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ABSTRACT
Databases can be corrupted with various errors such as missing, in-
correct, or inconsistent values. Increasingly, modern data analysis
pipelines involve Machine Learning, and the effects of dirty data
can be difficult to debug. Dirty data is often sparse, and naive sam-
pling solutions are not suited for high-dimensional models. We
propose ActiveClean, a progressive framework for training Ma-
chine Learning models with data cleaning. Our framework updates
a model iteratively as the analyst cleans small batches of data, and
includes numerous optimizations such as importance weighting and
dirty data detection. We designed a visual interface to wrap around
this framework and demonstrate ActiveClean for a video classifica-
tion problem and a topic modeling problem.

1. INTRODUCTION
Model training on large and growing datasets is a key data man-

agement challenge with significant interest in both industry and
academia [1, 2, 5]. While many scalable training frameworks ab-
stract much of the crucial details of distributed Machine Learning
(ML), they seldom offer the analyst support regarding constructing
the model itself, such as which features to use or how to repre-
sent their data. The model construction process is still highly iter-
ative often through trial-and-error. To further complicate matters,
data are often dirty, including missing, incorrect, or inconsistent at-
tributes, due to faulty sensors, software, time delays, or hardware.
Thus, although part of the iterative process is tweaking the model
parameters and features, a significant portion involves identifying
and cleaning potentially dirty data. In our work, we focus on this
latter issue. While data cleaning is an extensively studied problem,
the high dimensionality of many models can amplify even a small
amount of erroneous records [13], and the relative complexity (in
comparison to SQL analytics) can make it difficult to trace the con-
sequences of data error.

To highlight the importance of data cleaning in modern ML
pipelines, we have noted the choice of data cleaning algorithm can
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Figure 1: (a) Systematic corruption in one variable (axes) can
lead to a shifted model (fitted lines). (b) Mixed dirty and clean
data results in a less accurate model than no cleaning.
significantly affect results even when using robust statistical tech-
niques [8, 9]. For instance, in one fraud prediction example, we
found that applying Entity Resolution before model training im-
proved true positive detection probabilities from 62% to 91%. De-
spite this importance, in theory and practice, the academic com-
munity has decoupled the data cleaning problem from featurization
and ML. This disconnect is problematic because many ML tech-
niques often make assumptions about independent and identically
distributed data, which can be easily violated if the analyst applies
data cleaning in an arbitrary way.

Consider an analyst training a regression model on dirty data. At
first, she may not realize that there are outliers and train a prelim-
inary model directly on the dirty data. As she starts to inspect the
model and the data, she will soon realize that some records have
large residual errors (i.e., not predicted accurately). Once she con-
firms that those records are indeed dirty, she has to design rules or
scripts to fix or remove the offending records. After cleaning, she
re-trains the model–iterating until she no longer finds dirty data.
This iterative process is the de facto standard, and is in fact encour-
aged by the design of the increasingly popular interactive “note-
book" ML development environments (e.g., IPython). This makes
the implicit assumption that the models trained on partially clean
data have meaningful predictive value. However, due to the well-
known Simpson’s paradox, models trained on a mix of dirty and
clean data can have very misleading results even in simple scenar-
ios (Figure 1).

In a parallel trend, the advent of techniques such as Deep Learn-
ing and Non-Parametric Bayesian Methods has lead to an explo-
sion in the number of model parameters. It is now common to use
100,000s of features in image processing problems with Convolu-
tional Neural Networks. Empirically, such feature spaces have fa-
cilitated breakthroughs in previously hard classification tasks such
as image classification, robot actuation, and speech recognition.
However, the pitfall is that higher dimensional models are harder
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to debug. Determining the combined effects of dirty data, model
error, and counter-intuitive higher dimensional effects can be very
challenging.

As it stands, there are two main problems in ML over dirty data,
(1) correctness, and (2) dirty data identification. We address these
two problems in a system called ActiveClean which facilitates in-
teractive training-cleaning iteration in a safe way (with expected
monotone convergence guarantees) and automatically selects the
most valuable data for the analyst to inspect. ActiveClean builds
on the algorithms described in our prior work [6, 12, 4, 7] and the
details of the approach can be found in [8]. The selection technique
applied in ActiveClean uses pointwise gradients to generalize the
outlier filtering heuristics to select potentially dirty data even in
complex models. The analyst initializes an ActiveClean with an
ML model, a featurization function, and the base data, and the Ac-
tiveClean initially returns the model trained on the dataset. Active-
Clean also returns a set of data sampled from the model that are
possibly dirty. The analyst can apply any value transformations to
the data and then prompt the system to iterate.

