
Automatic URL Completion and Prediction Using Fuzzy
Type-Ahead Search

Jiannan Wang† Guoliang Li† Jianhua Feng† Chen Li‡
†Department of Computer Science and Technology, Tsinghua National Laboratory for Information Science and

Technology, Tsinghua University, Beijing 10084, China
‡Department of Computer Science, University of California, Irvine, USA

wjn08@mails.thu.edu.cn; {liguoliang,fengjh}@tsinghua.edu.cn; chenli@ics.uci.edu

ABSTRACT
Type-ahead search is a new information-access paradigm,
in which systems can find answers to keyword queries “on-
the-fly” as a user types in a query. It improves traditional
autocomplete search by allowing query keywords to appear
at different places in an answer. In this paper we study the
problem of automatic URL completion and prediction using
fuzzy type-ahead search. That is, we interactively find rel-
evant URLs that contain words matching query keywords,
even approximately, as the user types in a query. Support-
ing fuzzy search is very important when the user has limited
knowledge about URLs. We describe the design and im-
plementation of our method, and report the experimental
results on Firefox.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—query formulation, search process

General Terms
Algorithms, Experimentation, Performance

Keywords
Type-Ahead Search, Fuzzy Search, URL Completion

1. INTRODUCTION
Search engines changed the way people surf the Inter-

net. They help users easily find relevant Web pages after
users type in keywords. In the case where a user has lim-
ited knowledge about the underlying data, often the user
feels “left in the dark” when issuing queries, and has to use
a try-and-see approach for finding information. Recently
type-ahead search has been proposed to address this prob-
lem [1, 4]. Type-ahead search helps users interactively find
answers as they type in query keywords. Modern browsers,
such as Firefox 3.01 and Sogou2, support type-ahead search
on URLs. They use the location bar as a search box, and
suggest URLs in a drop-down menu as users type in query
keywords.

In this paper we study how to improve these browsers
based on the following observations. Firefox only supports
client-based type-ahead search. That is, it only uses local

1
http://www.mozilla.com/en-US/firefox/

2
http://ie.sogou.com/

Copyright is held by the author/owner(s).
SIGIR’09, July 19–23, 2009, Boston, Massachusetts, USA.
ACM 978-1-60558-483-6/09/07.

(personal) information for type-ahead search. Firefox cannot
predict URLs that have not been visited by the user. More-
over, a user cannot use his/her URL history from another
computer. Sogou solves the problem by supporting server-
based type-ahead search. In some cases if a user does not
know the exact spelling of a URL due to limited knowledge,
Sogou cannot predict such URL based on mistyped key-
words. For instance, if a user mistypes a keyword “sougou”
for“www.sogou.com”, Sogou cannot find the correct Web site.

To address these problems, we propose a fuzzy type-ahead
technique to support automatic URL completion and pre-
diction. As a user types in keywords, our method predicts
relevant URLs that contain words similar to the query key-
words. We devise novel techniques to support this feature,
implemented the method on a large number of URLs to
demonstrate its efficiency and practicality.

2. FUZZY TYPE-AHEAD SEARCH ON URLS
Server Design: We use a client-server architecture. The
server has several components. A component called“Indexer”
indexes the URL dataset as a trie structure. A FastCgi mod-
ule on the server stores the data and indices. The module
waits for queries from the client. For each query keyword, a
module called“Prefix Finder”computes the prefixes similar to
the query keywords. A module called “top-k Answer Finder”
computes the best URLs that contain keywords similar to
the query keywords.

Indexer: It reads a data set with URLs and their titles,
tokenizes the URLs, and creates a trie structure with in-
verted lists on the leaf nodes. The URLs on each inverted
list are sorted according to their weights (e.g., PageRank) in
a descending order. Figure 1 shows a partial index structure
for a URL dataset.

Incremental Prefix Finder [3]: It incrementally identifies
prefixes in the dataset that are similar to the query key-
words, measured by their edit distance. The output of this
module is a set of prefixes with their edit distances to the
query keyword. Suppose we are given an edit-distance thresh-
old δ = 1 for the keyword “sun”. This module will find the
exactly matched prefix “sun” (trie node 3), and the similar
prefixes “su”, “son”, and “sin” (trie nodes 2, 5, and 8).

Top-k Answer Finder: It finds the best URLs for the par-
tial keywords. The URLs are ranked by their inherent im-
portance and the relevance to the query. Suppose the query
is Q = {p1, p2, . . . , pn}, and p′

i is the best matched prefix for
pi. Let sim(pi, p

′
i) be an edit distance between p′

i and pi.

s

u i

n

1

ag

o

n

n

i

d

e

x

s

t

a

l

l

3

2

u7

u1

... u3

...

u5

...

u2

u6

u4

...

u3

...

u7

...

4

5

6

7

8

9 10

11

12

19

13

14
17

16

15
18

20

0

n

y

UID Score

URL PageRank

u1
u2

85
81

u3
u4

82
30

u5
u6

82
50

u7
...

90
...

