appears in C j . For example, consider
C1 = x1 ∨ x2 ∨ x3. Based on the mapping, we will construct a fixing rule of the form
(([X1, X2, X3], [false, true, false]), (C1, {true})) → false.

(3) We define ϕ as

(([S], [false]), (C, {true})) → false.

Intuitively, for any tuple t defined on R with t[S] = false and t[C] = true, applying ϕ
will change t[C] to false.

We now show the correctness of this reduction, i.e., φ is satisfiable if and only if
� �|= ϕ. It is easy to see that � is consistent, because each rule in � only modifies the
attributes of C j (j ∈ [1, r]), which has no impact on the other rules. We next show that
there exists a tuple t such that t has two distinct fixes by � and � ∪ {ϕ} iff there exists
a truth assignment μ of variables x1, . . . , xm that satisfies φ.
⇒ Assume φ is satisfiable. That is, there exists a truth assignment μ0 for variables

x1, . . . , xm such that μ0(φ) = true. Consider the tuple t = (μ0(x1), . . . , μ0(xm), true, false).
We can observe that there is no fixing rule in � that can be properly applied to t.
Thus, t has a unique fix t1 = (μ0(x1), . . . , μ0(xm), true, false) by �. This observation can
be proved by contradiction. Assuming there exists a fixing rule that can be properly
applied to the tuple. Let the corresponding clause be C j = �

j
1∨�

j
2∨�

j
3. We next prove that

�
j
1 ∨�

j
2 ∨�

j
3 must be false, which contradicts the initial assumption (i.e., φ is satisfiable).

Consider �
j
i (i ∈ [1, 3]). It can be either xk or xk.

• (i) If �
j
i = xk, then in the fixing rule constructed for C j , we have tp[Xk] = false. Since

the rule can be properly applied to the tuple t, we have t[Xk] = false. Based on the
way to construct the tuple t, we have xk = false. Thus, �

j
i = xk = false.

• (ii) If �
j
i = xk, then we have tp[Xk] = true in the corresponding fixing rule. Since the

rule can be properly applied to the tuple t, we have t[Xk] = true. Based on the way to
construct the tuple t, we have xk = true. Thus, �

j
i = xk = false.

In any case, �
j
i = false (i ∈ [1, 3]). Thus, the observation is proved, and t has a unique

fix t1 = (μ0(x1), . . . , μ0(xm), true, false) by �. However, if we consider � ∪ {ϕ}, then t will
have a distinct unique fix t2 = (μ0(x1), . . . , μ0(xm), false, false), since the extra rule ϕ
enforces t[C] from true to false. Therefore, � �|= ϕ.

Here is an example to show how we construct the tuple t. Suppose C1 = x1 ∨ x2 ∨ x3
and C2 = x1 ∨ x2 ∨ x3. Consider a truth assignment is μ0(x1) = true, μ0(x2) = false, and
μ0(x3) = true. Then the tuple t is (true, false, true, true, false)
⇐ Suppose φ is not satisfiable. We next prove � |= ϕ. That is, for any tuple t =

(t[X1], . . . , t[Xm], t[C], t[S]), t has the same unique fix by � and � ∪ {ϕ}. We consider t
in four cases:

• t = (t[X1], . . . , t[Xm], false, false). In this case, t[C] = false. For the fixing rules in
� ∪ {ϕ}, to properly apply them to t, it is required that t[C] = true. Thus, none of the
rules can be properly applied to the tuple. t has the same unique fix by � and � ∪{ϕ}.

• t = (t[X1], . . . , t[Xm], false, true). Since t[C] = false, similarly, we can prove t has the
same unique fix by � and � ∪ {ϕ} in this case.

• t = (t[X1], . . . , t[Xm], true, false). Consider the assignment μ′, where μ′(xk) = t[Xk]
for k ∈ [1, m]. Since φ is not satisfiable, there exists at least one clause such that
C j = �

j
1 ∨ �

j
2 ∨ �

j
3 is f alse. That is, �

j
i = false (i ∈ [1, 3]). We next prove the fixing rule

constructed for C j can be properly applied to the tuple t.
Consider �

j
i (i ∈ [1, 3]). It can be either xk or xk.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

Dependable Data Repairing with Fixing Rules 16:13

(1) In the case of t[Xk] = true, to ensure �
j
i = false, we can obtain �

j
i = xk. Since

�
j
i = xk, based on the way to construct the fixing rule w.r.t. C j , we have tp[Xk] = true.

Thus, tp[Xk] = t[Xk] = true.
(2) In the case of t[Xk] = false, to ensure �

j
i = false, we can obtain �

j
i = xk. Since

�
j
i = xk, based on the way to construct the fixing rule w.r.t. C j , we have tp[Xk] = false.

Thus, tp[Xk] = t[Xk] = false.
We can see in either case, the evidence pattern of the fixing rule matches the tuple,

thus, the rule can be properly applied to the tuple, enforcing t[C] to false. Therefore,
the unique fix of t corresponding to � is (t[X1], . . . , t[Xm], false, false). Note that the
extra fixing rule ϕ enforces t[C] to false, which coincides with the unique fix. Hence,
t has the same unique fix by � and � ∪ {ϕ}.

• t = (t[X1], . . . , t[Xm], true, true). Similar to the above proof, we can obtain that the
unique fix of t corresponding to � is (t[X1], . . . , t[Xm], false, true). Note that the extra
fixing rule ϕ does not have any impact on the tuple, because its evidence pattern
does not match the tuple. Hence, t has the same unique fix by � and � ∪ {ϕ}.
Thus, the implication problem is coNP-complete.
(B) Special case: R is fixed. When R is fixed, with the small model property, only

polynomially many tuples need to be guessed and checked in the algorithm presented
in the upper bound proof. Thus, it is down to PTIME in this special case.

5. ENSURING CONSISTENCY

Our next goal, after studying the consistency problem in Section 4.2, is to study methods
for identifying consistent rules. We first describe the workflow for obtaining consistent
fixing rules (Section 5.1). We then present algorithms to check whether a given set of
rules is consistent (Section 5.2). We also discuss how to resolve inconsistent fixing rules
and ensure the workflow terminates (Section 5.3).

5.1. Overview

Given a set � of fixing rules, our workflow contains the following three steps to obtain
a set �′ of fixing rules that is ensured to be consistent:

Step 1: It checks whether the given � of fixing rules is consistent. If it is inconsistent,
then it goes to step (2). Otherwise, it goes to step (3).

Step 2: We allow either an automatic algorithm or experts to examine and resolve
inconsistent fixing rules. After some rules are revised, it will go back to step (1).

Step 3: It terminates when the set �′ of (possibly) modified fixing rules is consistent.
It is desirable that the users are involved in step (2) when resolving inconsistent

rules, to obtain high-quality fixing rules.

5.2. Checking Consistency

We first present a proposition, which is important to design efficient algorithms for
checking the consistency of a set of fixing rules.

PROPOSITION 5.1. For a set � of fixing rules, � is consistent iff any two fixing rules ϕi
and ϕ j in � are consistent.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

16:14 J. Wang and N. Tang

PROOF. Let n be the number of rules in �. When n = 1, � is trivially consistent.
When n = 2, � is consistent, the same as ϕi and ϕ j are consistent (i �= j). When n ≥ 3,
we prove by contradiction.
⇒ Suppose this proposition is false.

This conditional statement being false means that although the fixing rules are
pairwise consistent, when putting together, they may lead to (at least) two different
fixes, i.e., the fixes are not unique. More concretely, there exist (at least) two non-empty
sequences of fixes as follows:

S1 : t = t0 →(∅,ϕ1) t1 . . . →(Ai−1,ϕi) ti . . . →(Am−1,ϕm) tm = t′,
S2 : t = t′

0 →(∅,ϕ′
1) t′

1 . . . →(A′
j−1,ϕ′

j) t′
j . . . →(A′

n−1,ϕ′
n) t′

n = t′′.

