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ABSTRACT

Recent advances in differential privacy make it possible to guar-
antee user privacy while preserving the main characteristics of the
data. However, most differential privacy mechanisms assume that
the underlying dataset is clean. This paper explores the link be-
tween data cleaning and differential privacy in a framework we call
PrivateClean. PrivateClean includes a technique for creating pri-
vate datasets of numerical and discrete-valued attributes, a formal-
ism for privacy-preserving data cleaning, and techniques for an-
swering sum, count, and avg queries after cleaning. We show:
(1) how the degree of privacy affects subsequent aggregate query
accuracy, (2) how privacy potentially amplifies certain types of er-
rors in a dataset, and (3) how this analysis can be used to tune the
degree of privacy. The key insight is to maintain a bipartite graph
relating dirty values to clean values and use this graph to estimate
biases due to the interaction between cleaning and privacy. We val-
idate these results on four datasets with a variety of well-studied
cleaning techniques including using functional dependencies, out-
lier filtering, and resolving inconsistent attributes.

1. INTRODUCTION

It is often beneficial for organizations to share user data with
third parties or publish publicly available datasets. For example,
the anonymous rating data shared as a part of the Netflix challenge
engaged the community in developing several new recommenda-
tion algorithms [2]. While the success stories are numerous and
ever growing in number, preserving the privacy of users is a fun-
damental obstacle [1]. Over the last few years, there have been
several examples where ostensibly private data are linked to indi-
viduals through clever data mining techniques [9,32,48]. Thus, it
is important to have privacy mechanisms with formal guarantees
about resilience to attack without sacrificing too much utility.

Fortunately, recent advances in differential privacy make it pos-
sible to guarantee privacy against a wide range of linkage attacks
while preserving the main characteristics of the data [11]. However,
for reliable downstream query processing, existing models assume
that the underlying data are “clean". However, raw data often re-
quires extensive pre-processing including the extraction of named
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(a) Original Table (b) Private Table [Randomize Majors]

id Major Satisfaction id Major Satisfaction
1 Mechanical E. | 4 1 Mechanical E. |4
2 Mech. Eng. 3 2 Mech. Eng. 3
3 Electrical Eng. |1 3 Mech. Eng. 1

K

Electrical Eng.

=3k

100 Electrical Eng.

(c) Fix Inconsistencies (d) Query Result Estimation

id Major Satisfaction AVG Major

1 Mech. Eng. 4 32 Mech. Eng.

2 Mech. Eng. 3 4.9 Electrical Eng.
3 Mech. Eng. 1

100 Electrical Eng. |5

Figure 1: Randomly permuting a random fraction of major
values can preserve the privacy of students in rare majors (Stu-
dent 3 has plausible deniability). The resulting randomized ta-
ble is still compatible with subsequent data cleaning (i.e., re-
solving inconsistencies).

entities from textual fields [8], imputation of missing values [36],
and resolution of inconsistent attributes [39]. Consequently, the
burden is on the data provider to ensure that the data are completely
clean before making it private, and this cost might even discourage
her from sharing the data in the first place. In cleaning, the data
provider has to account for every possible downstream analysis sce-
nario, each of which may have different data quality requirements
and notions of “clean”.

This paper explores a differential privacy model that is com-
patible with several common cleaning operations and result es-
timation for aggregate queries after cleaning. This crucially re-
moves much of the cleaning burden from the data provider, and
analysts can clean the data as required. We propose a framework
called PrivateClean, which includes a technique for creating private
datasets of numerical and discrete-valued attributes, and answering
sum, count, and avg queries after cleaning the private relation.
PrivateClean supports cleaning operations that can be represented
as deterministic user-defined functions over the discrete attributes
that: (1) transform existing attributes, (2) create new attributes, and
(3) resolve disparate attribute values to a single canonical represen-
tation. We further provide a lower bound on the amount of data
required to detect the original data errors as a function of the de-
gree of privacy and how this degree of privacy affects subsequent
aggregate query accuracy.

To illustrate how this works, consider collecting college course
evaluations consisting of a student’s satisfaction on a scale from
1-5, major, and some other demographic data (Figure 1a). Even



with guarantees of anonymity, students may be reluctant to provide
truthful responses as it might be possible to identify an individual
based on a combination of the demographic data and the major.
PrivateClean extends the well-studied Randomized Response [45]
technique where each student is given plausible deniability: (1) she
flips a coin before the evaluation, (2) if heads, she reports her ma-
jor/demographics truthfully, and (3) if tails, she selects an answer
at random. Clearly, the likelihood of tails (p) vs. heads (1 — p)
controls the risk of identification (Figure 1b). On the other hand,
increasing p (the degree of privacy) also decreases the accuracy of
the analysis (i.e., the estimated average satisfaction for Mechanical
Engineers).

This principle can be used to randomize any table by replacing
discrete-valued attributes with probability p with another value in
the domain uniformly at random; which we formalize as General-
ized Randomized Response (GRR). The interesting technical chal-
lenges happen in query processing after randomization. By design,
increasing the randomization parameter p makes rare values more
common which affects the selectivity of queries and user-defined
cleaning. We derive an estimate for the change in selectivity and
compensate for the bias that this induces in query results. To do so,
we have to maintain provenance of the values in the relation before
and after the user-defined transformations using a bipartite graph
(mapping dirty to clean values).

To summarize the contributions of PrivateClean:

e PrivateClean provides a mechanism for generating differen-
tially private datasets on which the analyst can apply cleaning
operations. PrivateClean maintains the necessary informa-
tion to estimate query results on the cleaned private dataset.
(Section 4).

e We show that directly applying sum, count, and avg
queries with predicates produces a biased estimate where the
bias is proportional to the skew in the dataset O(privacy -
skew) (i.e., the selectivity in terms of distinct values vs. the
selectivity in terms of actual records). We derive a corrected
estimator that compensates for the bias.

e This bias is exacerbated by data cleaning operations that
merge attribute values O (privacy - (skew +merge)). Con-
sequently, we leverage a graph-based provenance model to
estimate and additionally compensate for the data cleaning.

e We evaluate the analysis on two synthetic and two real
datasets.

2. PRIVATE CLEANING: 3 APPROACHES

This section introduces a running example to motivate private
data cleaning, and discusses different approaches to clean the ex-
ample dataset.

2.1 Motivating Example

M-CAEFE is an online application for collecting college course

evaluations [49]. Data are collected in the following relation:
R(id, major, section, instructor, score)

with a primary key id, a string attribute major, a section num-
ber, the instructor’s name instructor, and a continuous numerical
score for the instructor (0-5). For this example dataset, the section
attribute uniquely determines the instructor with the functional de-
pendency:

Rl[section] — R[instructor]

Even if the dataset is anonymous (i.e., removing the id attribute),
it is not formally private. One might be able to identify individuals
with rare major values, and consequently, may penalize those who

left a low score. However, since these evaluations are collected via
student input, they are susceptible to inconsistencies. For example,
the major attribute might have alternative representations of the
same logical value “Mechanical Engineering” and “Mech. Eng.”.
If the instructor wants to know the average score of Mechanical
Engineers, she will have to resolve this inconsistency before analy-
sis.

Consider the scenario, where we are providing this online course
evaluation platform as a hosted service. We want to release the
dataset to the course instructors for analysis, but we also have to
provide privacy guarantees for the students. These data are poten-
tially inconsistent, and the following describes three approaches to
facilitate reliable analysis on private data. For clarity, we will use
the term provider for the owner of the data and analyst to describe
the recipient of the private data.

2.2 Clean First

One solution is to fully clean the dataset before making it private.
However, data cleaning is often time consuming [21]. It may not
be feasible to clean all of the errors before releasing a private ver-
sion. Furthermore, it can be impractical or even impossible to an-
ticipate how analysts will clean the data. For example, in our course
evaluations example, suppose one student wrote “Mechanical En-
gineering and Math” as her major. For some types of analysis,
it may be acceptable to resolve this inconsistency to “Mechanical
Engineering”, but there may be other cases where analysts want to
process students with double majors differently. Additionally, the
query workload provides valuable information about how to bud-
get cleaning effort. For example, to calculate the average score for
all students, one does not need to resolve this problem in the first
place. Therefore, such transformations are best left to the discretion
of the analyst.

