2403.08291v4 [cs.LG] 2 Jun 2025

arxXiv

Agents

Danrui Qi, Zhengjie Miao, Jiannan Wang
Simon Fraser University
{dqi, zhengjie, jnwang}@sfu.ca

ABSTRACT

Data standardization is a crucial part of the data science life cycle.
While tools like Pandas offer robust functionalities, their complex-
ity and the manual effort required for customizing code to diverse
column types pose significant challenges. Although large language
models (LLMs) like ChatGPT have shown promise in automating
this process through natural language understanding and code gen-
eration, it still demands expert-level programming knowledge and
continuous interaction for prompt refinement. To solve these chal-
lenges, our key idea is to propose a Python library with declarative,
unified APIs for standardizing different column types, simplify-
ing the LLM’s code generation with concise API calls. We first
propose Dataprep.Clean, a component of the Dataprep Python
Library, significantly reduces the coding complexity by enabling
the standardization of specific column types with a single line of
code. Then, we introduce the CLEANAGENT framework integrat-
ing Dataprep.Clean and LLM-based agents to automate the data
standardization process. With CLEANAGENT , data scientists only
need to provide their requirements once, allowing for a hands-free
process.

1 INTRODUCTION

Data standardization, which is pivotal in the realm of data science,
aims to transform heterogeneous data formats within a single col-
umn into a unified data format. This crucial data preprocessing step
is essential for enabling effective data integration, data analysis,
and decision-making.

Example 1. We illustrate the data standardization task in Figure 1.
Given the input table T, it is obvious that data in the “Admission
Date” column and the “Address” column are in different formats, and
the data in the cells of the “Admission Date” column includes two
different date formats. The goal of data standardization is to unify
the data format in each column in T, to get the standardized table
T’ satisfying the data scientist’s requirements. In Figure 1, the data

scientist inputs their requirement to standardize “Admission Date”

with the “MM/DD/YYYY HH:MM:SS” format. In the resulting T', data
in the cells of the “Admission Date” column follows only one date
format, i.e., the “MM/DD/YYYY HH:MM:SS” format.

Previously, data scientists heavily relied on libraries such as
Pandas [3] for data standardization tasks. Even though Pandas
is a powerful tool, achieving data standardization often requires
writing hundreds or thousands of lines of code. The standardization
process for a single column involves identifying the column type,
applying intricate methods such as regular expressions to each
cell for validation, and converting each cell into desired formats.
Moreover, a table may contain multiple columns, each possibly of
a different type, requiring bespoke standardization code for each
column type.

Input Table T

Name

Admission Date

Address

Abby

FriJan 1st
10:36:28 2021

1234 west
main heights
LA 57033

Scott

1996.07.10 AD at
15:08:56

1111
Figueroa St,

[X1
[/]

=

CleanAgent

CleanAgent: Automating Data Standardization with LLM-based

| want the output format of the date
columns as ‘MM/DD/YYYY HH:MM:SS’

from
import
from \
import
df = (
df = df,
column =
output_format:

df = df,
column =

LA, 90015
Standardized Table T’
Name | Admission Date Address
Abby 01/01/2021 1234 W.
10:36:28 Main Hts.,
LA, 57033
Scott 01/15/2020 1111S.
15:08:56 Figueroa St.,
LA, 90015

Figure 1: An example of automatic data standardization pro-
cess with CleanAgent.

Example 2. Still considering the data standardization task in
Figure 1. For standardizing “Admission Date” and “Address”, data sci-
entists need to write the datetime standardization code for “Admission
Date” and address standardization code for “Address” using regex. An
example standardization code for “Address” is shown as follows.
def standardize_address(addr):

Extract street number and street name

street = pd.Series(addr).str.extract(r'(\d+ [*,]+)").
squeeze ()

Extract state name

state = "LA"

Extract zipcode

zipcode = pd.Series(addr).str.extract(r'(\d{5})"').
squeeze ()

Output standardized address

return f"{street}, {state}, {zipcode}"

If the input table T has other column types such as email and
IP addresses, data scientists also need to write standardization code
tailored for the new types, which is time-consuming.

