Supporting Efficient Top-£ Queries in Type-Ahead Search

Guoliang Lif

Jiannan Wang'

Chen Lit Jianhua Fengf

t Department of Computer Science, Tsinghua National Laboratory for Information Science and Technology
(TNList), Tsinghua University, Beijing 100084, China.
 Department of Computer Science, UC Irvine, CA 92697-3435, USA
liguoliang @tsinghua.edu.cn, wjn08 @ mails.tsinghua.edu.cn, chenli@ics.uci.edu, fengjh @tsinghua.edu.cn

ABSTRACT

Type-ahead search can on-the-fly find answers as a user
types in a keyword query. A main challenge in this search
paradigm is the high-efficiency requirement that queries must
be answered within milliseconds. In this paper we study
how to answer top-k queries in this paradigm, i.e., as a user
types in a query letter by letter, we want to efficiently find
the k best answers. Instead of inventing completely new
algorithms from scratch, we study challenges when adopting
existing top-k algorithms in the literature that heavily rely
on two basic list-access methods: random access and sorted
access. We present two algorithms to support random access
efficiently. We develop novel techniques to support efficient
sorted access using list pruning and materialization. We
extend our techniques to support fuzzy type-ahead search

which allows minor errors between query keywords and answers.

We report our experimental results on several real large data
sets to show that the proposed techniques can answer top-k
queries efficiently in type-ahead search.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms, Experimentation, Performance
Keywords

Type-ahead search, top-k search, fuzzy search

1. INTRODUCTION

To give instant feedback when users formulate search queries,
many information systems support autocomplete search, which
shows results immediately after a user types in a partial
keyword query. As an example, almost all the major search
engines nowadays automatically suggest possible keyword
queries as a user types in partial keywords. Most autocomplete
systems treat a query with multiple keywords as a single
string, and find answers with text that matches the string

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGIR’12, August 12-16, 2012, Portland, Oregon, USA.

Copyright 2012 ACM 978-1-4503-1472-5/12/08 ...$15.00.

355

exactly. To overcome this limitation, a new type-ahead
search paradigm has emerged recently [2, [I3]. Using this
paradigm, a system treats a query as a set of keywords,
and does a full-text search on the underlying data to find
answers including the keywords. We treat the last keyword
in the query as a partial keyword the user is completing. For
instance, a query “graph sig” on a publication table can find
publication records with the keyword “graph” and a keyword
that has “sig” as a prefix, such as “sigir”, “sigmod”, and
“signature”. In this way, a user can get instant feedback
after typing keywords, thus can obtain more knowledge about
the underlying data to formulate a query more easily.

Jiet al. [I3] extended type-ahead search by allowing minor
errors between queries and answers. As a user types in
query keywords, the system can find relevant records with
keywords similar to the query keywords. This feature is
especially important when the user has limited knowledge
about the exact representation of entities she is looking for.
For instance, if a user types in a partial query “chritos falut”,
the system can find records approximately matching the two
keywords despite the typo in the query, such as a record
with keywords “Christos Faloutsos”. Clearly these features
can further improve user search experiences.

In this paper we study how to answer ranking queries in
type-ahead search on large amounts of data. That is, as a
user types in a keyword query letter by letter, we want to
on-the-fly find the most relevant (or “top-k”) records. One
approach first finds records matching those query keywords,
and then computes their ranking scores to find the most
relevant ones. This approach is not efficient when there
are a large number of candidate answers to compute and
store. Existing type-ahead search approaches assume an
index structure with a trie for the keywords in the underlying
data, and each leaf node has an inverted list of records
with this keyword, with the weight of this keyword in the
record [I3, 19]. As an example, Table [I] shows a sample
collection of publication records. For simplicity, we only
list some of the keywords for each record. Figure [I] shows
the corresponding index structure. (More details about the
index are in Section [3])

Suppose a user types in a query “graph icdm 1i”. For
exact search, we find records containing the first two keywords
and a word with prefix of “1i”, e.g., record r5. For fuzzy
search, we compute records with keywords similar to query
keywords, and rank them to find the best answers. For each
complete keyword, we find keywords similar to the query
keyword. For instance, both keywords “icdm” and “icdl”
are similar to the second query keyword. The last keyword

Table 1: Publication records with sample keywords.

Record ID | Record
) graph icdm ...
T1 graph group lui ...
T2 gray icdl liu ...
3 graph icdl 1lin lui ...
T4 graph group icdm lin liu ...
5 graph gray gross icdm lin liu ...
6 gray group icdm lin liu ...
d gray gross group icdl lin ...
T8 gross icdl liu ...
79 icdm liu ...

“1i” is treated as a prefix condition, since the user is still
typing at the end of this keyword. We find keywords that
have a prefix similar to “1i”, such as “1in”, “liu”, and “lui”.
We access the inverted lists of these similar keywords to find
records and rank them to find the best answers for the user.

A key question is: “how to access inverted lists on trie
leaf nodes efficiently to answer top-k queries?” Instead of
inventing completely new algorithms from scratch, we study
how to adopt a plethora of algorithms in the literature for
answering top-k queries by accessing lists (e.g., [21], [12]).
These algorithms share the same framework proposed by
Fagin [6], in which we have lists of records sorted based on
various conditions. An aggregation function takes the scores
of a record from these lists and computes the final score of
the record. There are two methods to access these lists: (1)
Random Access: Given a record id, we can retrieve the score
of the record on each list; (2) Sorted Access: We retrieve the
record ids on each list following the list order.

In this paper we study technical challenges when adopting

these algorithms, and focus on new optimization opportunities

that arise in our problem. In particular, we study how to
support the two types of access operations efficiently by
utilizing characteristics specific to our index structures and
access methods. We make the following contributions: 1)
In Section [B] we present a forward-list-based method for
supporting random access on the inverted lists, and develop
a heap-based method and list-materialization techniques to
support sorted access efficiently. 2) In Section Ml we study
fuzzy type-ahead search. We propose a list-pruning technique
to improve the performance of sorted access, and study how
to improve the techniques based on forward lists and list
materialization for fuzzy search. Due to the challenging

nature of the problem, our extensions are technically nontrivial.

3) In Section [}l we present our experimental results on real
large data sets to show the efficiency of our techniques. We
have deployed several systems using this paradigm, which
have been used regularly and well accepted by users due to
its friendly interface and high efficiencyll.

2. FORMULATION AND PRELIMINARIES

Type-Ahead Search: Let R be a collection of records such
as the tuples in a relational table. Let D be the set of words
in R. Let Q be a query the user has typed in, which is
a sequence of keywords (w1, wa, ..., wy). We treat the last
keyword w,, as a partial keyword the user is completing, and
other keywords as complete keywords the user has complete(EA
As a user types in a keyword query letter by letter, type-ahead
search on-the-fly finds records that contain the first m — 1
keywords and a word with the last keyword as a prefix.

! http://tastier.ics.uci.edu/

Our method can be easily extended to the case that every keyword
is taken as a partial keyword.

S S
© ® []]
:

i Y i 73,9 .8

l——JL" r—i—'x e rr ‘ljr; _é—l ,8 74,7 1 s, 4

i H] Wroxiir,9) e 1l ji Is2
e e e] e
AR RN | Mt Kl |

i 73,2 (76,5 79,4
[, [Do, | 021702 1 7o

b i i 7,211 re.44 i 1.2 12,3
{88 [r,8 [-2=l 0o T2 o
i — . 70,3 75,1
i 70,2 ==l

“Figure 1: Trie index structure.