2.3 Encryption

Another approach is homomorphic encryption that allows for
data processing directly on the encrypted data [38]. The provider
can encrypt all of the data and give the encrypted copy to the an-
alyst. Essentially, homomorphic encryption is a domain transfor-
mation that obscures the values in a database. While homomorphic
encryption preserves the frequencies of the distinct values, it does
not preserve their actual values. In the running example, this leads
to the natural issue where “Mechanical Engineering” and “Mech.
Eng.” are transformed to some non-human interpretable value (e.g.,
0x86EF001 and 0x211415). This poses a problem for an analyst
who wants to merge “Mechanical Engineering” and “Mech. Eng.”.
For cryptographic transformations, it is provably hard to figure out
which of the encrypted values correspond to “Mechanical Engi-
neering” and ‘“Mech. Eng.”.

2.4 PrivateClean: Solution Overview

To motivate PrivateClean, let us consider the simpler case where
there are only two attributes R(major, score). Suppose, we want
to release a provably private relation R for analysis by the course
instructors. Let M be the set of all majors, PrivateClean applies the
following privacy mechanism: with probability p replace r[major|
with a random value from M chosen uniformly. Intuitively, if the
relation is large enough (precisely characterized in Theorem 2),
it is likely that the rare majors will be assigned to at least a few
other students; affording some level of ambiguity. PrivateClean
also needs to randomize the score attribute. Consider the case
where it is known that all Civil Engineering majors gave a score
of 1. Exploiting this correlation might de-privatize the result, and



PrivateClean will have to add statistical noise to all numerical at-
tributes.

Intuitively, as the degree of privacy increases, the private dataset
tends towards a uniform distribution (i.e., most ambiguous). This
overestimates the prevalence of rare values, and underestimates of
the prevalence of common values. Consequently, the effects of data
skew get amplified by privacy, and we derive an analytic formula to
compensate for this effect based on query selectivity. However, in
the presence of data transformations, the original granularity of ran-
domization may not be apparent (i.e., merging values together), and
to this end, PrivateClean maintains provenance to estimate query
results.

3. PROBLEM SETUP

This section describes the basic formalism for PrivateClean.

3.1 The Database Provider

A trusted provider wants to release a private relation for anal-
ysis by an untrusted analyst. Let R be the original relation, i.e.,
not private, destined for analysis. We consider relations of numer-
ical attributes (real-valued or integer-valued) and discrete valued
attributes (any data type). Let A = {a1, ..., a; } be the set of numer-
ical attributes, and D = {dx, ..., d } be the set of discrete-valued
attributes. We assume that all user-defined data cleaning operations
occur on the discrete attributes of the relation.

3.1.1 Local Differential Privacy

Given the relation R, the provider wants to release a private ver-
sion of R denoted by VV. We will analyze PrivateClean as a form
of differential privacy [11]. A stronger variant of differential pri-
vacy, local differential privacy, is a measure of randomness in row-
by-row randomized transformations. The level of privacy is pa-
rameterized by €, where smaller values imply a greater degree of
privacy. Intuitively, € is a measure of ambiguity in a record’s true
value given observation of only the private value. The key conse-
quence of Differential Privacy is that no deterministic function f
applied to V' can ever reduce the degree of privacy (i.e., increase €).

Suppose, we are given a randomized algorithm M : R — V
which maps rows of R to a relation of the same schema V. We
observe a result of applying this algorithm to some (unknown) row
in R and call this 7p,ivate. For every element in rprivate € V, the
probability of observing rprivate given an input row r is denoted
by P[rprivate | T]. M is said to be e-local differentially private if
for all records r € R:

max Plrprivate | 7] < exp(e)

! P[TpTivate ‘ T,}
In other words, given some observed randomized result, € is a
bound on the ratio between the most likely input and the least likely
input.

3.2 The Analyst

The analyst is given the private relation V' with the same schema
as IR, and the analyst can apply user-defined data cleaning opera-
tions to the discrete attributes of V.

3.2.1 Data Cleaning Model

We model data cleaning operations as deterministic user-defined
functions over the discrete attributes in each row. The user-defined
function takes any projection g; of D as input and returns a unique
output (or output tuple), and we denote the set of all projections as
proj(D). Regardless of the analysts actions, privacy is preserved;
even if those actions do not conform to the proposed projection/user-
defined function cleaning model. However, if the analyst violates

this model and attempts other types of data cleaning operations,
result estimation is no longer guaranteed with PrivateClean. For-
mally, for each projection g; € proj(D), a local cleaner can take
three actions:

Extract(g;) Creates a new discrete attribute d,,+1 based the re-
sult of applying C'(v[g;]) for all v € V.. C'is an arbitrary determin-
istic user-defined operation.

Transform(g;) Replaces the values in the projection g; with the
result of applying C(v[g;]) forallv € V:

vlgi] < C(v]gi])

Merge(g;, Domain(g;)) Replaces the values in the projection g;
with some other value in the domain Domain(g;) with an arbitrary
user-defined choice C(v[g;], Domain(g;)) forallv € V:

vlgi] < C(v[gs], Domain(g;))

The analyst can apply an arbitrary composition of these local
cleaners to the data:
C() = Cl ¢} CQ [e] Ck
These cleaners do not need to be known in advance and can be con-
structed through data exploration of V. The key point is that the an-
alyst can only clean and query the private relation V. The following
are examples of cleaners that can be implemented by PrivateClean:

EXAMPLE 1 (FIND-AND-REPLACE). The analyst wants to
count the number of “Electrical Engineering and Computer Sci-
ences” majors. Suppose major attribute has alternative repre-
sentations of the same logical value “Electrical Engineering and
Computer Sciences” and “EECS”. The find-and-replace operation
“Electrical Engineering and Computer Sciences -> EECS” can be
represented with a Merge operation.

EXAMPLE 2 (FUNCTIONAL DEPENDENCY). The  analyst
wants to compare scores across different instructors. However,
suppose the functional dependency V [section] — V [instructor]
is violated, namely there are two students with the same section
number but with different instructor names. The analyst can
first apply a standard functional dependency repair algorithm
(e.g., [6]), which will generate a series of updates to the records in
v; €V:

v; : (section, instructor) — (section’, instructor”)

Each of these updates can be represented as a Transform oper-
ation, and thus can be supported in PrivateClean.

3.2.2  Query Processing

Let us call the resulting private relation after cleaning Viieqrn. By
nature, differentially private relations preclude point queries since
any given record might be randomized, but since they can answer
aggregate queries since they preserve the main characteristics of
the dataset. We explore a class of queries that can be answered
with close-form Central Limit Theorem confidence intervals. We
consider sum, count, and avg queries that aggregate over a sin-
gle numerical attribute predicated on a single discrete attribute:

SELECT agg(a) FROM R WHERE cond(d)

where a is a numerical attribute, and d is a single discrete attribute.
However, this query class is not a fundamental limitation of the
technique, and we discuss extensions in Section 10.

We define accuracy with respect to the hypothetical scenario
where the same sequence of cleaning operations C'(-) was applied
directly to R (non-private) resulting in Rejeqn, = C(R). For an
aggregate query f,

error = |est(Veiean) — f(Reiean)|



Bounded confidence means, that for any level of privacy, we can
give a bound on error. Note that this definition does not consider
the fact that a private relation may be harder to clean (in terms of
human effort in detecting and reasoning about errors) or require
more cleaning (in terms additional constraints). We treat the clean-
ing operations defined on the private relation by the user as ground
truth and estimate the result as if those same operations were ap-
plied to the original relation.

3.3 Problem Statements

PrivateClean needs to address two issues, constructing provably
private relations and query processing.