Recently, the emerging LLMs have shown the potential to rev-
olutionize this process. By leveraging their natural language un-
derstanding and code generation ability, these models could signif-
icantly aid data scientists by autonomously generating standard-
ization code in response to conversational prompts. However, this
method still necessitates detailed prompt crafting and often in-
volves multi-turn dialogues [1] for different column types in the
table one by one, which limits the efficiency and practicality of
adopting LLMs in the standardization process.

To overcome these limitations, our key idea is to introduce a
Python library involving declarative and unified APIs specifically
designed for standardizing different column types. This idea lowers
the burden of the LLM, as it now only needs to convert natural lan-
guage (NL) instructions into succinct, declarative API calls instead
of lengthy, procedural code. Such an approach simplifies the LLM’s

https://arxiv.org/abs/2403.08291v4

code generation process for data standardization, requiring just a
few lines of code.

The pursuit of simplicity, however, introduces two primary chal-
lenges. The first challenge (C1) is the design of the declarative and
unified APIs for data standardization, ensuring it can effectively re-
duce the intricacies involved in standardizing specific column types
(ideally one line of code per column type). The second challenge
(C2) centers on optimizing the interaction between data scientists
and LLMs. Our goal is to minimize human involvement, ideally
allowing data scientists to input their standardization requirements
in one instance, thereby enabling an autonomous and hands-off
data standardization process.

To solve C1, we propose the type-specific Clean module in the
Dataprep Library, named Dataprep.Clean. By observing and sum-
marizing the common steps of data standardization for specific col-
umn types, we design unified APIs clean_type(df, column_name,
target_format), where the type represents the desired standard-
ization type, such as date, address, and phone, etc. These unified
APIs offer enhanced expressiveness compared to raw Pandas code,
reducing the complexity of standardizing specific column types and
allowing one to standardize a column with only one line of code.

To solve C2, we propose the CLEANAGENT framework which
automates data standardization with Dataprep.Clean and LLM-
based Agents [5, 6]. Once users have entered their final goals, the
LLM-based Agents can free their hands, autonomously generate
reasoning steps, and execute particular tasks. Data scientists only
need to input the table being standardized and their requirements,
CLEANAGENT will complete the data standardization process au-
tomatically with three steps: annotating the type of each column,
generating concise Python code for standardization, and executing
the generated Python code.

Example 3. Continuing with Example 1. Given an input table T
which needs to be standardized and the data scientists’ requirements,
the CLEANAGENT first recognizes that the “Admission Date” column
belongs to the date type, and the “Address” column belongs to the
address type. According to the column-type annotation results, the
CLEANAGENT generates and executes Python code for standardization
by calling the “clean_date” and “clean_address” functions, then returns
the standardized table T’ .

We also built a web interface for CLEANAGENT . It allows the
users to choose sample data and communicate with CLEANAGENT
for standardization. We provide the demonstration video, which
can be found on Youtube.

To summarize, we make the following contributions: (1) We
propose Dataprep.Clean, an open-sourced library for reducing the
complexity of implementing data format standardization with type-
specific standardization functions. (2) We propose CLEANAGENT ,
which automates the data standardization process by combining
both the advantages of Dataprep.Clean and LLM-based Agents. (3)
We deploy CLEANAGENT as a web application with a user-friendly
interface and demonstrate its utility. We also open-sourced the
implementation of CLEANAGENT on Github.

Danrui Qi, Zhengjie Miao, Jiannan Wang

2 TYPE-SPECIFIC STANDARDIZATION API
DESIGN

In this section, we first describe the common steps of data stan-
dardization. Then, we introduce the type-specific API design of
Dataprep.Clean.

Common Steps of Data Standardization. Inspired by the steps of
how human users standardize data cells, we identify three common
steps of data standardization. We take the datetime column type
as an example to illustrate these steps.

Assume a data scientist is dealing with an datetime column
including two records "Thu Sep 25 10:36:28 2003" and "1996.07.10 AD
at 15:08:56". The data scientist wants to unify the messy column
into a target format "YYYY-MM-DD hh:mm:ss".