Without loss of generality, each string in the data set and
a query is assumed to use lower-case letters. For example, in
Tablelll R = {ro,r1, ..
Suppose a user types in a query “icdm gra”. We treat “icdm”
as a complete keyword and “gra” as a partial keyword. Records
ro, T4, Ts, and r¢ are potentially relevant answers. For
example, 7o contains complete keyword “icdm” and word
“graph” with a prefix of “gra”. When the user types in more
letters and submits query “icdm graph 1i”, we treat “icdm”
and “graph” as complete keywords and “1i”as a partial keyword.
Records r4 and 75 are potentially relevant answers.

Top-k Answers: We rank each record r in R based on
its relevance to the query. Given a positive integer k, our
goal is to compute the best k records in R ranked by their
relevance to . Notice that our problem setting allows an
important record to be in the answer, even if not all query
keywords appear in the record (the “OR” semantics). Thus
the algorithms in [13] cannot be used directly in our problem.

Ranking: In the literature there are many algorithms for
answering top-k queries by accessing lists (e.g., [2I) [12]).
These algorithms share the same framework proposed by
Fagin [6], in which we have lists of records sorted based
on various conditions, such as term frequency and inverse
document frequency (“tf*idf”). Each record has a score
on a list, and we use an aggregation function to combine
the scores of the record on different lists to compute its
overall relevance to the query. The aggregation function
needs to be monotonic, i.e., decreasing the score of a record
on a list cannot increase the record’s overall score. This
approach has the advantage of allowing a general class of
ranking functions. In this paper, we focus on an important
class of ranking functions with the following property: the
score F(r,Q) of a record r to a query @ is a monotonic
combination of scores of the query keywords with respect to
the record r. Formally, we compute the score F(r, Q) in two
steps. In the first step, for each keyword w, we compute a
score of the keyword with respect to the record r, denoted by
F(r,w). In the second step, we compute the score F(r, Q)
by applying a monotonic function on the F(r,w)’s for all
the keywords w. The intuition of this property is that the
more relevant an individual query keyword is to a record,
the more likely this record is a good answer to this query.
For example, we compute the score of a record to query
“icdm graph 1i” by aggregating the scores of each of keywords
with respect to the record.

Each complete keyword w has a weight associated with
a record r, denoted by W (r,w). This weight could depend

.,79}, D = {graph, icdm, group, lui,...}.

Query Keywords Partial keyword
w1 W2 Wi
\ 4

, Trie

virtual list

Rl RRA

Figure 2: Type-ahead search for Q = (w1, wa, ..

oy W)

on the keyword, such as the tf*idf value of the keyword in
the record. As a specific case, it can also be independent
from the keyword. For instance, if a record is a URL with
tokenized keywords, its weight could be a rank score of the
corresponding Web page. If a record is an author, we can
use the number of publications of the author as a weight of
this record. For the last partial keyword w.,,, there could be
multiple complete words. We compute the relevance score
of wy, in the record, i.e., F(r,wm), based on the following
property: F(r,wy,) is the maximal value of the W (r,d)
weights for all the keywords d with respect to w,, in r,
where d is a keyword in record r and has a prefix of wy,.
This property states that we only look at the most relevant
keyword in a record to the partial keyword when computing
the relevance of the keyword to the record. It means that
the ranking function is “greedy” to find the most relevant
keyword in the record as an indicator of how important
this record is to the partial keyword. As we can see in
Section [3 this property allows us to do effective pruning
when accessing the multiple lists of a query keyword. The
following is an example function.

(1)

if 1<i<m,
if i=m.

)

In Figure [l consider query “icdm graph 1i” and record rs.

F(rs, “icdm”) = W(rs, “icdm”) = 8 and F(rs, “graph”)

W (rs, “graph”) = 9. The partial keyword “li” has two

complete words “lin” and “liu”. F(rs, “11”) = max{W (rs,
“lin”), W(rs, “1iu”)}=8. F(rs, “icdm graph 1i”) = 25.

where

F(TvQ) = ZF(Tv wi)7

W (r, w;)

F i) =
(T’ w) maXcomplete word d of w, {W(Tv d)}

3. EXACT TYPE-AHEAD SEARCH

In this section, we study efficient list-access methods to
support exact type-ahead search, i.e., no mismatches between
query keywords and answers.

Indexing: We construct a trie for the data keywords in the
data D. A trie node has a character label. Each keyword
in D corresponds to a unique path from the root to a leaf
nodd] on the trie. For simplicity, a trie node is mentioned
interchangeably with the keyword corresponding to the path
from the root to the node. A leaf node has an inverted list
of IDs of pairs (rid, weight), where rid is the ID of a record
containing the leaf-node string, and weight is the weight
of the keyword in the record. Figure [I] shows the index
structure in our running example. For instance, for the leaf
node of keyword “graph”, its inverted list has five elements.

3A common “trick” to make each leaf node corresponds to a complete
word and vice versa is to add a special mark to the end of each word.
For simplicity we did not use this trick.

357

Forward index
Forward list

<1,27;6.3)

<1,3);4,9;49,6>
2,92;65,2;¢8,3)

1,4 %5,22;47,9:9.4
K1,7%4.,3%6,9:7,28,D
K1.9%2,8%3.4:6.,8;7.3:8.8

[Record|
o

8
)

3

7y
s

Figure 3: Forward lists.

The first element “(rs,9)” indicates that the record rs has
this keyword, and the weight of this keyword in this record
is “97, i.e., W(rs, “graph”) = 9.

Searching: We compute the top-k answers to a query @Q
in two steps. As illustrated in Figure 2 in the first step,
for each complete keyword w;(1 < i < m — 1), we get its
inverted list. For the last partial keyword, we locate the
trie node of wy, and retrieve the inverted lists of the trie
node’s leaf descendants. For example, in Figure[I] consider a
query “icdm 1i”. The partial keyword “1i” has two leaf-node
keywords: “lin” and “liu”. In the second step, we access
the inverted lists to compute the k best answers.

Many algorithms have been proposed for answering top-k
queries by accessing sorted lists [12, [6]. When adopting
these algorithms to solve our problem, we need to efficiently
support two basic types of access used in these algorithms:
random access and sorted access on the lists.

3.1 Efficient Random Access

To support random access, we construct a forward index
in which each record has a forward list of IDs of its keywords.
We assume each keyword has a unique ID with respect to
its leaf node on the trie, and the IDs of the keywords follow
their alphabetical order. Figure [3 shows the forward lists.
The element “(1,9)” on the forward list of record 75 shows
that this record has a keyword with ID 1 and weight 9, which
is keyword “graph” as shown on the trie.