We consider the following three cases: (1) Am ∩ A′
n = ∅; (2) Am ∩ A′

n �= ∅ and t′[Am ∩
A′

n] = t′′[Am ∩ A′
n]; and (3) Am ∩ A′

n �= ∅ and t′[Am ∩ A′
n] �= t′′[Am ∩ A′

n], where Am =
Am−1 ∪ Xϕm ∪ {Bϕm} and A′

n = A′
n−1 ∪ Xϕ′

n
∪ {Bϕ′

n
}. We shall prove in the following that

each case will lead to a contradiction to the assumption.
Case 1 [Am∩A′

n = ∅]. We prove that t′ is not a fixpoint. Observe that (1) each rule in S1
will only change attributes in Am and (2) Am ∩ A′

n = ∅, so it is clear that t′[A′
n] = t[A′

n].
That is, the first sequence will not change any attribute in A′

n. As a consequence, the
rule ϕ′

1 in the second sequence can be properly applied to t′, which proves that t′ is not
a fixpoint.

The above analysis proved that if the two non-empty sequences of fixes lead to two
distinct fixpoints, the intersection of the two attribute sets, Am and A′

n, cannot be empty.
In other words, we were wrong to assume that their intersection is empty.
Case 2 [Am ∩ A′

n �= ∅ and t′[Am ∩ A′
n] = t′′[Am ∩ A′

n]]. Let Xmn = Am ∩ A′
n. Since

t′[Am ∩A′
n] = t′′[Am ∩A′

n], we have either (a) t′[Am\Xmn] �= t′′[Am\Xmn] or (b) t′[A′
n\Xmn] �=

t′′[A′
n \ Xmn], which are symmetric cases.

In the following, we focus on case 2(a). Assume that B is the first attribute appearing
in S1, such that B ∈ Am \ Xmn and ti[B] �= t′′[B]. Since B is the first such attribute, it
is natural to follow that ti[Xϕi] = t′′[Xϕi]. Recall that B ∈ Am \ Xmn, which means that
the rule ϕi can be properly applied to t′′, which contradicts to the assumption that S2
reaches a fixpoint. Similarly, we can prove case 2(b) is a contradiction.

By putting case 2(a) and case 2(b) together, it suffices to prove that the whole case 2
contradicts to the assumption that they lead to two distinct fixes.
Case 3 [Am ∩ A′

n �= ∅ and t′[Am ∩ A′
n] �= t′′[Am ∩ A′

n]]. We shall prove that in this
case, there must exist two fixing rules that are inconsistent.

Let, without loss of generality, ϕi at position i of sequence S1 be the first rule such
that ti[Am ∩ A′

n] �= t′′[Am ∩ A′
n]. In other words, for all k < i, tk[Am ∩ A′

n] = t′′[Am ∩ A′
n].

Here, ti−1[Am ∩ A′
n] = t′′[Am ∩ A′

n] and ti[Am ∩ A′
n] �= t′′[Am ∩ A′

n] imply that ti[Bϕi] �=
t′′[Bϕi]. Moreover, since Bϕi ∈ Am ∩ A′

n, we have Bϕi ∈ A′
n. This further shows that in

sequence S2, there exists a fixing rule ϕ′
j where Bϕi ∈ Xϕ′

j
∪ {Bϕ′

j
}. In the following, we

will show that ϕi and ϕ′
j are indeed inconsistent, by constructing a tuple r that leads

to different fixes.
Since Bϕi ∈ Xϕ′

j
∪ {Bϕ′

j
}, we consider two cases: (a) Bϕi = Bϕ′

j
and (b) Bϕi ∈ Xϕ′

j
.

For case (a), we have ti[Xϕi] = t′′[Xϕi] and t′
j[Xϕ′

j
] = t′′[Xϕ′

j
]. Let the tuple r be r[Xϕi] =

t′′[Xϕi] and r[Xϕ′
j
] = t′′[Xϕ′

j
], it is clear that both ϕi and ϕ′

j can be applied to r, while
leading to two different fixpoints. In other words, ϕi and ϕ′

j are inconsistent.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

Dependable Data Repairing with Fixing Rules 16:15

For case (b), we construct the tuple r as the above. (i) By using ϕ′
j first, the attribute

r[Bϕi] is assured and cannot be changed. (ii) By using ϕi first, the attribute r[Bϕi] will
be changed. From the above two cases, it shows that ϕi and ϕ′

j are inconsistent.
Putting contradiction cases 1–3 together, it suffices to prove that we were wrong to

assume that the proposition is false.
⇐ Assume there exist inconsistent ϕi and ϕ j . We show that for any tuple t that leads

to different fixes by ϕi and ϕ j , we can construct two sequences of fixes S1 and S2 on t
by using the rules in �. In S1, we apply ϕi first; while in S2, we apply ϕ j first. We prove
that these two sequences must yield two different fixes. This suffices to show that we
were wrong to assume that there exist inconsistent ϕi and ϕ j .

Proposition 5.1 tells us that to determine whether � is consistent, it suffices to
only check them pairwise. This significantly simplifies the problem and complexity of
checking the consistency of fixing rules. Next, we describe two algorithms to check the
consistency of two fixing rules, by using the result from Proposition 5.1. One algorithm
is based on tuple enumeration, while the other is through rule characterization.

5.2.1. Tuple Enumeration. We first consider whether there exists a finite set of tuples
such that it suffices to only inspect these tuples to determine whether rules ϕi and ϕ j
are consistent or not. That is, for the other tuples, neither ϕi nor ϕ j can be applied.

To design an algorithm for tuple enumeration, let’s understand what tuples are
necessary to be enumerated and in which cases tuple enumeration can be avoided.

LEMMA 5.2. Two fixing rules ϕi and ϕ j are consistent, if there does not exist any tuple
t that matches both ϕi and ϕ j .

PROOF. If � ∃t such that both t � ϕi and t � ϕ j hold, for any such t, then there are two
cases: either no rule can be applied or there exists a unique sequence of applying both
rules. Either case will not cause different fixes, i.e., ϕi and ϕ j are consistent.

Note that Lemma 5.2 is for “if” but not “iff,” which tells us that only tuples that draw
values from evidence pattern and negative patterns can (possibly) match both rules
at the same time. Next we illustrate the tuples that are needed to be generated by an
example.

Example 5.3. Consider rules ϕ1 and ϕ2 in Example 3.1. We have two constants in
the evidence pattern as {China, Canada}, and three constants in the negative patterns
as {Shanghai, Hongkong, Toronto}. Hence, we only need to enumerate 2 × 3 = 6 tuples
for relation Travel as follows:

(◦, China, Shanghai, ◦, ◦), (◦, China, Hongkong, ◦, ◦),
(◦, China, Toronto, ◦, ◦), (◦, Canada, Shanghai, ◦, ◦),
(◦, Canada, Hongkong, ◦, ◦), (◦, Canada, Toronto, ◦, ◦),

where “◦” is a special character that is not in any active domain; i.e., it does not match
any constant. One can verify that no other tuple can both match ϕ1 and ϕ2.

The total number of tuples to be enumerated is
∏

l∈[1,m](|Vϕi j (Al)|), where
∏

indicates
a product and |Vϕi j (Al)| denotes the cardinality of Vϕi j (Al).

Algorithm isConsistt. Figure 5 shows the pseudo-code of the algorithm. Given a
set � of fixing rules, we check them pairwise. For each pair, ϕi and ϕ j , we enumerate∏

l∈[1,m](|Vϕi j (Al)|) possible tuples. If there exists a tuple that has two unique fixes w.r.t.
{ϕi, ϕ j}, then we judge that � is inconsistent. If such a case does not happen for any
pair of rules, then � is consistent.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

16:16 J. Wang and N. Tang

Fig. 5. Consistency check via tuple enumeration.

5.2.2. Rule Characterization. Now, let’s concentrate on a rather different kind of analysis,
by characterizing fixing rules and avoiding enumerating tuples.

Based on Lemma 5.2, let us focus on the cases of ϕi and ϕ j that there exists some
t that can match both fixing rules; i.e., it is possible that applying ϕi and ϕ j on t in
different orders may result in different fixes. Assume they are represented as follows:

ϕi : ((Xi, tpi [Xi]), (Bi, T −
pi

[Bi])) → t+
pi

[Bi],
ϕ j : ((Xj, tpj [Xj]), (Bj, T −

pj
[Bj])) → t+

pj
[Bj].