Private Relation Creation: Given a relation R with corruptions
in its discrete attributes, and a privacy parameter e, find a e-local
differentially private relation V' = T'(R) can be cleaned with Merge,
Transform, and Extract operations.

Query Processing: Let V' be the private relation, C' = C10...0C},
be an arbitrary composition of the aforementioned data cleaning
operations, and Vjeqn, = C(V). Let Reiean = C(R) be the hy-
pothetical dataset where the same transformations C'(-) are applied
to R. For an aggregate function f (sum, count, avg) with single
attribute predicates, estimate the value of f(Rciean ), using only the
private cleaned relation Veiean.-

4. GENERATING PRIVATE RELATIONS

This section presents a technique to generate private relations
that allow for data cleaning.

4.1 Overview

In the generation phase, PrivateClean explores two new issues
not considered prior randomized response models: (1) privacy for
multiple columns and data types, and (2) analysis that describes
the sufficient amount of data required before the results are mean-
ingful. Multiple columns pose a challenge to differential privacy.
This is because even one non-private column has the potential to
de-randomize all of the other private columns. Even information
that is not sensitive may correlate with sensitive information, and
thus can be used to reverse privacy transformations. Consequently,
we address (1) by proposing different randomization techniques for
discrete and numerical attributes and applying this across all at-
tributes. We address (2) using a worst-case analysis in a hypothet-
ical highly skewed dataset, and analytically show the relationship
between dataset size, the number of distinct values, and privacy.

4.2 Generalized Randomized Response

The key idea is to apply a randomized response to the partitioned
discrete attributes and add random statistical noise to the numeri-
cal attributes. We propose the combination of these two “mecha-
nisms" and call the combined technique Generalized Randomized
Response (GRR)'.

4.2.1 Discrete Attributes

For the discrete attributes, we formalize the intuition described
in the introduction. Let d; be a discrete attribute. Let Domain(d;)
be the set of all the distinct values in R[d;]. Then, for each d;, we
apply a randomized response mechanism:

Pld] = {T[di] wpl—p;

U(Domain(d;)) w.pps

!All proofs are included in the Appendix

where U(-) selects an element uniformly at random. Ignoring
the other attributes, we can show that this transformation is e-
differentially private.

LEMMA | (RANDOMIZED RESPONSE MECHANISM).
The projection of each discrete attribute T4, (V)?* is e-local
differentially private, with ¢ = ln(g —2).

PROOF SKETCH. The worst case is when there are only two val-
ues in the domain and all of the other entries in the database are one
value except for one, based on the definition of differential privacy

we can arrive at:

3
e=In(——2
(-2
[}

4.2.2 Numerical Attributes

However, in general, the randomized response model is not
meaningful for numerical attributes. To randomize the numerical
attributes, we apply a different differential privacy mechanism, the
Laplace Mechanism [11]. The key idea is to add heavy-tailed, but
zero-mean, statistical noise to every attribute. While this obscures
outliers, the noise will average out when aggregating over a large
enough dataset.

Formally, for each numerical attribute a;,

' [a;] = L(r[a:], b;)
where L(u, b) is the Laplace distribution:
1 T — [
L(u.b) ~ o exp(LE2E)

The Laplace distribution is standard in the study of differential pri-
vacy. This distribution has several nice algebraic properties such as
being analytically integrable, unlike the Gaussian distribution. Fur-
thermore, it is also the maximum entropy distribution given a fixed
mean value.

PROPOSITION 1  (LAPLACE MECHANISM). The  Laplace
Mechanism is e-local differentially private, with ¢ = % where
A; is defined as the max difference between any two values in
I, (V).

i

4.2.3 GRR Summary

To summarize, the GRR mechanism takes as input a set of nu-
merical attributes A and a set of discrete attributes D. For each
discrete attribute d; there is a user-specified privacy parameter p;
which is its randomization probability, and for each numerical at-
tribute a; there is a parameter b; which is the amount of Laplace
noise to add. For each numerical attribute, we apply the Laplace
mechanism with b;, and for each discrete attribute partition, we
apply randomized response with probability p;. Using the com-
position lemma from Dwork et al. [11], we arrive at the following
result:

THEOREM | (GENERALIZED RANDOMIZED RESPONSE).
For a set of numerical and discrete attributes, Generalized
Randomized Response returns an € locally differentially private
mechan{sm with € = Zni €n; + Zdi €dq;, Where €, is calculated
per attribute.

Interpretation:  The basic intuition about Theorem 1 is that
adding attributes (even private ones) decreases the privacy (by in-
creasing e. We can now clearly see why adding a non-randomized
attribute €; = oo de-privatizes all of the other attributes.

211 denotes the standard projection relational operator.



Setting e: So far, we have discussed € as a given parameter from
the provider. ¢ is a sum of the individual privacy factors for each
attribute €¢;. These values can be uniformly allocated by dividing
€ equally over the numerical attributes and the discrete attributes
d;. For numerical attributes, ¢; is controlled by b;, and for discrete
attribute partitions, it is controlled by p;. Section 5 will show how
to derive b; and p; based on the dataset size and desired query re-
sult accuracy. We formalize this into a parameter tuning algorithm
listed in Appendix E.

4.3 Privacy Properties of GRR

If V is e-local differentially private, then Vi jeqr is € differentially
private, since any deterministic data manipulation is guaranteed to
preserve privacy. This result is a direct consequence of Proposition
2.1 in Dwork et al. [11], which guarantees that differentially private
relations are immune to post-processing.

In the discrete attributes, there is some probability that a rare
value will be masked, that is, for all records that have the value
the randomization will set it to a different one, and for all other
records, the randomization does not choose this value. Intuitively,
for a large enough database, this should be a rare occurrence. The
database can regenerate the private views until this is true. Thus,
we want to know how large the dataset needs to be before with high
probability (1 — «) all of the domain values are seen after applying
GRR (i.e., the expected number of re-generations is ﬁ).

THEOREM 2. For all discrete attributes d;, let N be the number
of distinct tuples in R[d;]. For p > 0, the dataset size S has to be
larger than:

N N
S > —log P
14 «
for the domain is preserved probability 1 — c.

PROOF SKETCH. Assume domain value « is present once, and
all other values are different. The probability that a is visible in the
private relation:

N -1 D 1(S—1)
Pla] =1- 1—-=
o) =1-p" 21~ 2
To extend this bound for any given value, we apply a union bound
(multiplying the probability by N):

Plall] > 1 —p(N - 1)[1 — %rsfl)

The above formula can be found by solving for S and simplifying
the logarithms. [

Essentially, the number of distinct values needs to be on the order
of O(%) to ensure that the entire domain is preserved with high
probabiﬁty. This result is related to the well known result of the

Coupon Collector’s problem [12].

EXAMPLE 3. For the simplified course evaluation example
R(major, score), let us suppose p; is 0.25 and there are N = 25
distinct majors in the dirty relation. We can plug these values into
Theorem 2. To have 1 — o = 95% confidence, we need approxi-
mately 391 records, and for 1 — o = 99%, we need 552 records.

5. QUERY PROCESSING

This section describes query processing on private relations
without considering cleaning. Direct query processing after Gen-
eralized Randomized Response has a bias because rare values start
appearing increasingly frequently. Thus, we describe how to com-
pensate for this bias and bound the result in confidence intervals.

5.1 Overview

Given a private relation V' and its non-private base relation R,

we define error in a query result as:

error =| f(R) = f(V) |
There are two reasons why a query on V may be erroneous:
Laplace privacy in the numerical attribute adding error to the ag-
gregate and randomized response privacy in the discrete attribute
adding error to the predicate.

Let us first consider an aggregate without a predicate. Since,
GRR adds zero-mean statistical noise to each numerical value, and
consequently sum, avg, and count queries can simply be esti-
mated as:

f(R) ~ f(V)
We call this estimator the Direct estimator that is unbiased for
queries without predicates. As we will see, this argument does not
quite hold when there is a predicate.