Figure 1: Trie with inverted lists at leaf nodes

The score of a URL u for pi can be computed as:

Score(u, pi) =
pr(u)

α · sim(pi, p′
i
)2 + β

, (1)

where pr(u) is the PageRank of URL u, and α and β are
smoothing parameters to adjust the relative importance be-
tween sim(pi, p

′
i) and pr(u) (α, β > 0). The score of a URL

u for Q is computed as:

Score(u, Q) =
n∑

i=1

Score(u, pi). (2)

Consider a query with n keywords. Traditional threshold-
based algorithms [2] compute the top-k results on n materi-
alized sorted lists. For our fuzzy search, such lists must be
computed on-the-fly as there are multiple predicted words
and corresponding inverted lists for each input keyword. For
instance, given a query “sun ins”, there are two sorted lists:
one for “sun” and one for “ins”. Each list consists of the
URLs sorted by the score computed by Equation (1), in-
cluding multiple similar prefixes. For example, the URLs
in the sorted list for “sun” are the merged results of the in-
verted lists of the trie nodes 3, 6, 9, and 10. To compute
such sorted lists, we build a max-heap on top of the inverted
lists of its predicted words. After popping the top element
from the heap, we adjust the heap and get the next element
with the maximal score. For each popped URL, we com-
pute its score based on Equation (2). Thus, we can use the
threshold-based algorithm to find the top-k answers [2].

Client Design: We implemented the feature as an add-on
to Firefox. A user can install the add-on to enjoy the fea-
ture of fuzzy type-ahead search on URLs. When a user types
in a query on the location bar using our implemented add-
on, Firefox issues an AJAX query to the server, and waits
until the request has been answered. The matched URLs
are returned with predicted words highlighted. Firefox 3.0
uses an XPCOM component called “history” to support its
URL suggestion. Firefox implements a client-based func-
tion. To enable the server-based URL suggestion, we de-
velop an autocomplete search component by implementing
the required interface. Firefox highlights search results in
the drop-down menu based on query keywords. Any parts
of the URL that exactly match the keyword will be high-
lighted. In our method, we need to highlight the similar

prefixes of every input keyword. We override the Firefox
highlighting algorithm, in case the user wants to use both
the client-based URL suggestion and the server-based URL
suggestion. We merge existing Firefox search results with
ours. When the user query returns enough results from the
client, we will not send the query to the server. If the user
inputs a mistyped query or searches a URL that has never
been visited before, the results from the server are appended
to the drop-down menu.

3. EXPERIMENTS
We evaluated our methods on Firefox using the SogouRank

dataset3, which includes 130 million URLs with PageRank
values. We selected 10 million distinct URLs with the high-
est PageRank values. We generated five sets of queries, and
each set contained 1,000 queries with the same number of
keywords. For each keyword in a query, we applied a ran-
dom number of edit operations (0 to 2) on the keyword. The
backend server was implemented in C++. The experiments
were run on a computer with an Intel 3GHz CPU and 8 GB
RAM, running Ubuntu.

 0

 10

 20

 30

 40

 50

 60

 70

0 1 2

A
vg

 S
ea

rc
h

T
im

e
(m

s)

Edit distance threshold

Avg Search Time

(a) Top-10 search efficiency

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 1 2 3 4 5 6 7 8 9 10

A
vg

 S
ea

rc
h

T
im

e
(m

s)

of URLs (*1000,000)

of keywords = 1
of keywords = 2
of keywords = 3
of keywords = 4
of keywords = 5

(b) Scalability

Figure 2: Experimental results

We evaluated the average search time of a query for finding
top-10 answers. Figure 2(a) shows the experimental results.
Each keystroke for most queries can be processed within
70ms. We then evaluated the scalability of our techniques,
and Figure 2(b) shows the results. We observe that the algo-
rithm scaled linearly as the number of URLs increased. For
1 million URLs, each keystroke was answered within 15ms.
For 10 million URLs, each keystroke was answered within
140ms. These numbers show the efficiency and practicality
of our method on large URL data sets.

Acknowledgements
The work was supported by the National Natural Science
Foundation of China under Grant No. 60873065, the Na-
tional High Technology Development 863 Program of China
under Grant No. 2007AA01Z152, the National Grand Fun-
damental Research 973 Program of China under Grant
No. 2006CB303103, 2008 HP Labs Innovation Research Pro-
gram, and the US NSF award No. IIS-0742960.

4. REFERENCES
[1] H. Bast and I. Weber. Type less, find more: fast autocompletion

search with a succinct index. In SIGIR, pages 364–371, 2006.

[2] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS. ACM, 2001.

[3] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy
keyword search. In WWW, pages 371–380, 2009.

[4] G. Li, S. Ji, C. Li, and J. Feng. Efficient type-ahead search on
relational data: a tastier approach. In SIGMOD, 2009.

3
http://www.sogou.com/labs/dl/t-rank.html

	Introduction
	Fuzzy Type-Ahead Search on URLs
	Experiments
	References