Note that a tuple t matching ϕi and ϕ j implies that the following conditions hold:
t[Xi] = tpi [Xi] and t[Xj] = tpj [Xj]. Hence, we have tpi [Xi ∩ Xj] = tpj [Xi ∩ Xj], where a
special case is Xi ∩ Xj = ∅. We consider two cases: Bi = Bj and Bi �= Bj .

Case 1: Bi = Bj . Let B = Bi = Bj . There is a conflict only when (i) there exists a
tuple t that matches both ϕi and ϕ j , and (ii) ϕi and ϕ j will update t to different values.

From (i) we have t[B] ∈ T −
pi

[B] and t[B] ∈ T −
pj

[B], which gives T −
pi

[B]∩ T −
pj

[B] �= ∅; i.e.,
they can be applied at the same time. From (ii) we have t+

pi
[B] �= t+

pj
[B]; i.e., they lead

to different fixes. From (i) and (ii), the extra condition that ϕi and ϕ j are inconsistent
under such a case is (T −

pi
[B] ∩ T −

pj
[B] �= ∅ and t+

pi
[B] �= t+

pj
[B]). The following example

shows two inconsistent fixing rules for this case:

ϕi : (([country], [China]), (capital, {Shanghai, Hongkong})) → Beijing,
ϕ j : (([country], [China]), (capital, {Shanghai})) → Xian.

Case 2: Bi �= Bj . Again, we consider four cases: (a) Bi ∈ Xj and Bj �∈ Xi, (b) Bi �∈ Xj
and Bj ∈ Xi, (c) Bi ∈ Xj and Bj ∈ Xi, and (d) Bi �∈ Xj and Bj �∈ Xi.

(a) Bi ∈ Xj and Bj �∈ Xi. If a tuple t matches ϕi and ϕ j , then (i) t[Bi] ∈ T −
pi

[Bi] (to match
ϕi), and (ii) t[Bi] = tpj [Bi] (to match ϕ j).

Observe the following: if ϕ j is applied to t first, since Bi ∈ Xj , then it will keep
t[Bi] unchanged, whereas if ϕi is applied first, then it will update t[Bi] to a different
value (i.e., t+

pi
[Bi]). This will cause different fixes. Hence, ϕi and ϕ j are inconsistent

only when tpj [Bi] ∈ T −
pi

[Bi] (by merging (i) and (ii)). The following example provides

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

Dependable Data Repairing with Fixing Rules 16:17

Fig. 6. Consistency check via rule characterization.

two inconsistent fixing rules under this case:

ϕi : (([country], [China]), (capital, {Shanghai, Tokyo})) → Beijing,
ϕ j : (([capital], [Tokyo]), (conf, {SIGMOD})) → ICDE.

(b) Bi �∈ Xj and Bj ∈ Xi. This is symmetric to case (a). Therefore, ϕi and ϕ j are
inconsistent only when tpi [Bj] ∈ T −

pj
[Bj].

(c) Bi ∈ Xj and Bj ∈ Xi. This is the combination of cases (a) and (b). Thus, ϕi and
ϕ j are inconsistent only when tpi [Bj] ∈ T −

pj
[Bj] and tpj [Bi] ∈ T −

pi
[Bi]. The following

example provides two inconsistent fixing rules under this case:

ϕi : (([country], [China]), (capital, {Tokyo, Shanghai})) → Beijing,
ϕ j : (([capital], [Tokyo]), (country, {China})) → Japan.

(d) Bi �∈ Xj and Bj �∈ Xi. For any tuple t that matches both ϕi and ϕ j , rule ϕi (respec-
tively, ϕ j) will deterministically update t[Bi] (respectively, t[Bj]) to t+

pi
[Bi] (respec-

tively, t+
pj

[Bj]). That is, ϕi and ϕ j are trivially consistent in this case.

Example 5.4. Consider ϕ′
1 and ϕ3 in Example 4.1 and ϕ2 in Example 3.1. Since ϕ′

1
(respectively, ϕ2) is only applied to a tuple whose country is China (respectively, Canada),
there does not exist any tuple that can match both rules at the same time. Therefore,
based on Lemma 5.2, we have ϕ′

1 and ϕ2 are consistent.
Also, it can be verified that ϕ′

1 and ϕ3 are inconsistent. Consider the following:

(i) Bϕ3 ∈ Xϕ′
1

(i.e., country ∈ {country}),
(ii) tp1 [Bϕ3] ∈ T −

p3
[Bϕ3] (i.e., China ∈ {China}),

(iii) Bϕ′
1
∈ Xϕ3 (i.e., capital ∈ {capital, city, conf}), and

(iv) tp3 [Bϕ′
1
] ∈ T −

p1
[Bϕ′

1
] (i.e., Tokyo ∈ {Shanghai, Hongkong, Tokyo}).

Hence, these two rules will lead to different fixes, which is captured by case 2(c).

Algorithm isConsistr. The algorithm to check whether a set of fixing rules is consistent
via rule characterization, referred to as isConsistr, is given in Figure 6. It takes � as
input and returns a Boolean value, where true indicates that � is consistent and
false otherwise.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

16:18 J. Wang and N. Tang

Fig. 7. Illustrations in resolving conflicts.

It enumerates all pairs of distinct rules (lines 1–11). If any pair is inconsistent, then
it returns false (lines 5, 7, 9, 11); otherwise, it reports that � is consistent (line 12). It
covers all the cases that two rules can be inconsistent, i.e., case 1 (lines 2–5), case 2(a)
(lines 6 and 7), case 2(b) (lines 8 and 9) and case 2(c) (lines 10 and 11). Note that in
case 2(d), two rules are trivially consistent; there is no need to investigate such case.
Correctness and complexity. From the analysis above, isConsistr covers all the
cases that two rules can be inconsistent. Thus, it is proved to be correct based on
Proposition 5.1 and Lemma 5.2. In terms of complexity, we can use a hash table to
check that whether a value matches some negative pattern in constant time. Since
isConsistr enumerates all pairs of rules, its time complexity isO(size(�)2), where size(�)
represents the physical size of �, which is different from its cardinality.

5.3. Resolving Inconsistent Rules

When fixing rules are inconsistent, it may lead to conflicting repairing results. In this
section, we discuss how to resolve inconsistent fixing rules.

Consider two inconsistent rules, ϕ′
1 and ϕ3, in Example 5.4. Figure 7 highlights the

values that result in the conflict. A conservative solution is to remove all the rules
that are in conflict. This process ensures termination, since the number of rules is
strictly decreasing, until the set of rules is consistent or becomes empty. Although the
bright side is that the remaining rules are consistent, the problem is that this will also
remove some useful rules (e.g., ϕ3). It is difficult for automatic algorithms to solve such
semantic problem well.

Hence, to obtain high-quality rules, we ask experts to examine rules that are in con-
flict. For example, the experts can naturally remove Tokyo from the negative patterns
of ϕ′

1, which will result in a modified rule ϕ1 (see Example 3.1) and ϕ1 is consistent with
ϕ3. Note that to ensure termination, we only allow the experts to remove some negative
patterns (e.g., from ϕ′

1 to ϕ1), or remove some fixing rules, without adding values.

6. REPAIRING WITH FIXING RULES

After completing our study of finding a set of consistent fixing rules, the next most
important item on nearly everybody’s wish list is how to use these rules to repair data.

In the following, we first present a chase-based algorithm to repair one tuple (Sec-
tion 6.1), with time complexity in O(size(�)|R|), where R is the relation. To make the
solution efficient enough in practice, we also present a fast algorithm (Section 6.2)
running in O(size(�)) time for repairing one tuple.

6.1. Chase-based Algorithm

When a given set � of fixing rules is consistent, for any t, applying � to t will get
a unique fix (see Section 3.2), which is also known as the Church-Rosser property
[Abiteboul et al. 1995]. Note that each tuple will be repaired independently. In the
following, our discussion is about how to repair one tuple, and all tuples will be repaired
one by one. We next present an algorithm to repair a tuple with consistent fixing rules.
It iteratively picks a fixing rule that can be applied, until a fix is reached.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

Dependable Data Repairing with Fixing Rules 16:19

Fig. 8. Chase-based repairing algorithm.