5.2 Quantifying the Bias

Now, let us consider the case when there is a predicate. Let the
discrete attribute d be a member of a partition g; which has IV dis-
tinct values. Every deterministic predicate cond(d) can be thought
of as conditioning on a subset of the N distinct values. Suppose
the predicate is querying [/ of the distinct values. The consequence
of randomized response is that there are false positives (predicate
falsely true) and false negatives (ignored records). If s is the true
fraction of records that satisfy the predicate, the fraction of false
positive records is:

s l
false positive = (1 — S)pﬁ (1
and similarly, the fraction of false negative records is:
N —1

false negative = sp N 2

The key insight is that Equation 1 and Equation 2 are not the same,
and thus, there is a bias. Accordingly, PrivateClean will estimate
this bias from the observed private data and compensate for it.

PROPOSITION 2. The Direct estimator introduces a bias w.r.t
to the hypothetically cleaned non-private dataset of: O(W)

PROOF SKETCH. Since the Direct estimator sets two values
equal, we can calculate the difference:

l N -1
P N sp N
This is the fraction of tuples not accounted for, and thus, up-to some
scaling this is the bias. []

bias = (1 — s)

What is interesting about this bias is that the term w is re-

lated to the skew in the dataset. [ is the number of distinct values
for which the predicate is true, s is the fraction of records selected
by those distinct values. For uniform data distributions % X S.
However, when this is not true, this bias is scaled by the privacy

factor in the dataset. So essentially, the bias is O(privacy - skew).

5.3 Compensating For the Bias

To derive an estimator that compensates for this bias, there are
four quantities of interest.

True Positive Probability: For a tuple ¢, given that the predicate is
true on the original relation, the probability that predicate remains
to be true on the private relation: 7, = (1 — p) + p%

False Positive Probability: For a tuple ¢, given that the predicate
is false on the original relation, the probability that predicate is set
to be true on the private relation: 7, = PN



True Negative Probability: For a tuple ¢, given that the predi-
cate is false on the original relation, the probability that predicate

remains to be false on the private relation: v, = p%.

False Negative Probability: For a tuple ¢, given that the predicate
is true on the original relation, the probability that predicate is set
to be false on the private relation: v, = (1 — p) + pt.

It turns out that we can derive unbiased estimators parametrized
by these deterministic quantities. Given a query, we know the num-
ber of distinct values, the selectivity of the predicate [, and the pri-
vacy parameter p. Consequently, these values do not change the
statistical properties of the estimation.

5.4 COUNT Estimation

Let s be the fraction of records that truly satisfy the predicate.
In the private relation, there will be a fraction s, of records that
nominally satisfy the predicate. We can relate s and p with the
following function:

sp=s8Tp+ (1 —8)Tn
‘We can solve for s, resulting in:
s 52—
Tp — Tn

Therefore, we arrive at the following estimator. Let Cprivate
(equivalent to S - s,) be the count on the private view. The esti-
mate of the true count ¢ is:

Cprivate — STn

(Tp — Tn)

Confidence Intervals: To asymptotically bound this estimate, we
need to recognize that s, is actually a random variable. Based on
the Central Limit Theorem, we can bound s, in a confidence inter-
val where S is the size of the relation:
(1—sp)-sp

S
We can substitute this random variable into the above expression
for s, and recognizing that 7, is deterministic and 1 —p = 7, — 7y,
it follows that the estimate is bounded by:

1 (1—sp)-sp
1—p S
The confidence interval allows a user to judge a range of possible
true values for the count query.
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Parameter Tuning: However, we may be interested in knowing
the error over any count query given a level of privacy. Inter-
estingly enough, we can calculate a bound for this independent of
the dataset properties. Over all possible queries, v/ (1 — sp) - Sp
is bounded by i. Thus, for all possible count queries, the error is
bounded by:

/L
1—pV 4S
This bound can be used to tune the privacy parameter p.

1
p_l_Za(V 4S~error2)

5.5 SUM Estimation

Estimating sum queries will be slightly more difficult. The key
challenge is correlations in the dataset. If the numerical attribute is
correlated with the discrete attribute, then false positives and false
negatives can lead to different mixtures of data. It is also important
to note that unlike count, the sum queries also query the numeri-
cal attributes with the Laplace randomization mechanism.

Let cirue be the true count, psrye be the average value of the

error < Zq

@

true records that satisfy the predicate, and jf415c be the average
value of the records that do not satisfy the predicate. Using this
notation, we can derive the following expression for the expected
private sum hy:

E(hp) = CtruelMtrueTp + (S - Ctrue)ufalseTn
Ctruelbtrue 18 the quantity that we want to estimate.

Unlike in the count query case, the challenge is that there are
two unknown variables Ciruefbirue and fLfqise. Thus, the problem
is that there is not enough information in this equation to solve
for Ctruepitrue. To address this, we also calculate the sum of the
complement as well, that is, we invert the predicate and run the
query:

]E(h;) = YnCtruelbtrue + (S — Ctrue)Vplhfalse
This is defines a linear system of equations which we can solve
for the true sum hirye = Ciruefbtrue. The resulting estimator be-
comes:
(I = 7Tn)hp — Tnhy
(Tp — Tn)

Confidence Intervals: The next goal is to bound this estimate in
confidence intervals. Notice, that the estimate is a weighted average
of h;, and hj,. Therefore, it suffices to bound h;, + h;. Let j1;, be
the mean value across all of the private data and crg be its variance:

SN I B

We can turn this into an analytic bound like before over any sum
query. Using the fact that o = o + 2b°, s,(1 — s) < 1:

1 I o2 + 2b?

Zt+4—- 6

Vs + 5 (6)
Like before, this can be used to tune the privacy parameter p and b
given a desired error.

5.6 AVG Estimation

It turns out that due to a ratio of random variables problem, the

h=

®)

error < Za

intuitive estimator for avg % is biased. However, empirically, this
bias is small and in fact such estimates are called conditionally un-
biased [17]. Confidence intervals can be computed directly from
the expressions above by taking the upper confidence interval of h
and dividing it by the lower confidence interval of ¢, and vice versa.
To get an approximate analytic form for this interval, we can apply
standard error propagation techniques [34]:

h 1 errorsum
avg ~ = error &8 = - ——————— @)
@ C errorcount
where err denotes the width of the confidence interval. The basic
intuition is this differentiates the expression and linearizes >,

and it holds asymptotically.

EXAMPLE 4. In the running example dataset, suppose p is
0.25, there are 25 distinct majors in the dirty relation, and 500
records. We are interested in counting the number of engineering
majors (account for 10 out of the initial 25). Suppose, the pri-

vate count was 300. Using the formula described in Section 5.4
300—500X10X.25X 5= 333.3

est = =5

6. SINGLE-ATTRIBUTE CLEANING

The previous section described how to process queries on private
relations, and this section will describe how to account for data
cleaning in the query processing. The basic intuition is that the bias
estimation in the previous section is no longer possible after data
cleaning since the original distinct values are changed. To do so,



we will have to keep track of provenance, i.e., the mapping between
original values before data cleaning and the values after cleaning.

Recall, that the cleaning operations are deterministic user-
defined operations over projections of the relation g; € proj(D).
There are two cases, single-attribute and multi-attribute, where the
former is the problem where all cleaning operations happen on a
single attribute g; = {d;}. The next section (Section 7) considers
the multi-attribute case.

6.1 Overview

When the original relation was randomized, it was randomized
on the dirty data. The key challenge in query processing after data
cleaning is that data cleaning may change the number of distinct
values and the selectivity of the predicate. The solution is to define
a graph that keeps track of the provenance of each value in the
domain and use this to find a predicate’s selectivity [ on the dirty
data, and the number of distinct values in the dirty data N.

