
ar
X

iv
:2

50
5.

23
13

3v
1 

 [
cs

.D
B

] 
 2

9 
M

ay
 2

02
5

LINEAGEX: A Column Lineage Extraction System
for SQL

Shi Heng Zhang
Simon Fraser University

Burnaby, Canada
andy zhang@sfu.ca

Zhengjie Miao
Simon Fraser University

Burnaby, Canada
zhengjie@sfu.ca

Jiannan Wang
Simon Fraser University

Burnaby, Canada
jnwang@sfu.ca

Abstract—As enterprise data grows in size and complexity,
column-level data lineage, which records the creation, transfor-
mation, and reference of each column in the warehouse, has
been the key to effective data governance that assists tasks
like data quality monitoring, storage refactoring, and workflow
migration. Unfortunately, existing systems introduce overheads
by integration with query execution or fail to achieve satisfying
accuracy for column lineage. In this paper, we demonstrate
LINEAGEX, a lightweight Python library that infers column-
level lineage from SQL queries and visualizes it through an
interactive interface. LINEAGEX achieves high coverage and
accuracy for column lineage extraction by intelligently traversing
query parse trees and handling ambiguities. The demonstration
walks through use cases of building lineage graphs and trou-
bleshooting data quality issues. LINEAGEX is open sourced at
https://github.com/sfu-db/lineagex and our video demonstration
is at https://youtu.be/5LaBBDDitlw

Index Terms—database, lineage, provenance

I. INTRODUCTION

Data governance has become increasingly crucial as data
is becoming larger and more complex in enterprise data
warehouses. For example, in an organization’s data pipeline,
data flows from upstream artifacts to downstream services,
which may be built by various teams that know little about
other teams’ work and often introduce challenges when anyone
wants to change their data. In this case, lineage [9], [10],
especially finer-grained column-level lineage, is often needed
for simplifying the impact analysis of such a change, i.e., how
a change in the upstream would affect the downstream. In an-
other real-world scenario, column-level lineage can help iden-
tify how sensitive data flows throughout the entire pipeline,
thereby improving the overall data quality and validating data
compliance with regulations, such as GDPR and HIPAA [7].

While capturing lineage information in DBMS has been
studied extensively in the database community [1], [2], [11],
the need remains to curate the lineage information from static
analysis of queries (without executing the queries). On the
one hand, existing systems or tools would introduce large
overheads by either modifying the database internals [1], [2]
or rewriting the queries to store the lineage information [11],
[12]. On the other hand, different data warehouse users may
need to disaggregate the lineage extraction workflow from
query execution to simplify their collaboration, as shown in
the following example.

Fig. 1. Lineage extraction from query logs without a database connection.

Example 1: An online shop uses a data warehouse to store
and analyze its customer and transaction data. There is a view,
webinfo, which keeps track of user activities, and another
view, info, connects the users’ website activities (stored
in view webact) to their orders, which may be used for
recommendation purposes. However, the online shop owner
decides to edit the page column of the web table and requests
an impact analysis from the data warehouse provider.

1 Q1 = CREATE VIEW info AS
2 SELECT c.name, c.age, o.oid, w.*
3 FROM customers c JOIN orders o ON c.cid = o.cid
4 JOIN webact w ON c.cid = w.wcid;
5 Q2 = CREATE VIEW webact AS
6 SELECT w.wcid, w.wdate, w.wpage, w.wreg
7 FROM webinfo w
8 INTERSECT
9 SELECT w1.cid, w1.date, w1.page, w1.reg

10 FROM web w1;
11 Q3 = CREATE VIEW webinfo AS
12 SELECT c.cid AS wcid, w.date AS wdate,
13 w.page AS wpage, w.reg AS wreg
14 FROM customers c JOIN web w ON c.cid = w.cid
15 WHERE EXTRACT(YEAR from w.date) = 2022;

Due to access control and privacy regulations, the en-
gineer from the data warehouse provider can only access
the log of database queries instead of the DBMS. The task
is prone to being time-consuming and may involve trac-
ing unnecessary columns without a comprehensive data flow
overview. To address this, the engineer considers using tools
like SQLLineage [6] to extract and visualize the lineage graph.