Given a record and a complete keyword, we can get the
corresponding weight by doing a binary-search on the forward
list. For example, to get the weight of keyword “icdm” with
ID 6 in 75, we can do a binary search on r5’s forward list
and get the corresponding weight 8. For the partial keyword,
as it has multiple complete words, we need first locate its
trie node and then enumerate its leaf-descendants to get the
corresponding weights. This method could be expensive if
the trie node has many leaf-descendants. To improve the
performance, we can use an alternative method. For each
trie node n, we can maintain a keyword range [l,,, .|, where
l, and u, are the minimal and maximal keyword IDs of its
leaf nodes, respectively [I3]. An interesting observation is
that a complete word with n as a prefix must have an ID
in this keyword range, and each complete word in the data
set with an ID in this range must have a prefix of n. In
Figure [3 the keyword range of node “g” is [1,4], since 1 is
the smallest ID of its leaf nodes and 4 is the largest one.

Based on this observation, this method verifies whether
record r contains a keyword with a prefix of w,, as follows.
We first locate the trie node wy,, and then check if there
is a keyword ID on the forward list of r in the keyword
range [lw,,, Uw,,]. Since we can keep the forward list of r
sorted, this checking can be done efficiently. For instance,
consider query “graph icdm 1”. For the first element on
the inverted list of “graph”, (rs,9), we can check whether

Virtual sorted list Partial keyword “1”

rs9
75,8
r.,8 1
Tl ; :

. N H
nS| g [nE] [
ol] | sl
L. In;,i; IVG;QE lui
o !r;,é{ !’"«‘hii
Bl lrg| |m8)

L

lin
Figure 4: A heap-based method to compute the
virtual sorted list of partial keyword “1”.

rs contains other two keywords as follows. For complete
keyword “icdm” with ID 6, we do a binary search on r5’s
forward list and get weight 8. For partial keyword “1” with
keyword range [7,9], using a binary search on r5’s forward
list ((1,9);(2,8);(3,4);(6,8);(7,3); (8,8)), we find keyword
IDs 7 and 8 in this range. Thus we know that the record
indeed contains keywords with prefix “1”, and compute the

corresponding score F'(rs, “17) = max{F(m, “lin”), F(rs, “liu”),

F(rs, “1ui”)} = 8. Thus F(rs, “graph icdm 17) = 25.

3.2 Efficient Sorted Access

To support sorted access, we can keep the elements on the
inverted lists sorted based on their weights in a descending
order. Thus, for the complete keyword, we can get an ordered

list. For the partial keyword w,,, it has multiple leaf descendants

and corresponding inverted lists. We use U(wn,) to denote
the union of those inverted lists, called union list of w,,. We
need to support sorted access on U(wy,) to retrieve the next
most relevant record ID for wy,. Fully computing U(wm)
using the keyword lists could be expensive in terms of time
and space. In this section, we propose two techniques to
support sorted access efficiently.

3.2.1 Heap-Based Method

We can support sorted access on U(w.,) by building a max
heap on the inverted lists of its leaf nodes. In particular,
we maintain a cursor on each inverted list. The max heap
initially consists of the record IDs pointed by the cursors so
far, sorted on the weights of the keywords in these records.
Notice that each inverted list is already sorted based on
the weights of its keyword in the records. To retrieve the
next best record, we pop the top element from the heap,
increment the cursor of the list of the popped element by 1,
and push the new element of this list to the heap. When
popping all elements from the heap, we can get a sorted list
for the partial keyword. For example, consider the partial
keyword “1”. It has three complete keywords “1in”, “liu”,
and “lui”. We can compute its union list as shown in
Figure @l Note that since our method does not need to
compute the entire list of U(w), U(wm) is a virtual sorted
list of partial keyword w,,. On top of the inverted lists of
complete keywords and the max heap of the partial keyword,
we can adopt an existing top-k algorithm to find the k best
records.

As an example, suppose we want to compute the top-1
best answer for query “graph icdm 1” using sorted access
only. We get the first elements of “graph” and “icdm”, (rs,9)
and (r4,9), pop the top element of the max heap in Figure[d]
(r3,9), and compute an upper bound on the overall score of

358

QMax heap of w,

N(v): other leaf nodes (of v) ‘

M(v): Materialized
d without materialized s|

Legend: " of v

@)

Figure 5: Benefits of materializing the union list
U(v) for node v with respect to partial keyword wy,.

an answer, i.e., 27. We get the next elements of “graph” and
“icdm”, (r4,7) and (rs,8). We increment the cursor of the
list that produces the top element, push it into the heap, and
retrieve the next top element: (rs,8). Based on the accessed
elements, we have 1) The score of record r5 is 9+8+8 = 25;
2) The maximal score of record r3 is 7+ 8 + 9 = 24, and
that of r4 is 74 9 + 8 = 24, while those of other records are
at most 7+ 8 + 8 = 23. Thus, record r5 is the best answer.

3.2.2 List Materialization

We can further improve the performance of sorted access
for the partial keyword w,, by precomputing and storing the
unions of some of the inverted lists on the trie. Let v be a trie
node, and U(v) be the union of the inverted lists of v’s leaf
nodes, sorted by their record weights. If a record appears
more than once on these lists, we choose its maximal weight
as its weight on list U(v). For example, U(“11”) = {(r3,9),
<7’57 8>, <T77 8>7 <T‘47 7>7 <T6a 5>7 <T9a4>7 <T27 3)7 <T87 1>} When
using a max heap to retrieve records sorted by their scores
for the partial keyword, this materialized list could help us
build a max heap with fewer lists and reduce the cost of
push/pop operations on the heap. Therefore, this method
allows us to utilize additional memory space to answer top-k
queries more efficiently. For instance, consider the index in
Figure [[l and a query “icdm gr”. For the partial keyword
“gr”, we access its data keywords “graph”, “gray”, “gross”,
and “group”, and build a max heap on their inverted lists
based on record scores with respect to this query keyword.
If we materialize the union lists of “gra” and “gro”, we can
use their materialized lists, saving the time to traverse the
four leaf nodes and some push/pop operations on the heap.

We next give a detailed cost-based analysis to quantify
the benefit of materializing a node on the performance of
operations on the max heap of w,,, for exact type-ahead
search. Let B be a budget of storage space we are given to
materialize union lists. Given a trie node v, let U(v) be the
union of inverted lists of leaf nodes in the subtrie of v. Our
goal is to select trie nodes to materialize their union lists for
maximizing the performance of queries. The following are
naive algorithms for choosing trie nodes:

e Random: We randomly select trie nodes.
e TopDown: We select nodes top down from the trie root.
e BottomUp: We select nodes bottom up from leaf nodes.
Each naive approach keeps choosing trie nodes to materialize
their union lists until the sum of their list sizes reaches the

space limit B. One main limitation of these approaches
is that they do not quantitatively consider the benefits of

materializing a union list. To overcome this limitation, we
propose a cost-based method called CostBased to do list
materialization. Its main idea is the following.

For simplicity we say a node has been “materialized” if
its union list has been materialized. For a query @ with
a prefix keyword w,,, suppose some of the trie nodes have
their union lists materialized. Let v be such a materialized
node. If we can use U(v) to construct the heap of w,, we
need not visit v’s descendants and access the inverted lists of
v’s leaf descendants, and thus achieve the benefit of reducing
the time of traversing the subtrie rooted at v and push/pop
operations on the max heap of w,,. We say the materialized
node v is usable for partial keyword w,,.

