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ABSTRACT

Deciding query equivalence has played an essential role in many
real-world applications, including evaluating the accuracy of text-
to-SQL models, where one needs to compare model-generated
queries against ground truth queries. Although query equivalence is
undecidable in general, researchers have developed two significant
approaches to check query equivalence: formal verification-based
and test-case-based. Verification-based solutions ensure correctness
but may lack support for advanced SQL features and cross-database
adaptability. Test cases are versatile but suffer from ad-hoc con-
straints and potential incorrectness (false positives).

In this paper, we propose ParSEval, a Plan-aware SQL Equivalence
evaluation framework to generate test database instances for given
queries. We observed that existing test data generation methods
fail to fully explore the query structure. To address this limita-
tion, ParSEval formally models specific behaviors of each query
operator and considers all possible execution paths of the logical
query plan by adapting the notion of branch coverage. We vali-
dated the effectiveness and efficiency of ParSEval on four datasets
with AI-generated and human-crafted queries. The experimental
results show that ParSEval supports up to 40% more query pairs
than state-of-the-art verification-based approaches. Compared to
existing test-case-based approaches, ParSEval reveals more non-
equivalent pairs while being 21× faster.
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1 INTRODUCTION

Determining the semantic equivalence of two SQL queries has long
been an important task in the database community, with significant
implications for query optimization [10, 36], query rewriting [43],
and SQL assignment grading [12, 31]. Recently, this task has gained
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Figure 1: Performance of equivalence evaluation methods on

1534 pairs of queries from a text-to-SQL model for the BIRD

benchmark [25]. # of disproved pairs is the number of pairs

each method finds inequivalent.

increasing attention with the rise of text-to-SQL translation [5, 9,
32, 38, 40], where it plays a key role in evaluating the accuracy
of text-to-SQL models. This scenario typically involves a set of
natural language questions tied to a database schema and their
corresponding ground truth SQL queries. The evaluation process
then checks whether model-generated SQL queries are semantically
equivalent to the ground truth queries.

The standard approach for evaluating the accuracy of text-to-SQL
models involves executing the predicted queries on test databases
— such as those in the Spider [38] and BIRD [25] benchmarks —
and comparing their results with the ground truth query results.
However, the evaluation process remains challenging, as query
equivalence is undecidable in general [1], and there have been few
efforts to improve the evaluation process in recent years. As we
will show, while test-case-based methods have been popular and
have driven advancements in text-to-SQL models, they still exhibit
shortcomings by considering only a limited set of “neighboring
queries,” which can lead to false positives — failing to identify when
a predicted query is not equivalent to the ground truth query.

Example 1. Consider the following relation schema and natural
language questions simplified from the BIRD benchmark [25]:

Player(pid, pname, age) stores information about football
players and PlayerAttributes(pid, rating) stores information
about their overall ratings. The user asks the text-to-SQL model to
write a query to find players with the highest rating. The ground truth
query 𝑄1, as shown below, uses a sub-query to determine if there are
no higher ratings than the current player.

Q1: SELECT p1.pid , p1.pname FROM Player AS p1

INNER JOIN PlayerAttributes AS p2 ON p1.pid = p2.pid

WHERE NOT EXISTS (

SELECT * FROM PlayerAttributes p3

WHERE p2.rating < p3.rating)
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pid pname age
001 Abby 24 𝑟1
125 Burnie 21 𝑟2
853 Chen 30 𝑟3

(a) Player relation

pid rating
001 8.2 𝑠1
125 8.2 𝑠2
853 6.0 𝑠3

(b) PlayerAttributes relation

Abby
Burnie

(c) Result of ground truth query𝑄1

Abby

(d) Result of wrong query𝑄2

Figure 2: An example instance 𝐷1 to show that 𝑄1 and 𝑄2 in
Example 1 return different results.

While the text-to-SQL model may predict a wrong query 𝑄2, which
returns the first player after sorting the PlayerAttributes table
according to rating, and then joins the result with the Player table.
Q2: SELECT p1.pid , pname FROM Player AS p1 ,

(SELECT pid FROM PlayerAttributes

ORDER BY rating DESC LIMIT 1) AS p2

WHERE p1.pid = p2.pid

As captured by the instance𝐷1 in Figure 2,𝑄2 returns different results
from 𝑄1 when there are ties for the top-rated player, as the LIMIT 1
operator selects only the first one and excludes others with the same
highest rating. However, on the instance 𝐷2 shown in Figure 3, gener-
ated by the previous approach [39] (where we replaced the random
values with more readable ones), 𝑄1 and 𝑄2 return identical results.

Previous test-case-based approaches focus on generating test
cases to differentiate neighboring queries that vary by only a sin-
gle predicate or operator. For instance, Spider-TS [39] employs a
fuzzy testing method that randomly generates instances until all
considered neighboring queries produce results different from the
ground truth. However, this method often requires a longer run
time compared to others, as shown in Figure 1. These approaches
struggle to generate test cases that can distinguish queries whose
differences do not arise from specific predicate values (like 𝑄1 and
𝑄2 in our example).

Formal verification offers another way to prove SQL query equiv-
alence. We have seen several automatic equivalence-checking tools
based on formal methods in recent years [13, 15, 20, 35, 42]. Some of
these tools [12, 20] generate small symbolic inputs, execute queries
symbolically, and iteratively enlarge inputs to detect differences.
However, these methods face two key limitations: (i) limited SQL
feature support, and (ii) inefficiency on certain queries due to the
vast query input space (see Figure 1 and the example below).

Example 2. Consider the following query 𝑄3 generated by a text-
to-SQL model to answer the question in Example 1. It uses the aggre-
gate function MAX to find the highest overall rating among all players
and select players whose ratings are equal to this highest value.
Q3: SELECT p1.pid , p1.pname FROM Player AS p1

INNER JOIN PlayerAttributes AS p2 ON p1.pid = p2.pid

WHERE p2.rating = (

SELECT MAX(rating) FROM PlayerAttributes)

𝑄3 is equivalent to the ground truth query𝑄1; however, prior verification-
based methods [15, 20, 35] fail to prove this equivalence within a
timeout threshold (360 seconds in our experiment).

These issues prevent the adoption of the verification-based ap-
proaches in evaluating text-to-SQL models (see results in Section 5),
and people have been using the test-case-based approaches for auto-
matic text-to-SQL evaluation [39]. However, as shown in Example 1,
existing methods may lead to many false positives.

pid pname age
001 Abby 19 𝑟4
760 Burnie 26 𝑟5
566 Chen 25 𝑟6
515 Dolores 24 𝑟7

(a) Player relation

pid rating
001 6.4 𝑠4
515 8.1 𝑠5
566 8.6 𝑠6

(b) PlayerAttributes relation

Figure 3: An instance 𝐷2 that fails to distinguish 𝑄1 and 𝑄2.

Therefore, we aim to improve the test-case-based approach by
incorporating formal verification techniques to better capture the
query semantics. Our solution is also inspired by software testing
techniques that create test cases based on path coverage [4], whose
goal is to cover all execution paths in a program’s control-flow
graph. In the context of testing SQL queries, a query 𝑄 ’s execution
paths depend on its physical plan, whichmay bear little resemblance
to the query syntax, and the same query syntax may lead to very
different execution plans (e.g., sort-merge join vs. hash join). To
address this, we define the execution paths of an SQL query𝑄 based
on its logical plan and consider different behaviors of each query
operator as the branches during the execution of 𝑄 .
Our contributions. Our contributions are summarized below.
• We propose a framework for describing plan coverage in test

database instances for SQL queries by adapting path coverage to
query plans, with various coverage constraints capturing differ-
ent query operator behaviors.

• Using plan coverage, we define the test suite generation prob-
lem with different coverage requirements. We argue that the
plan coverage can be an indicator of the test case’s capability to
differentiate queries.

• Weencode operator coverage constraints as symbolic expressions
and generate test instances by solving them. To address limited
feature support and inefficiencies with large expressions, we
introduce a hybrid algorithm that speculatively assigns concrete
values to improve efficiency.

• We implement our test instance generation algorithms in ParSE-
val and evaluate their efficiency and effectiveness using LLM-
generated and human-crafted queries. ParSEval detects at least
8% more inequivalent queries than existing test-case-based meth-
ods while running 21× faster. Compared to verification-based
methods, it supports up to 40% more query pairs and achieves a
7× speedup.

2 PRELIMINARIES

In this paper, we consider a wide range of SQL queries that con-
tain common operators such as selection, projection, join, set/bag
operations, and group-by aggregation. We also consider more ad-
vanced SQL features, including ORDER BY, CASE WHEN, IN/NOT IN,
etc. More formally, for a database instance 𝐷 and a query 𝑄 , we
use 𝑄 (𝐷) to denote the output of 𝑄 on 𝐷 . Let Γ denote a set of
integrity constraints on the schema of 𝐷 ; we write 𝐷 |= Γ to denote
that 𝐷 comply with Γ. We consider the following standard integrity
constraints: keys, foreign keys, unique, and not null.

2.1 Query Equivalence and Text-to-SQL

Evaluation

Let R be a database schema that contains𝑚 relations 𝑅1, 𝑅2, · · · , 𝑅𝑚 .
Let A be the set of all attributes in R. Each relation 𝑅𝑖 is defined
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on a subset of attributes 𝐴𝑖 ⊆ A. Let dom(𝐴) be the domain of
attribute 𝐴 ∈ A. Given the database schema R, let 𝐷 be a given
database of R, and let the corresponding relations of 𝑅1, 𝑅2, · · · , 𝑅𝑚
be 𝑅𝐷1 , 𝑅

𝐷
2 , · · · , 𝑅

𝐷
𝑚 , where 𝑅𝐷

𝑖
is a collection of tuples defined on

𝑑𝑜𝑚(𝐴𝑖 ). The input size of database𝐷 is denoted as |𝐷 | = ∑
1≤𝑖≤𝑚 |𝑅𝐷

𝑖
|.

Let 𝑄1 and 𝑄2 be two queries, R be a database schema, and Γ be a
set of integrity constraints. We say that𝑄1 and𝑄2 are semantically
equivalent, denoted 𝑄1 ≡R,Γ 𝑄2, if, over every database instance of
R that complies with Γ, they return identical results. When there
exists a database instance 𝐷′ of the schema R and 𝐷′ |= Γ such that
𝑄1 (𝐷′) ≠ 𝑄2 (𝐷′), we are sure that 𝑄1 .R,Γ 𝑄2, and we call 𝐷′ a
counterexample for 𝑄1 and 𝑄2.