Algorithm. The algorithm, referred to as cRepair, is shown in Figure 8. It takes as
input a tuple t and a set � of consistent fixing rules. It returns a repaired tuple t′ w.r.t.
the given set of rules �.

The algorithm first initializes a set of assured attributes, a set of fixing rules that
can be possibly applied, a tuple to be repaired, and a flag to indicate whether the
tuple has been changed (line 1). It then iteratively examines and applies the rules to
the tuple (lines 2–9). If there is a rule that can be properly applied (line 5), then it
updates the tuple (line 6), maintains the assured attributes and rules that can be used
correspondingly, and flags this change (lines 7–9). It terminates when no rule can be
further properly applied (line 2), and the repaired tuple will be returned (line 10).
Correctness and complexity. The correctness of cRepair is naturally ensured by the
Church-Rosser property, since � is consistent. For the complexity, observe the following.
The outer loop (lines 2–9) iterates at most |R| times. For each loop, it needs to scan each
unused rule and checks whether it can be properly applied to the tuple. From these it
follows that algorithm cRepair runs in O(size(�)|R|) time.

6.2. A Fast Repairing Algorithm

Our next goal is to study how to improve the chase-based procedure. One natural way
is to consider how to avoid repeatedly checking whether a rule is applicable, after each
update of the tuple being examined.

Note that a key property of employing fixing rules is that, for each tuple, each rule
can be applied only once. After a rule is applied, in consequence, it will mark the
attributes associated with this rule as assured and does not allow these attributes to
be changed any more (see Section 3.2).

Hence, two important steps are, after each value update, to (i) efficiently identify
the rules that cannot be applied, and (ii) determine unused rules that can be possibly
applied.

We employ two types of indices to achieve the above two targets. Inverted lists are
used to achieve (i), and hash counters are employed for (ii).

Before describing how to use these indices to design a fast algorithm, let’s define
these indices, which is important to understand the algorithm.

Inverted lists. Each inverted list is a mapping from a key to a set ϒ of fixing rules.
Each key is a pair (A, a), where A is an attribute and a is a constant value. Each fixing
rule ϕ in the set ϒ satisfies A ∈ Xϕ and tp[A] = a.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

16:20 J. Wang and N. Tang

Fig. 9. A linear repairing algorithm.

For example, an inverted list w.r.t. ϕ1 in Example 3.1 is as

country, China → ϕ1 .

Intuitively, when the country of some tuple is China, this inverted list will help to
identify that ϕ1 might be applicable.

Hash counters. It uses a hash map to maintain a counter for each rule. More con-
cretely, for each rule ϕ, the counter c(ϕ) is a nonnegative integer, denoting the number
of attributes that a tuple agrees with tp[Xϕ].

For example, consider ϕ1 in Example 3.1 and r2 in Figure 1. We have c(ϕ1) = 1
w.r.t. tuple r2, since both r2[country] and tp1 [country] are China. As another example,
consider r4 in Figure 1, we have c(ϕ1) = 0 w.r.t. tuple r4, since r4[country] = Canada but
tp1 [country] = China.

We are now ready to present a fast algorithm by using the two indices introduced
above. Note that inverted lists are built only once for a given �, and keep unchanged
for all tuples. The hash counters will be initialized to zero for the process of repairing
each new tuple.
Algorithm. The algorithm lRepair is given in Figure 9. It takes as input a tuple t, a set
� of consistent fixing rules, and inverted lists I. It returns a repaired tuple t′ w.r.t. �.

It first initializes a set of assured attributes, a set of fixing rules to be used, and a
tuple to be repaired (line 1). It also clears the counters for all rules (line 2). It then uses
inverted lists to initialize the counters (lines 3–5). After the counters are initialized,
it checks and maintains a list of rules that might be used—a rule will be added to the
list if it is applicable to t (lines 6 and 7), and uses a chase process to repair the tuple
(lines 8–16), and returns the repaired tuple (line 17).

During the process (lines 8–16), it first randomly picks a rule that might be used
(line 9). The rule will be applied if it is verified to be applicable (lines 10 and 11).

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

Dependable Data Repairing with Fixing Rules 16:21

Fig. 10. A running example.

The set of attributes that is assured correct is increased correspondingly (line 12). The
counters will be recalculated (lines 13 and 14). Moreover, if new rules might be used
due to this update, then they will be identified (line 15). The rule that has been checked
will be removed (line 16), no matter whether it is applicable or not.

Observe the following two cases. (i) If a rule is removed after being applied at line 16
(i.e., line 10 gives a true), then it cannot be used again and will not be checked at
lines 13–15. (ii) If a rule ϕ is removed without being applied at line 16 (i.e., line 10
gives a false), then it cannot be used either at lines 13–15. The reason is that: for any
rule ϕ, if ϕ cannot be properly applied to t′, any update on attribute Bϕ will mark it as
assured, such that ϕ cannot be properly applied afterwards. From the above (i) and (ii),
it follows that it is safe to remove a rule from �, after it has been checked, once and for
all.
Correctness. Note that � is consistent, we only need to prove the repaired tuple t′
is a fix of t. This can be proved based on (1) at any point, � includes all fixing rules
that might match the given tuple; and (2) each fixing rule is added into � at most once.
Hence, the algorithm terminates until it reaches a fixpoint when � is empty.
Complexity. It is clear that the three loops (line 2, lines 3–5, lines 6 and 7) all run in
time linear to size(�). Next let us consider the while loop (lines 8–16). Observe that
each rule ϕ will be checked in the inner loop (lines 13–15) up to |Xϕ| times, by using
the inverted lists and hash counters, independent of the number of outer loop iterated.
The other lines of this while loop can be done in constant time. Added together, the
total time complexity of the algorithm is O(size(�)).

We next show by example how algorithm lRepair works.

Example 6.1. Consider Travel data D in Figure 1, rules ϕ1, ϕ2 in Example 3.1, and
rule ϕ3 in Example 4.1. In order to better understand the chase process, we introduce
another rule:

ϕ4 : (([capital, conf], [Beijing, ICDE]), (city, {Hongkong}) → Shanghai.

Rule ϕ4 states that: for t in relation Travel, if the conf is ICDE, held at some country
whose capital is Beijing, but the city is Hongkong, its city should be Shanghai. This holds
since ICDE was held in China only once at 2009, in Shanghai but never in Hongkong.

Given the four fixing rules ϕ1–ϕ4, the corresponding inverted lists are given in
Figure 10(a). For instance, the third key (conf, ICDE) links to rules ϕ3 and ϕ4, since
conf ∈ Xϕ3 (i.e., {capital, city, conf}) and tp3 [conf] = ICDE; and moreover, conf ∈ Xϕ4 (i.e.,
{capital, conf}) and tp4 [conf] = ICDE. The other inverted lists are built similarly.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

16:22 J. Wang and N. Tang

Now we show how the algorithm works over tuples r1 to r4, which is also depicted in
Figure 10. Here, we highlight these tuples in two colors, where the green color means
that the tuple is clean (i.e., r1), while the red color represents the tuples containing
errors (i.e., r2, r3, and r4).

It initializes (lines 1–7) and finds that ϕ1 may be applied, maintained in �. In the
first iteration (lines 8–16), it finds that ϕ1 cannot be applied, since r1[capital] is
Beijing, which is not in the negative patterns {Shanghai, Hongkong} of ϕ1. Also,
no other rules can be applied. It terminates with r1 unchanged. Actually, r1 is a
clean tuple.
It initializes and finds that ϕ1 might be applied. In the first iteration (lines 8–16),
rule ϕ1 is applied to r2 and updates r2[capital] to Beijing. Consequently, it uses
inverted lists (line 13) to increase the counter of ϕ4 (line 14) and finds that ϕ4
might be used (line 15). In the second iteration, rule ϕ1 is applied and updates
r2[city] to Shanghai. It then terminates, since no other rules can be applied.
It initializes and finds that ϕ3 might be applied. In the first iteration, ϕ3 is applied
and updates r3[coutry] to Japan. It then terminates, since no more applicable rules.
It initializes and finds that ϕ2 might be applied. In the first iteration, rule ϕ2 is
applied and updates r4[capital] to Ottawa. It will then terminate.