(1) Split. In the beginning, the data scientist needs to split the
datetime string into several single parts, which include one kind of
specific information. In our example, the data scientist can get sev-
eral tokens {’Thu’,’Sep’,’25’,’10’,’36’,’28’,’2003’ } from
the first record by using space and colon as separators. Each differ-
ent type has its splitting strategy, which may not always be splitting
the string into tokens. For example, the data scientist will split the
email string into the username part and the domain part.

(2) Validate. Standardization can only be performed on valid
inputs. Thus, the second step should be validation. For example, if
the string “little cat” is an instance of the datetime column, this
string is invalid, and the data scientist will transform it to a default
value like NaN. Intuitively, a valid string indicates that each part
of this string after splitting is valid. Usually, the data scientist will
recognize and validate each part by their domain knowledge, some
corpus or some rules. If every split part is valid, the string is also
valid. For instance, the token ’Sep’ can be recognized as a valid
representation of a month, and * 2003’ can be recognized as a valid
year.

(3) Transform. The last step of standardization is to transform

each split part and combine them into the target format. In our
example, because the target format is "YYYY-MM-DD hh:mm:ss",
the month Sep is transformed into number 09 and recombined with
other parts to the target "2003-09-25 10:36:28".
The Design of Unified APIs. The goal of our API design is to
enable data scientists to complete all the common steps of stan-
dardizing one column with a single function call. Simplicity and
consistency are considered the principles of API design. The ob-
servation of the common steps of data standardization brings the
type-specific API design idea. More specifically, we design the API
to be in the following form:

clean_type(df, column_name, target_format)

where clean_type is the function name, type represents the
type of the current column. The first argument df represents the
input DataFrame, the second argument column_name is the column
being standardized, and the third argument target_format is the
target standardization format users specified. Our API design is
flexible and extensible, which makes it convenient for users to
add their standardization functions for new data types. Currently,
we have 142 standardization functions in Dataprep.Clean, each
handles one data type. These functions serve to demonstrate the
value of a more declarative approach, illustrating that building

https://github.com/sfu-db/dataprep
https://github.com/sfu-db/dataprep/tree/develop/dataprep/clean
https://youtu.be/fSYXVM6qeqM
https://github.com/sfu-db/CleanAgent

CleanAgent: Automating Data Standardization with LLM-based Agents

2

Table Tl | Standardized

+ User’s Requirements Table T’
CleanAgent
@ Historical © Historical
Message Chat Message
Manager [

Column-type @ C;: email @ success/Error Code

Uz C;: phone Execution

Annotator . Executor
o @ df = clean_email(
© Historical df, “email”)
Message df = clean_date(Tools
df, “ date”) IPIy:
e docker

python” dotaprep Python @ Until successfully

standardize input table T
Programmer \J DM

Figure 2: The Workflow of CleanAgent.

declarative data standardization tools for LLMs is not only feasible
but essential, motivating the community to develop even more
advanced tools.

3 CLEANAGENT WORKFLOW

In this section, we first introduce the basic structure of LLM-based
agents. Then, we describe the CLEANAGENT workflow constructed
by four agents. The automatic data standardization process can be
completed by the cooperation of the four agents in CLEANAGENT .
Basic Structure of LLM-based Agents. According to the previous
surveys on LLM-based Agent [6], an LLM-based agent includes four
main components: (1) a backbone LLM used to generate replies for
input prompts, (2) a memory used to store historical conversation
messages, (3) a system message defining the role of the agent, and (4)
a set of external tools which can be called by the LLM-based agent
to complete specific tasks, such as web searching, code execution,
etc.

Detailed Workflow. The detailed workflow of CLEANAGENT is
shown in Figure 2. The CLEANAGENT is composed of four agents,
including a Chat Manager, a Column-type Annotator, a Python Pro-
grammer, and a Code Executor. They can communicate with each
other and automatically complete the data standardization process
by cooperation. Each agent has its own memory to store the his-
torical conversational messages between it and other agents. Note
that the memory of the Chat Manager is uniquely comprehensive,
encompassing the entire historical conversational messages from
all agents within the CLEANAGENT system. This extensive memory
enables every agent in the CLEANAGENT to generate responses that
are informed by the complete historical messages.