Definition 1 (Test Suite Eqivalence). A test suite 𝑆 is a set
of database instances {𝐷1, 𝐷2, · · · , 𝐷 |𝑆 | } of a given schema R that
comply with a set of integrity constraints Γ. For two queries 𝑄1 and
𝑄2, we say that 𝑄1 and 𝑄2 are 𝑆-equivalent, denoted as 𝑄1 ≡𝑆 𝑄2,
if 𝑄1 (𝐷𝑖 ) = 𝑄2 (𝐷𝑖 ) on every 𝐷𝑖 ∈ 𝑆, 1 ≤ 𝑖 ≤ |𝑆 |. The test suite
equivalence result of 𝑄1 and 𝑄2 is a (1) True Positive: if 𝑄1 ≡𝑆 𝑄2∧
𝑄1 ≡R,Γ 𝑄2, (2) False Positive: if 𝑄1 ≡𝑆 𝑄2∧ 𝑄1 .R,Γ 𝑄2, (3) True
Negative: if 𝑄1 .𝑆 𝑄2∧ 𝑄1 .R,Γ 𝑄2.

We say that a test suite 𝑆 distinguishes two queries 𝑄1 and 𝑄2 if
there exists a counterexample 𝐷𝑖 ∈ 𝑆 such that 𝑄1 (𝐷𝑖 ) ≠ 𝑄2 (𝐷𝑖 ).
In the context of text-to-SQL evaluation, a benchmark involves a
set of 𝑛 pairs {(𝑄𝑖

𝑛𝑙
, 𝑄𝑖

𝑔) | 1 ≤ 𝑖 ≤ 𝑛}, where 𝑄𝑖
𝑛𝑙

is a question in
natural language, and 𝑄𝑖

𝑔 is the corresponding ground truth query.
A text-to-SQL model M is evaluated on the benchmark by writing a
query M(𝑄𝑖

𝑛𝑙
,R) (M(𝑄𝑖

𝑛𝑙
) for short) for each 𝑄𝑖

𝑛𝑙
.

Example 3. Continue with the schema, natural language question,
queries, and database instances in previous examples. The pair of ques-
tion and ground truth query, (𝑄1

𝑛𝑙
, 𝑄1

𝑔) = (“find the player with the
highest rating”, 𝑄1) is an example text-to-SQL benchmark. Suppose
that a text-to-SQL model M1 returns M1 (𝑄1

𝑛𝑙
) = 𝑄2, another model

M2 returns M2 (𝑄1
𝑛𝑙
) = 𝑄3, a test suite 𝑆1 = {𝐷1}, and a test suite

𝑆2 = {𝐷1, 𝐷2}. Since 𝑄1 and 𝑄3 are equivalent, we have 𝑄1 ≡𝑆1 𝑄3
and 𝑄1 ≡𝑆2 𝑄3 ; however, we have 𝑄1 ≡𝑆1 𝑄2 but 𝑄1 .𝑆2 𝑄2.

By definition, semantic equivalence implies test suite equiva-
lence, i.e., for two queries𝑄1,𝑄2, and a test suite 𝑆 with the schema
R and integrity constraints Γ, we have 𝑄1 ≡R,Γ 𝑄2 =⇒ 𝑄1 ≡𝑆 𝑄2,
while the reverse does not hold. Hence, test suite equivalence ap-
proximates semantic equivalence, and such approximation will
introduce only False Positives (two queries are 𝑆-equivalent for a
given test suite 𝑆 but not semantically equivalent) but no False
Negatives (it is impossible that two queries are not 𝑆-equivalent but
semantically equivalent). In contrast, 𝑄1 ≡𝑆 𝑄2 may still hold for
two inequivalent queries (False Positive is possible).

Definition 2 (Test Suite Generation Problem). Given a pair
of queries𝑄1 and𝑄2, schemaR, and integrity constraints Γ, the goal of
the Test Suite Generation Problem is to find a test suite 𝑆 of the schema
R such that 𝐷 |= Γ for all 𝐷 ∈ 𝑆 and the difference between test suite
equivalence and semantic equivalence, 1[𝑄1 ≡𝑆 𝑄2] − 1[𝑄1 ≡R,Γ
𝑄2], is minimized.

In the context of text-to-SQL evaluation, wewould like to prepare
a test suite such that for each {(𝑄𝑛𝑙 , 𝑄𝑔)} pair, it can find as many
queries that are not semantically equivalent to 𝑄𝑔 as possible:

maximize 1(𝑄𝑔 .R,Γ M(𝑄𝑛𝑙 )) · 1(𝑄𝑔 .𝑆 M(𝑄𝑛𝑙 ))
s.t. 𝑆 = {𝐷1, . . . , 𝐷 |𝑆 | }
where 𝐷 𝑗 |= Γ, 𝑗 = 1, . . . , |𝑆 |

(1)

Note that the objective above only considers True Negative be-
causewhen query pairs are given, the term of True Positives (1[𝑄𝑔 ≡R,Γ
M(𝑄𝑛𝑙 )] · 1[𝑄𝑔 ≡𝑆 M(𝑄𝑛𝑙 )]) will be constant (since 1[𝑄𝑔 ≡R,Γ
M(𝑄𝑛𝑙 )] = 1[𝑄𝑔 ≡𝑆 M(𝑄𝑛𝑙 )] = 1).

However, it is infeasible to enumerate all possible queries written
by models in practice. Therefore, prior test-case-based approaches
consider neighbor queries of the ground truth query bymutations in
query predicates and operators [31, 33, 39] to enumerate the candi-
date query space. Next, we will introduce these practical strategies.

2.2 Coverage-Guided Testing

In software testing, test coverage measures the percentage of soft-
ware code that is executed during the tests [4]. For SQL, the DBMS
evaluates a SQL query differently from how it is rewritten syn-
tactically (the physical query plan vs. the query syntax), making
coverage-guided testing for SQL more challenging than impera-
tive or functional programming languages. There are also cases
where one operator’s evaluation affects another in the query (e.g.,
the actual sorting algorithm depends on the output size of the op-
erator below sorting). Hence, the variety of physical plans poses
unnecessary complexities for testing query equivalence, and prior
works [31, 39] focus on testing selection predicates or single oper-
ators. For example, state-of-the-art test suite generation method
used in text-to-SQL benchmarks [39] considers Clause Coverage, i.e.,
for each clause C in the selection or join condition in the form of
𝑥 𝑜𝑝 𝑦 or 𝑥 𝑜𝑝 𝑐 where 𝑥,𝑦 are attributes in relations, 𝑐 is a constant,
and 𝑜𝑝 is a binary operator, a test database instance 𝐷 is said to
cover the clause C if, when evaluating on 𝐷 , queries with mutant
clauses of C return different results than the original query.

Example 4. Consider the query below on the same Player and
PlayerAttributes tables as in Example 1 that finds all players with
an age below 25 and a rating above 8.

Q4: SELECT p1.name FROM Player p1, PlayerAttributes p2

WHERE p1.age < 25 AND p2.rating > 8 AND p1.pid = p2.pid

Clause Coverage considers mutants of each clause in the query, e.g.,
changing the condition p1.age < 25 to p1.age ≥ 25, p1.age < 24
or other mutants with neighboring constant numbers and comparison
operators; or changing p2.rating > 8 to clauses like p2.rating ≥
8 and p2.rating > 8.1. The test database instance should contain
players that satisfy different clause mutants and hence differentiate
queries with these mutants from the original 𝑄4.

Similar to Clause Coverage, prior methods also consider Single
Operator Coverage [31]. For an operator O in a ground truth query
𝑄 , a test instance 𝐷 is said to cover O if 𝑄 and the mutant query 𝑄 ′

that replaces Owith a mutant operator O′ return different results on
𝐷 . These methods consider each clause or operator independently
and, hence, fail to exercise complex predicates with disjunctions.
They either lack a formal discussion on the space of query mu-
tants/neighbors or encode query mutants in an ad-hoc way.
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2.3 Modeling Query Semantics

Next, we introduce how to model the semantics of the query. Un-
like existing test data generation methods that consider the syn-
tax of queries or the semantics of only one operator, equivalence
provers [13, 15, 20, 36, 42] model the semantics of entire queries
to prove query equivalence. These provers transform a SQL query
into a symbolic expression, which encodes the query output us-
ing K-relations [18] or the follow-up U-semirings [11], to model a
relation and capture the multiplicity of tuples in a relation.

In this paper, we base our modeling of query semantics on a
recent extension of U-semirings by Ding et al. [15], which leads
to a state-of-the-art SQL equivalence solver that composes the U-
semiring expression (U-expression for short) from each relational
query operator. Under U-semiring, a relation is modeled as a func-
tion that maps tuples to a commutative semiring (U, 0, 1, +,×).
Extending K-relations with ∥·∥, not(·) and the unbounded sum-
mation, U-semiring is able to model the deduplication operator,
negation, and projection, and thus models aggregate functions and
set/bag operations under bag semantics. Table 1 lists some exam-
ple U-expressions for relational operators. For a predicate 𝜙 , the
U-expression [𝜙] is defined by [𝜙] = 1 (if 𝜙 holds) or [𝜙] = 0 (other-
wise). For a tuple 𝑡 and a set of attributes 𝐴, 𝑡 .𝐴 denotes the values
of attributes 𝐴 of 𝑡 . For more details of the semiring frameworks,
readers can refer to prior works [11, 18].

Example 5. Consider again query𝑄4 from Example 4, which finds
players under age 25 with overall ratings above 8. Its logical plan is
shown in Figure 4. The U-expressions for the two selection operators are
𝑓1 (𝑡) ≔ ⟦𝑝1⟧(𝑡) × [𝑡 .𝑎𝑔𝑒 < 25] and 𝑓2 (𝑡) ≔ ⟦𝑝2⟧(𝑡) × [𝑡 .𝑟𝑎𝑡𝑖𝑛𝑔 >

8], resp., where ⟦𝑝1⟧(𝑡) and ⟦𝑝2⟧(𝑡) return the tuple’s multiplicity in
relations 𝑝1 and 𝑝2. During evaluation, we ground the symbols with
concrete values. For example, on the instance 𝐷1 in Figure 2, 𝑓1 (𝑡)
evaluates to 1 for the only two tuples 𝑟1 and 𝑟2 that have age values
less than 25, since their multiplicities (i.e., ⟦𝑝1⟧(𝑟1) and ⟦𝑝1⟧(𝑟2)) in
the base relation Player are 1. Similarly, 𝑓2 (𝑡) evaluates to 1 for two
tuples 𝑠1 and 𝑠2 with ratings above 8.