As in Section 5.2, where privacy amplifies the effects of skew,
this discrepancy is also amplified. In other words, after cleaning [
and /N may change. Starting with the bias described in the previous
section:

p(l —sN)

N
However, since [ and N change due to data cleaning, there is a
second term accounting for the bias with respect to the new I’ and
N":

bias =

. p(l — sN) l U
bias < N + p( NN -)
The term % — Ii,—/, measures the difference between the selectivity
(w.r.t to the distinct values) of the query on the cleaned data vs. the
original data. We call this term the “merge rate”, as it describes
how many of the distinct values in the predicate were merged due
to data cleaning. Therefore, the resulting bias is:

bias = O(privacy - (skew + merge))

6.2 Value Provenance Graph

We store a graph mapping dirty values to cleaned values for each
attribute and use this graph to compensate for this bias. Let dciean
be the discrete attribute in the predicate on the cleaned private rela-
tion V ieqan. Based on the model in Section 3.2.1, where the allowed
operations are extract, merge, and transform, each d¢ieqn 1S associ-
ated with exactly one attribute d;. We need to understand the rela-
tionship between Domain(Veiean[dcican]) and Domain(V[d;]).
Recall, that Section 3.2.1 makes an assumption of determinism,
namely, given two records r and 7', where 7[d;] = 7’[d;], the oper-
ation has the same result.

Thus, the cleaning model defines a directed bipartite graph be-
tween the two domains:

Domain(V[g:]) = Domain(Veiean [dcican])

Let L = Domain(V[d;]) be the set of distinct values
of the private relation before data cleaning, and let M =
Domain(Veiean[deiean]) be the set of distinct values after data
cleaning. Each ! € L and each m € M defines a node in the bipar-
tite graph. We add edges between L and M to represent the trans-
formation made by a cleaner. Determinism implies a key property
that this graph has many-to-one relationships but no one-to-many
mappings; also implying that |[L| > |M|. From a graph perspec-
tive, this graph is fork-free with un-weighted edges. This will be
the key differentiating factor between the single-attribute case and
the multiple-attribute in the next section.

6.3 Predicates as Vertex Cuts

Maintaining this graph gives us a convenient abstraction to count
the number of edges affected by a predicate, and thereby, obtaining
the original selectivity. Let cond(dcieqan) be a predicate and each
predicate can be expressed as a subset of the clean distinct values
Mprea € M. Each My,cq will have a parent set Lj,q, that is the
set of vertices in L with an edge to exactly one m € Mp,cq. To-
gether cut = (Lpred, Mprea) defines a cut on the bipartite graph.

EXAMPLE 5. Suppose we have a dirty major of four val-
ues “Civil Engineering”, “Mechanical Engineering”, “M.E”,
“Math”. The cleaner maps the first three values to “Engineer-
ing”, and the user’s predicate queries “Engineering”. Lyreq is the
set that contains “Civil Engineering”, “Mechanical Engineering”,
“M.E”. Myreq is singleton set with “Engineering”.

Let ! = |Lprea|, N = |L| and 7[d;] € Lprea. We can then
recompute the quantities from the previous section w.r.t to the dirty
data. The estimate is parametrized by two values 7,, 7,, and we
can calculate them as follows: The revised true positive probability
and false positive probability are:

W= (=P +ry =y

P N " N
The values can be plugged into the estimator described in the pre-
vious section. From a statistical estimation perspective p and [ are
deterministic values known to the query processing system. There-
fore, 7, T, are deterministic values.

6.4 Efficiency: Linear Space, Linear Time

Of course, there is an additional space- and time-complexity
overhead for materializing this graph and calculating the correc-
tion. However, we do not have to materialize the entire graph. Let
N be the number of distinct values in the dirty relation affected by
merge or transformation operations. Since the graph is fork-free
the resulting cleaned relation will have strictly less than N values
that link to those in the dirty relation. We only have to store the
graph for this subset of vertices in M and L. Implemented with a
hash map (cleaned value > dirty value) , the space complexity of
this graph is linear in N, and the query complexity is linear in the
distinct-value selectivity I’ = |Mpyed|-

PROPOSITION 3. For an attribute that is individually cleaned
with deterministic user-defined merge and transform operations.
Let N be the total number of affected distinct values by these oper-
ations. The resulting provenance graph can be stored with O(N)
space and for a predicate with distinct-value selectivity I’ can be
queried in O(") time.

7. MULTIPLE-ATTRIBUTE CLEANING

This section extends the graph cut formulation to the case when
the cleaning is over multiple attributes. Since we only consider
queries whose predicates are defined over single discrete attributes,
it is sufficient to maintain a a single graph per-attribute. However,
to understand why this case is more difficult consider the following
example:

EXAMPLE 6. Suppose g; is (section, instructor). The private
relation has rows “1, John Doe”, “1, NULL”, “2, NULL”. The
cleaner maps “1, NULL” to “l, John Doe” and “2, NULL” to
“2, Jane Smith”. The dirty distinct value NU L L has two possible
cleaned values John Doe and Jane Smith.

As illustrated in the example, the basic change from the previous
section is that the provenance graph has forks, and as a result, the
definition of [ has to change.



7.1 Weighted Provenance Graph

As before, we need a graph to represent the relationship between
Domain(Veiean|deiean]) and Domain(V[d;]), and we store one
graph per discrete attribute. The cleaning model defines a directed
bipartite graph between the two domains:

Domain(V[gi]) — Domain(Veiean|decican])
Let L = Domain(V[d;]) be the set of distinct values
of the private relation before data cleaning, and let M =
Domain(Veiean|deiean]) be the set of distinct values after data
cleaning. Each [ € L and each m € M defines a node in the
bipartite graph. We add edges between L and M to represent the
transformation made by a cleaner. Let V("[d;] denote the set of
rows that have the distinct value [ and V™ [di] denote the set of

clean
clean rows that have the distinct value m. Unlike before, we add a
weight wy,, to each of the edges to represent the fraction of rows

with the value [ mapped to the value m:
Ve ]

clean
[V ]|
In Example 6, this would assign a weight of 0.5 to both NULL
John Doe and NULL — Jane Smith. Intuitively, the weight

captures the fraction of rows represented by the edge.

7.2 Predicate Probability Estimation

Let cond(dciean) be a predicate and each predicate can be ex-
pressed as a subset of the clean distinct values Mpreqa & M.
Each Mp,.q will have a parent set Ly,.q, that is the set of ver-
tices in L with an edge to exactly one m € Mp,.q. Together
cut = (Lpred, Mpreq) defines a cut on the bipartite graph. Be-
fore, we simply counted the number of vertices in L,.cq to find I.
Now, we need to account for the fraction of rows represented by

the edges:
=Y

l€Lpred,mEMpred

Wim =

In the case, where the graph is fork-free this will reduce to the
result in the previous section wy, € {0,1}. Let N = |L| and
r|d;] € Lprea, then the revised true positive probability and false
positive probability are:
7= (1-p) +p% n :p%

The values can be plugged into the estimator described in the Sec-
tion 5. This estimate is also asymptotically unbiased since the
weights will tend to a fixed-point as the dataset grows in size.

7.3 Efficiency: Quadratic Space, Linear Time

Interestingly enough, the time- and space-complexity of the
multi-attribute case is different from the single-attribute case. Since
the graph is not fork-free the resulting attribute can have as many
as distinct(g;) values that link to those in the dirty relation (fol-
lows from determinism). Let N < distinct(g;) be the fraction of
distinct tuple values affected by the cleaning operations. For the
resulting graph implemented with a hash map (cleaned value —
dirty value), the space complexity of this graph is quadratic in NV,
and the query complexity is linear in the distinct-value selectivity
U = |Mpredl-

PROPOSITION 4. For multiple attributes cleaned with deter-
ministic user-defined merge and transform operations. Let N be
the total number of affected distinct values by these operations. The
resulting provenance graph can be stored with O(N?) space and
for a predicate with distinct-value selectivity I can be queried in
O(l") time.