At this point, we see that all four errors shown in Figure 1 have been corrected.

7. FIXING RULE GENERATION

In this section, we first describe how to generate fixing rules from examples
(Section 7.1). We then discuss how to generate fixing rules from available knowledge
bases (Section 7.2).

Note that the purpose of fixing rule generation is not to use them for some specific
dataset. It is, by collecting expert knowledge for specific errors, to produce high-quality
domain-related rules that can be used to automatically detect and repair data for other
datasets in the same domain.

7.1. Generating fixing Rules from Examples

Indeed, human efforts are necessary to design high-quality fixing rules, which is also
the case for other rule-based data-cleaning systems, for obtaining, e.g., CFDs [Fan et al.
2008], editing rules [Fan et al. 2012], and ETL rules [Batini and Scannapieco 2006;
Herzog et al. 2009]. In this section, we will discuss how to leverage human efforts to
generate fixing rules from examples. In order to generate fixing rules more efficiently,
we divide the rule generation process into the following two phases:

Seed fixing rule generation. Since each fixing rule is defined on semantically related
attributes, we start with known data dependencies (e.g., FDs) and detect violations of
given FDs. Intuitively, a violation represents inconsistent answers to the same ques-
tion. Based on the understanding of these violations, the experts can produce seed
fixing rules by correcting inconsistent answers.

Rule enrichment. Given seed fixing rules, we enrich them by only enlarging their
negative patterns (i.e., possible false answers), via extracting new negative patterns
from other tables in the same domain. For instance, consider Example 1.2. If users
provide a fixing rule that takes China as the evidence pattern, and some Chinese cities
(e.g., Shanghai, Hongkong) other than Beijing as negative patterns, then one can enlarge
its negative patterns by extracting large cities from a table about Chinese cities.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

Dependable Data Repairing with Fixing Rules 16:23

Fig. 11. Fixing Rule Generator.

Compared with editing rules, fixing rules might need more human efforts to get.
However, as will be shown in the experiment (Exp-2(d)), when a fixing rule is provided,
it can help to automatically repair many tuples.

7.2. Generating fixing Rules from Knowledge Bases

Nowadays, there are many publicly available knowledge bases. They contain a large
amount of high-quality information, and provide convenient query interfaces for users
to access such information. In this section, we will use two widely used knowledge
bases (Freebase1 and YAGO2) as examples to illustrate how to generate fixing rules
from knowledge bases. Here, Freebase is in JSON format and YAGO is in RDF format.

7.2.1. Fixing Rule Generator Framework. Recall the definition of fixing rules in Section 3.1,
a fixing rule mainly consists of three parts: evidence pattern, fact, and a set of negative
patterns. Intuitively, the evidence pattern can be considered as a question, and the fact
is the true answer to the question, and the set of negative patterns are the possible
false answers to the question. For example, a question can be “what is the capital of
China?”, and the corresponding true answer is “Beijing,” and possible false answers can
be other big cities in China (e.g., “Shanghai” and “HongKong”). Therefore, the key point
for generating fixing rules becomes how to effectively generate 〈question, true answer〉
pairs and 〈question, false answers〉 pairs.

Following this point, we propose the fixing rule generator framework in Figure 11,
which aims to generate these two types of pairs by leveraging human efforts or query-
ing knowledge bases. Let (X, B+) and (X, B−) denote a pair of 〈question, true answer〉
and a pair of 〈question, false answers〉, respectively. The framework will first construct
specific queries according to available resources (e.g., master tables, human or knowl-
edge bases such as YAGO and Freebase), and then retrieve a collection of (X, B+) and
(X, B−) from the results returned by the queries. In the end, the framework will merge
(X, B+) and (X, B−) that share the same “question” (i.e., X), and generate fixing rules
in the form of (X, B+, B−).

7.2.2. Extracting Fixing Rules From Freebase. Freebase is a community-curated database
consisting of tens of millions of topics and billions of facts (as of January 2014). It was
initially developed by the Metaweb company and was acquired by Google in 2010. Free-
base provides the Metaweb Query Language (MQL) for users to access the database.
Note that we use FreeBase as an example to show how we can extract fixing rules from

1http://www.freebase.com/.
2http://www.mpi-inf.mpg.de/yago-naga/yago/.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

http://www.freebase.com/
http://www.mpi-inf.mpg.de/yago-naga/yago/

16:24 J. Wang and N. Tang

knowledge bases that use MQL. Next we will show how to use the MQL to get a set of
fixing rules used in the article such as the following rules:

ϕ1 : (([country], [China]), (capital, {Shanghai, Hongkong})) → Beijing,
ϕ2 : (([country], [Canada]), (capital, {Toronto})) → Ottawa.

The generation process consists of two steps:
Step1: Get a list of 〈country, capital〉 pairs. This can be done by issuing an MQL
(http://wiki.freebase.com/wiki/MQL) query to Freebase:

[{
‘‘type’’: ‘‘/location/country’’,
‘‘name’’: null,
‘‘/location/country/capital’’: []

}]

The above query will return a list of 〈country, capital〉 pairs.
Step2: For each pair obtained in step 1, issue the following query for, e.g., China:

[{
‘‘/location/country/iso3166_1_shortname’’: ‘‘CHINA’’,
‘‘/location/location/contains’’: [{
‘‘name’’: null,
‘‘type’’: ‘‘/location/citytown’’
}]

}]

The query returns a list of cities in China. We can get negative patterns by removing
capitals from the corresponding countries. The Merger will then merge the results from
the above two steps to generate a set of fixing rules.

7.2.3. Extracting Fixing Rules From YAGO. YAGO is a popular knowledge base developed
at the Max Planck Institute for Computer Science, which is stored in RDF format. Its
information was extracted from Wikipedia, WordNet, and GeoNames. We can write
SPARQL3 queries to access the YAGO database. In the following, we will show how to
generate the same fixing rules as Section 7.2.2 from YAGO.

select ?x, ?y, ?z
where {

?x rdf:type country,
?y rdf:type capital,
?z rdf:type city,
?x yago:hasCapital ?y,
?z yago:locatedIn ?x

}

From the above query, you will get a set of triples for (country, capital, city). Then
the Merger will merge them to get fixing rules.
Discussion. There exist many reliable data sources stored in other formats, e.g., rela-
tional tables, XML data, or Google knowledge graph. Similarly to the process discussed
above, one can readily write SQL queries for relational tables, XQuery (or XPath)
queries for XML data, or Google knowledge graph search API for Google knowledge
graph to retrieve the information for generating fixing rules, by following the general
framework shown in Figure 11.

3https://www.w3.org/TR/sparql11-query/.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

http://wiki.freebase.com/wiki/MQL
https://www.w3.org/TR/sparql11-query/

Dependable Data Repairing with Fixing Rules 16:25

Moreover, in practice, it is hard to generate the queries automatically, especially for
the negative patterns. Suppose an evidence pattern and the true answer of a fixing
rule are extracted from a knowledge base. To generate the negative patterns for the
rule, intuitively, we want to find other values than the true answer that are related
to the evidence pattern as the negative patterns. For the country-capital example,
those values can be the non-capital cities of a country, because they are related to the
country but are not the same as the true answer. For another example, if one wants
to generate a rule to correct the year of birth of famous painters, he/she can use some
other years related to the painters (e.g., the year of death) as their negative patterns.
Nevertheless, the whole semantics of rules is fully in the hands of a user, since it relies
on the user to determine which values are related. Typically, practitioners, who know
the semantics of the rules, will write the queries in a trial-and-error fashion, until they
obtain satisfactory results, e.g., negative patterns, from the knowledge bases.

8. EXPERIMENTAL STUDY

We conducted experiments with both real-life and synthetic data to examine our algo-
rithms and help us discover the deficiency of fixing rules and algorithms to be improved.
Specifically, we evaluated (1) the efficiency of consistency checking for fixing rules; (2)
the accuracy of our data repairing algorithms with fixing rules; (3) the accuracy of our
fixing rule generation framework; and (4) the efficiency of data repairing algorithms
using fixing rules. Note that the above (3) is new w.r.t. the conference article [Wang
and Tang 2014].