Then the U-expression for the inner join is denoted as 𝑓3 (𝑡) ≔∑
𝑡1,𝑡2 [𝑡 = 𝑡1 · 𝑡2] × 𝑓1 (𝑡1) × 𝑓2 (𝑡2) × [𝑡1.𝑝𝑖𝑑 = 𝑡2.𝑝𝑖𝑑]. On the

instance 𝐷1, the join operator returns two tuples, 𝑟1 · 𝑠1 and 𝑟2 · 𝑠2,
and 𝑓3 (𝑟1 · 𝑠1) = 𝑓1 (𝑟1) × 𝑓2 (𝑠1) × [𝑟1 .𝑝𝑖𝑑 = 𝑠1 .𝑝𝑖𝑑] = 1, 𝑓3 (𝑟2 · 𝑠2) =
𝑓1 (𝑟2) × 𝑓2 (𝑠2) × [𝑟2 .𝑝𝑖𝑑 = 𝑠2 .𝑝𝑖𝑑] = 1. Finally the projection is
encoded as 𝑓4 (𝑡) ≔

∑
𝑡1 𝑓3 (𝑡1) × [𝑡 = 𝑡1.𝑛𝑎𝑚𝑒].

In this way, the execution of logical query operators is symbol-
ically encoded as U-expressions. Hence, we can define the “code
coverage” of SQL queries based on the logical plan and the corre-
sponding U-expressions.

3 MODEL FOR QUERY COVERAGE

In this section, we present the desiderata of our query coverage
model in the ParSEval framework. The model formalizes plan cov-
erage based on operator semantics, and we generate test instances
by solving constraints derived from different plan coverage criteria.

3.1 Semantic Operator Coverage

As mentioned in section 2.2, existing test suite generation methods
only consider Clause Coverage for selection predicates or Single

Operator Coverage defined in an ad-hoc way, which leads to false
positives in query equivalence evaluation. To address this, we draw
inspiration from prior work [8, 17, 27] and propose to look into how
the queries are evaluated from bottom to top in the logical query
plan and consider all possible ways in which each query operator is
evaluated. Unlike CInsGen [17, 27], which only considers possible
ways in which one query returns non-empty results, our approach
also accounts for cases when query operators fail to return results,
which can lead to more test instances to help distinguish the mutant
queries from the ground truth query. Similarly, QAGen [8] focuses
on generating instances that satisfy the multiplicity constraints in
the query (e.g., COUNT(*) > 1000) or specified by the user. On the
contrary, our approach considers not only satisfying themultiplicity
constraints (which is essential for the query to return non-empty
results) but also the cases when these constraints are not satisfied.

To model how a query operator evaluates, inspired by the encod-
ing of query semantics using U-expressions (as shown in Table 1)
in existing equivalence provers [11, 15], we propose the notion of
semantic coverage of a query operator O, which considers:

(1) Predicate: if O has a predicate 𝜙 , e.g., when evaluating a selec-
tion operator on a relation 𝑅, the evaluation of O may trigger
the “positive branch” when 𝜙 evaluates to true and the “neg-
ative branch” when 𝜙 evaluates to false. For predicates with
disjunctions, multiple ways can trigger each branch.

(2) Multiplicity: if O considers the multiplicity of tuples (deduplica-
tion, set/bag operation, group-by, aggregation), changing the
multiplicity of an input tuple may make a difference.

(3) Grouping: if O involves grouping tuples (projection, group-by),
i.e., when evaluating O, the output tuple is derived from a group
of input tuples, and the number of groups and the size of each
group may make a difference.

(4) Binary: if O has two input relations 𝑅1 and 𝑅2, the evaluation
of O depends on how the multiplicity of an output tuple is
derived: (i) from both 𝑅1 and 𝑅2 (inner join, intersection, union,
difference), (ii) from only one input (difference, union), or (iii)
from the cases that require the non-existence of the (part of
the) output tuple in one input (set difference, outer join).

Considering all these above aspects, ParSEval divides the evalu-
ation of each operator into a few cases and we can define Coverage
Constraints and Semantic Operator Coverage in a systematic way.

Definition 3 (Coverage Constraints). Let 𝑄 be a query plan
tree rooted at an operator O, 𝑅 be the input relation to O (or𝑅1, 𝑅2 when
O is binary), 𝑅𝑜𝑢𝑡 be the output relation of O, a coverage constraint 𝛽
for O is a U-expression in the format of

(1) (Predicate)
∑
𝑡 ∈𝑅 [𝜙 ′ (𝑡)] ×𝑅(𝑡) > 0 or

∑
𝑡𝑙 ∈𝑅1,𝑡𝑟 ∈𝑅2 [𝜙

′ (𝑡𝑙 , 𝑡𝑟 )] ×
𝑅1 (𝑡𝑙 ) × 𝑅2 (𝑡𝑟 ) > 0 where 𝜙 ′ is a variant of the selection or join
condition 𝜙 .

(2) (Multiplicity)
∑
𝑡 ∈𝑅𝑜𝑢𝑡 [𝑅𝑜𝑢𝑡 (𝑡) > 𝑐] > 0 where 𝑐 ∈ N is a

parameter.
(3) (Grouping)

∑
𝑡 ∈𝑅𝑜𝑢𝑡 ∥𝑅𝑜𝑢𝑡 (𝑡)∥ > 𝑐 where 𝑐 ∈ N is a parameter.

(4) (Binary-nojoin)
∑
𝑡𝑙 ∈𝑅1 [

∑
𝑡𝑟 ∈𝑅2 [𝜙 (𝑡𝑙 , 𝑡𝑟 )] × 𝑅1 (𝑡𝑙 ) × 𝑅2 (𝑡𝑟 ) =

0] > 0, where 𝜙 is the join condition; may swap 𝑅1 and 𝑅2.
(5) (Binary-set/bag)

∑
𝑡𝑙 ∈𝑅1

∑
𝑡𝑟 ∈𝑅2 [𝑡𝑙 = 𝑡𝑟 ] × [𝑅1 (𝑡𝑙 ) op1 0]×

[𝑅2 (𝑡𝑟 ) op2 0]× [𝑅1 (𝑡𝑙 ) op3 𝑅2 (𝑡𝑟 )] > 0 where op1, op2, op3 are
comparison operators; may skip the last clause [𝑅1 (𝑡𝑙 ) op3 𝑅2 (𝑡𝑟 )].
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Table 1: Example of U-expression definitions [11, 15, 36] for part of the query operators considered in this paper.

Query Operator U-expression notation Explanation Example SQL query Example U-expression 𝑓 (𝑡 )

Relation 𝑅 ⟦𝑅⟧(𝑡 ) ⟦𝑅⟧(𝑡 ) is a function that returns the multiplicity
of tuple 𝑡 in relation 𝑅.

SELECT * FROM R ⟦𝑅⟧(𝑡 )

Selection 𝜎𝜙 (𝑅) ⟦𝑅⟧(𝑡 ) × [𝜙 (𝑡 ) ] 𝜙 (𝑡 ) denotes encoding the predicate𝜙 with tuple
𝑡 ; [𝑏 ] returns 1 if the predicate 𝑏 is true. Other-
wise, [𝑏 ] returns 0.

SELECT * FROM R WHERE R.x
< 500

⟦𝑅⟧(𝑡 ) × [𝑡 .𝑥 < 500]

Projection 𝜋𝐿 (𝑅)
∑
𝑡 𝑓 (𝑡 )

∑
𝑡 𝑓 (𝑡 ) returns the sum of 𝑓 (𝑡 ) for possible

tuple 𝑡 ∈ 𝑅, where 𝑓 is a function: 𝑡𝑢𝑝𝑙𝑒 → N.
SELECT R.x FROM R

∑
𝑡1 ( [𝑡 = 𝑡1 .𝑥 ] × ⟦𝑅⟧(𝑡1 ) )

Inner Join 𝑅 Z𝜙 𝑆
∑
𝑡1,𝑡2 𝑓𝑙 (𝑡1 ) ×

𝑓𝑟 (𝑡2 ) × 𝜙 (𝑡1, 𝑡2 )
𝑒1 ×𝑒2 denotes the product of two U-expressions. SELECT * FROM R JOIN S ON

R.x0 = S.y0

∑
𝑡𝑙 ,𝑡𝑟

( [𝑡 = 𝑡𝑙 · 𝑡𝑟 ] × ⟦𝑅⟧(𝑡𝑙 ) × ⟦𝑆⟧(𝑡𝑟 ) ×
[𝑡𝑙 .𝑥0 = 𝑡𝑟 .𝑦0] × not( [IsNull(𝑡𝑙 .𝑥0) ] ) )

Table 2: Coverage categories and example coverage constraints for each operator type.

Operator type and example Categories Example Coverage Constraints Explanation

Selection: 𝜎𝜙 (𝑅) Predicate positive:
∑
𝑡 𝑅 (𝑡 ) × [𝜙 (𝑡 ) ] > 0, negative:

∑
𝑡 𝑅 (𝑡 ) × (¬𝜙 (𝑡 ) ) > 0 There exists a tuple passes condition 𝜙 ; there exists a tuple does not.

Join (Z, ⊲⊳, ⊲⊳ , ⊲⊳ , ×): 𝑅 Z
𝑆

Predicate, Binary positive:
∑
𝑡𝑙
∑
𝑡𝑟 [𝑅 (𝑡𝑙 ) × 𝑆 (𝑡𝑟 ) × 𝜙 (𝑡𝑙 , 𝑡𝑟 ) ] > 0, negative:∑

𝑡𝑙
∑
𝑡𝑟 𝑅 (𝑡𝑙 ) × 𝑆 (𝑡𝑟 ) × [¬𝜙 (𝑡𝑙 , 𝑡𝑟 ) ] > 0

There exists a pair of tuples from 𝑅 and 𝑆 that can join; there exists a
tuple from 𝑅 that does not join with any tuple in 𝑆 .

Projection, Deduplicate (𝜋𝐿 ,
𝛿 ): 𝛿 (𝑅)

Multiplicity, Grouping positive:
∑
𝑡 [ (

∑
𝑡 ′ [𝑡 = 𝑡 ′ ] × 𝑅 (𝑡 ′ ) ) > 1] > 0,

∑
𝑡 ∥

∑
𝑡 ′ [𝑡 =

𝑡 ′ ] × 𝑅 (𝑡 ′ ) ∥ > 1
Before deduplication, there exists one tuple has duplicates; there exists
at least two distinct tuples/

Set/Bag operators
(∪,∩, −,⊎,∩+ ,⊖): 𝑅 − 𝑆

Multiplicity, Binary positive:
∑
𝑡 [𝑅 (𝑡 ) > 0] × [𝑆 (𝑡 ) = 0] > 0, negative:

∑
𝑡 [𝑅 (𝑡 ) >

0] × [𝑆 (𝑡 ) > 0] > 0
There exists one tuple in 𝑅 but not in 𝑆 ; there exists one tuple in both
𝑅 and 𝑆 .