8. EXPERIMENTS

This section presents several experiments on real and synthetic
datasets to evaluate PrivateClean. First, we show that the weighted
estimator for PrivateClean is more accurate than the baseline Di-
rect estimator, even when there are no data errors. We use a syn-
thetic dataset and vary all of the parameters to show the tradeoffs.
Next, we explore how privacy amplifies some types of data error
and compare the estimates of Direct and PrivateClean. Finally, we
present data cleaning and privacy applications on two real datasets.

8.1 Maetrics and Setup

We implemented PrivateClean in Python 2.7 on a MacOSX i7
2.7GHZ, and the provenance algorithm was implemented using a
standard Python dictionary stored in memory. To the best of our
knowledge, there are no examples of a general purpose differen-
tially private data cleaning framework in the literature. Conse-
quently, the primary goal is to evaluate the proposed estimators for
sum, count, and avg. We compare the following query process-
ing approaches, both using GRR:

Direct: The Direct approach runs data cleaning on a private re-
lation and then runs the query and returns the nominal result (no
reweighting).

PrivateClean: The proposed approach in this paper including the
data cleaning and weighted approximate query processing.

Error %: Let r be the result of running either PrivateClean or Di-
rect. Let r* be the result of running a query on a cleaned non-
private dataset. The relative error % is error = 7=l

T

8.2 Datasets

We explore results on four datasets: Synthetic, TPC-DS, Intel-
Wireless, and MCAFE.

Synthetic: This dataset includes a single numerical attribute
[0,100] and a single categorical attribute {1,..., N}. Both these
attributes are drawn from a Zipfian distribution with scale param-
eter z. We vary NN, z, and the privacy parameters to evaluate the
estimation approaches. In particular, we use the synthetic dataset to
validate the extremal behavior of PrivateClean and the regimes in
which it performs well. In Appendix D, we list the default param-
eters. Unless otherwise noted, we fix the default parameters and
vary one of the variables.

TPC-DS: We use this TPC-DS benchmark to construct constraint-
based data cleaning use cases. We focus on a projection of
one table: customer_address (ca_city, ca_county,
ca_state, ca_country). There are two data quality con-
straints on this table, one is a functional dependency:

[ca_city, ca_county] — [ca_state]
There is also a matching dependency on country:

M D([ca_country] = [ca_country])
We introduce errors into the relation where we randomly replace
ca_state and append one-character corruptions to ca_country.
We solve for the constraints and implications using a standard re-
pair algorithm [6]. Such algorithms are typically approximate or
heuristic, and in this experiment, we measure accuracy with respect
to ground truth (since the data cleaning itself may be fallible).

IntelWireless [29]: This dataset includes 2.3 million observations
of sensor environment sensor measurements indexed by sensor id.
It includes missing values and outliers. We simulate a task where
we want to keep the sensor id private but still allow for cleaning
of the outliers. This dataset is characterized by a small number of
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Figure 2: Relative query result error as a function of the privacy parameters (p,b). Even when there are no data errors, PrivateClean
is more accurate than the Direct estimate because it accounts for data skew.

distinct discrete values (68) compared to the dataset size, which is
a preferred regime of PrivateClean.

MCAFE [49]: This dataset contains 406 records of student course
evaluations. We look at a numerical attribute of “enthusiasm" on
a scale from 1-10, and the country code of the student. We want
to keep the country codes private. We simulate a data cleaning
scenario where the analyst has to merge country codes from nearby
countries and remove missing values.

8.3 Synthetic Experiments

8.3.1 No Data Error

We first explore the significance of this improvement without
data error and then show that the gains become more significant in
the presence of data error.

Function of privacy: The two privacy parameters are p (privacy
in the discrete value) and b (privacy in the numerical attribute). For
a predicate with 10% selectivity and skew of z = 2, we first varied
the categorical privacy factor p, while fixing the numerical privacy
factor. Figure 2a shows how the count varies as a function of
privacy. As predicted by the analysis the relationship is roughly
linear. Even without data error, we find that when the categorical
privacy factor p is high, PrivateClean has nearly a 5x reduction in
query error in comparison to Direct. This is not surprising in a
moderately skewed dataset given Lemma 2. Figure 2b shows how
the sum varies as a function of privacy, and we see a similar linear
relationship.

Figure 2c and Figure 2d show how the errors vary as a function
of the numerical privacy factor. As expected count is not affected
by this factor. However, there is an interesting relationship for sum
(Figure 2d). Since the re-weighting does not affect the numerical
privacy factor b, these gains w.r.t naive are diminished as the vari-
ance from the numerical privacy dominates.

Function of selectivity: The next question we explore is the how
the query result error varies as a function of the selectivity. We fix
the numerical and discrete privacy parameters and vary the query
selectivity (defined in terms of the fraction of distinct values for
which the predicate is true). Figure 3a and Figure 3b show the
error % of sum and count queries for PrivateClean and Direct.
PrivateClean is more accurate the Direct for low selectivity queries.
The mathematical reason for this is subtle. The effects of data skew
average out over more general predicates.

Function of skew: Next, we vary the skew of the data distribution
by changing the Zipfian parameter z (Figure 4). PrivateClean is
increasingly more accurate than Direct in skewed datasets. In fact,
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Figure 3: PrivateClean is more accurate than the Direct espe-
cially at lower selectivities.
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Figure 4: PrivateClean is more accurate than the Direct in
skewed datasets

for count queries, there is no benefit to re-weighting results under a
uniform distribution. This result is predicted by our analysis (Sec-
tion 5.2).

8.3.2 Data Error

In the next set of experiments, we vary the frequency and type of
data error.
Function of Error Rate: Next, we simulated data errors. For a
random fraction of the distinct values mapped them to other distinct
values. In Figure , we vary this fraction (error rate) while holding
all of the other parameters fixed. Since Direct does not consider
the provenance of the data, as the error rate increase its estimate
is increasingly erroneous. On the other hand, PrivateClean keeps a
constant relative error (the only error is due to the privacy factor)
as the error rate is varied.

This experiment is also interesting in absolute terms. For both
sum and count, PrivateClean provides a result with less than
10% error across all data error rates. This shows that in absolute
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Figure 6: PrivateClean uses provenance to estimate the se-
lectivity of queries on the original (uncleaned) data. Conse-
quently, Direct is more sensitive to errors that “merge" distinct
values.

terms the estimates from PrivateClean are useful. It also highlights
a counter-intuitive property, where a query on the original dataset
(no cleaning and no privacy) can be more erroneous than Private-
Clean (cleaning and privacy). Privacy induces query result error
while data cleaning mitigates error. This is a tradeoff that has been
highlighted before in the SampleClean project [23,44].

Error Type: Of course, provenance is most valuable when the
cleaned values are merged together. Next, we randomly map the
distinct values to new random distinct values and other distinct val-
ues. We call this the merge rate and vary this in Figure 6. Private-
Clean is more accurate than Direct when merge errors are more
prevalent.

Cleaning Multiple Attributes : Figure 7 illustrates how Private-
Clean to estimate results after cleaning multiple attributes. Unlike
the single attribute case, we have to perform a cut on a weighted
graph. We generated attribute two-attribute variant of the experi-
ment in Figure 8.3.4a. We find that the weighted cut (PC-W) gives
a more accurate result than no weighted edges (PC-U) and Direct.

8.3.3 Distinct Values

PrivateClean is designed for the setting where the number of dis-
tinct values in each discrete attribute relatively small in comparison
to the dataset size. We proved a bound on the necessary dataset size
to ensure that all values are visible in the private relation within
probability 1 — «. While this bound was necessary for the theoreti-
cal derivation of estimates and confidence intervals, it turns out that
PrivateClean empirically performs well even with datasets sizes far
smaller than the bound would suggest. This experiment evaluates
the performance of PrivateClean as a function of the distinct frac-

. N
tion 5

35 (A) COUNT Accuracy (Multiple Cleaning) (A) SUM Accuracy (Multiple Cleaning)

- -]
=@ Direct

oo PC-U
e—e PC-W

30| =8 Direct

80 25 50 75 100 125 150
Data Error Rate (p)

0.0 25 50 7.5 10.0 12,5 15.0
Data Error Rate ()

Figure 7: For cleaning operations that use information from
multiple attributes, PrivateClean uses a cut on a weighted
graph (PC-W) instead of an unweighted graph (PC-U).