Although it can generate a lineage graph as shown in
Figure 2, there are a few issues with the column lineage.
One is that the node of webact erroneously includes four
extra columns, highlighted in a solid red rectangle. Another
error arises for view info due to the SELECT * operation,
which makes it unable to match the output columns to columns
in webact. Instead, it would return an erroneous entry of
webact.* to info.* (in solid red rectangle) while omitting

https://github.com/sfu-db/lineagex
https://youtu.be/5LaBBDDitlw
https://arxiv.org/abs/2505.23133v1


Fig. 2. The lineage graph for Example 1. Existing tools like SQLLineage [6]
would miss columns in the dashed red rectangle and return wrong entries in
the solid red rectangle, while the yellow is the correct lineage

the four correct columns from webact. It would also return
fewer columns for the view info (in dashed red rectangle)
and completely ignore the edges connecting webact to it (the
yellow dashed arrows). If the engineer used the information
from this lineage graph, then not only an erroneous column
(webact.page) is provided, but the results also miss actual
impacted columns from the webact and info table. As we
will demonstrate, our approach is able to handle statements
like SELECT w.* and capture all columns and their depen-
dencies missed by prior tools.

Curating lineage information from query logs is also ad-
vantageous for debugging data quality issues, enhancing data
governance, refactoring data, and providing impact analysis.
However, existing tools [5], [6] often fail to accurately infer
column lineage due to the absence of metadata. To support
developers and analysts in extracting lineage without the over-
head of running queries in DBMS, we develop a lightweight
Python library, LINEAGEX, which constructs a column-level
lineage graph from the set of query definitions and provides
concise visualizations of how data flows in the DBMS.
Challenges. LINEAGEX achieves accurate column-level lin-
eage extraction by addressing the following two challenges.
First is the variety of SQL features, especially for features
that involve intermediate results or introduce column am-
biguity. For example, Common Table Expressions (CTEs)
and subqueries generate intermediate results that the output
columns depend on, while the desired lineage should only
reveal the source tables and columns. Set operations may
introduce column ambiguity, primarily due to the lack of table
prefixes. Second, when there is an absence of metadata from
the DBMS on each table’s columns, e.g., when the query uses
SELECT * or refers to a column without its table prefix, it
may introduce ambiguities. Thus, prior works fail to trace the
output columns when the * symbol exists and cannot identify
their original table without an explicit table prefix.
Our contributions. For the first challenge, LINEAGEX uses a
SQL parser to obtain the queries’ abstract syntax trees (AST)
and perform an intelligently designed traversal on the AST with
a comprehensive set of rules to identify column dependencies.
LINEAGEX addresses the second challenge by dynamically
adjusting the processing order for queries when it identifies
ambiguities in the source of tables or columns. Moreover, to
accommodate the majority of data practitioners, we integrate

Fig. 3. An illustration of LINEAGEX.

LINEAGEX with the popular Python data science ecosystem by
providing a simple API that directly takes the SQL statements
and outputs the lineage graph. Besides the API, we provide a
UI that visualizes the column lineage for users to examine.

In this demonstration, we will showcase the impact analysis
scenario and illustrate how LINEAGEX provides accurate
column-level lineage to further help users monitor their data
flow. The user can compare the lineage extraction results by
LINEAGEX with prior tools. Since pre-trained large language
models (LLMs) have shown impressive performance in under-
standing code, we will also demonstrate using state-of-the-art
LLMs like GPT-4o for impact analysis and how to augment
their results with the column-level lineage from LINEAGEX.

II. BACKGROUND AND RELATED WORK

Data lineage tracks how data flows between each step in a
data processing pipeline. Consider each processing step as a
query Q, the table-level lineage T of Q encodes which input
tables contribute to its output; and the column-level lineage
C is a mapping from Q’s output columns Coutput to Q’s
input columns Csource, which encodes for each output column
which specific columns in the input tables it relies on. More
specifically, for an output column cout ∈ Coutput of Q, an
input column Csrc ∈ Csource is included in C(cout) if any
changes to Csrc will lead to a potential change in the values
in cout — we may not only include the input columns directly
contributing to the output value but also take any column
referred in the query into consideration.