Group-by Aggregation:
(𝛾L,agg(y) (𝑅))

Multiplicity, Grouping positive:
∑
𝑡 [ (

∑
𝑡 ′ [𝑡 .𝐿 = 𝑡 ′ .𝐿] × 𝑅 (𝑡 ′ ) ) > gs] > 0 There exists one group whose size is greater than the threshold.

πP.name

P PA

σPA.rating>8

β2 β4

β7

β6

⋈P.id=PA.id

σP.age<30

β1 β3

β5

O4: πP1.name

Player 
as P1

O2:  σP2.rating>8

O3: ⋈P1.id=P2.id

O1:  σP1.age<25

PlayerAttributes 
as P2

β7

β4β3β2 β1

β6 β5

𝛽1 :
∑

𝑡⟦𝑃1 (𝑡 )⟧ × [𝑡 .𝑎𝑔𝑒 < 25] > 0
𝛽2 :

∑
𝑡⟦𝑃1 (𝑡 )⟧ × [𝑡 .𝑎𝑔𝑒 ≥ 25] > 0

𝛽3 :
∑

𝑡⟦𝑃2 (𝑡 )⟧ × [𝑡 .𝑟𝑎𝑡𝑖𝑛𝑔 > 8] > 0
𝛽4 :

∑
𝑡⟦𝑃2 (𝑡 )⟧ × [𝑡 .𝑟𝑎𝑡𝑖𝑛𝑔 ≤ 8] > 0

𝑓1 (𝑡1 ) = ⟦𝑃1 (𝑡1 )⟧ × [𝑡1 .𝑎𝑔𝑒 < 25]
𝑓2 (𝑡2 ) = ⟦𝑃2 (𝑡2 )⟧ × [𝑡2 .𝑟𝑎𝑡𝑖𝑛𝑔 > 8]
𝑓3 (𝑡1, 𝑡2 ) = [𝑡1 .𝑝𝑖𝑑 = 𝑡2 .𝑝𝑖𝑑 ]
𝛽5 :

∑
𝑡1,𝑡2 𝑓1 (𝑡1 ) × 𝑓2 (𝑡2 ) × 𝑓3 (𝑡1, 𝑡2 ) > 0

𝛽6 :
∑

𝑡1 [
∑

𝑡2 𝑓1 (𝑡1 ) × 𝑓2 (𝑡2 ) × 𝑓3 (𝑡1, 𝑡2 ) = 0] > 0
𝛽7 : same as 𝛽5 (returns non-empty results)

Figure 4: Query plan and example cov. constraints for 𝑄4.

Moreover, we say a coverage constraint 𝛽 for operator O represents a
(i) positive branch if it represents a case where O returns a non-empty
result or (ii) negative branch otherwise.

Figure 2 shows the coverage constraints of some relational oper-
ators. Intuitively, a coverage constraint encodes how an operator
evaluates over certain input tuple(s). Operators like projection,
group-by, and aggregation always return non-empty results, so
there are no negative branches in these cases. In contrast, binary
operators are more complex: generating output tuples requires sat-
isfying certain multiplicity and binary constraints. For example,
consider bag-difference (𝑅 ⊖ 𝑆), a tuple 𝑡 would appear in the result
as long as its multiplicity in 𝑅 is greater than that in 𝑆 ; while for the
negative branches, the tuple 𝑡 will be excluded when its multiplicity
in 𝑅 is smaller than or equal to that in 𝑆 , or it only exists in 𝑆 .

Furthermore, given a concrete database instance 𝐷 and a U-
expression 𝐸 derived from a query 𝑄 , we can evaluate 𝐸 on 𝐷

(denoted as 𝐸𝐷 ) in a bottom-up fashion, the same as when evaluat-
ing the logical query plan; for the given instance 𝐷 , the domain for
every summation

∑
𝑡 is fixed (𝑡 iterates over either a base table or

the result table of an operator in 𝑄).

Example 6. Consider again the query 𝑄4 in Example 4 and its
logical plan shown in Figure 4. For each query operator, example
coverage constraints in U-expressions are in the right side of Figure 4.
For instance, to make the selection operator O1 return a non-empty
result, an input instance should contain a tuple that passes the selection
condition 𝑎𝑔𝑒 < 25, captured by satisfying the constraint 𝛽1 on the
“positive branch”; the “negative branch” is denoted by 𝛽2. To evaluate

these constraints for O1 on𝐷1 from Figure 2, we iterate over all tuples
in the Player table, and it turns out that we have [𝛽1]𝐷1 = 1 (𝑟1: [001,
“Abby”, 24] and 𝑟2: [125, “Burnie”, 21] pass the selection predicate)
and [𝛽2]𝐷1 = 1 (𝑟3: [853, “Chen”, 30] does not pass the selection
predicate). Similarly, for BO2 , we have [𝛽3]𝐷1 = [𝛽4]𝐷1 = 1. For the
join operator, the constraint 𝛽5 on the “positive branch” indicates that
there are tuples from both sides that can join. Similarly, 𝛽6 on the
“negative branch” represents the case where one tuple exists in the
left relation that cannot join with any tuple in the right relation. By
iterating over all tuples output by the selection operators, we have
[𝛽5]𝐷1 = 1 and [𝛽6]𝐷1 = 0, since both tuples 𝑟1, 𝑟2 from O1 can join
with a tuple from O2.

Definition 4 (Semantic Operator Coverage). Let 𝑄 be a
query plan tree rooted at an operator O, 𝐷 be a database instance,
BO be a set of coverage constraints, the semantic operator coverage
CovOprBO

(O, 𝐷) for an operator O of 𝐷 is the set of pairs {(𝛽, 𝑙) | 𝛽 ∈
BO} where 𝑙 ∈ {0, 1} indicates the evaluation result of [𝛽]𝐷 .

Example 7. Following Example 6 and let BO1 = {𝛽1, 𝛽2}, BO2 =

{𝛽3, 𝛽4},BO3 = {𝛽5, 𝛽6} be the sets of constraints we consider for oper-
ators O1, O2, O3 in the query plan, resp. We have the semantic operator
coverage CovOprBO1

(O1, 𝐷1) = {(𝛽1, 1), (𝛽2, 1)}, CovOprBO2
(O2, 𝐷1) =

{(𝛽3, 1), (𝛽4, 1)}, CovOprBO3
(O3, 𝐷1) = {(𝛽5, 1), (𝛽6, 0)}.

Note that Clause Coverage and mutant operator coverage in prior
works [31, 39] can be regarded as special cases of Semantic Operator
Coverage. For example, Spider-TS [40] generates test instances by
considering predicates𝜙 ′ that differ in one clause from the selection
predicate 𝜙 in the ground truth query.

With the logical plan of a query and the definition of semantic
operator coverage, we can now define the plan coverage of a test
database instance for a query. Although a query may have many dif-
ferent equivalent logical plans (e.g., one may push down a selection
operator to the bottom of a plan), the choice of the specific logical
plan does not affect our coverage model. In our implementation,
ParSEval obtains the logical plan using Calcite [7].

Definition 5 (Query Plan Coverage). Let 𝑄 be a query plan
tree, 𝐷 be a database instance, B =

⋃
O BO be a set of coverage con-

straints on each operator in 𝑄 , the query plan coverage CovB (𝑄, 𝐷)
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for 𝑄 of 𝐷 with regard to B is the union of the semantic operator
coverage CovOprBO

(O, 𝐷) for each operator O in 𝑄 .

When it is clear from the context, we omit the set of coverage con-
straints in the notation above and use Cov(𝑄, 𝐷) and CovOpr(O, 𝐷).

3.2 Coverage-based Test Suite Generation

With the plan coverage definition on a single database instance, we
can now define the coverage of a test suite.

Definition 6 (Coverage of Test Suites). Let 𝑄 be a query, 𝑆
be a set of database instances {𝐷1, 𝐷2, . . . , 𝐷 |𝑆 | }, and B be the set
of coverage constraints, the coverage for 𝑄 of 𝑆 with respect to B, is
the set of {Cov(𝑄, 𝐷1), ..., Cov(𝑄, 𝐷 |𝑆 | )} (each Cov(𝑄,𝐷𝑖 ) is a set of
(𝛽, 𝑙) pairs as in Definition 4, where 𝛽 is a coverage constraint for an
operator in 𝑄 and 𝑙 is the evaluation result of 𝛽 on the instance 𝐷𝑖 ).

Example 8. Continue with Example 7, let B be the set of all
coverage constraints in Figure 4, the query plan coverage Cov(𝑄4, 𝐷1)
for𝑄4 of𝐷1 in the running example is {(𝛽1, 1), (𝛽2, 1) , (𝛽3, 1), (𝛽4, 1),
(𝛽5, 1), (𝛽6, 0), (𝛽7, 1)}, and Cov(𝑄4, 𝐷2) = {(𝛽1, 1), (𝛽2, 1) , (𝛽3, 1),
(𝛽4, 1), (𝛽5, 1), (𝛽6, 1), (𝛽7, 1)}. Thus, a test-suite consisting of𝐷1 and
𝐷2 will have coverage {Cov(𝑄4, 𝐷1), Cov(𝑄4, 𝐷2)} (set of two sets).

Recall that in Definition 2, the goal of the Test Suite Genera-
tion problem is to minimize the difference between the Test Suite
accuracy and semantic accuracy, which is further reduced to the
maximization of the number of True Negatives discovered by the
test suite. In other words, since test suites provide the guarantee
that when two queries return different results, they must not be
equivalent, we would like to focus on disproving the equivalence
of as many (ground truth query, predicted query) pairs as possible.
Nevertheless, there is no direct way to solve the optimization prob-
lem unless we can enumerate all possible SQL queries and have a
symbolic execution engine that supports all of them. To this end,
to efficiently generate test suites that maximize the objective, we
propose using the query plan coverage as an indicator of the test
suite’s capability to capture inequivalent queries. Now, the opti-
mization is to maximize the total number of different coverages for
each ground truth query 𝑄𝑔 .

maximize |Cov(𝑆,𝑄𝑔) |
s.t. 𝑆 = {𝐷1, . . . , 𝐷 |𝑆 | }
where 𝐷 𝑗 |= Γ, 𝑗 = 1, . . . , |𝑆 |

(2)

In other words, ideally, we would like to find a complete test suite
that satisfies as many as different subsets of coverage constraints
for each ground truth query. However, the number of test instances
and the size of each instance matter in terms of execution time.
Hence, we would like to find small test suites.
Relaxed completeness.While the above optimization goal allows
us to find a complete set of test suites by considering every pos-
sible combination of the coverage constraints of the ground truth
query, the number of database instances will be exponential to the
number of coverage constraints, leading to significant computa-
tional overhead. Therefore, to keep a small yet comprehensive set of
test database instances, we may consider individual coverage con-
straints instead of the combination of coverage constraints to relax
the requirement of the completeness of the coverage constraints.
This gives us a different optimization objective:

pid pname age mul.
𝑥1 𝑝1 𝑎1 𝑚1
𝑥2 𝑝2 𝑎2 𝑚2

𝑥1 ≠ 𝑥2

(a) Player relation (𝑃1)

pid rating mul.
𝑦1 𝑟1 𝑛1
𝑦2 𝑟2 𝑛2

𝑦1 ≠ 𝑦2

(b) PlayerAttributes relation (𝑃2)

Figure 5: An example symbolic instance 𝐼1.

minimize |𝑆 |

s.t.
|𝑆 |⋃
𝑗=1

{𝛽 | (𝛽, 1) ∈ Cov(𝑄𝑔, 𝐷 𝑗 )} = B

where 𝑆𝑖 = {𝐷1, . . . , 𝐷 |𝑆 | }, 𝐷 𝑗 |= Γ, 𝑗 = 1, ..., |𝑆 |

(3)

The new optimization problem in Equation (3) considers each
coverage constraint individually and only requires that each cover-
age constraint is satisfied by one test instance in the test suite. We
may obtain a solution to the optimization by post-processing the
solution to Equation (2), which requires solving a set cover problem
over the set of instances in the solution to Equation (2). However,
such a post-processing solution does not improve the efficiency.