We generated a dataset with a 5% error rate (keeping all other
parameters fixed) and measure the accuracy of query results as a
function of the distinct fraction. Figure 9(a-b) show the result for
sum and count queries. In relative terms, PrivateClean outper-
forms Direct when the number of distinct values is less 50% of
the dataset size. However, in absolute terms the accuracy of both
methods is poor when the number of distinct values is high. Fol-
lowing from Figure 9, this means that as the number of distinct
values increase, the relation can support (i.e., answer with the same
accuracy) increasingly less selective queries.

8.3.4 Constraint-based Cleaning

Next, we evaluate PrivateClean on the constraint-based clean-
ing experiment with TPC-DS. We have two queries of interest that
count records by the state and country:

SELECT count (1) FROM R GROUP BY ca_state
SELECT count (1) FROM R GROUP BY ca_country

In Figure 8a, we plot the results of PrivateClean as a func-
tion of the number of simulated corruptions to ca_state.
These corruptions were fixed using a functional dependency on
(ca_city,ca_county). Unlike before, this experiment illus-
trates the use of a heuristic data cleaning algorithm that does not
perfectly clean the data, since it may not be possible to get a unique
minimal repair. As the data error rate grows so does the error from
PrivateClean, which we did not see in Figure a. As in previous
experiments, we find that PrivateClean answers queries more accu-
rately than Direct.

In Figure 8b, we plot the results of PrivateClean as a function of
the number of simulated corruptions to ca_country. These cor-
ruptions were fixed using a matching dependency with a similarity
metric using Edit Distance. Furthermore, matching dependencies
can be resolved uniquely so the problems with the imperfect clean-
ing are not seen. We find that PrivateClean answers queries more
accurately than Direct, and since this constraint merges values in
the domain the difference between PrivateClean and Direct is more
than in Figure 8a.

8.4 IntelWireless Experiments

Using the IntelWireless dataset, we simulate an analysis use
case with PrivateClean. This dataset is a union of time series mea-
suring environmental statistics (temperature, humidity, light) from
68 sensors (identified by a field sensor_id). Sensors that oc-
casionally fail and during these failures their logs do not report a
sensor id. As a result, in the sensor_id field there are missing
or spurious values. Furthermore, during these failures statistics re-
ceived from the sensor are untrustworthy. For data cleaning, we
explored identifying and removing these log entries. We merged
all of the spurious values to null.
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Figure 9: PrivateClean is sensitive to the number of distinct
values. As the fraction of distinct values increases, the accuracy
degrades. In fact, Direct becomes a more accurate estimator
after a point.

We are interested in answering the following queries:

SELECT count (1) FROM R WHERE sensor_id != NULL
SELECT avg(temp) FROM R WHERE sensor_id != NULL

Figure 10 shows the query error for both queries as a function of
privacy. We accordingly scale the numerical privacy parameter b
such that both attributes have the same ¢ privacy parameter. As in
the synthetic experiment, PrivateClean is more accurate than the
Direct estimator. For reference in gray, we plot the error of the
query result without data cleaning on the original dataset (without
privacy). There is a counter-intuitive point at which queries on the
cleaned private dataset are more accurate than queries on the dirty
original dataset. Privacy introduces error while data cleaning si-
multaneously mitigates errors. In absolute terms, the error in these
queries is relatively small < 10%; demonstrating that cleaning and
querying the private relation has practical utility.

8.5 MCAFE Experiments

The next experiment presents results on a much harder dataset
of course evaluations. In this dataset, the number of distinct values
is relatively high compared to the total number of records (21%).
Consequently, the estimates for this dataset have a much larger er-
ror.

In this experiment, we demonstrate the flexibility of Private-
Clean. The bipartite graph in PrivateClean can represent data
transformations that go beyond traditional notions of data clean-
ing, such as merging together semantically similar distinct values.
The MCAFE dataset has two attributes score and country. The
vast majority of students are from the United States. We might be
interested in aggregating students from all European countries to-
gether for comparison to the students from the United States. Like
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Figure 10: PrivateClean demonstrates higher accuracy in the
Intel Wireless dataset validating previous results on a simulated
datset.
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Figure 11: PrivateClean demonstrates higher accuracy on the
MCAFE dataset on a data transformation task with a high frac-
tion of distinct values.

data cleaning, this transformation is only possible if the analyst has
access to the values in the private table (facilitated by GRR).

We measure the accuracy of the following queries as a function
of privacy:

SELECT count (1) FROM R WHERE isEurope (country)
SELECT avg(score) FROM R WHERE isEurope (country)

The interesting point about these queries is that they cannot be an-
swered on the untransformed data. Figure plots the error as a func-
tion of the privacy, and as in the synthetic experiments PrivateClean
is more accurate than Direct. Both techniques return less than 10%
query error on the private cleaned table.

9. RELATED WORK

Privacy and Data Cleaning: There have been a limited number of
works that study the problem of data cleaning under privacy. How-
ever, these works do not consider differential privacy. Talukder et
al. explore using cryptographic protocol to detect constraint vio-
lations in a database [43]. Similarly, Jaganathan and Wright ex-
plored using similar cryptographic protocols for secure data impu-
tation [20].

Randomized Response: Even before the formalization of e-
differential privacy, statistical notions of data privacy have been
well studied. Warner proposed the randomized response model
in 1965 [45]. Some of the earliest work in the database commu-
nity was on the topic of “data swapping" to increase privacy [40],
where projections of a relation are randomly swapped. This model
was the inspiration for the seminal work by Agarwal and Srikant
on Privacy Preserving Data Mining (PPDM) [5]. This work led to
several other results such as algorithms for classification on private
data [10], statistical reconstruction of a dataset [18]. The contribu-
tion of our work, PrivateClean, is to: (1) formalize a similar mecha-
nism using the new mathematical framework of differential privacy,



(2) understanding how data cleaning interacts with this model, (3)
tight finite-sample guarantees for SQL aggregate query processing
on private relations.

Privacy and Databases: In general, privacy is one of the fun-
damental subjects of research in the database community [19].
There are a number of surveys describing deterministic techniques
for privacy preserving analytics [4,13]. These techniques include
value aggregation, value suppression, and homeomorphic encryp-
tion [26,28,38,42].

Recently, the e-differential privacy model [11] has renewed inter-
est in privacy preserving analytics. McSherry proposed the seminal
work of Privacy Integrated Queries (PINQ) [30]. PINQ proposed
an algebra for describing privacy preserving data analytics, and en-
suring the results of queries (primarily group by aggregates) would
be kept differentially private. Similarly, the Airavat project studied
this problem in the MapReduce setting [41]. The GUPT project
explored the problem of setting € (a “privacy budget”) given de-
sired accuracy guarantees [31]. Differential privacy also has been
studied in a number of different contexts in databases including in-
dexing and set-valued queries [7,27,37].

In PrivateClean, we explore the local model for e differential pri-
vacy. The subtle problem of related work is that queries can only be
issued a single time, and multiple runs can de-randomize a private
result. On the other hand, in the local privacy model, we create a
single private view of the dataset, which the analyst can query and
clean an arbitrary number of times. Since the randomness is added
up-front, the downside is that there are complex noise-propagation
dynamics to consider. That said, PrivateClean only scratches the
surface in the understanding of data error and privacy, and this is
an important open problem that Getoor et al. described w.r.t entity
resolution [15].