It is worth noting that the purpose of these experiments is to test, when given
high quality fixing rules, how they can be used to automatically repair data with high
dependability.

8.1. Experimental Setting

Experimental data. We used real-life and synthetic data.
(1) HOSP was taken from US Department of Health & Human Services.4 It has 115K

records with the following attributes: Provider Number (PN), Hospital Name (HN),
address1, address2, address3, city, state, zip, county, Phone Number (phn), Hospital
Type (ht), Hospital Owner (ho), Emergency Service (es) Measure Code (MC), Measure
Name (MN), condition, and stateAvg.

(2) UIS data was generated by the UIS Database generator5. It produces a mailing list
that has the following schema: RecordID, ssn, First Name (fname), Middle Init (minit),
Last Name (lname), stnum, stadd, apt, city, state, zip. We generated 15K records.
Dirty data generation. We treated original HOSP and UIS datasets as clean data. Dirty
data was generated by adding noise only to the attributes that are related to some
integrity constraints, which is controlled by noise rate (10% by default). For example, a
noise rate of 10% means that 90% of the tuples are clean and the remaining 10% of the
tuples have noises. We introduced two types of noises: typos and errors from the active
domain. Specifically, given a tuple, we randomly selected some attributes to add noise.
For each selected attribute, the type of the noise added to the attribute is controlled by
typo rate (50% by default). Many state-of-the-art systems use similar techniques [Chu
et al. 2013b; Dallachiesa et al. 2013].
Fixing rule generation. We generated 1000 fixing rules for HOSP data and 100 fix-
ing rules for UIS data. These fixing rules are generated with the help of domain ex-
perts. Section 7.1 describes the details of the generation process. In addition, we also

4http://www.hospitalcompare.hhs.gov/.
5http://www.cs.utexas.edu/users/ml/riddle/data.html.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

http://www.hospitalcompare.hhs.gov/
http://www.cs.utexas.edu/users/ml/riddle/data.html

16:26 J. Wang and N. Tang

Table I. FDs for HOSP and UIS data

generated fixing rules from knowledge bases and compared their accuracy with these
human-generated fixing rules in Exp-3.
Measuring quality. To assess the accuracy of data cleaning algorithms, we use
precision and recall, where precision is the ratio of corrected attribute values to the
number of all the attributes that are updated, and recall is the ratio of corrected at-
tribute values to the number of all erroneous attribute values.

Remark. We mainly compare with the state-of-the-art automated data cleaning tech-
niques. Note that they are designed for a slightly different target: computing a con-
sistent database. We consider it a relatively fair comparison, since all fixing rules we
generated are from FD violations. In other words, the fixing rules and the FDs used are
defined on exactly the same set of attributes. Table I shows the corresponding FDs to
HOSP and UIS data, respectively. The following shows a couple of examples of the fixing
rules generated for the datasets:

HOSP : (([MC], [HF-2]), (condition, {Pneumonia, HeartAttack}) → HeartFailure,

HOSP : (([MC], [AMI-4]), (condition, {HeartAttack typo}) → HeartFailure,

UIS : (([ZIP], [35808]), (STATE, {OH}) → AL,

UIS : (([ZIP], [96944]), (CITY, {kosrae typo}) → kosrae.

Algorithms. We have implemented the following algorithms in C++: (1) isConsistt:
the algorithm for checking consistency based on tuple enumeration (Section 5.2);
(2) isConsistr: the algorithm for checking consistency based on rule characterization
(Figure 6 in Section 5.2); (3) cRepair: the basic chase-based algorithm for repairing with
fixing rules (see Figure 8); and (4) lRepair: the fast repairing algorithm (see Figure 9).
Moreover, for comparison, we have implemented two algorithms for FD repairing, a
cost-based heuristic method [Bohannon et al. 2005], referred to as Heu, and an ap-
proach for cardinality-set-minimal repairs [Beskales et al. 2010], referred to as Csm.
Both approaches were implemented in Java.

All experiments were conducted on a Windows machine with a 3.0GHz Intel CPU
and 4GB of memory.

8.2. Experimental Results

We next report our findings from our experimental study.
Exp-1: Efficiency of checking consistency. We evaluated the efficiency of checking
consistency by varying the number of rules. The results for HOSP (resp. UIS) are shown
in Figure 12(a) (respectively, Figure 12(b)). The x-axis is the number of rules divided
by 100 (respectively, 10) for HOSP (respectively, UIS), and the y-axis is the running time
in millisecond (msec).

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

Dependable Data Repairing with Fixing Rules 16:27

Fig. 12. Efficiency for checking consistency.

For either isConsistt or isConsistr, we plotted its worst case, i.e., checking all pairs of
rules, as well as its 10 real cases where it terminated when some pair was detected to
be inconsistent. For example, in Figure 12(a), the big circle for x = 2 was for checking
200 rules in the worst case, while the 10 small circles below it were for real cases.
In Figure 12(b), real cases are the same as the worst case, since the 100 rules are
consistent and all pairs of distinct rules have to be checked.

These figures show that to check consistency of fixing rules, the algorithm with tuple
enumeration (isConsistt) is slower, as expected. The reason is that enumerating tuples
for two rules is more costly than characterizing two rules.

In addition, this set of experiment validated that the consistency of fixing rules
can be checked efficiently. For example, it only needs 12s to check the consistency of
1000*1000 pairs of rules, i.e., the top right point in Figure 12(a).

The results of this study indicates that it is feasible to check consistency for a rea-
sonably large set of fixing rules.
Exp-2: Accuracy. In this set of experiments, we will study the following. (a) The
effect of different data errors (i.e., typos or errors from the domain) for repairing
algorithms. (b) The influence of fixing rules w.r.t. their number and negative patterns.
(c) Comparison with editing rules. We use Fix to represent repairing algorithms with
fixing rules.
(a) Noise from the active domain. Recall that noise was obtained by either intro-
ducing typos to an attribute value or changing an attribute value to another one from
the active domain of that specific attribute. For example, an error for Ottawa could be
Ottawo (i.e., a typo) or Beijing (i.e., values from the domain that look like typos).

Precision. We fixed the noise rate at 10% and varied the percentage of typos from 0%
to 100% by a step of 10% (x-axis in both charts from Figures 13(a) and 13(b) for HOSP and
UIS, respectively). Both figures showed that our method using fixing rules performed
dependable fixes (i.e., high precision), and was not sensitive to types of errors. For the
existing algorithms Heu and Csm, they had lower precision when more errors were from
the active domain. The reason is that for such errors, heuristic methods that assume
that left-hand values of a constraint are correct would erroneously connect some tuples
as related to violations, which might link previously irrelevant tuples and complicate
the process when fixing the data. Indeed, however, both Heu and Csm computed a
consistent database, as targeted.

Note that fixing rules also made mistakes, e.g., the precision in Figure 13(a) is not
100%, which means some changes were not correct. The reason is that, when more
errors are from the active domain (e.g., typo rate is 0 in Figure 13(a)), it will mislead

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

16:28 J. Wang and N. Tang

Fig. 13. Accuracy of data repairing on different data errors.

fixing rules to make decisions. For example, consider the two rules in Figure 3, if the
correct (country, capital) values of some tuple are (China, Shanghai) but were changed
by using values from the active domain to (Canada, Toronto), using fixing rules will
make mistakes. Although this is not very common in practice, it deserves a further
study to improve our algorithms in the future.

Recall. In order to better understand the behavior of these algorithms, Figures 13(c)
and 13(d) show the recall corresponding to Figures 13(a) and 13(b), respectively. Not
surprisingly, our algorithm did not outperform existing approaches in terms of recall.
This is because heuristic approaches would repair some potentially erroneous values,
but at the tradeoff of decreasing precision. Although our method was relatively low in
recall, we did our best to ensure the precision, instead of repairing as many errors as
possible. Hence, when recall is a major requirement for some system, existing heuristic
methods can be used after fixing rules being applied, to compute a consistent database.