4 PLAN-AWARE TEST DATA GENERATION

In this section, we will present practical algorithms for constructing
instances to satisfy coverage constraints using constraint solving.

4.1 Overview

For a query plan tree𝑄 , Figure 2 gives examples of different evalua-
tion branches for each operator to help consider possible behaviors
of query operators. We aim to construct a test suite in which each
instance satisfies different combinations of coverage constraints.
Prior works like Spider-TS [39] only consider clause coverage and
use fuzzy testing, leading to accuracy and performance issues. To
address this, as illustrated in Figure 6, ParSEval parses the query
to obtain U-Expressions, and then encodes the resulting coverage
constraints into SMT constraints over variables in a symbolic in-
stance. Then, we can populate the database instance with values
from the solution to the SMT constraints.
Symbolic Instance [12, 22]. A symbolic table 𝑇𝑖 with a relational
schema 𝑅𝑖 is a collection of tuples where each tuple 𝑡 ∈ 𝑇𝑖 and
each attribute 𝐴 ∈ 𝐴𝑡𝑡𝑟 (𝑅𝑖 ), 𝑡 [𝐴] is either a symbolic variable, a
constant from 𝐷𝑜𝑚(𝐴), or the NULL value. Each 𝑡 is annotated with
a multiplicity attribute, which is the formula that evaluates to a
non-negative integer. Moreover, 𝑇𝑖 is also annotated with symbolic
constraints in the form of First Order Logic (FOL) expressions that
tuples in𝑇𝑖 must satisfy, for example, the unique or key constraints.
A symbolic instance consists of a collection of symbolic tables and
symbolic constraints similar to those in each 𝑇𝑖 , like foreign key
constraints. Figure 5 shows an example of a symbolic instance,
where the key constraints are encoded by 𝑥1 ≠ 𝑥2 and 𝑦1 ≠ 𝑦2.
Evaluating Queries on Symbolic Tables.While U-expressions
can be regarded as symbolic representations that encode query
outputs using input tuples (see Table 1), it is not straightforward to
derive the outputs from base tables. Hence, to generate symbolic
formulas from coverage constraints, we built a symbolic execution
engine to obtain symbolic tables as query results. In certain cases
(e.g., base table, selection, deduplication, etc.), the result table is
a copy of the input table with the multiplicity formula updated
the same way as in Table 1. However, in some cases, we may be
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3

𝛽1:: 𝑃1(𝑡) ×[𝑡. 𝑎𝑔𝑒 < 25]
!

Constraint
Construction

UNSAT

𝛽2:: 𝑃1(𝑡) ×[𝑡. 𝑎𝑔𝑒 ≥ 25]
!

𝛽3:: 𝑃2(𝑡) ×[𝑡. 𝑟𝑎𝑡𝑖𝑛𝑔 > 8]
!

⋯ ⋯

< 𝛽1, 𝛽2, 𝛽3 > < 𝛽1, 𝛽2	 > ⋯

… 𝑟𝑎𝑡𝑖𝑛𝑔

… 8.5
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… 𝑎𝑔𝑒

… 20
26

Figure 6: Workflow of ParSEval.

O4: πP1.name

Player 
as P1

O2:  σP2.rating>8

O3: ⋈P1.id=P2.id

O1:  σP1.age<25

PlayerAttributes 
as P2

pname mul.
𝑝1 𝑚41 :𝑚31 +𝑚32 + (𝑚33 +𝑚34 ) × [𝑝1 = 𝑝2 ]
𝑝2 𝑚42 : (𝑚33 +𝑚34 ) × [𝑝1 ≠ 𝑝2 ]

(a)𝑇4:Result of O4
pid pname age pid rating mul.
𝑥1 𝑝1 𝑎1 𝑦1 𝑟1 𝑚31 :𝑚11 ×𝑚21 × [𝑥1 = 𝑦1 ]
𝑥1 𝑝1 𝑎1 𝑦2 𝑟2 𝑚32 :𝑚11 ×𝑚22 × [𝑥1 = 𝑦2 ]
𝑥2 𝑝2 𝑎2 𝑦1 𝑟1 𝑚33 :𝑚12 ×𝑚21 × [𝑥2 = 𝑦1 ]
𝑥2 𝑝2 𝑎2 𝑦2 𝑟2 𝑚34 :𝑚12 ×𝑚22 × [𝑥2 = 𝑦2 ]

(b)𝑇3: Result of O3
pid pname age mul.
𝑥1 𝑝1 𝑎1 𝑚11 :𝑚1 × [𝑎1 < 25]
𝑥2 𝑝2 𝑎2 𝑚12 :𝑚2 × [𝑎2 < 25]

(c)𝑇1: Result of O1

pid rating mul.
𝑦1 𝑟1 𝑚21 : 𝑛1 × [𝑟1 > 8]
𝑦2 𝑟2 𝑚22 : 𝑛2 × [𝑟2 > 8]

(d)𝑇2:Result of O2

Figure 7: Intermediate symbolic execution results of 𝑄4 on 𝐼1.

unable to directly evaluate U-expressions when reasoning about
query outputs with a fixed-size symbolic instance. For operators like
projection and group-by that involve summation, it can be tricky
as the way to denote “possible tuples” is to iterate over all tuples
in the input relation, and each output tuple’s multiplicity formula
depends on the comparison results with other tuples. Moreover, for
set/bag operators, the result tuple’s multiplicity formula depends
on both input relations, which requires enumerating all tuples in
the second relation, while the U-expression itself is very simple:
we can use the U-expression [𝑅(𝑡) > 0] × [𝑆 (𝑡) = 0] to denote if a
tuple 𝑡 exists in the results of 𝑅 − 𝑆 , but in symbolic tables, one has
to iterate over all tuples in 𝑆 and compare them with the tuple 𝑡 .

Example 9 (Symbolic execution of 𝑄4). Continue with query
𝑄4 and its logical plan in Figure 4. When evaluating 𝑄4 on sym-
bolic instance 𝐼1, the output of each operator is also a symbolic table,
as shown in Figure 7. Note that the results of selections (𝑇1 and 𝑇2)
directly come from adding the selection predicate to the multiplic-
ity annotation, and the result of the join (𝑇3) comes from the cross
product of 𝑇1 and 𝑇2, where each output’s multiplicity combines the
multiplicity of both input tuples and the join condition. The result of
projection (𝑇4) first “merges“ the first two tuples in𝑇3 (𝑚31 +𝑚32) and
the last two tuples in𝑇3 (𝑚33 +𝑚34), since they share the same pname
variable. Then, we further add the term (𝑚33 +𝑚34) × [𝑝1 = 𝑝2]
to𝑚31 +𝑚32 in the multiplicity of tuple (𝑛1). This step is identical
to the unbounded summation in a U-expression, where we sum all
tuples that share the same projected attribute values. However, the
multiplicity of tuple (𝑝2) is different: when 𝑝1 = 𝑝2, we should not
have (𝑝2) in the result.

4.2 ParSEval-Sym: A Bottom-up Approach by

Symbolic Execution

In this part, we introduce a basic approach ParSEval-Sym to mod-
eling a SQL query with U-expression and generating a set of in-
stances with different coverage. ParSEval-Sym (the procedure in
Algorithm 1) takes a schema and a query as input, with a parameter
𝐼𝑛𝑠𝑆𝑖𝑧𝑒𝐿𝑖𝑚𝑖𝑡 setting the maximum number of tuples per table.

Algorithm 1 first constructs coverage constraints via Build-
Constraints, which implements the query plan traversal strate-
gies from Section 3.1 to encode constraints. We omit the details of
BuildConstraints, since the constraints can be derived based on
Definition 5 and Figure 2 during the traverse of the query plan tree.

After constructing the coverage constraints, Algorithm 1 enu-
merates all possible subsets of uncovered constraints in B𝑛 starting

from bigger subsets (Line 5). It then initializes the symbolic in-
stance with increasing size. The next challenge is that no existing
tools can evaluate the U-expression on instances. Hence, we in-
troduce a symbolization procedure that translates U-expressions
into logical formulas, explicitly encoding coverage constraints with
symbols. Algorithm 2 demonstrates this procedure, which first ob-
tains the symbolic execution results of 𝑄 and then translates the
coverage constraints into symbolic constraints. We omitted the
details of SymbolicExec and TranslateConstraint, which en-
code U-expressions into SMT expressions with input symbols. Note
that ParSEval-Sym translates the U-expression predicate [𝑝] to an
expression ITE(𝑝, 1, 0), returning 1 if 𝑝 is True and 0 otherwise.

The resulting formulas can be solved by SMT solvers such as
Z3 [14] and cvc5 [6]. Additionally, we encode database constraints
for each table into symbolic constraints in the solver’s input (line 8).
If the solver returns SAT, it also provides a model for the constraints,
yielding concrete values for each variable in the symbolic instance.

Example 10 (Running ParSEval-Sym on 𝑄4). Consider the
query 𝑄4 and the coverage constraints in Figure 4 again. First, the
algorithm constructs the sets of positive and negative constraints,
which are labeled green and red, resp. in Figure 4: B𝑝 = {𝛽1, 𝛽3, 𝛽5},
B𝑛 = {𝛽2, 𝛽4, 𝛽6} (𝛽7 omitted since in this case it is the same as 𝛽5).