Next we discuss how to check whether a node v is usable
for partial keyword wp,. If v is not a descendant of wy,,
materializing v is unusable to w.,; otherwise, if no node on
the path from v to wy, (including w,,) has been materialized,
materializing v is usable to w,,. Notice that if v has a
materialized ancestor v on the path from v to w,,, then
we can use the materialized list U(v") instead of U(v), and
the list U(v) will no longer be usable to wy,. To summarize,
a materialized node v is usable for partial keyword ws, if,

1. v is a descendant of w,,; and

2. v has no materialized ancestor between v and w,,.

For example, consider a query “icdm g”, materializing node
“1” is unusable for partial keyword “g” as
of “g”. Materializing “gr” is usable for “g” if “g” is not
materialized. If “gr” is materialized, then materializing “gra”
is unusable for “g” as we will use the materialized list of “gr”
to build the max heap of “g”, instead of using “gra”.

If v is usable for w,,, materializing U (v) has the following
benefits for the heap of wy,. (1) We do not need to traverse
the trie to access these leaf nodes and use them to construct
the max heap; (2) Each push/pop operation on the heap is
more efficient since it has fewer lists. Here we present an
analysis of the benefits of materializing the usable node v.
In general, for a trie node v, let T'(v) denote its subtrie and
|T'(v)| denote the number of nodes in T'(v). The total time
of traversing this subtrie is O(|T(v)]).

Now we analyze the benefit of materializing node v. As

“1” is not a descendant

illustrated in Figure[5] suppose v has materialized descendants.

Let M (v) be the set of highest materialized descendants of
v. These materialized nodes can help reduce the time of
accessing the inverted lists of v’s leaf nodes in two ways.

First, we do not need to traverse the descendants of a materialized

node d € M(v). We can just traverse |T'(v)|=>_ jc nr(y |T(d)]
trie nodes. Second, when inserting lists to the max heap of
Wy, we insert the union list of v into the heap and need
not insert the union list of each d € M (v) and the inverted
lists of d’ € N(v) into the heap, where N(v) denotes the
set of v’s leaf descendants having no ancestors in M (v). Let
S(v) = M(v) U N(v). We quantify benefits of materializing
node v:

1. Reducing traversal time: Since we do not traverse v’s
descendants, the time reduction is B1 = O(|T(v)| —
Yaeni(wy [T()])-

2. Reducing heap-construction time: When constructing
the max heap for keyword w,,, we insert the union list
U(v) into the heap, instead of the inverted lists of those
nodes in S(v). The time reduction is By = |S(v)|— 1.

3. Reducing sorted-access time: If we insert the union list
U(v) to the max heap of wy,, the number of leaf nodes

359

in the heap is [S(wp)|. Otherwise, it is |S(wm)| +
|S(v)| — 1. The time reduction of a sorted access is

Bs=0(log(|S(wm)|+|S(v)|-1)) — O(log(|S(wm)])).

The following is the overall benefit of materializing v for
the partial keyword w,:

B, = B1+ B2+ A, * Bs, (3)
where A, is the number of sorted accesses on U(v). A, can
be computed using the number of records in the union list
U(v), and the number of keywords in the query.

The analysis above is on a query workload. If there is
no query workload, we can use the trie structure to count
the probability of each node to be queried and use such
information to compute the benefit of materializing a node.
In this paper, we employ a no query workload setting.

4. FUZZY TYPE-AHEAD SEARCH

In this section, we first define the problem of top-k queries

in fuzzy type-ahead search [I3]. We then develop new techniques

to support efficient list access to answer such queries by
extending techniques developed in exact search.

4.1 Ranking

As a user types in a query letter by letter, fuzzy type-ahead
search on-the-fly finds records with words similar to the
query keywords. For example, consider the data in Table [l
Suppose a user types in a query “graph grose”. We return
r5 as a relevant answer since it has a keyword “gross” similar
to query keyword “grose”. We use edit distance to measure
the similarity between strings. Formally, the edit distance
between two strings si1 and s2, denoted by ed(s1, s2), is the
minimum number of single-character edit operations (i.e.,
insertion, deletion, and substitution) needed to transform
s1 to s2. For example, ed(gross, grose) = 1.

Similarity Function: Let 7 be a function that computes
the similarity between a data string s and a query keyword
w in Q = (wy,wa, ..., wn). An example is:

ed(s, w)

m(s,w) =1— o]

where |w| is the length of the query keyword w. We normalize
the edit distance based on the query-keyword length in order
to allow more errors for longer query keywords. Our results
in the paper focus on this function, and they can be generalized
to other functions using edit distance.

Let d be a keyword in the data set D. For each complete
keyword w; (i =1,2,...,m — 1) in the query, we define the
similarity of d to w; as:

Sim(d, w;) = 7(d, w;).

Since the last keyword w,, is treated as a prefix condition,
we define the similarity of d to w,, as the maximal similarity
of d’s prefixes using function 7, i.e.:

Sim(d, wm,) = {7 (p,wm)}.

Let 7 be a similarity threshold. We say a keyword d in D
is similar to a query keyword w if Sim(d,w) > 7. We say a
prefix p of a keyword in D is similar to the query keyword
Wi, if 7(p, wm) > 7. We want to find the keywords in the
data set that are similar to query keywords, since records
with such a keyword could be of interest to the user.

max
prefix p of d

Query Keywords Partial keyword

cee

Wy

=

FodO oD\
A0 000 nannmn

Inverted lists
‘ Legend: Similar prefixes @ Similar complete words {Q}

Figure 6: Keywords similar to those in query @ =
(w1, w2, ..., wn). Each query keyword w; has similar
keywords on leaf nodes. The last prefix keyword w,,
has similar prefixes.

Let ®(w;) (i = 1,...,m) denote the set of keywords in
D similar to w;, and P(wy,) denote the set of prefixes (of
keywords in D) similar to w,,. We compute the top-k answers
to the query @ in two steps. In the first step, for each
keyword w; in the query, we first compute an edit-distance
upper bound based on the similarity function, i.e., (1 —
7) * |w;|, and then compute the similar keywords ®(w;) and
similar prefixes P(w.,) on the trie (shown in Figure B). Ji
et al. [13] developed an efficient algorithm for incrementally
computing these similar strings as the user modifies the
current query. A similar algorithm is developed in [5]. In
the second step, we access the inverted lists of these similar
data keywords to compute the k best answers.

For example, assume a user types in a query “grose 1i”
letter by letter on the data shown in Table [l Suppose the
similarity threshold 7 is 0.45. The set of prefixes similar to
the partial keyword “1i” is P(“1i”) = {1,1i,1in,1liu, lu,
lui,i}, and the set of data keywords similar to the partial
keyword “11” is ®(“11”) = {lin,liu,lui, icdl,icdm}. In
particular, “lui” is similar to “1i” since Sim(1lui,1i) =1 —

d(1lui,li

: (\11\7 :
keyword “grose” is ®(“grose”) = {gross}. Then we compute
top-k answers using the inverted lists of those words in
O(“grose”) and ®(“1i”).

Ranking: We still assume the ranking function has the first
property described in Section Bl which computes the score
F(r,Q) by applying a monotonic function on the F(r,w;)’s
for all the keywords w; in the query. Given a complete
keyword w; and a record r, for exact search, we can use the
weight of w; in 7, i.e., W(r,w;), to denote their relevancy
F(r,w;). But for fuzzy search, the keyword w; can be similar
to multiple keywords in the record r, and different similar
words have different similarities to w; and different weights
in r. A question is how to compute the relevance value of
keyword w; in record r, F(r,w;).