Figure 13(d) shows that the recall is very low (below 8%) for all methods. The reason
is that, the UIS dataset generated has few repeated patterns w.r.t. each FD. When noise
is introduced, many errors cannot be detected, hence no method can repair them. Note,
however, that recall can be improved by learning more rules as shown below.

F-Measure. We compared the f-measure of three data-repairing algorithms on UIS

and HOSP datasets, where the f-measure is defined as the harmonic mean of precision
and recall. Table II shows the result (typo rate = 50%). We can see that Heu has a
higher f-measure than our algorithm, Fix. This is because Fix aims for dependable
data repairing. It only fixed the values that were very likely to be wrong. Thus, it got

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

Dependable Data Repairing with Fixing Rules 16:29

Fig. 14. Accuracy of data repairing by varying the number of fixing rules.

the highest precision but the recall was not as high as other algorithms. In the next
experiments (Exp-2(b) and Exp-2(c)), we will investigate how increasing the number of
fixing rules or the number of negative patterns can improve the recall.
(b) Varying the number of fixing rules. We studied the accuracy of our repairing
algorithms by varying the number of fixing rules. We fixed noise rate at 10% and half
of them are typos. For HOSP, we varied the number of rules from 100 to 1000 and
reported the recall and precision in Figures 14(a) and 14(c), respectively. For UIS, we
varied the number of rules from 10 to 100, and reported the results in Figures 14(b)
and 14(d), respectively. For Heu and Csm, as these two algorithms don’t employ fixing
rules, their precision and recall values were horizontal lines.

The experimental results indicate that when more fixing rules are available, our
approach can achieve better recall, while keeping a good precision, as expected.
(c) Evaluation for negative patterns. To further investigate fixing rules, we sorted
the fixing rules of HOSP based on the number of negative patterns and plotted every
30 points in Figure 15(a). We see that most of the fixing rules have a small number
of negative patterns. For instance, around 80% of fixing rules contain two negative
patterns. We collected the negative patterns of all fixing rules and sorted them in a
random order. We then picked up the first k negative patterns from the collection,
denoted by Ck, and modified each fixing rule by removing its negative patterns that
do not appear in Ck. Thus, for any given k, we can obtain a set of new fixing rules.
We varied the number of negative patterns (i.e., k) and evaluated the accuracy of our
repairing algorithms using the set of fixing rules for each k. Figure 15(b) shows the

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

16:30 J. Wang and N. Tang

Fig. 15. Evaluation for negative patterns (HOSP).

Table II. Comparing the F-measure of Data-repairing Methods (Typo Rate = 50%)

Fig. 16. Comparison with editing rules (HOSP).

precision and recall of our approach. We can see that adding more negative patterns
can lead to a better recall while keeping a high precision. The experimental result
further validates the dependable feature of fixing rules.
(d) Comparison with editing rules. We also compared our approach with editing
rules [Fan et al. 2012]. Note that editing rules can repair data and ensure the repairing
operation is correct. However, they are measured by the number of user interactions
per tuple. That is, for each tuple and for each editing rule to be applied, the users have
to be asked. To this purpose, we evaluated the number of errors that can be corrected
by every fixing rule (see Figure 16(a)) using HOSP data with 100 rules and 10% dirty
rate, where the x-axis is for fixing rules and the y-axis is the number of errors they
can correct. The experiment shows that a single fixing rule was able to repair errors in

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

Dependable Data Repairing with Fixing Rules 16:31

Fig. 17. Effectiveness of fixing rule generation.

more than 50 tuples, but if we employ editing rules to repair these errors, the approach
has to interact with users over fifty times.

Moreover, we encoded data values from master data into editing rules, to make it an
automated rule. Note that error information is not in master data, e.g., the negative
patterns in fixing rules, which cannot be encoded. Hence, we removed negative patterns
in fixing rules, to simulate editing rules. Specifically, each time when seeing an evidence
pattern, it simulated users by saying yes, and then updated the right-hand side value to
the fact. The experimental results are shown in Figure 16(b), where Fix (respectively,
Edit) indicates fixing rules (respectively, editing rules). The reason that fixing rules
have better precision and recall is that, if we have errors in the right-hand side of
such rules, (automated) editing rules can correct them. However, if there are errors in
the left-hand side, they will introduce new errors by treating these errors as correct
values, resulting in lower precision and, as a consequence, lower recall. Note that the
purpose of designing editing rules is for critical data at entry point by interacting with
the users. Hence, we don’t compare with them.
Exp-3: Effectiveness of fixing rule generation. We also evaluated the effectiveness
of fixing rule generator framework described in Section 7.2. We constructed a new
dataset by enriching the film actors in the IMDB database6 with four additional fields,
i.e., country, capital, currency, and language. The dataset consists of 199,698 records.
We used the same method for HOSP and UIS datasets to corrupt the data and to generate
100 fixing rules for the data. In addition, we applied the fixing rule generator framework
to automatically generate a size of 87,481 fixing rules by issuing MQL queries to
Freebase. The rules covered 25 evidence patterns. Both facts and negative values
followed a uniform distribution. We wrote 50 MQL queries in total. Here are two
examples of generated rules:

ϕ1 : (([country], [AUSTRIA]), (capital, {BadEisenkappel, Lungitz, . . .})) → Vienna,
ϕ2 : (([country], [FRANCE]), (capital, {Fontainebleau, Saint − Denis, . . .})) → Paris.

Note that ϕ1 and ϕ2 contain 1205 and 1606 negative patterns, respectively. Due to space
constraints, we only showed two negative patterns for each rule.

Figure 17 shows how these auto-generated rules coupled with human-generated fix-
ing rules can improve the accuracy of data repairing. In the figure, we varied the
active-domain error rate and compared the accuracy (precision and recall) of Hu-
man and Human+Auto, where Human represents the 100 human-generated fixing
rules and Human+Auto represents the union of the 100 human-generated fixing rules

6http://www.imdb.com.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

http://www.imdb.com

16:32 J. Wang and N. Tang

Fig. 18. Efficiency for data repairing.

Table III. Comparing with Existing Repairing
Methods in Efficiency

and the 87,481 auto-generated fixing rules. Comparing with Human, we can see that
Human+Auto does not lose any precision but increases recall a lot, which validates the
effectiveness of our fixing rule generation framework. Another interesting observation
is that Human+Auto achieved better recall when the active-domain error rate was in-
creasing. Intuitively, this is because knowledge bases can help us obtain more negative
patterns or facts than human-domain knowledge.
Exp-4: Efficiency of repairing algorithms. In this last set of experiments, we study
the efficiency of our data repairing with fixing rules. As they are linear in data size, we
evaluated their efficiency by varying the number of rules.

The results for HOSP and UIS are given in Figures 18(a) and 18(b), respectively. In both
figures, the x-axis is for the number of rules and the y-axis is for running time. These
two figures show that algorithm lRepair is more efficient. For example, it ran in less
than 2s to repair 115K tuples, using 1000 rules (the bottom right node in Figure 18(a)).
In Figure 18(b), cRepair was faster only when the number of rules was very small (i.e.,
10), where the reason is the extra overhead of using inverted lists and hash counters.
However, in general, lRepair was much faster, since it only examined the rules that can
be used instead of checking all rules.

We have also compared our fast repairing algorithm lRepair with Heu and Csm. Using
both HOSP and UIS data, the results are given in Table III. It shows that lRepair runs
much faster than the others. The reasons are twofold: (1) lRepair detects errors on each
tuple individually, while the others need to consider a combination of two tuples for
violation detection; and (2) lRepair repairs each tuple in linear time, while Heu and
Csm repairs data by holistically considering all violations, which have much higher
time complexity.
Summary. We found the following from the above experiments. (a) It is efficient to
detect whether a set of fixing rules is consistent (Exp-1). (b) Data repairing using fixing
rules is dependable; i.e., they repair data errors with high precision (Exp-2). (c) The
recall of using fixing rules can be improved when more fixing rules are available (Exp-
2). (d) Auto-generated fixing rules can further improve the recall of human-generated

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

Dependable Data Repairing with Fixing Rules 16:33

fixing rules while keeping high precision (Exp-3). (e) It is efficient to repair data via
fixing rules, which reveals its potential to be used for large datasets (Exp-4).