Then, consider a set of queries Q = {Qi}, lineage extrac-
tion is to find the pair (Ti, Ci) for each Qi. Note that queries
in Q may be table/view creation queries, hence Ti and Ci
may map the outputs of Qi to the outputs of other queries.
In practice, to make the lineage graph easy to read, we can
combine these two graphs and group all columns’ output by
the same query to visualize this graph.

Related work. Data lineage [9], [10] has been studied ex-
tensively in the database research community. To track fine-
grained lineage information down to the tuple level or cell
level, people have extended relational database engines like
in ProvSQL [1] and PERM [2] or built middlewares that
rewrite queries [11], [12], which are often ”overkill” for
column-level lineage. Various industry-leading tools, including
Linkedin’s Datahub [8], Microsoft’s Purview [4], and Apache
Atlas [3], are more than capable of handling data pipelines and
relational databases, but they may incur high operational and



TABLE I
KEYWORD RULES.

Keyword Process Explanation

SELECT Ccon ← p ∪ Cpos∀p ∈ P Resolve Ccon

for each projection
FROM
(Table/
View)

T ← T∪ {this table}
Cpos ← Cpos∪ {its columns}

Add to T for table lineage,
and add its column to Cpos

FROM
(CTE/

Subquery)

find the CTE/Subquery in MCTE

Cpos ← Cpos∪ {its columns}

Find this CTE/subquery
in MCTE , and add its

columns to Cpos

WITH/
Subquery

MCTE ← T,Ccon, Cref

T,Ccon, Cref , Cpos,P ← ∅

MCTE gets all the current
table and column lineage,

store to be referenced

Set
Operation

Cref ← Cref ∪ p ∪ Cpos ∀p ∈ P
Cpos,P ← ∅

repeat for other leaves

Add all the columns in the
projection to Cref ,

this process is repeated for
other leaves connected

Other
Keywords

tempcols ← all columns here
Cref ← Cref ∪ p ∪ Cpos

∀p ∈ tempcols

Add all the columns
found here to Cref

maintenance costs. Vamsa [13] annotates columns used to train
machine learning models for Python scripts. There are also
Python libraries like SQLGlot [5] and SQLLineage [6] that
parse SQL queries statically; however, they focus on lineage
for individual files, lacking the ability to find the dependency
across queries, especially when there are ambiguities in ta-
ble or column names. None of the methods above provides
lightweight and accurate lineage extraction at the column level,
like what LINEAGEX offers, without running the database
queries; LINEAGEX can also visualize related tables and the
data flow between columns in an interactive graph.

III. SYSTEM AND IMPLEMENTATION

The overview of the LINEAGEX system is shown in Fig-
ure 3. LINEAGEX allows users to input a list of SQL state-
ments or query logs. Below are details of each module.
SQL Preprocessing Module. The first step is to scan each query
and record the mappings from the query’s identifier to its query
body. For CREATE statements, we use the created table/view’s
name as the query identifier, while for SELECT statement-
only queries, we use a randomly generated id1. Then, each
identifier is mapped to the body of the SELECT statement,
forming a key-value pair. For instance, for Q3 in Example 1,
our module would have webinfo as the key and the SELECT
statement . . . (line 12 to 15) as the value. These key-value pairs
are stored in a Query Dictionary (QD), which will be further
used to facilitate the inference between queries and identify
the query dependencies.
SQL Transformation Module. Then, the Transformation Mod-
ule reads each entry in the dictionary QD from the Preprocess-
ing Module, generating an abstract syntax tree (AST) using
a SQL parser (in the implementation, we used SQLGlot).
The SQL AST captures all keywords and expressions in the
query in a tree-like format, where the leaf nodes represent
the initial scanning of source tables or the parameters of each
operator, the root represents the final step, and intermediate
nodes represent relational operators in the query.

1For some systems like dbt, queries containing only SELECT statement are
stored in separate files. In this case, we will use the file name as the query
identifier. We also provide a dbt-specific wrapper for LINEAGEX.