The input of CLEANAGENT includes a table T that needs to be
standardized. Data scientists can also input extra requirements such
as “the format of the date type column should be MM/DD/YYYY”.
By receiving the input table and data scientists’ extra requirements,
CLEANAGENT stores this information into the Chat Manager’s mem-
ory and then completes the data standardization process. The Chat
Manager delivers messages in its memory to the Column-type An-
notator(® in Figure 2). Then, The Column-type Annotator receives
the table information and leverages an LLM to annotate the type of
each column in the input table. If the The Column-type Annotator

cannot figure out the specific type of one column, the Column-
type Annotator outputs “I do not know”. The annotation result is
returned to the Chat Manager and stored in the Chat Manager’s
memory (@ in Figure 2).

Thirdly, the Python Programmer receives historical messages
from the Chat Manager including the column-type annotation re-
sults (® in Figure 2), picks up the corresponding clean functions,
and generates Python code for the data standardization process. The
generated Python code is also returned to the Chat Manager and
stored in the Chat Manager’s memory (@ in Figure 2). Finally, the
Code Executor receives historical messages from the Chat Manager
including the column-type annotation results and the generated
Python code (® in Figure 2), then executes the generated Python
code. If the generated code executes without errors, the standard-
ized table T’ is returned; otherwise, the error message is returned
to the Chat Manager and stored in its memory (® in Figure 2). Then,
CLEANAGENT will retry the whole workflow until it can complete
the data standardization process successfully.

4 EXPERIMENTS

Dataset. In our experiment, we employ the Flights dataset from [4],
as it contains highly irregular datetime formats across four at-
tributes: scheduled_dept, actual_dept, scheduled_arrival,
and actual_arrival. The datetime values in these columns ex-
hibit a wide variety of inconsistent formats, such as "2011-12-08
3:50:00 PM", "2:30pDec 27", "06:45 AM Sun 25-Dec-2011",
etc. This makes the dataset particularly suitable for evaluating the
standardization capabilities of different systems.

Baselines. We compare CLEANAGENT with the following two base-
lines: (1) GPT-40 + Prompting. Data standardization code can be di-

rectly generated by prompting powerful chat models such as GPT-
40. (2) Cocoon [8]. Cocoon is a one-shot data cleaning system that
decomposes complex cleaning tasks into manageable components
within a workflow designed to mimic human cleaning processes,
leveraging large language models. It supports a variety of data
cleaning tasks, including missing value imputation, outlier detec-
tion, and functional dependency violation. In this paper, however,
we focus on evaluating Cocoon’s ability for data standardization.
Note that there are other LLM-based data cleaning approaches,
such as RetClean [2]. However, RetClean primarily adopts a retrieval-
based strategy such as RAG to enhance the ability of LLMs for data
cleaning, which supplements the LLM with user-provided data
sources. This paradigm is not suitable for our scenario.
Ground Truth Generation. We find that GPT-40 can reliably
convert individual datetime strings into a target format (e.g., YYYY-
MM-DD HH:MM:SS). Thus, we use it to generate cell-level ground
truth values and compile them into a complete table.
Metrics. We use the average cell-level matching rate across all
columns as our evaluation metric. For a given table T, the cell-level
matching rate is computed as:

m n —
d(Tl Tt) _ A=l 4=l l(Tclean,-j = gfij)
cleans 1gt) =

1)

m

where 1[-] is the indicator function, and Tjean and Tyt denote the
standardized and ground truth tables, respectively.

e CleanAgent
Let's begin with uploading a CSV file that need to be cleaned!

origin_data.csv uploaded, it contains 6 rows and 7 columns!