9. CONCLUSION AND FUTURE WORK

We have proposed a novel class of data-cleaning rules, namely fixing rules that (1)
compared with data dependencies used in data cleaning, fixing rules are able to find
dependable fixes for input tuples, without using heuristic solutions; and (2) unlike
editing rules, fixing rules are able to repair data automatically without any user in-
volvement. We have formalized the problems for deciding whether a set of fixing rules
are consistent or redundant and established their complexity bounds. We have proposed
efficient algorithms for checking consistency and discussed strategies to resolve incon-
sistent fixing rules. We have also presented dependable data repairing algorithms by
capitalizing on fixing rules. Moreover, we have presented how to generate fixing rules
by soliciting examples from users and by querying and massaging available knowledge
bases. Our experimental results with real-life and synthetic data have verified the
effectiveness and efficiency of the proposed rules and the presented algorithms. These
yield a promising method for automated and dependable data repairing.

The study of automated and dependable data repairing is still in its infancy. This
research is just a first attempt to tackle this problem, and it has brought up many
questions in need of further investigation. (1) Rule discovery. Our techniques in the
article allow users to define fixing rules manually or generate rules using examples.
We are planning to discover fixing rules or samples from mining algorithms, along the
same line with other data quality rule discovery algorithms [Chiang and Miller 2008;
Fan et al. 2011; Chu et al. 2013a; Golab et al. 2014; Song and Chen 2013; Golab et al.
2008]. (2) Interaction with other data quality rules. A challenging topic is to explore the
interaction between fixing rules and other data quality and rules, such as CFDs, MDs,
editing rules, and the users.

REFERENCES

Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.
Arvind Arasu, Surajit Chaudhuri, and Raghav Kaushik. 2009. Learning string transformations from exam-

ples. Proc. VLDB 2, 1 (2009).
Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. 1999. Consistent query answers in inconsistent

databases. In PODS. 68–79.
C. Batini and M. Scannapieco. 2006. Data Quality: Concepts, Methodologies and Techniques. Springer.
Leopoldo E. Bertossi, Solmaz Kolahi, and Laks V. S. Lakshmanan. 2011. Data cleaning and query answering

with matching dependencies and matching functions. In ICDT. 268–279.
George Beskales, Ihab F. Ilyas, and Lukasz Golab. 2010. Sampling the repairs of functional dependency

violations under hard constraints. Proc. VLDB 3, 1 (2010), 197–207.
George Beskales, Ihab F. Ilyas, Lukasz Golab, and Artur Galiullin. 2013. On the relative trust between

inconsistent data and inaccurate constraints. In ICDE.
George Beskales, Mohamed A. Soliman, Ihab F. Ilyas, and Shai Ben-David. 2009. Modeling and querying

possible repairs in duplicate detection. Proc. VLDB 2, 1 (2009), 598–609.
Philip Bohannon, Wenfei Fan, Michael Flaster, and Rajeev Rastogi. 2005. A cost-based model and effective

heuristic for repairing constraints by value modification. In SIGMOD.
Loreto Bravo, Wenfei Fan, and Shuai Ma. 2007. Extending dependencies with conditions. In VLDB. 243–254.
Fei Chiang and Renée J. Miller. 2008. Discovering data quality rules. Proc. VLDB 1, 1 (2008).
Fei Chiang and Renée J. Miller. 2011. A unified model for data and constraint repair. In ICDE.
J. Chomicki and J. Marcinkowski. 2005. Minimal-change integrity maintenance using tuple deletions. Inf.

Comput. 197, 1–2 (2005), 90–121.
Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013a. Discovering denial constraints. Proc. VLDB 6, 13 (2013).
Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013b. Holistic data cleaning: Putting violations into context. In

ICDE.

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

16:34 J. Wang and N. Tang

Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang, and Yin Ye. 2015. KATARA:
A data cleaning system powered by knowledge bases and crowdsourcing. In SIGMOD. 1247–1261.

Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. 2007. Improving data quality: Consistency
and accuracy. In VLDB. 315–326.

Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed K. Elmagarmid, Ihab F. Ilyas, Mourad Ouzzani,
and Nan Tang. 2013. NADEEF: A commodity data cleaning system. In SIGMOD.

Wenfei Fan. 2008. Dependencies revisited for improving data quality. In PODS. 159–170.
Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Conditional functional depen-

dencies for capturing data inconsistencies. TODS (2008).
Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. 2011. Discovering conditional functional depen-

dencies. IEEE Trans. Knowl. Data Eng. 23, 5 (2011).
Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. 2009. Reasoning about record matching rules. Proc.

VLDB 2, 1 (2009), 407–418.
Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. 2011. Interaction between record matching

and data repairing. In SIGMOD. 469–480.
Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. 2012. Towards certain fixes with editing

rules and master data. VLDB J. 21, 2 (2012), 213–238.
I. Fellegi and D. Holt. 1976. A systematic approach to automatic edit and imputation. J. Am. Stat. Assoc. 71,

353 (1976), 17–35.
Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2013. The LLUNATIC data-

cleaning framework. Proc. VLDB 6, 9 (2013), 625–636.
Lukasz Golab, Howard J. Karloff, Flip Korn, Barna Saha, and Divesh Srivastava. 2014. Discovering conser-

vation rules. IEEE Trans. Knowl. Data Eng. 26, 6 (2014).
Lukasz Golab, Howard J. Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. 2008. On generating near-

optimal tableaux for conditional functional dependencies. Proc. VLDB 1, 1 (2008).
Thomas N. Herzog, Fritz J. Scheuren, and William E. Winkler. 2009. Data Quality and Record Linkage

Techniques. Springer.
Matteo Interlandi and Nan Tang. 2015. Proof positive and negative in data cleaning. In ICDE. 18–29.
Solmaz Kolahi and Laks Lakshmanan. 2009. On approximating optimum repairs for functional dependency

violations. In ICDT. 53–62.
Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkatasubramanian. 2009. Metric functional

dependencies. In ICDE.
Xiang Lian, Lei Chen, and Shaoxu Song. 2010. Consistent query answers in inconsistent probabilistic

databases. In SIGMOD.
Chris Mayfield, Jennifer Neville, and Sunil Prabhakar. 2010. ERACER: A database approach for statistical

inference and data cleaning. In SIGMOD Conference. 75–86.
Felix Naumann, Alexander Bilke, Jens Bleiholder, and Melanie Weis. 2006. Data fusion in three steps:

Resolving schema, tuple, and value inconsistencies. IEEE Data Eng. Bull. 29, 2 (2006), 21–31.
Vijayshankar Raman and Joseph M. Hellerstein. 2001. Potter’s wheel: An interactive data cleaning system.

In VLDB.
Rishabh Singh and Sumit Gulwani. 2012. Learning semantic string transformations from examples. Proc.

VLDB 5, 8 (2012), 740–751.
Shaoxu Song and Lei Chen. 2013. Efficient discovery of similarity constraints for matching dependencies.

Data Knowl. Eng. 87 (2013).
Shaoxu Song, Hong Cheng, Jeffrey Xu Yu, and Lei Chen. 2014. Repairing vertex labels under neighborhood

constraints. Proc. VLDB 7, 11 (2014).
Maksims Volkovs, Fei Chiang, Jaroslaw Szlichta, and Renée J. Miller. 2014. Continuous data cleaning. In

ICDE. 244–255.
Jiannan Wang and Nan Tang. 2014. Towards dependable data repairing with fixing rules. In SIGMOD.
Jef Wijsen. 2005. Database repairing using updates. ACM Trans. Database Syst. 30, 3 (2005), 722–768.
Mohamed Yakout, Laure Berti-Equille, and Ahmed K. Elmagarmid. 2013. Don’t be SCAREd: Use scalable

automatic repairing with maximal likelihood and bounded changes. In SIGMOD. 553–564.
Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville, Mourad Ouzzani, and Ihab F. Ilyas. 2011. Guided

data repair. Proc. VLDB 4, 5 (2011), 279–289.

Received November 2015; revised September 2016; accepted January 2017

ACM Journal of Data and Information Quality, Vol. 8, No. 3–4, Article 16, Publication date: June 2017.