Fig. 4. Sample AST and traverse order

SQL Lineage Information Extraction Module. The final module
takes each query AST as input and builds the mappings
from the result view/table to its lineage T and the mapping
from output columns Coutput to input columns Csource.
We consider three types of columns in the lineage: 1)Ccon:
columns that directly contribute to Coutput; 2) Cref : columns
referenced in the query, e.g., columns used in the join predicate
or the WHERE clause; and 3) Cboth: columns in both Ccon and
Cref . The extraction process involves traversing the AST with
a post-order Depth-First Search (DFS), for which we create
some temporary variables: MCTE is a mapping for the table
and column lineage information from WITH/subquery,
Cpos denotes column candidates, and P denotes the resulting
columns of the most recent projection. When encountering
different keywords, the lineage information and temporary
variables will be updated according to the rules in Table I.

An example for traversing the AST of Q3 is shown in
Figure 4. 1⃝: The traversal starts with the leaf node, scanning
of customers, so it follows the FROM Rule by adding it
to T and its columns to Cpos. 2⃝: The next node is scanning
of web, so it is added to T and its columns to Cpos. 3⃝: The
next node is a JOIN, following the Other keywords Rule:
customers.cid and web.cid are added to to Cref . 4⃝:
For the WHERE node (σ), same rule applies, hence adding
web.date to Cref . 5⃝: The last node is the SELECT (π),
applying the SELECT Rule. Each output column’s Ccon only
has one column, e.g., wcid has Ccon of customers.cid.

Table/View Auto-Inference. In the Lineage Information Ex-
traction module, the system gives priority to SQL statements
identified by keys in QD from the Preprocessing Module.
This procedure leverages a stack to reorder the query ASTs
to traverse, where current traversal is temporarily deferred
and placed onto the stack. That is, in cases where the
tables or views encountered during the traversal have not
been processed yet, they are pushed to the stack. Once the
lineage information of missing tables is extracted, the deferred
operation is popped from the stack following a Last-In-First-
Out protocol and resumes. This strategic approach plays a
pivotal role in handling SELECT * statements and resolving
ambiguities related to columns without a prefixed table name.

When the database connection is available. While primarily
focusing on static lineage extraction from query logs, LIN-



Fig. 5. The User Interface of LINEAGEX.

EAGEX can also incorporate the extraction with a database
connection. We extended LINEAGEX using PostgreSQL’s
EXPLAIN command to obtain the physical query plan instead
of the AST from the parser, which provides accurate metadata
to deal with table and column reference ambiguities. Similar
to the absent views or tables in the static extraction, an error
may occur due to missing dependencies when running the
EXPLAIN command. This requires the stack mechanism and
performing an additional step to create the views first to ensure
the presence of the necessary dependencies.

IV. DEMONSTRATION

We will walk through the audience with the use cases like
Example 1, employing multiple datasets, such as the MIMIC
dataset 2 in the healthcare domain. The MIMIC dataset has a
reasonably complex schema with more than 300 columns in
26 base tables and 700 columns in 70 view definitions. We
demonstrate in detail each step of using LINEAGEX for our
running example in the environment of a Jupyter Notebook.

Step 1: Get started. Users have the flexibility to store their
SQL queries in either files or a Python list. In this example,
all SQL queries are stored in the file customer.sql. Then
the function call is straightforward, as outlined in Figure 5 1⃝,
the users simply install and import the library, then call the
LINEAGEX function. The result will be returned in a JSON
file (lineage information) and an HTML file (lineage graph).

Step 2: Locating the table. Next, users can visualize
the graph using the show function in the notebook or the
show_tab to open a webpage. Moreover, users can select
the table of interest through a dropdown menu, as shown
in Figure 5 2⃝. Subsequently, the target table web and its
corresponding columns are displayed.

Step 3: Navigating column dependency. Users can click
the explore button on the top right of the table to reveal
the table’s upstream and downstream tables, presenting the
initial table lineage. The data flows from left to right on the
visualization — tables on the right are dependent on tables
on the left. Since we are doing an impact analysis, that is
to find all the downstream columns and their downstream
columns and so on. The first explore action would only
show webinfo and webact tables, since they are the only
ones that are directly dependent on the web table. The next
explore action would reveal the info table, and there
would be no more downstreams for info. With the lineage
graph, hovering over the page column highlights all of its
downstream columns, as shown in Figure 5 3⃝.