Then, the algorithm enumerates the uncovered subset of B𝑛 , start-
ing from the maximum subset, B𝑛 itself. Suppose 𝐼𝑛𝑠𝑆𝑖𝑧𝑒𝐿𝑖𝑚𝑖𝑡 = 2
for a simple illustration. To find if there exists a database instance
that can satisfy all constraints in B𝑝 and B𝑛 , the algorithm needs to
encode the coverage constraints using a symbolic instance, whose size
is set to 1 initially (i.e., each table in the symbolic instance has one
tuple). However, it is not possible to satisfy any negative constraints
with an instance when the size is 1, since the instance has to satisfy
the positive constraints (e.g., there cannot be a tuple 𝑡 in the Player
table that satisfies both 𝑡 .𝑎𝑔𝑒 < 25 and 𝑡 .𝑎𝑔𝑒 ≥ 25).

Then, the size of the symbolic instance increments to 2 (e.g., 𝐼1 in
Figure 5), and now through the EncodeConstraints function in
Algorithm 2, 𝛽1, 𝛽2 on the selection operator O1 using 𝐼1. We obtain
symbolic constraints 𝜑1, 𝜑2:

𝜑1 :𝑚1 × ITE(𝑎1 < 25, 1, 0) +𝑚2 × ITE(𝑎2 < 25, 1, 0) > 0,
𝜑2 :𝑚1 × ITE(𝑎1 ≥ 25, 1, 0) +𝑚2 × ITE(𝑎2 ≥ 25, 1, 0) > 0
Similarly, for 𝛽3 and 𝛽4 of the other selection operator O2, we obtain

symbolic constraints 𝜑3, 𝜑4. For the join operator O3, we encode 𝛽5 and
𝛽6 using the input relations obtained from calling the SymbolicExec
function (which are the output of O1 and O2):

𝜑5 =
∑
1≤𝑖≤2

∑
1≤ 𝑗≤2𝑚𝑖 × 𝑛 𝑗 × ITE(𝑎𝑖 < 25, 1, 0) × ITE(𝑟 𝑗 >

8, 1, 0) × ITE(𝑥𝑖 = 𝑦 𝑗 , 1, 0) > 0 (at least one pair of tuples can join)
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𝜑6 =
∑
1≤𝑖≤2 ITE(

∑
1≤ 𝑗≤2𝑚𝑖×𝑛 𝑗 ×ITE(𝑎𝑖 < 25, 1, 0)×ITE(𝑟 𝑗 >

8, 1, 0) × ITE(𝑥𝑖 = 𝑦 𝑗 , 1, 0) = 0, 1, 0) > 0 (at least one tuple in Player
cannot join with any tuples in PlayerAttributes after the selection).

The solver then takes the conjunction of 𝜑1, ..., 𝜑6 and the database
constraints as input, and it fails to find a model — we cannot obtain
an instance with size 2 that satisfies all the constraints. Since we
have reached the size limit, the algorithm explores the next maximum
unvisited subset of B𝑛 , {𝛽2, 𝛽4}. This time, the solver finds a solution
(see below) to the conjunction of𝜑1, ..., 𝜑5 and the database constraints.

pid pname age
001 Abby 20
002 Burnie 26

(a) Player relation (𝑃1)

pid rating
001 8.5
002 7.0

(b) PlayerAttributes relation (𝑃2)

In the next iteration, the algorithm explores the remaining uncov-
ered subset 𝛽6 and builds the corresponding symbolic constraints for
the solver, which returns a solution as below.

pid pname age
001 Abby 20
002 Burnie 24

(a) Player relation (𝑃1)

pid rating
001 8.5
002 7.0

(b) PlayerAttributes relation (𝑃2)

Note that in the first instance, 𝛽6 is not satisfied because only the
rows with 𝑝𝑖𝑑 = 001 pass the selection condition; while in the second
instance, <002, Burnie, 24> passes the selection condition in O1, but no
tuples output by O2 can join with this tuple.

As shown in the above example, the Algorithm 1 follows a greedy
heuristic that prioritizes the largest subsets of negative constraints
first, rather than exhaustive enumeration. In contrast, to find an ex-
act solution to the relaxed optimization problem in Section 3.2, one
would need to enumerate all subsets of coverage constraints, iden-
tify satisfiable ones, and then solve a minimum set cover problem
over the valid instances. In practice, the greedy heuristic performs
well, as most subsets of the coverage constraints are satisfiable. Our
ablation study results (see Section 5.4) confirm the efficiency and
accuracy of the simplified procedure.

4.3 ParSEval-Hybrid: Optimization by a

hybrid approach

ParSEval-Sym simulates how a query executes with a U-expression
and explores all feasible execution paths represented by coverage
constraints. It enumerates tuples in the symbolic instance to encode
constraints, but as query complexity or instance size increases, the
symbolic expressions grow more complex. For example, to cover
different branches in Figure 4, ParSEval-Sym increases the size of
tuples in each table, which can lead to path explosion due to the
lack of a principled method for handling unbound summations.

Moreover, although U-expression models SQL queries under
bag semantics [15], it still struggles with complex query features
like ORDER BY and aggregate functions. For instance, consider a
common type of query, <SELECT ... ORDER BY rating DESC OFFSET 2>
to find players with the second-highest rating. Suppose we have
two tuples, 𝑡1 and 𝑡2, in the PlayerAttributes table. To handle
the sort operator, we use ITE functions to represent comparisons
in the multiplicity of each result tuple:𝑚𝑢𝑙 (𝑡1) × ITE(𝑡1 .𝑟𝑎𝑡𝑖𝑛𝑔 ≥
𝑡2 .𝑟𝑎𝑡𝑖𝑛𝑔, 0, 1) and𝑚𝑢𝑙 (𝑡2) ×ITE(𝑡1 .𝑟𝑎𝑡𝑖𝑛𝑔 < 𝑡2 .𝑟𝑎𝑡𝑖𝑛𝑔, 0, 1). As the
number of tuples grows, these expressions become increasingly
complex, making it inefficient to solve the constraints. These limi-
tations significantly affect the performance of ParSEval-Sym.

Algorithm 1 ParSEval-Sym
BuildInstance-Symbolic(R,𝑄, 𝐼𝑛𝑠𝑆𝑖𝑧𝑒𝐿𝑖𝑚𝑖𝑡 )

Input: 𝑅: database schema;𝑄 : query;
Output: A list of database instances with different coverage for𝑄 .

1 instances = [ ]
2 B𝑝 , B𝑛 = BuildConstraints(𝑄 )
3 visited = ∅, covered = ∅
4 while covered ≠ B𝑛

5 ∆ = the maximum unvisited subset of B𝑛 , where covered ∩∆ = ∅
6 for 𝑛 = 1 → 𝐼𝑛𝑠𝑆𝑖𝑧𝑒𝐿𝑖𝑚𝑖𝑡

7 𝐷 = Initialize(R, n)
8 𝜑 = DBCons(𝐷 ) ∧∧

𝛿∈∆∪B𝑝
EncodeConstraints(𝛿, 𝐷 )

9 if IsSAT(𝜑 )
10 covered = covered ∪∆, instances.append(BuildIns(𝜑))
11 break
12 visited = visited ∪{∆}
13 return instances

4.3.1 Speculative value assignment. To this end, we propose a novel
hybrid approach that speculatively assigns a concrete value to sym-
bols in the translated symbolic expression before calling the solver.
There are two main intuitions behind this approach. First, although
it uses a complex symbolic expression to encode the semantics of
query operators like projection and group-by, which consider all
cases of input tuples, we may only need to include limited cases
when generating the test database instance. Second, for certain
predicates, we can evaluate their values quickly by directly assign-
ing concrete values to the symbols in the predicate when there is
high confidence that the assignment would be a valid solution.

For example, 𝜑5 in Example 10 involves the summation over four
product-only symbolic expressions with multiple ITE functions,
whose complexity could be reduced by pre-determining the eval-
uation results of certain clauses considering the key-foreign key
relationship. By modeling the semantics of the join operator, the
symbolic execution considers all possible combinations of input
tuples, leading to the four sub-U-Expressions in 𝜑5; however, we
are sure that at most two of the ITE(𝑥𝑖 = 𝑦 𝑗 , 1, 0) will evaluate
1 since 𝑃2 .𝑝𝑖𝑑 is a foreign key referring to 𝑃1 .𝑝𝑖𝑑 . Therefore, we
can speculatively determine 𝑥1 = 𝑦1 and then 𝑥2 = 𝑦2 and decide
that 𝑥1 = 𝑦2 and 𝑥2 = 𝑦1 must be false, then directly removing
the two sub-expressions involving 𝑥1 = 𝑦2 and 𝑥2 = 𝑦1. Hence, we
simplify the constraint 𝜑5 to𝑚1×𝑛1×ITE(𝑎1 < 25, 1, 0) ×ITE(𝑟1 >

8, 1, 0) +𝑚2 ×𝑛2 × ITE(𝑎2 < 25, 1, 0) × ITE(𝑟2 > 8, 1, 0) > 0, largely
reducing the size of the symbolic expression.

We implemented the speculative value assignment optimization
to reduce the size of symbolic expressions and accelerate the solv-
ing of coverage constraints. This optimization slightly alters the
procedure in Algorithm 2: when encountering operators with opti-
mization opportunities, the constraint-building procedure replaces
one symbol with another or generates concrete values randomly for
the attributes involved in these operators. For example, for unique
attributes like 𝑝𝑖𝑑 , assigning random values to symbols does not
affect the evaluation of other constraints, as 𝑝𝑖𝑑 values are only
used in join conditions and key constraints. Later, when solving
the constraints using an SMT solver, these concrete values reduce
the solution space. However, if the speculative assignment fails, we
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Algorithm 2 Encode coverage constraints with a symbolic in-
stance.
EncodeConstraints(𝑄, 𝐼 )

Input:𝑄 : a query plan tree where the root node is annotated with
coverage constraint 𝛽 ; 𝐼 : a symbolic database instance.
Output: 𝜑 : a symbolic constraint.