Start automatic data stardardization with this action button:

Start Standardization

User_Proxy

Use dataprep library to clean the table /Users/danruiqgi/Desktof,
chainlit/.files/fd0d74a7-d846-4082-a40d-8d50f7635c2f/2f321¢ e

Raw code

Please follow the three steps:

Column_Type_Annotator

Name: address,

AGE: | donnot know,
weight__: | donnot know,
Admission Date: date,
email_address: email,
Country of Birth: country,
Contact (Numbers): phone

Please using corresponding clean functions and write code to clean t

python

df =

df['es

Danrui Qi, Zhengjie Miao, Jiannan Wang

o Python_Programmer

pandas pd

dataprep.clean clean_email, clean_country, clean_phone, clean_d

pd.read_csv('/Users/danruiqi/Desktop/Danrui/Research/CleanAgent/examp

mail_address'] = clean_email(df['email_address'], output_format='emai

Code_Executor

exitcode: 1 (execution failed)
Code output:
Traceback (most recent call last):

File "

" line 8, in

df['email_address'] = clean_email(df['‘email_address'], output_format="'email’)

Type
Clea

Data

Error: clean_email() got an unexpected keyword argument ‘output_format'
nAgent
Standardization Completed!

Click this action button to show the cleaned table:

Show Cleaned Table

=

Figure 3: User interface of CleanAgent.

Implementation. Implementation. CLEANAGENT is implemented
in Python 3.10.6. Cocoon is run using its official Colab notebook!
from the GitHub repo®. All methods use the gpt-40-2024-08-06
model. Experiments are conducted on a MacBook Pro with an M1
chip, 16GB RAM, running macOS Sequoia 15.5.

Results. Table 1 presents the comparison of different systems in
terms of cell-level matching rate and latency. CLEANAGENT achieves
a 42.5% cell-level matching rate, approximately 2X higher than that
of GPT-40 and Cocoon. These results demonstrate that CLEAN-
AGENT ’s type-specific standardization API enhances the LLM’s
ability to generate more precise and concise standardization code.
In addition to higher accuracy, CLEANAGENT also exhibits lower
latency compared to Cocoon. This is because Cocoon generates a
one-shot SQL query for all columns without the ability to target
specific ones, leading to unnecessary overhead.

Table 1: Data standardization performance by comparing
different systems.

Cell-Level
System Matching Rate(%) Latency (s)
GPT-40 22.0 19.76
Cocoon 21.5 636.62
CleanAgent 42.5 29.57

5 USER INTERFACE OF CLEANAGENT

We developed a web-based user interface for CLEANAGENT , allow-
ing users to simply upload their tables without performing any
operations. The system then automatically returns the standardized
results of their data.

Figure 3 shows the user interface of CLEANAGENT . As area @
shows, users must first upload a CSV file that needs to be cleaned.
!https://colab.research.google.com/github/Cocoon-Data-Transformation/cocoon/

blob/main/demo/Cocoon_Stage_Demo.ipynb
Zhttps://cocoon-data-transformation.github.io/page/clean

Then CLEANAGENT shows the basic information of the uploaded
file (number of rows and number of columns). If the users can click
the “Start Standardization” button to start the data standardization
process by want CLEANAGENT .

After clicking the “Start Standardization” button, as area @
shows, the User_Proxy generates three detailed steps to complete
the data standardization task. Firstly, the Column-type Annotator
receives messages from the Chat Manager, annotates and out-
puts the type of each column, as area ® shows. Then, the Python
Programmer picks up standardization functions from Dataprep.Clean
based on the type of each column, and write proper Python code
using the standardization functions, as area @ shows. Thirdly, the
Code Executor executes the Python code by the Python Programmer
and collects the execution messages, as area ® shows. If the Code
Executor gets an error message when executing generated Python
code, the error message is sent to the Chat Manager and becomes
part of the prompt of the next try. If the Code Executor gets the
message of successful execution, CLEANAGENT will report that
the data standardization is completed, as area ® shows. Moreover,
users can click the “Show Cleaned Table” button to check whether
the standardized table matches their requirements. If so, users can
download the standardized table directly. Otherwise, users can input
their extra requirements with natural language, and CLEANAGENT
will start a new data standardization process accordingly.