Let d be a keyword in record r such that d is similar to
the query keyword w;, i.e., d € ®(w;). We use F(r,w;,d) to
denote the relevance of this query keyword w; in the record
with respect to keyword d. The value should depend on both
the weight of d in r, i.e., W(r,d), as well as the similarity
between w; and d, i.e., Sim(d,w;). Intuitively, the more
similar they are, the more relevant w; is to r in terms of d.
For instance, F(r, w;, d) = Sim(d, w;)* W (r, d) is an example
ranking function to evaluate the relevancy of w; in the record
with respect to keyword d. We use the following function

= 0.5 > 7. The set of similar words for the complete

360

with the second property in Section 2lto compute F(r, w;):

F(r,w;) = {F(r,w;,d)}. (4)

max
keyword d (in r) similar to w;

4.2 Efficient Random Access

We first study how to support efficient random access for
fuzzy type-ahead search. For simplicity, in the discussion
we focus on how to verify whether the record has a keyword
with a prefix similar to the partial keyword w,,. With minor
modifications the discussion extends to the case where we
want to verify whether r has a keyword similar to a complete
keyword w;(1 <4 <m —1).

In each random access, given an ID of a record r, we want
to retrieve information related to a query keyword w;, which
allows us to retrieve W (r, d) for each of w;’s similar word d
so as to compute the score F(r,w;). In particular, for a
keyword w; in the query, does the record r have a keyword
similar to w;? One naive way to get the information is to
retrieve the original record r and go through its keywords.
This approach has two limitations. First, if the data is too
large to fit into memory and has to reside on hard disks,
accessing the original data from the disks may slow down
the process significantly. This costly operation will prevent
us from achieving an interactive-search speed. The second
limitation is that it may require a lot of computation of
string similarities based on edit distance, which could be
time consuming. In this section, we present two efficient
approaches for solving this problem.

Method 1: Probing on Forward Lists: This method
verifies whether record r contains a keyword with a prefix
similar to w,, as follows. For each prefix p on the trie
similar to w., (computed in the first step of the algorithm
as discussed above), we check if there is a keyword ID on
the forward list of 7 in the keyword range [l,, u,] of the trie
node of p as discussed in Section [l

Method 2: Probing on Trie Leaf Nodes: Using this
method, for each prefix p similar to w.,, we traverse the
subtrie of p and identify its leaf nodes. For each leaf node d,
we store the fact that for the query @, this keyword d has a
prefix similar to wy, in the query. Specifically, we store

(Query ID, partial keyword w,, Sim(p, wm)).

We store the query ID in order to differentiate it from other
queries in case multiple queries are answered concurrently.
We store the similarity between w,, and p to compute the
score of this keyword in a candidate record. In case the
leaf node has several prefixes similar to w,,, we only keep
their maximal similarity to w,,. For each complete keyword
w;, we also store the same information for those trie nodes
similar to w;. Therefore, a leaf node might have multiple
entries corresponding to different keywords in the same query.
We call these entries for the leaf node as its collection of
relevant query keywords. Notice that this structure needs
very little storage space, since the entries of old queries
can be quickly reused by new queries, and the number of
keywords in a query tends to be small. We use this additional
information to efficiently check if a record r contains a complete
word with a prefix similar to the partial keyword w,,. We
scan the forward list of r. For each of its keyword IDs,
we locate the corresponding leaf node, and test whether its
collection of relevant query keywords includes this query and

Forward index

Forward list
(1,2);6,3)
<1,3);4,9;¢9,6)
(2,9):65,2);48,3)
1,4 %6,22;¢7,9>09.4
<1,7%,4,3%,6,9:7, 28,2
<1,9%2.8%3.4;6.8:7.3:8,8

Record|

7

=)

7
7

()

7

w

7

o

w

qu, lin, 0.66 | "

o

qi, grose, 0.8
qa, gross, 1

qQa, liu, 0.66
Figure 7: Probing on trie leaf nodes.

the keyword w,,. If so, we use the stored string similarity
to compute the score of this keyword in the query.

Figure [7 shows how we use this method in our running
example, where the user types in a keyword query q1
(1in, grose). When computing the similar words of “grose”,
i.e., “gross”, we insert the query ID (shown as “g:”), the

partial keyword “grose”, and the corresponding prefix similarity

to its collection of relevant query keywords. To verify whether
record r5 has a word with a prefix similar to “grose”, we scan
its forward list. Its third keyword is “gross”. We access its
corresponding leaf node, and see that the node’s collection
of relevant query keywords includes “grose”. Thus we know
that r5 indeed contains a keyword similar to “grose”, and
can retrieve the corresponding prefix similarity.

Comparison: The time complexity of the forward-list based
method (Method 1) is O(G = log(|r])), where G is the total
number of similar prefixes of w,, and similar complete words
of wi’s for 1 <i < m — 1, and |r| is the number of distinct
keywords in record r. Since the similar prefixes of w,, could
have ancestor-descendant relationships, we can optimize the
step of accessing them by considering the “highest” ones.
The time complexity of the second method is

> ()] + Ir] * Q1)

smilar prefix p of wy,

o(

The first term corresponds to the time of traversing the
subtries of similar prefixes, where T'(p) is the subtrie rooted
at a similar prefix p. The second term corresponds to the
time of probing the leaf nodes, where |Q| is the number of
query keywords. Notice that to identify the answers, we
need access the inverted lists of complete words, thus the
first term can be removed from the complexity. Method 1 is
preferred for data sets where records have a lot of keywords
such as long documents, while Method 2 is preferred for data
sets where records have a small number of keywords such as
relational tables with relatively short attribute values.

4.3 Efficient Sorted Access

Heap-Based Method: For a query keyword w, we want
to support sorted access that can access record IDs based on
the relevance of w to these records. As w has multiple similar
words, we can support sorted access efficiently by building
a max heap on the inverted lists of such similar words, as
described in Section Notice that, in exact search, each
leaf node has the same similarity to w; but for fuzzy search,
different leaf nodes could have different similarities. Thus,
when pushing a record r from an inverted list of a similar
word d to the heap, we maintain (r, F'(r,d)) in the heap. We
push/pop the record on the heap with the maximal F(r,d).