Approximate Query Processing: Approximate query processing
(AQP) is a well studied problem [3,14,35] in which results of aggre-
gate queries are approximated from samples, wavelets, or sketches.
The goal of AQP is to achieve tight bounds on the results of the
aggregate queries. The link between AQP and differential privacy
has been studied before, and Xiao et al. [46] explore the differ-
entially private implications of wavelet transforms. Likewise, the
link between AQP and data cleaning has been studied, where Wang
et al. and Krishnan et al. [23-25,44] show that samples of clean
data can be used to estimate aggregate queries. PrivateClean tries
to make the connection between AQP, data cleaning, and privacy.
We also believe that PrivateClean will be increasingly relevant in
human-in-the-loop systems as crowds are increasingly employed
in data cleaning [16] and inadvertent data leaks can actually bias
the crowds response [22].

10. EXTENSIONS

We highlight several points for discussion and opportunities for
future work. Differential Privacy is best suited for aggregate query
processing. In Section 3.2.2, we described how PrivateClean sup-
ports sum, count, avg queries over a single numerical attribute
with predicates over a single discrete attribute. We discuss how Pri-
vateClean can be extended to support different types of aggregate
queries with more complex query structures.

Different Aggregates: PrivateClean applies additive independent
Laplace random noise to each of the numerical attributes. In addi-
tion to having a mean value of 0, this noise also has a median value
of 0. Therefore, it is relatively straightforward to extend Private-
Clean to support median and percentile queries. Further-
more, since this noise is independent of the data, we can exploit

the fact that var(z + y) = var(z) + var(y) for independent ran-
dom variables to also support var and std queries. For these new
aggregates, calculating confidence intervals is a bit more challeng-
ing, and require an empirical method (e.g., [3,47]). However, in
its current formulation PrivateClean cannot support min and max
queries.

Aggregates over Select-Project-Join Views: PrivateClean can
also be extended to estimate results for aggregate queries over SPJ
views of differentially private relations. Since the randomization
is added independently, it is easy to derive the query processing
bias correction constants 7,, Tp, Yn, ¥p for such queries. For each
column in the view, we essentially can calculate the constants and
multiply them together, but there are some technicalities with main-
taing the appropriate provenance that we defer to future work. To
calcuate confidence intervals, we can use a technique like the one
proposed in [33].

11. CONCLUSION

In this paper, we presented PrivateClean a framework for data
cleaning and approximate query processing on locally differentially
private relations. As far as we know this is the first work to marry
data cleaning and local differential privacy. As a result, we hope
that this initial exploration of this problem will set the stage for
the exploration of more complex query processing and data clean-
ing models. We proposed a privacy mechanism called Generalized
Randomized Response which we showed was compatible with data
cleaning operations in the form of extraction, merging, and trans-
formations. We analyzed the sufficient size of the data required for
meaningful cleaning results. One of the key insights of this work
is that privacy exacerbates problems of data skew, and it is crucial
to estimate query selectivity for accurate query processing. How-
ever, after data cleaning apparent selectivity of a query may change,
and we maintain a provenance graph to address this problem. We
showed how this analysis can be inverted to select maximal pri-
vacy levels given some constraint on query accuracy. Our empiri-
cal evaluation validated the analytical results on both synthetic and
real datasets.
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APPENDIX

A.

PROOFS

A.1 Proof of Lemma 1

We directly apply the definition of local differential privacy. Let
N =| Domain(g;) |:

1—pi+piv
i

e=1In

The worst case is when there are only two values in the domain and
all of the other entries in the database are one value except for one,
then this gives us N = 2, plugging it in to the above formula:

3
e=In(——2
(-2



A.2 Consequences of Differential Privacy

Lemma 2, Theorem 1, and Theorem 2 follow from well-
established results in Differential Privacy (see [11]). We provide
detailed references for the results here.

Proposition 1: This follows from Definition 3.3 in [11].
Theorem 1: This follows from Theorem 3.16 in [11].

Theorem 2: Proposition 2.1 in [11] shows that for any determin-
istic function applied to a differentially private result, differential
privacy is preserved.

A.3 Proof of Theorem 3

For some domain value a, let us first start with the probability
that a is visible in the private relation:

N -1 D (5—1)
1- £

For all domain values, we can apply a union bound:

Plaj]=1-p

Plall] > 1 —p(N — 1)[1 — %]“*”
Setting Plall] =1 — «:
P (5-1)
< _ _ 2
a<p(N-D1- 2]

With some algebra, we can show:

o 1
<Ss
(N—-1)logl— %

log
p

Using the inequality =1 < logz, we can arrive at the bound pre-
. x
sented in the paper.

A.4 Proof of Lemma 3

We start with the predicate false positive and false negative prob-
abilities. The false positive probability is:
l
P (false positive) = (1 — s)pﬁ

and the false negative probability is:

N —
P (false negative) = sp N l

For sum and count, the bias is proportional to the predicate errors.
Since the Naive estimator sets two values equal, we can calculate
the difference:

l N —1

bias = (1 — s)pﬁ — P

p(l — sN)
N
This value will be scaled by a constant related to the dataset size:

~ p(l—sN)
o)
B. ESTIMATOR NOTATION

® Cprivate: Count on the private data

bias =

® cCirue: Count on the original data
® [iirue: Average on the true data
e S: Dataset size

e N: Number of distinct values in the attribute partition g; that
contains the predicate attribute.

® hprivate: SUM on the private data

® hyrye: sum on the true data

hprivate: sum on the private data (with predicate negated).

® h{,...: sum on the true data (with predicate negated).
C. ESTIMATOR DERIVATIONS

COUNT: To prove this, first, we formulate an unbiased estimator:

E(Cp'r'i’uate) = CtrueTp + (S - Ct'r'ue)Tn
E(Cprivate) = Ctrue(Tp - Tn) + STn

]E(Cp'rivate) - STn

=C
(Tp — Tn) true

SUM: To prove this, first, we formulate an unbiased estimator:

l l
]E(hpri'uate) = Ctrue [(1—17) +pﬁ]/4‘/true+(s_ctrue) (pﬁ ),ufalse

We are interested in estimating the count which iS Ct¢ruye fhtrue:

l l
]E(hprivate) = [(1 _p) +pﬁ}ctrue,u/t'rue+ (S_Ct'rue) (pﬁ ),U/fulse

The challenge is that there are two unknown variables Ctruyeitrue
and [t fq1se, SO We can apply a trick where we also calculate the sum
over the complement and solve:

c N -1 N -1
]E( privat&) = [pT]ctrueﬂtrue"’(S_ct'rue)(1_p+pT)Nfalse
This is a linear system of equations, and solving it arrives at:

’ngrivate _la-»+ pﬁ (s — Ctrue)(z’%) Ctrueltrue
private p Nt (S = ctrue) (1 — p+ p ML) Hfalse

(1 —-p+ p%)hprivate - p% hpriva,te
L=p

Ctruelltrue =

With a little bit of algebra, we can arrive at:

(N — lp)hprivute - (lp)h;'rivate
(1=p)N

Ctrueltrue =

D. SYNTHETIC EXPERIMENTS DE-
FAULT PARAMETERS

We list the default parameters in the synthetic experiment below.
Unless otherwise noted, these are the parameters which we use.
For all experiments, we create 100 random instances of the private
database, and for each instance we run a randomly selected query.
The plots show a mean value over the 100 random instances.

Table 1: Default parameters in the synthetic experiment
Symbol Default Value Meaning

P 0.1 Discrete privacy parameter

b 10 Numerical privacy parameter

N 50 Number of distinct values

S 1000 Number of total records

1 5 Distinct values selected by predicate
z 2 Zipfian Skew



E. PARAMETER TUNING ALGORITHM

Following from the analysis in the paper, we derive a tuning al-
gorithm to set € by setting p; and b; for each attribute.

Inputs: error the user gives us the desired maximum error in any
count query on the relation with 1 — o confidence intervals.

Output: For each numerical attribute j return b; the numerical
privacy parameter, and for each discrete attribute partition g; return
a p; the discrete privacy parameter.

1. Let p = 1 — 244/ m, where z, is the Gaussian tail

parameter (e.g, 95% = 1.96).
2. For each discrete attribute partition g;, set p; to p.
3. For each numerical attribute j, set b; = %, where A
J In 32 J

is the difference between the max and min values of that at-
tribute.