6 CONCLUSION

In this paper, we proposed CLEANAGENT to automate the data stan-
dardization process with Dataprep.Clean and LLM-based Agents.
We implemented CLEANAGENT as a web application to visualize
the conversations among agents. Other tasks in the data science
life cycle, such as data cleaning and data visualization, can also be
completed by LLM-based agents [7]. In the future, it is promising
that the data science life cycle can be automatically planned and
completed by LLM-based agents’ cooperation.

https://colab.research.google.com/github/Cocoon-Data-Transformation/cocoon/blob/main/demo/Cocoon_Stage_Demo.ipynb
https://colab.research.google.com/github/Cocoon-Data-Transformation/cocoon/blob/main/demo/Cocoon_Stage_Demo.ipynb
https://cocoon-data-transformation.github.io/page/clean

CleanAgent: Automating Data Standardization with LLM-based Agents

REFERENCES System Message of Column Annotator

[1] Sibei Chen, Hanbing Liu, Weiting Jin, Xiangyu Sun, Xiaoyao Feng, Ju Fan, Xi-

aoyong Du, andANzAir% Tang. 2023. ChatPipe: Orchgstrating Data Preparation You are an expert column type annotator.

Program by Optimizing Human-ChatGPT Interactions. CoRR abs/2304.03540 . .

(2023). https://doi.org/10.48550/ARXIV.2304.03540 arXiv:2304.03540 Please solve the column type annotation task following
[2] Mohamed Y. Eltabakh, Zan Ahmad Naeem, Mohammad Shahmeer Ahmad, Mourad the instruction. Please ALWAYS show the column annota-

Ouzzani, and Nan Tang. 2024. RetClean: Retrieval-Based Tabular Data Cleaning

i m i
Using LLMs and Data Lakes. Proc. VLDB Endow. 17, 12 (2024), 4421-4424. https: tion result!!! Please ONLY return the column annotation

//doi.org/10.14778/3685800.3685890 result adding a sentence "Please using corresponding clean
[3])’/Ves I\SICKim;ey et al./ 2A024. pagdas: powerful Python data analysis toolkit. https: functions and write code to clean the column"!!!
pandas.pydata.org/ Accessed: 2024-01-25. . . g
[4] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean: ClaSSIfly the columns of a given table W.lth Ol’lly one of th.e
Holistic Data Repairs with Probabilistic Inference. Proc. VLDB Endow. 10, 11 (2017), following classes that are seperated with comma: {candi-

1190-1201. https://doi.org/10.14778/3137628.3137631 date column types}.

[5] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang . .
Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. 2023. AutoGen: (1) Look at the input given to you and make a table
Enabling Next-Gen LLM Applications via Multi-Agent Conversation Frame- out of it
work. CoRR abs/2308.08155 (2023). https://doi.org/10.48550/ARXIV.2308.08155) . .
arXiv:2308.08155 (2023). hetp & (2) Look at the cell values in detail.
[6] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming (3) For each column, select a class that best represents
Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, . .
Limao Xiong, Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xi- the meanu}g of all cells in the column.
angyang Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, Wensen Cheng, Qi (4) Answer with the selected class for each columns
Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing Huan, and Tao with the format **columnName: class**. If you can-
Gui. 2023. The Rise and Potential of Large Language Model Based Agents: A t Pty claas 1 Meeadl e i
Survey. CoRR abs/2309.07864 (2023). https://doi.org/10.48550/ ARXIV.2309.07864 oL o ey @EEEI) ColEmi R Q1 U2 joIke-
arXiv:2309.07864 vided data, output "I do not know" for that column.
[7] Siqiao Xue, Caigao Jiang, Wenhui Shi, Fangyin Cheng, Keting Chen, Hongjun . . .
Yang, Zhiping Zhang, Jianshan He, Hongyang Zhang, Ganglin Wei, et al. 2023. NOTE THAT You MUST prov1de exaCtly one CIaSSIﬁca:tlon
Db-gpt: Empowering database interactions with private large language models. for EVERY column — no column should be left unclassified.
arXiv preprint arXiv:2312.17449 (2023). o Sample rows of the given table is shown as follows: {df}.
[8] Shuo Zhang, Zezhou Huang, and Eugene Wu. 2024. Data Cleaning Using Large
Language Models. CoRR abs/2410.15547 (2024). https://doi.org/10.48550/ARXIV.
2410.15547 arXiv:2410.15547
System Message of Python Code Generator
You are a senior Python engineer who is responsible for
writing Python code to clean the input DataFrame.
You can use the following libraries: pandas, numpy, re,
datetime, dataprep, and any other libraries you want. Note
that the Dataprep library takes the first priority.
The Dataprep library is used to standardize the data. You
can find the documentation of Dataprep library here:
https://sfu-db.github.io/dataprep/.
A PROMPTS OF COMPONENT IN Please only output the code.