Consider the query “icdm 1i”. Figure [§ shows the two
heaps for the two keywords. For illustration purposes, for

361

icdm li
—_——

- | vl
rs,9 | rs,9
T8 |58
6,5 | r7,8
34 To,4 ry,7 5 P ;
-------- Ve | s o5 ‘o ﬁ”‘{; /2
N o 9z e i H H
73 al 5 g |liros W’Q! %r;,ﬂ *1r/2‘=‘—‘ L/
%%} 5,0 =
ool | ms] |28 [1res (™8 0 1)) [n6] 2] [rs]
5,2 62) = 5 i
ool |l [|ie s (|| | L8} s
el | |ESER RSN | LR My I
0.3 | ol 1723 Dol 1
Tl w2y |, 1| P e8|
5,1 . 792
icdl icdm | lin L_l—i——. ; L&)Léj ;
| e/ lui icdm icdl

Figure 8: Max heaps for the query keywords “icdm”
and “li”. Each shaded list is merged from the
underlying lists. It is “virtual” since we do not need
to compute the entire list.

each keyword we also show the virtual merged list of records
with their scores, and this list is only partially computed
during the traversal of the underlying lists. Each record on
a heap has an associated score of this keyword with respect
to the query keyword, computed using Equation [l

List Pruning: As there may be a large number of similar
words for a query keyword, especially for the partial keyword,
it could be expensive to construct a heap on the fly. We
further improve the performance of sorted access on the
virtual sorted list U(w) by using the idea of “on-demand
heap construction,” i.e., we want to avoid constructing a
heap for all the inverted lists of keywords similar to a query
keyword. Suppose w has ¢ similar words. Each push/pop
operation on the heap of these lists takes O(log(t)) time.
If we can reduce the number of lists on the heap, we can
reduce the cost of its push/pop operations. We have two
observations about this pruning method. (1) As a special
case, if those keywords matching query keywords ezactly
have the highest relevance scores, this method allows us
to consider these records prior to considering other records
with mismatching keywords. (2) The pruning can be more
powerful if w is the last partial keyword w,,, since many of
its similar keywords share the same prefix p on the trie.

Consider query “icdm 1i”, Figure[Rlillustrates how we can
prune low-score lists and do on-demand heap constructions.
The prefix “1i” has several similar keywords. Among them,
the two words “lin” and “liu” have the highest similarity
value to the query keyword, mainly because they have a
prefix matching the keyword exactly. We build a heap using
these two lists. To compute the top-1 best answer, the lists
of “lui”, “icdm”, and “icdl” are never included in the heap
since their upper bounds are always smaller than the scores
of popped records before the traversal terminates.

We next introduce how to do list pruning for the max-heap
based methods in fuzzy type-ahead search. Given a keyword
w, let di,...,d: be its similar words and Li,..., L; be the
corresponding inverted lists, respectively. We need not use
all the inverted lists to build the max heap of w. Instead, we
use those with higher similarities to w to “on-demand build
the max heap”. We first sort these inverted lists based on the
similarities of their keywords to w, without loss of generality,
suppose Sim(di,w) > ... > Sim(d;,w). We first construct
the max heap using the lists with the highest similarity
values and then include other lists on-demand.

Suppose L; is a list not included in the heap so far. We
can derive an upper bound u; on the score of a record from
L; (with respect to the query keyword w) using the largest

weight on the list and the string similarity Sim(d;, w). Let
r be the top record on the heap, with a score F(r,w). If
F(r,w) > wu;, then this list does not need to be included
in the heap, since it cannot have a record with a higher
score. Otherwise, this list needs to be included in the heap.
Based on this analysis, each time we pop a record from the
heap and push a new record r, we compare the score of
the new record with the upper bounds of those lists not
included in the heap so far. For those lists with an upper
bound greater than this score, they need to be included in
the heap from now on. Notice that this checking can be
done very efficiently by storing the maximal value of these
upper bounds, and ordering these lists based on their upper
bounds. The pruning power can be even more significant if
the keyword w is the partial keyword w,,, since many of its
similar keywords share the same prefix p on the trie similar
to wm. We can compute an upper bound of the record
scores from these lists and store the bound on the trie node
p. In this way, we can prune the lists more effectively by
comparing the value F(r, w) with this upper bound stored on
the trie, without needing to on-the-fly compute the bound.

List Materialization: For fuzzy search, the partial keyword
Wy, has multiple similar prefixes and each similar prefix has

multiple similar words. The max heap of w,, is built on

top of inverted lists of such similar words. Let d be such a

similar word. Recall that the value F(r, wm, d) of a record r

on the list of a similar word d with respect to w,, is based on

both W (d,r) and Sim(d, wy). Let v be a materialized node.

To use U(v) to replace the lists of v’s leaf nodes in the max

heap, the following two conditions need to be satisfied:

e All the leaf nodes of v have the same similarity to w,.

e All the leaf nodes of v are similar to w.,, i.e., their
similarity to w, is no less than the threshold 7.

When the conditions are satisfied, the sorting order of the
union list U (v) is also the order of the scores of the records on
the leaf-node lists with respect to w,,. A materialized node
v that satisfies the two conditions must be a descendant
of a similar prefix of partial keyword w,,. We can prove
this by contradiction. Suppose node v is not a descendant
of any similar prefix of partial keyword w,,. Then node
v and its ancestors are not similar prefixes of w,,, that is
the leaf nodes of v are not similar keywords of w,,. This is
contradicted with the second condition. Thus a materialized
node v that satisfies the two conditions must be a descendant
of a similar prefix of partial keyword w,,.

Suppose p1,p2,...,pn are similar prefixes of w,,. We
check whether their materialized descendants satisfy the two
conditions as follows. Consider a materialized node v which
has ancestors among p1, p2, . . .

It included computer science publication recordsﬂ. (2) “URL’E:
It included 10 million URLs. (3) “Enron”: It was an email
collection]. Table Bl shows details of the data.

Table 2: Data sets and index costs.

[Data Set URL [DBLP | Enron |
of Records (millions) 10 1 0.5
Data size 1.1 GB 500 MB 1.4 GB
Avg. # of words/record 7.7 17.1 271.7
of distinct keywords (millions) 1.79 0.392 1.26
Trie size 421 MB 31 MB 128 MB
Size of inverted lists 379 MB 83 MB 342 MB

, Pn- If node v has no descendants

that are similar prefixes of w.,,, v must satisfy the two conditions;

otherwise suppose p; is a descendant of v that is a similar
prefix of w,, and has the largest similarity to v among all
such descendants. Without loss of generality, let p; be an
ancestor of v and has the largest similarity with v among all
similar prefixes. If Sim(v,p;) < Sim((v,p;), v satisfies the
two conditions; otherwise v will not. Thus we can find usable
materialized nodes to construct the max heap of w,, and use
our proposed techniques in Section to do a cost-based
analysis to select high-quality nodes for materialization.

S. EXPERIMENTS

We implemented our proposed techniques and compared
with existing methods on three real data sets. (1) “DBLP”:

362

For the DBLP data set, we selected 1000 real queries from
the logs of our deployed systems and each query contained
1-6 keywordsﬂ For the other two data sets, we generated
1000 queries with keywords randomly selected from the set
of words used in the collection. We assumed the letters
of a query were typed in one by one. For each keystroke,
we measured the time of computing the top-k answers to
this query. For exact search, we measured the total running
time. For fuzzy search, we measured the time in two steps:
in step 1 we computed keywords on the trie similar to the
query keywords (using the algorithm described in [13]); in
step 2 we found the top-k answers using the inverted lists of
these similar keywords. Unless otherwise specified, k£ = 10.

We compared our method with state-of-the-art method [I3].
We implemented the NRA algorithm described in [6] if we
only do sorted access, and the Threshold Algorithm (“TA”)
if we can do both sorted access and random access.

All the indexes were built off-line and pre-loaded and
full-resident in memory during all querying operations. All
experiments were run on a Ubuntu Linux machine with an
Intel Core processor (X5450 3.00GHz and 4 GB RAM).

5.1 Exact Search

Sorted Access Only: We implemented the following methods.