Intuitively, ActiveClean prioritizes data cleaning by identifying
records, which if cleaned, are likely to change the analyst’s model
predictions. ActiveClean applies to a large class of models which
can be represented as loss minimization problems solved by gradi-
ent descent. This captures SVMs, Linear Regression, Neural Net-
works (Deep Learning), and some types of topic modeling prob-
lems such as LDA (for a formal description see [8]). In our demon-
stration, we will show how ActiveClean facilitates debugging com-
plex ML models to understand the effects of dirty data in two ex-
perimental scenarios:

EXAMPLE 1 (VIDEO SEGMENTATION WITH CNNS). The
JHU JIGSAWS Dataset is a corpus of surgical training 120
videos from between 1-5mins long. These videos are annotated by
expert surgeons describing the gestures that occur in the video.
Classifying video frames is an important task for segmentation
and summarization of future videos. We would like a classifier
that can predict these annotations. This can be done using Con-
volutional Neural Networks to featurize frames of the video and
then applying a standard classifier like an SVM after the features
are extracted. However, sometimes the annotations are incorrect
and ActiveClean can be used to determine when the annotations
are incorrect (correspond to the wrong gesture) and inconsistent
(multiple gestures simultaneously).

EXAMPLE 2 (TOPIC MODELING WITH LDA). We have a
corpus of reviews from Yelp and we wish to learn a topic model
from this dataset. However, a substantial number of the reviews are
spam that typically are soliciting traffic for a fraudulent website.
These spam reviews can affect the distribution of words and affect
any models learned from the data. However, some spam reviews
are hard to detect automatically and require human validation. We
can apply ActiveClean to efficiently estimate the topic model with-
out having to validate every review.

2. ARCHITECTURE AND OVERVIEW
We will first describe ActiveClean and overview the entire

framework, and a detailed description of the research challenges
and algorithms can be found in [8].

2.1 What Is New?
Machine learning, specifically active learning, has been applied

in prior work to improve the efficiency of data cleaning [14, 15, 3].
Human input, either for cleaning or validation of automated clean-
ing, is often expensive and impractical for large datasets. An ML

model can be used to extrapolate repairs to not-yet-cleaned data,
and the goal of these approaches is to provide the cleanest possible
dataset–independent of the subsequent analytics or query process-
ing. Prior work studies how to use machine learning models to
improve data cleaning. In contrast, ActiveClean explores how to
control the impact of data cleaning for downstream machine learn-
ing models.

This new problem setting leads a question of correctness – if I
incrementally clean subsets of my data, is the model I then train
even correct? It also leads to optimization opportunities – how can
the data cleaning step be made aware of the subsequent data anal-
ysis (e.g., the model that is trained) in such a way that the model
will most quickly converge to the correct model? One of the pri-
mary contributions of this work is an incremental model update
algorithm with correctness guarantees for the resulting mixture of
dirty and clean data.

2.2 Problem Setup and Formalization
We assume that there is a featurizer F (·) that maps every record

in a dataset r ∈ R to a feature vector x and label y. This work
focuses on a class of well-analyzed predictive analytics problems,
ones that can be expressed as the minimization of loss functions,
which will be trained on the output of applying F (·) to the records
in R. For these labeled training examples {(xi, yi)}Ni=1, the prob-
lem is to find a vector of model parameters θ by minimizing a loss
function ` over all training examples:

θ∗ = argmin
θ

N∑
i=1

`(xi, yi; θ)

Where φ is a convex function in θ. Typically, a regularization term
r(θ) is added to this problem. r(θ) penalizes high or low values
of feature weights in θ to avoid overfitting to noise in the training
examples.

θ∗ = argmin
θ

N∑
i=1

`(xi, yi; θ) + r(θ) (1)

In this work, without loss of generality, we will include the regu-
larization as part of the loss function i.e., `(xi, yi; θ) includes r(θ).
We note that designing ActiveClean for this form of machine learn-
ing model supports SVMs, Linear Regression, Logistic Regression,
Neural Networks, Latent Dirichlet Allocation, and Gaussian Mix-
ture Models.