1 if 𝛽 is on the output of𝑄
2 𝑅1 = SymbolicExec(𝑄, 𝐼 )
3 𝜑 = TranslateConstraint(𝛽, 𝑅1, 𝑁𝑜𝑛𝑒 )
4 else

5 𝑅1 = SymbolicExec(𝑄.𝑙𝑐ℎ𝑖𝑙𝑑, 𝐼 )
6 if 𝑄.𝑟𝑜𝑜𝑡 ∈ {𝜎, 𝜋, 𝛿,𝛾 } // unary operator
7 𝜑 = TranslateConstraint(𝛽, 𝑅1, 𝑁𝑜𝑛𝑒 )
8 else // binary operator
9 𝑅2 = SymbolicExec(𝑄.𝑟𝑐ℎ𝑖𝑙𝑑, 𝐼 )
10 𝜑 = TranslateConstraint(𝛽, 𝑅1, 𝑅2 )
11 return 𝜑

keep the original symbolic expression and rerun the solver. Below,
we detail the different strategies for assigning values in other cases.
Handling group-by aggregation. When encountering group-by
aggregations, we can assign constants to the symbols of group-by
attributes and pre-determine the group size. Without this assign-
ment, the U-expression of aggregation would have to consider all
cases where the tuples form a group, leading to an exponential in-
crease in the size of the expression. For instance, there can be𝑂 (2𝑛)
cases for grouping 𝑛 tuples (i.e., all 𝑛 tuples in one group, splitting
them into two groups, then three groups, and so on), but we don’t
have to build instances for all these 𝑂 (2𝑛) cases in practice.

Therefore, as long as there are no other constraints like selection
predicates on the group-by attributes, this value assignment al-
lows us to pre-define the grouping results and eliminate redundant
comparisons between different tuples (which is expressed as an
“unbounded summation” in the U-Expression).

5 EXPERIMENT

In this section, we empirically compared ParSEval against state-
of-the-art verification-based and testcase-based approaches. We
used query pairs (ground truth vs. LLM-generated/human-crafted
queries) from established benchmarks. In particular, our experi-
ments aim to answer the following research questions: 1) How well
does ParSEval support different SQL features? 2) How effective is
ParSEval in finding non-equivalent query pairs? 3) How does the
running time of ParSEval compare to that of the state-of-the-art
systems? 4) Can ParSEval produce better test suites than existing
ones in text-to-SQL benchmarks?

5.1 Experimental Setup

We implemented ParSEval in Python 3.8, leveraging the query
parser in Apache Calcite [7]. All experiments were conducted lo-
cally on a 64-bit Ubuntu 18.04 LTS server with a 32-core CPU
(2.00GHz Intel(R) Xeon(R)) and 1000GB of 2666MHz DDR4 RAM.
We compared ParSEvalwith state-of-the-art verification-based and
test-case-based methods that are publicly available. Unless other-
wise specified, ParSEval refers to ParSEval-Hybrid, the optimized
version of our approach described in Section 4.3.

Figure 8: Ratio of disproved and unsupported/unknown pairs

in different datasets.

• SQLSolver [15] is a state-of-the-art verification-based prover
that translates SQL queries into LIA logic and evaluates the query
equivalence via an SMT-Solver.

• VeriEQL [20] is a bounded equivalence checker that uses sym-
bolic execution. It finds an instance to disprove query equivalence
by incrementally increasing the size of each relation.

• Spider-TS [39] generates test database instances randomly and
disproves two queries by comparing their execution results. It
has been used in the Spider text-to-SQL benchmark [38].
There is anotherwell-known test-case-based framework, XData [31].

However, we did not include it as a baseline due to its limited sup-
port ratio reported in [20], which might be affected by outdated
maintenance. There are also other formal verification-based provers,
such as SPES [42] and QED [35]; we did not include them in the
following experiments because they lack the support for foreign
key constraints in their open-sourced codebase, and most databases
in the benchmarks we use involve foreign key constraints. If we ig-
nore the foreign key constraints, these approaches would introduce
false negatives.

All experiments used a 360-second timeout, as we observed no
significant increase in the number of disproved query pairs beyond
this threshold in our preliminary experiments. Note that the formal-
verification-based approaches take two queries as input, while the
test-case-based approaches take one query. For a fair comparison,
we generated test data for both the ground truth query and the
predicted query when running Spider-TS and ParSEval.
Datasets. We used query pairs from four publicly available bench-
marks, two for text-to-SQL and two for human-crafted queries.
• BIRD [25]: BIRD is a popular benchmark for text-to-SQL target-

ing real-world application scenarios. We used the dev set con-
taining 1534 ground truth queries across 11 databases, and the
LLM-generated queries are from the repository of DAIL-SQL [9].

• Spider [38]: Spider is another text-to-SQL benchmark. We used
the dev set with 1034 ground truth queries across 20 databases.
The LLM-generated queries are from the same repo as above [9].

• Leetcode: This dataset is collected by He et al. [20] from answers
to LeetCode questions. We used 23,865 of its query pairs after
removing the UPDATE and DELETE statements.
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Figure 9: End-to-end performance distribution for all query

pairs. A point (𝑥,𝑦) on the curve indicates that the approach

finishes within 𝑥 seconds for 𝑦 percent of the query pairs.

ParSEval can handle 95% query pairs within 8.5 seconds for

BIRD, Spider, and Literature datasets.

• Literature: This dataset contains 64 query pairs from recent
works on query equivalence [12, 34], also collected by [20].

5.2 Results of SQL Equivalence Checking

5.2.1 ParSEval Versatility and Effectiveness. We first evaluated
how versatile our solution is and how effective the generated test
cases are at finding non-equivalent query pairs. In Figure 8, we
reported the ratio of non-equivalent and unsupported pairs from
each approach for all four datasets. “Unsupported” indicates that
the approach either fails to handle the query or is unable to return
“equivalent” or “non-equivalent” within the timeout. For test-case-
based approaches (Spider-TS and ParSEval), the outcome of a pair
of queries will be 1) equivalent if both queries return non-empty
and identical results on all generated databases, 2) not equivalent if
two queries return different results on any of generated databases,
or 3) unsupported if the approach can handle neither of the queries
or both queries return empty results on all databases.

Regarding the support ratio (the right orange bar in Figure 8),
ParSEval supports most of the query pairs in all datasets

(97.98%, 96.71%, 92.69%, and 98.44%). Moreover, ParSEval can find
themost number of non-equivalent query pairs in all datasets

(the green bar in each plot in Figure 8) with an improvement over
the best formal-verification-based baseline by at least 25.72, 20.51,
6.5, and 3.1 percentage points in four datasets, resp. On BIRD and
Spider datasets, formal-verification-based approaches have a poor
support ratio due to failing to handle complex SQL features, in-
cluding ORDER BY, nested sub-queries, and CAST operations, which
are common in current text-to-SQL benchmarks. In contrast, test-
case-based approaches do not have to model the semantics of these
operations and can more easily handle the queries.

Compared to the test instance generation baseline Spider-TS,
ParSEval can also support more query pairs and disprove the
equivalence of more query pairs. The improvement of ParSEval is
clearer for human-crafted queries (Leetcode and Literature datasets),
which is due to these datasets containing more SQL features not
supported well in Spider-TS, such as attributes with data types like
Datetime that require transformation, nested sub-queries, scalar

Table 3: Percentile distribution of the end-to-end running

time for query pairs in the BIRD dataset. “Unsupp.” indicates

that the approach cannot handle the queries.

Approach Mean 10th 25th 50th 75th 90th

SQLSolver 57.36 3.92 6.35 unsupp. unsupp. unsupp.
VeriEQL 96.52 0.82 2.65 169.21 unsupp. unsupp.
Spider-TS 166.77 8.50 15.32 257.13 timeout timeout
ParSEval 7.62 0.47 0.89 1.51 2.48 4.40

Figure 10: Breakdown of support ratio(left) and average run-

time(right) across different difficulty levels (𝑛 is the number

of query pairs for each difficulty level), BIRD dataset.

sub-queries, and arithmetic expressions. For example, consider 𝑄3
in Example 2, which has a scalar subquery in the WHERE clause,
although Spider-TS could extract the join condition, the likelihood
of generating test databases through fuzzing to cover the scalar
subquery remains low.

5.2.2 Performance Evaluation. To evaluate the performance of Par-
SEval, we compared the end-to-end running time (from inputting
the query pair to returning the equivalence decision) for each query
pair of all methods. Figure 9 shows a Cumulative Distribution Func-
tion (CDF) of the running time. Although formal-verification-based
approaches have a limited query support ratio, their performance
is relatively better compared to Spider-TS because they directly
verify the equivalence of symbolic representations using efficient
SMT solvers (e.g., Z3), while fuzzing in Spider-TS needs to gener-
ate a large number of test instances. Note that ParSEval is able
to disprove more query pairs than baselines, as shown in Figure 8,
while achieving clearly better performance.

Moreover, Table 3 shows a detailed comparison of end-to-end
running time on the BIRD dataset. Timeout indicates that the ap-
proach failed to prove or disprove the equivalence of the query
pair within 360 seconds. Compared with other baselines, ParSEval
can process at least 90% query pairs within 4.4 seconds, whereas
Spider-TS takes 8.5 seconds to handle only 10% query pairs. Formal-
verification-based approaches are relatively fast for the top 10%-25%
queries, but they are much slower on average. On average, our ap-
proach is 21× faster than Spider-TS and 7.5× faster than SQLSolver.

5.2.3 ParSEval Scalability. We also studied how well ParSEval
scales with the complexity of the input queries. Existing text-to-
SQL benchmarks [25, 38] provide definitions of query difficulty,
where difficulty is categorized into three levels based on the SQL
query complexity, particularly the number and variety of keywords
and functions used. More difficult natural language questions tend
to involve more advanced SQL features and nested logic, resulting
in longer and more complex queries. Here we reused the catego-
rization from the original BIRD benchmark. Figure 10 presents a
breakdown of the support ratio and average running time for the
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BIRD dataset. The run time of ParSEval and SQLSolver increases
with query difficulty, as expected, since the performance of encod-
ing query semantics largely depends on the size of U-expressions
and the number of different query execution paths in the query
plan. Compared with baselines, the support ratio of ParSEval is
the highest across all cases and is the most stable, validating the ver-
satility of our approach. Spider-TS has the highest average running
time on simple queries due to its lack of a termination strategy. Sim-
ilarly, VeriEQL takes longer for simple queries because it attempts
to prove query equivalence by enumerating possible tuples.