CLEANAGENT

System Message of Chat Manager

Use dataprep library to clean the table {path}.
Please follow the three steps:

(1) Use column annotator to annotate the type
of each column within the five types: {candi-
date_column_types}.

(2) Pick up corresponding clean functions and write
code to clean the column.

(3) store the cleaned dataframe as csv file named as You are a Python code executor that executes the code

"cleaned_data.csv" written by the engineer and reports the result.

System Message of Python Code Executor

https://doi.org/10.48550/ARXIV.2304.03540
https://arxiv.org/abs/2304.03540
https://doi.org/10.14778/3685800.3685890
https://doi.org/10.14778/3685800.3685890
https://pandas.pydata.org/
https://pandas.pydata.org/
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.48550/ARXIV.2308.08155
https://arxiv.org/abs/2308.08155
https://doi.org/10.48550/ARXIV.2309.07864
https://arxiv.org/abs/2309.07864
https://doi.org/10.48550/ARXIV.2410.15547
https://doi.org/10.48550/ARXIV.2410.15547
https://arxiv.org/abs/2410.15547

B DETAILED EXPERIMENT SETTINGS
B.1 Prompt of GPT-40 Baseline

System Message of Chat Manager

You are an expert data standardizer.
Task: Given a CSV file “*raw.csv** in the current working
directory, do two things:
1. Column typing
Inspect the data and output one best-fit type for each col-
umn, line by line in the form:
columnName: class
2. Generate Python script
After a blank line, provide a single Python script (inside
“python fences) that:
- reads raw.csv
- standardizes every column WITHOUT USING ANY
Python libraries
- no additional explanations.
- please notice the python code, **please not using any li-
braries™ such as**datetime, parse, colorsys, pandas**. Only
the original way and regex can be used.
- if a cell cannot be recognized according to the column’s
target format, return ‘NaN".
- formatting rules for column types:
(1) date — yyyy-mm-dd hh:mm:ss
(2) address — Apt apartment_number, house_number,
street_name, city, state_abbreviation, country, zip-
code (skip any missing part silently)
(3) phone_number — E.164 format
(4) location — (lat,lon)
(5) ip — plain IP without subnet mask
(6) url — JSON object with keys:
{
’scheme’: http’,
’host’: "'www.example.com’,
‘url_clean’: “http://www.example.com/path’,
’queries’: {
’key1’: *valuel’,
’key2’: 'value2’
}
}

(7) duration — hh:mm:ss
(8) temperatures — Celsius format, e.g., 23°C
(9) colors — hexadecimal, e.g., #alb2c3
(10) names — "firstname lastname" - If format is "last-
name, firstname", convert it - If already "firstname
lastname", keep it unchanged
Writes cleaned_data.csv in the same directory
The script must be runnable with ‘python script.py* in
a standard Python environment (pandas & common pip
packages installed)
Return only the column typing and script. No additional
explanations.
Sample rows of the given table is shown as follows: {df}

Danrui Qi, Zhengjie Miao, Jiannan Wang

B.2 Detailed GPT Settings

For CLEANAGENT , we use GPT-40 with a temperature of 0, a timeout
of 60 seconds, and a cache seed of 42. For Cocoon [8], we follow the
default setting and set the temperature to 1. For the GPT-40 baseline,
the temperature is also set to 0 for consistency with CLEANAGENT

	Abstract
	1 Introduction
	2 Type-Specific Standardization API Design
	3 CleanAgent Workflow
	4 Experiments
	5 User Interface of CleanAgent
	6 Conclusion
	References
	A Prompts of Component in CleanAgent
	B Detailed Experiment Settings
	B.1 Prompt of GPT-4o Baseline
	B.2 Detailed GPT Settings