(1) BinaryProbe [13]: We considered the inverted lists of the
complete query keywords, and the union of the inverted lists
for the complete keywords of the partial keyword. We chose
the shortest list, and for each of its record IDs, we did binary
probings on other lists. (2) NRA(Heap): We implemented
the NRA algorithm using the heap-based technique. (3)
NRA (Heap-+Materializatiol]): We implemented the NRA

algorithm using the heap-and-materialization-based techniques.

Figure [0 shows the results on the Enron dataset, which
showed that our method improved search efficiency. For
instance, for queries with a partial keyword of length 2,
NRA (Heap) reduced the query time of BinaryProbe from
128 ms to 10 ms. NRA (Heap+Materialization) further reduced
the time to 2 ms. This is because 1) BinaryProbe first
computed all results and then ranked them; 2) BinaryProbe
on-the-fly computed the union list of the partial keyword.
NRA(Heap) used the max heap to generate a sorted partial
list and NRA (Heap-+Materialization) used materialized lists
to save push/pop operations on the heap.

Sorted Access + Random Access: We implemented the
following methods. (1) BinaryProbe (Forward List)[I3], we
chose the shortest list, and for each of its record IDs, we
verified whether the record ID contained other keywords

4http://dblp.uni—trier.de/xml/
5http://www.sogou.com/labs/dl/t—rank.html
6http://www—Z.cs.cmu.edu/wenron/

Details are omitted due to double-blind review.

8VVe used additional 50% space with respect to inverted index for
materialization in the experiments.

50

T T T - T T

BinaryProbe s 100 BinaryProbe ' mmmmm |
[~ NRA(Heap) === > NRA(Heap) ===
g 40 NRA(Heap+Materialization) ——1 g NRA(Heap+Materialization) ——
~ ~
5} o 10} 4
£ £
= =
g g ol |
2 =}
o o

0.1
1 2 3 4 5 2 3 4 5 6 7 8

of records (*100K)
(a) Varying Data Size
Figure 9: Exact search using sorted access (Enron).

Length of the prefix keyword
(b) Varying prefix length

using the forward list. (2) TA(Forward List+Heap): We
implemented the TA algorithm using forward list for random
access and max heap for sorted access. (3) TA(Forward

Query Time (ms)

List+Heap+Materialization): We implemented the TA algorithm

using forward list, max heap, and list materialization. Figure[Il

shows the results on the DBLP dataset. We can see that the
random-access techniques indeed improved efficiency.

5.2 Fuzzy Search

Sorted Access Only: We first evaluated the effect of the
list-pruning technique. Figure [II] shows the experimental
results (including two steps). We can observe that list pruning
indeed improved search efficiency. For the Enron dataset
with 0.5M records, the method with pruning can reduce
the time from 30 ms to 17 ms. The pruning technique
was more effective on the Enron dataset than on the other
two datasets mainly due to two reasons. First, the Enron
dataset had more trie nodes due to its large number of
distinct keywords in the emails. Thus a query keyword
can have more similar prefixes on the trie. Second, the
Enron dataset had fewer records, and the inverted lists were
relatively shorter. During the list traversal, the NRA algorithm
visited fewer records, and its higher score of the top record
from the max heap helped us prune more lists.

List Materialization: We evaluated the improvement on
sorted access using list materialization for fuzzy type-ahead
search. We measured the amount of storage space for storing
materialized lists as a percentage of the total size of the
inverted lists on the trie. We varied this amount, and measured
the average time of finding the top-10 answers using the
NRA algorithm. Figure shows the results. We can see
that list materialization improved the search performance.

We implemented the different methods for list materialization,

namely Random, TopDown, BottomUp, and CostBased as
discussed in Section Figure shows the results.
Among the three naive methods, Random gave the best
results. The CostBased algorithm outperformed all the naive
methods. This is because CostBased selected high-quality
nodes for materialization using a cost-based analysis.

Sorted Access + Random Access: We implemented
the TA algorithm using the two methods for random access
and list pruning for sorted access (described in Section [).
Figure T4 shows the scalability results on the three datasets.
The two random-access methods scaled well. Method 2
(probing on trie leaf nodes) outperformed Method 1 (probing
on forward lists). This is because for the three data sets,
there were many prefixes similar to the partial keyword, and
Method 1 needed to consider all similar prefixes for each
record on forward lists.

6. RELATED WORK

There are many studies on autocomplete and phrase prediction

for user queries [22] 15, O] 23] [7]. Google instant search was

363

"BinaryProbe(Forward List) mem BinaryProbe(Forward List) mm
. TA(Foward List+Heap) = 10 [TA(Foward List+Heap) ==
10 - TA(Forward List+Heap+Materialization) —— = TA(Foward List+Heap+Materialization) =
E
o
£
= gt]
-
Z
o
=
0.1
2 4 6 8 10 2 3 4 5 6 7 8

of records (*100K)
(a) Varying Data Size
Figure 10:Exact search using random access(DBLP).

Length of the prefix keyword
(b) Varying prefix length

launched to support type-ahead search. It first suggested
relevant queries based on user profiles and query logs and
then answered the top queries. Chaudhuri et al. [5] studied
how to find similar strings interactively as users type in a
query string, using an approach similar to that in [13] [20].
They did not study the case where a query has multiple
keywords that need list-intersection operations. The search
paradigm studied in this paper is different since we support
fuzzy, full-text search as users type in queries.

Bast et al. proposed techniques to support type-ahead
search in their CompleteSearch systems [2, [3, [I]. Another
study [I9] is about type-ahead search on relational data
graphs. Jiet al. [I3] developed algorithms for fuzzy type-ahead
search. Our work extends these studies by developing efficient
algorithms to support top-k search.

Khoussainova et al. [T4] proposed to suggest relevant SQL
snippets as users type in SQL queries. Li et al. [I8] studied
how to use SQLs to support type-ahead search in databases.
Feng et al. [§] studied fuzzy search on XML data. There have
been many studies on supporting fuzzy search (e.g., [10] 17}
[41 [IT], 241 16]). However these algorithms are inefficient for
type-ahead search since they have low pruning power for
short strings (partial keywords). The experiments in [I3] [5]
showed that these approaches are not as efficient as trie-based
methods for fuzzy type-ahead search. Theobald et al. [25]
proposed a heap-based method for query expansion. They
used WordNet words and only utilized sorted access. We
consider both sorted access and random access.

7. CONCLUSION

In this paper we studied how to efficiently answer top-k
queries in type-ahead search. We focused on an index structure
with a trie of keywords in a data set and inverted lists
of records on the trie leaf nodes. We studied technical
challenges when adopting existing top-k algorithms in the
literature: how to efficiently support random access and
sorted access on inverted lists? We presented two algorithms
for supporting random access, and proposed optimization
techniques using list pruning and materialization to support
sorted access. Our techniques can be easily extended to
support large datasets through data partition. For example,
we have built a system to search on 20 million MEDLINE
publication records using two machines.
Acknowledgement. The authors have financial interest in Bimaple
Technology Inc., a company currently commercializing some of the
techniques described in this publication. Chen Li is partially supported
by the NIH grant 1R21LMO010143-01A1 and the National Natural
Science Foundation of China (No. 61129002). Guoliang Li, Jianan
Wang, and Jianhua Feng were partly supported by the National Natural
Science Foundation of China (No. 61003004), the National Grand
Fundamental Research 973 Program of China (No. 2011CB302206),
Tsinghua University (No. 20111081073), and the “NExT Research
Center” funded by MDA, Singapore (No. WBS:R-252-300-001-490).