2.3 Required User Input
In such a problem setting, ActiveClean takes as input four user-

defined parameters. The first two are UDFs used to train models,
and can be assumed to be readily available. The latter two con-
sist of a user-tunable parameters with reasonable defaults, and a
generic record cleaning function implemented by script or by man-
ual effort:
Model: The user provides a predictive model (e.g., SVM) specified
as a loss optimization problem `(·) and a featurizer F (·) that maps
a record to its feature vector x and label y.
Gradient: The gradient function ∇`(·) returns the gradient of the
loss. For popular convex models such as SVMs and Linear Regres-
sion these functions are known and provided as part of the system.
For more complex problems such Topic Modeling or Neural Net-
work learning, we assume that this function (or an approximation
of it) is expressed programmatically. There are many frameworks
such as Torch, Theano, and TensorFlow, which can return such pro-
grams using symbolic differentiation.
Stopping Criteria: Data are cleaned in batches of size b and the
user can change these settings if she desires more or less frequent
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model updates. We empirically find that a batch size of 50 performs
well across different datasets and use that as a default. A cleaning
budget k can be used as a stopping criterion once C()̇ has been
called k times, and so the number of iterations of ActiveClean is
T = k

b
. Alternatively, the user can clean data until the model is of

sufficient accuracy to make a decision.
Cleaning Function: We represent this operation as C(·) which
can be applied to a record r (or a set of records) to recover the
clean record r′ = C(r). Formally, we treat the C(·) as an expen-
sive user-defined function (implemented as code or manual inspec-
tion) composed of deterministic schema-preserving map and filter
operations applied to a subset of rows in the relation.

2.4 Basic Data Flow
The following pseudocode summarizes how ActiveClean works:

1. Init(dirty_data, cleaned_data, dirty_model, batch,
iter)

2. For each t in {1, ..., T}

(a) dirty_sample = Sampler(dirty_data, sample_prob,
detector, batch)

(b) clean_sample = Cleaner(dirty_sample)

(c) current_model = Updater(current_model,
sample_prob, clean_sample)

(d) cleaned_data = cleaned_data + clean_sample

(e) dirty_data = dirty_data - clean_sample

(f) sample_prob = Estimator(dirty_data, cleaned_data,
detector)

(g) detector = Detector(detector, cleaned_data)

3. Output: current_model

The system first trains the model `(·) on the dirty dataset to find
an initial model θ(d) that the system will subsequently improve.
The Sampler selects a sample of size b records from the dataset
and passes the sample to the Cleaner, which executes C(·) on the
whole sample and outputs their cleaned versions. The Updater uses
the cleaned sample to update the weights of the model, thus moving
the model closer to the true cleaned model (in expectation). Finally,
the system either terminates due to a stopping condition (e.g., C(·)
has been called a maximum number of times k, or training error
convergence), or passes control to the sampler for the next iteration.
ActiveClean assumes that Init and Cleaner are user-specified, and
it implements all of the other functions.

2.5 Technical Details
We overview some of the research contributions, and the details

can be found in [8].

Updater (Incremental Gradient Method): Rather than retrain-
ing, in ActiveClean, we start with a dirty model as an initializa-
tion θd, and then incrementally make an update using a gradient
step.This process leverages the structure of the model rather than
treating it as a black-box, and we apply convergence arguments
from optimization theory.

Suppose, we model the cleaner C(·) as an oracle that maps a
dirty example (xi, yi) to a clean example (x′i, y

′
i). Ideally, we

would like to be able to solve the following problem:

argmin
θ∈Θ

N∑
i=1

`(C(xi, yi); θ)

This minimization problem can be solved with an algorithm called
Stochastic Gradient Descent, which iteratively samples data, esti-
mates a gradient, and updates the current best model. We can rep-
resent the iterative cleaning process similarly where the gradient is

Figure 2: Initialization. The analyst loads user-defined model
functions into ActiveClean and then trains an initial model on
the dirty data

estimated from newly cleaned batches of data:

θ(0) ← θ∗d θ(t+1) = θ(t) − λ ·w
where w is an unbiased estimate of the gradient with E[w] =∑N
i ∇`(C(xi, yi); θ

(t)). If iterated to infinity, this procedure will
converge to the correct value θ∗c with rateO( 1

t
) for strongly convex

functions and O( 1√
t
) for general convex functions and avoids the

pitfalls of Simpson’s paradox. There are some subtleties which we
discuss in the technical report such as re-sampling already cleaned
data and selecting batch sizes.

Sampler (Importance Sampling): We use an impor-
tance sampling technique to select a sample of likely dirty
records. The necessary conditions for convergence are E[w] =∑N
i ∇`(C(xi); θ

(t)) and there is nothing that enforces that we
must uniformly sample the data. We can apply a technique called
importance sampling which allows us to calculate expectations
with respect to one distribution q(·) while sampling from another
with the same support p(·), e.g., EX q[X] =

∑
x∈X x

q(x)
p(x)

, which
leads the the following:

w =
|X|
b

b∑
i=1

1

p(i)
∇`(C(xi, yi); θ

(t))

While all of the distributions will have the same expected val-
ues, their variances will differ. We can show that an approxi-
mation for the distribution that minimizes the variance is simply:
p(i) ∝ ‖∇`(xi, yi; θ(t))‖.