2https://github.com/MIT-LCP/mimic-code

Step 4: Solving the case. The page column directly
contributes to wpage from webinfo(shown in red), so it
is definitely impacted. The webact table is a result of a
set operation from web and webinfo, therefore all of the
webact’s columns will reference the page column and
thus all get impacted(shown in blue and orange when it is
both referenced and contributed). Since the wcid column is
impacted, it is also in the JOIN operation for the info table,
then all of the columns would reference the wcid column
and potentially get impacted. Therefore, the end result for the
impact analysis would be webinfo.wpage and all of the
columns from the webact and info tables.
Comparison with existing methods. In our demonstration,
users can compare results from LINEAGEX with those from
SQLLineage [6]. SQLLineage returns incorrect columns for
info and lacks lineage information for columns derived
from webinfo, as shown in Figure 2. The users can also
see how state-of-the-art LLMs respond to their questions
about impact analysis: for example, GPT-4o is able to cor-
rectly identify all contributing columns impacted by changes
to page—specifically, the wpage columns in webinfo,
webact, and info tables (highlighted in red or orange), but
it is not able to reveal the columns that are referenced (not di-
rectly contributing to) in the SQL (such as the webact.wcid
in the JOIN condition).

REFERENCES

[1] P. Senellart et al., “ProvSQL: Provenance and Probability Management
in PostgreSQL,” PVLDB, vol. 11, no. 12, pp. 2034–2037, 2018.

[2] B. Glavic and G. Alonso, “Perm: Processing Provenance and Data on the
Same Data Model through Query Rewriting,” in Proc. ICDE, Shanghai,
China, Mar. 29 - Apr. 2, 2009, pp. 174–185.

[3] M. Tang et al., “SAC: A System for Big Data Lineage Tracking,” in
Proc. ICDE, Macao, China, Apr. 8-11, 2019, pp. 1964–1967.

[4] S. Ahmad et al., “Microsoft Purview: A System for Central Governance
of Data,” PVLDB, vol. 16, no. 12, pp. 3624–3635, 2023.

[5] T. Mao, “sqlglot,” GitHub repository, 2024, [Online]. Available: https:
//github.com/tobymao/sqlglot.

[6] J. Hu, “sqllineage,” GitHub repository, 2024, [Online]. Available: https:
//github.com/reata/sqllineage.

[7] C. Dai et al., “An Approach to Evaluate Data Trustworthiness Based
on Data Provenance,” in Secure Data Management, Berlin, Heidelberg,
2008, pp. 82–98.

[8] A. P. Bhardwaj et al., “DataHub: Collaborative Data Science & Dataset
Version Management at Scale,” in CIDR, 2015.

[9] P. Buneman et al., “Why and where: A characterization of data prove-
nance,” in ICDT, London, UK, Jan. 4–6, 2001, pp. 316–330.

[10] Y. Cui and J. Widom, “Lineage tracing for general data warehouse
transformations,” The VLDB Journal, vol. 12, no. 1, pp. 41–58, 2003.

[11] B. S. Arab et al., “GProM—a swiss army knife for your provenance
needs,” IEEE Data Eng. Bull., vol. 41, no. 1, 2018.

[12] D. Hernández et al., “Computing how-provenance for SPARQL queries
via query rewriting,” PVLDB, vol. 14, no. 13, pp. 3389–3401, 2021.

[13] M. H. Namaki et al., “Vamsa: Automated provenance tracking in data
science scripts,” in Proc. KDD, 2020.

https://github.com/MIT-LCP/mimic-code
https://github.com/tobymao/sqlglot
https://github.com/tobymao/sqlglot
https://github.com/reata/sqllineage
https://github.com/reata/sqllineage

	Introduction
	Background and Related work
	SYSTEM and IMPLEMENTATION
	DEMONSTRATION
	References