100 F——T—T—T—T T 40 — T 50 — T T T T

Without Pruning C—— Without Pruning c—— Without Pruning ——

o~ Pruning EXx= o~ Pruning Exx= I~ Pruning EXx%=

g 8 Computing Similar Keywords === | & 30| Computing Similar Keywords === | & 40 Computing Similar Keywords ===
o L 4 o o
- - I
& & &
> 40 b > >
o] 5 g
S a0l i S 10 b 3
o W o @ o

o LE W o LB %
1234567 8 910 123 456 7 8 910
of records (*1M) # of records (*100K) # of records (*100K)

) U

(b) DBLP

(c) Enron

(a
Figure 11 Fuzzy search usmg list pruning (51m11ar1ty threshold 7 =0.6).

240

5keyword queries 4»— T 5 keywo,d quenes J—— 5Tkeyword querfes ——

4-keyword queries 60 | 60 | 4-keyword queries ———x——:
2z 200 - 3-keyword queries e e 3-keyword queries --- -
£ 2-keyword queries E 50| E 50| 2-keyword queries &
o 160 - 1-keyword queries b b 1-keyword queries -
E 1o £ 40 g 40 g
= = a0l = a0l E
E‘ 80 - = iz} 1 E‘ 20 E‘ 20 i
g = -] g g
O w0, 4 9 1wl 9 ol 4

R R SR -
1 1 . L L I 0 0

0% 10% 20% 30% 40% 50%
Additional Space/Inverted-Index Size

0%

10% 20% 30% 40% 50%
Additional Space/Inverted-Index Size

0% 10% 20% 30% 40% 50%
Additional Space/Inverted-Index Size

with list pruning, threshold 7 = 0.6).

(a) URL (b) DBLP (¢) Enron
Figure 12: Fuzzy search usmg list materialization (sorted access only,
150 T T T T T 35 T T T T T T T

—~ ~ 30 —~

g g E af 1

= 100 | {1 S &Br b

13 13 13

£ E 2r E ol i

= = o5t TopDown —— 4 B

2 sof i BottomUp —-x--- e

g Random ---%--- g 10| Random ------ b g 10 - 1

] CostBased & & sl CostBased & |l & CostBased &

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%
Additional Space/Inverted-Index Size Additional Space/Inverted-Index Size Additional Space/Inverted-Index Size
(a) URL (b) DBLP (c) Enron
Figure 13: Comparison of different materialization methods (s1m11ar1ty threshold 7 = 0.6).
200 T T T T T T 60 T T T T T T T T T T 140
SA+RA(Probing on Forward Lists) ==

2 15 SArRAPromng on Leafodgsl B0 B 0T s’%ﬁ’%‘ﬁ(g?&E?n‘é"o?ﬂévé"'ﬁééi‘ii E 7z =f S‘\slwﬁ{é’?él?ng"oﬁ‘i“éﬁ'ﬂé&i'i{ E
\; Computing Similar Keywords === \; 40 Computing Similar Keywovds - ;’ 100 [Computing Similar Keywords —
E 100 E & E &
[S) [S) E
= = =
2 50 2 g3 40
& <4 O 2

[

Figure 14: Fuzzy search with sorted access (“SA”) and random access (“RA?”) (similarity threshold 7 =

8.
(1]

(2]

(12]

(13]

1.2 3 456 7 8 910 9 2
of records (*1M) # of records (*100K) # of records (*100K)
(a) URL b) DBLP (c) Enron

REFERENCES

H. Bast, A. Chitea, F. M. Suchanek, and I. Weber. Ester:
efficient search on text, entities, and relations. In SIGIR, pages
671-678, 2007.

H. Bast and I. Weber. Type less, find more: fast autocompletion
search with a succinct index. In SIGIR, pages 364-371, 2006.
H. Bast and I. Weber. The completesearch engine: Interactive,
efficient, and towards ir& db integration. In CIDR, pages
88-95, 2007.

S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator
for similarity joins in data cleaning. In ICDE, pages 5-16, 2006.
S. Chaudhuri and R. Kaushik. Extending autocompletion to
tolerate errors. In SIGMOD Conference, pages 707-718, 2009.
R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, pages 102-113, 2001.

J. Fan, G. Li, and L. Zhou. Interactive SQL query suggestion:
Making databases user-friendly. ICDE, pages 351-362, 2011.

J. Feng, and G. Li. Efficient Fuzzy Type-Ahead Search in XML
Data. IEEE TKDE, 24(5):882-895, 2012.

K. Grabski and T. Scheffer. Sentence completion. In SIGIR,
pages 433-439, 2004.

L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,

S. Muthukrishnan, and D. Srivastava. Approximate string joins
in a database (almost) for free. In VLDB, pages 491-500, 2001.
M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava.
Fast indexes and algorithms for set similarity selection queries.
In ICDE, pages 267-276, 2008.

I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k
query processing techniques in relational database systems.
ACM Comput. Surv., 40(4), 2008.

S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy
keyword search. In WWW, pages 371-380, 2009.

364

(14]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

(25]

[

0.6).

N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu.
Snipsuggest: Context-aware autocompletion for sql. PVLDB,
4(1):22-33, 2010.

K. Kukich. Techniques for automatically correcting words in
text. ACM Comput. Surv., 24(4):377-439, 1992.

H. Lee, R. T. Ng, and K. Shim. Extending g-grams to estimate
selectivity of string matching with low edit distance. In VLDB,
pages 195-206, 2007.

C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE, pages
257-266, 2008.

G. Li, J. Feng, and C. Li. Supporting search-as-you-type using
sql in databases. IEEE TKDE, 2012.

G. Li, S. Ji, C. Li, and J. Feng. Efficient type-ahead search on
relational data: a tastier approach. In SIGMOD Conference,
pages 695-706, 2009.

G. Li, S. Ji, C. Li, and J. Feng. Efficient fuzzy full-text
type-ahead search. VLDB J., 20(4):617-640, 2011.

N. Mamoulis, K. H. Cheng, M. L. Yiu, and D. W. Cheung.
Efficient aggregation of ranked inputs. In ICDE, page 72-83,
2006.

H. Motoda and K. Yoshida. Machine learning techniques to
make computers easier to use. Artif. Intell., 103(1-2):295-321,
1998.

A. Nandi and H. V. Jagadish. Effective phrase prediction. In
VLDB, pages 219-230, 2007.

J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin. Efficient exact
edit similarity query processing with the asymmetric signature
scheme. In SIGMOD Conference, pages 1033—1044, 2011.

M. Theobald, R. Schenkel, and G. Weikum. Efficient and
self-tuning incremental query expansion for top-k query
processing. In SIGIR, pages 242-249, 2005.

	Introduction
	Formulation and Preliminaries
	Exact Type-Ahead Search
	Efficient Random Access
	Efficient Sorted Access
	Heap-Based Method
	List Materialization

	Fuzzy Type-Ahead Search
	Ranking
	Efficient Random Access
	Efficient Sorted Access

	Experiments
	Exact Search
	Fuzzy Search

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