5.3 Absolute Performance and Case Study

To accurately evaluate the absolute performance of ParSEval,
we manually annotated the BIRD dataset (979 non-eq pairs in all
1534 pairs) and computed the recall for each approach, defined as

#identified non-equivalent pairs
#human-labeled non-equivalent pairs . The table below reports the results.
Our method achieved both the highest recall (91.01%), indicating
that ParSEval identified themost number of non-equivalent

query pairs.
SQLSolver VeriEQL Spider-TS ParSEval

Recall 27.89% 46.17% 76.30% 91.01%
We alsomanually inspected query pairs that each approach failed

to disprove and analyzed the reason for false positives.
Correlation and complex features. We observed that there are
26 pairs that Spider-TSwas unable to generate any instances where
two queries returned non-empty results due to the correlation of
operators and complex query features. For example, given a query
with correlated subquery, select count(room_number) from ... where

building = (select building from ... where dept_name='CS'), which finds
the total number of rooms in the building used by the CS depart-
ment. Spider-TS will only consider the predicate of dept_name =
‘CS’. In contrast, ParSEval will explicitly explore every execution
path for the given query and generate data to cover the paths.
Projection errors.We also observed that formal verification-based
approaches sometimes return queries as equivalent, while both
Spider-TS and ParSEval correctly identify them as non-equivalent.
This is because formal verification-based approacheswill ignore pro-
jection when comparing two queries. For example, given the query
pair <SELECT Phone, Ext FROM ..., SELECT Phone FROM ...>, it is obvious
that they are different, yet formal verification-based approaches
incorrectly output them as equivalent. Since such projection errors
can be easily detected, we manually fixed these results.
NULL-related constraints. There were also 9 cases that ParSEval
failed to disprove due to the NULL-related constraints for aggre-
gate operators. For example, SELECT COUNT(bond_id) and SELECT COUNT

(bond_type) are equivalent only if neither 𝑏𝑜𝑛𝑑_𝑖𝑑 nor 𝑏𝑜𝑛𝑑_𝑡𝑦𝑝𝑒
can be NULL. However, ParSEval failed to distinguish them because
it did not handle varying numbers of NULL values. This limitation
can be addressed by incorporating multiplicity constraints on NULL
values during instance generation.
Quantitative analysis on SQL features. To further study the
limitation of ParSEval and baseline methods beyond previously
discussed failure cases, we summarized the occurrence of complex
SQL features in the BIRD dataset and compared support rates across
methods. Table 4 shows that ParSEval supports at least 78.95%
of queries with these features, outperforming all existing meth-
ods for each feature. However, some operations, such as sequence

Table 4: Breakdown of support ratio (%) across query features,

BIRD dataset. Spec. = Special operators. SubQ = Subquery.

Case Aggr. Having Distinct Order by Spec. Typing SubQ

# 117 113 19 237 313 62 154 113
VeriEQL 16.24 75.22 47.37 74.68 82.43 3.23 0.65 64.60

SQLSolver 31.62 14.16 26.32 41.77 18.21 0.00 29.22 19.47
Spider-TS 99.15 76.11 68.42 83.54 81.47 58.06 95.45 86.73
ParSEval 97.44 95.58 78.95 97.05 99.04 83.87 97.40 96.46

string transformations (e.g., AVG(CAST(SUBSTR(T2.LapTime, 1, INSTR(T2.

LapTime, ':') - 1) AS INTEGER))), remain challenging and may cause
constraint solving to fail.

5.4 Ablation Study

We performed an ablation study to assess the impact of different
coverage constraints on the running time and test data quality of
ParSEval. We also compared ParSEval-Hybrid with the variant,
i.e. ParSEval, that used pure symbolic execution.
Comparison of coverage constraints. We considered several
variants for covering execution branches in the query plan: 1)
Positive-only: covers only positive branch constraints. 2) ParSEval-
OneNegative: covers positive branch constraints and one randomly
chosen negative branch. 3) ParSEval: covers all positive and neg-
ative branch constraints. 4) ParSEval-Complete: covers different
subsets of coverage constraints.

We reported the average running time and ratio of non-equivalent
pairs found by each variant on the BIRD dataset in Table 5. The
quality of test instances (as indicated by the ratio of NEQ pairs)
increases with the number of coverage constraints. As expected,
Positive-Only has the worst performance, producing around 10%
false positives because it fails to identify the semantic differences
between operators, such as left join and inner join. Compared to
the ParSEval-OneNegative, ParSEval ensures that each coverage
constraint is satisfied by at least one test instance, enabling it to
distinguish minor variations in aggregate or set/bag operations.
Interestingly (but as expected), ParSEval-Complete has the highest
coverage at the cost of significantly increased running time, as it
has to enumerate all subsets of the coverage constraints; however,
it does not lead to more NEQ pairs identified. In summary, the abla-
tion study indicates a trade-off between effectiveness and running
time by enlarging the set of coverage constraints, and the relaxed
completeness considered in ParSEval leads to the same test data
quality as considering all combinations of the coverage constraints.
ParSEval-Sym vs. ParSEval-Hybrid. The table below shows
the ratio of NEQ pairs, the number of timeout pairs, and the average
running time for ParSEval-Sym and ParSEval-Hybrid using the
same coverage strategy on the BIRD dataset.

Support ratio # of timeout avg. time(sec.)
ParSEval-Sym 49% 222 9.29

ParSEval-Hybrid 98% 30 7.62

Due to the difficulty in modeling SQL functions and operators,
such as STRFTIME and CAST, ParSEval-Sym could only handle 49%
query pairs from the BIRD dev set. While uninterpreted functions
in SMT solvers can model SQL functions, queries with outer joins,
aggregates, and sorting involve unbounded summations in the
U-expression, increasing SMT complexity and causing timeouts.
In contrast, ParSEval-Hybrid reduces expression complexity by
assigning concrete values to symbols, as shown in Section 4.3.
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Table 5: Test data quality and average running time (sec.) for

different sets of coverage constraints, BIRD dataset.

Positive
Only

ParSEval
OneNegative ParSEval ParSEval

Complete

% of disproved pairs 48% 53% 58% 58%
avg. running time (sec.) 4.92 6.11 7.62 20.83
avg. covered branches 1 1.85 4.22 13.52

5.5 Comparison with Text-to-SQL Benchmark

The above experiments demonstrate the superiority of ParSEval
in checking query equivalence, which is already capable of facilitat-
ing efficient and automatic text-to-SQL evaluation. In this part, we
evaluated the effectiveness of ParSEval in generating test suites,
which takes the set of ground truth queries as input without seeing
queries generated by text-to-SQL models. The test suite for each
database schema is the union of all test suites generated by ParSE-
val for each ground truth query of the same schema. In particular,
we compared the test suites generated by our approach and the
database instances provided in the BIRD benchmark. The table be-
low shows the number of non-equivalent pairs, the total time for
evaluating one text-to-SQL model [16] on the dev set of the BIRD
benchmark, and the total size of sqlite files of the test suites.

Method Ratio of NEQ pairs Total running time Total disk space
ParSEval 59.45% 45.20 sec. 88 MB

BIRD test suite 50.33% 192.95 sec. 1.7 GB
Recall that to evaluate a text-to-SQL model on the current bench-

marks, one needs to download the test suites and compare the
results of generated queries with ground truth queries. ParSEval
reduces the size of the database instances by about 20 times and
speeds up the total evaluation time by 4.2 times.
False positives. For a detailed analysis, we manually examined the
discrepancies in the equivalence evaluation results. The test suite
by ParSEval introduces 41 false positives, mostly caused by wrong
joins and special data types and functions like JULIANDAY in SQLite.
For example, the ground truth query uses one table 𝑅, but the pre-
dicted query uses tables 𝑅 and joins another table 𝑆 ; in this case,
ParSEval will only create tuples in 𝑅 and hence fail to distinguish
the queries (when both queries are taken as inputParSEval is able
to identify the inequivalence). The test suite in the BIRD benchmark
introduces 180 false positives, typically due to SQL features like
aggregation, string comparison, and distinct values. For example,
the test suite in BIRD fails to distinguish the predicted query with a
condition WHERE T.amount > 100000 from the ground truth query with
GROUP BY T.id HAVING SUM(T.amount) > 100000. Although test suites by
ParSEval still introduce false positives, one can keep adding in-
stances by running ParSEval on queries generated by text-to-SQL
models to further improve the effectiveness of test suites.

6 RELATED WORK

Text-to-SQL translation and evaluation. Text-to-SQL allows
users to query databases using natural language rather than writ-
ing SQL code. Over the years, various models, algorithms, and
datasets [5, 9, 32, 38, 40] have advanced this field, leveraging deep
learning from both database [24, 30] and NLP communities [23].
However, a universal evaluation framework for measuring seman-
tic accuracy — correct SQL translations over total test queries —
remains lacking. Recent studies use execution accuracy, but eval-
uating query equivalence at scale remains challenging due to the
difficulty of preparing correct database instances.

Formal verification-based query equivalence evaluation. For-
mal verification-based query equivalence evaluation aims to deter-
mine whether two queries are semantically equivalent [15]. Despite
being undecidable [2], significant effort has been devoted to au-
tomating this process [11, 15, 20, 35, 41]. Recent approaches leverage
symbolic execution to develop practical solvers [12, 35, 42] that
handle an expanding set of SQL queries. Cosette [12] models SQL
semantics algebraically, applies rule-based rewriting, and checks
query isomorphism. EQUITAS [41] and SPES [42] verify query
equivalence by assessing containment relationships. QED [35] ex-
tends U-Expressions to Q-Expressions to model query semantics
while additionally admitting an efficient encoding to SMT formulas.
While being more efficient and feature-rich, these methods still
have limitations in the query features they can handle.
Test case-based query equivalence evaluation. The testcase-
based evaluation adapts the idea that two queries will yield the
same results on any input database instance if they are semanti-
cally equivalent. This approach supports more query features but
suffers from ad-hoc constraints and potential inaccuracies. RAT-
est [28] proves two queries are inequivalent by generating the
smallest counterexample where two queries return different results.
XData [31] considers different types of common query errors, ex-
tracts constraints from SQL queries, and uses mutation techniques
to kill as many query mutants as possible. Spider-TS [39] lever-
ages fuzzing-based data generation to construct test databases for
distinguishing two queries. Unlike ParSEval’s guided approach,
the input generation process of Spider-TS [39] does not use any
information from past inputs but essentially creates new data with
fuzzing from a prohibitively large input space.
Branch coverage in software testing. Branch coverage in soft-
ware testing is used to ensure that every branch or path is tested [4,
19, 26, 33]. Coverage-based tools [3, 21, 29, 37] model individual
program paths as logical constraints and employ symbolic execu-
tion to automatically generate arbitrary test inputs to maximize the
branch coverage. Intuitively, higher test coverage reduces the like-
lihood of the software containing bugs and unforeseen errors. But
these tools are not well-suited for query equivalence evaluation as
they do not exploit the relative differences across multiple queries.

7 CONCLUSION AND FUTUREWORK

In this paper, we have studied the problem of test database gen-
eration for query equivalence evaluation by covering different
branches. We present ParSEval, which considers all specific be-
haviors of each query operator in the logical query plan. We exper-
imentally show the efficiency of our approach and the quality of
the generated test cases on different datasets. The results show that
ParSEval detected at least 8% more incorrect predictions than the
previous fuzzy-testing-based test generation approach while being
21× faster. In future work, we plan to explore further optimizations
for branch collection and integrate our approach with random data
generation to support an even larger number of query pairs.
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