3. THE INTERFACE
Next, we will describe the components of the ActiveClean inter-

face used in this demonstration.

3.1 Initialization
The analyst first uses the Model Builder (Figure 2, left panel)

to specify and initialized the problem. She loads three user-defined
functions written in PySpark [10] based on the descriptions in the
previous section, and optionally tune the stopping criteria. Once the
model is trained, the right panel will show summary information.
The top shows Performance information, and plots the model’s
convergence as a function of iteration, The bottom shows model
accuracy information and shows the cross-validation accuracy if
it is a classification task and the hold-out residual error if it is a
regression task.

3.2 Diagnose Interface
Suppose the analyst is unhappy with her model and wishes to

understand why her prediction accuracy is poor. She can then open
the Diagnose panel to understand why (Figure 3). When she opens
the Diagnose panel, ActiveClean applies the importance sampling
algorithm to select and visualize a subset of examples from the
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Figure 3: Diagnose Interface (above): The analyst can select
and inspect suspect data. Cleaning Interface (below): The ana-
lyst can choose to remove data, write a custom cleaning opera-
tion, or automatically clean the data using an existing cleaning
operation.

dataset. Since these points are in general high-dimensional, we
apply T-SNE [11], a non-linear dimensionality reduction technique
that is widely used to visualize complex data distributions, to visu-
alize the points in a 2-D plot. The points are color coded to indicate
the label in the case of classification. The analyst can select exam-
ples from the plot for further inspection.

3.3 Cleaning Interface
The Clean panel gives her the option to remove the dirty record,

apply a custom cleaning operation (specified in Python), or pick
from a pre-defined list of cleaning functions. Custom cleaning op-
erations are added to the library to help taxonomize different types
of errors and reduce analyst cleaning effort. This also provides a
hint about which data are similarly corrupted (and thus fixed), we
can guide future samples to draw similar data in future samples.
We do this by training a classifier to learn the conditions for when
the operation applies to a record; the details are described in our
technical report [8].

Finally, after the data sample is cleaned, ActiveClean updates
the current best model, and re-runs the cross-validation to visualize
changes in the model accuracy. At this point, ActiveClean begins
a new iteration by drawing a new sampling of records to show the
analyst. Once ActiveClean satisfies the stopping conditions, the
current best model parameters along with the (partially) cleaned
dataset are returned to the analyst.

4. DEMONSTRATION PROPOSAL
In our demonstration, we will highlight both ActiveClean’s over-

all efficacy on real large-scale scientific datasets, as well as provide
the user with hands-on experience working in the clean-validate-
retrain loop that is part of ActiveClean. Overall, the demo is in-
tended to show how ActiveClean quickly improves the accuracy of
the examples presented in the introduction.

To this end, we will first run a head-to-head comparison be-
tween ActiveClean and naive Active Learning in automatic mode
– the participant will pick the example setting and see an anima-
tion as both algorithms proceed in real-time. The demo will auto-
matically walk through all of the key panels of the interface, us-
ing full-scale instantiations of the models and datasets. As part
of this process, both algorithms will select samples of dirty data
points, automatically clean the points by replacing incorrect values
with ground-truth, and retrain the model. The visualization of the
cross-validation accuracy, as well as the diagnosis interface, will be
updated in real time so that participants can visually compare the

progress of both ActiveClean and the Active Learning algorithms
in a real scenario.

After the automatic mode is complete, participants will have
hands-on experience with ActiveClean. We will present a simpli-
fied dataset and model with artificial errors that is small enough to
clean entirely in a minute or two. Participants will be able to train
an SVM and manually clean samples of data using ActiveClean for
a binary classification task. This will illustrate the tradeoffs and
usability of the system.

5. CONCLUSION
Building and training high-quality machine learning models is

hard, and doing so in the context of dirty data is painful. When pre-
sented with large, dirty datasets, practitioners often complain that it
is difficult to know where to start the cleaning process. Worse, this
process is often manual and makes fully cleaning the entire dataset
impractical. Our key insight is that an important and broad class of
predictive models, called loss models, can be cleaned progressively
with guarantees by embedding the process into an incremental op-
timization loop controlled by a system such as ActiveClean. We
hope to convey to the participants that the design of the ML devel-
opment environment can be used to facilitate proper methodology.
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