
A CXL-Powered Database System:
Opportunities and Challenges

Yunyan Guo
Tsinghua University

yunyanguo@tsinghua.edu.cn

Guoliang Li
Tsinghua University

liguoliang@tsinghua.edu.cn

Abstract—Compute Express Link (CXL) is emerging as a
significant player in the landscape of modern database man-
agement systems (DBMS). CXL is an open industry-standard
interconnect protocol between processors and devices such as
memory buffers. Boasting high bandwidth, low latency, and
support for coherency and memory semantics, CXL opens a
new direction for addressing the limitations and bottlenecks
faced by traditional distributed DBMS, particularly in large-
scale data management, efficient query processing, and improving
system availability. This paper explores the significant potential of
employing CXL in constructing next-generation DBMS. Through
a thorough analysis of CXL’s key characteristics, this paper
identifies emerging opportunities, particularly in buffer pool
expansion, memory elasticity, swift data recovery, and index
optimization. More importantly, this paper outlines a series
of new challenges accompanying these opportunities, with the
objective of inspiring cutting-edge approaches in future DBMS
design that emphasize efficiency, reliability, and reduced total
cost of ownership.

Index Terms—Compute express link, database management
system, memory disaggregation

I. INTRODUCTION

Compute Express Link (CXL) [1]–[4] is an open industry-
standard that defines a family of interconnect protocols be-
tween processors and devices, particularly memory buffers,
catering to applications requiring substantial memory capac-
ity [5]–[7]. Fig. 1 illustrates the various memory layers within
a CXL-based rack. This depiction is a logic architecture that is
derived from the recent CXL tutorial [8], with each component
named according to the terminology in the lecture [9].

CXL has multiple advantages compared to other intercon-
nect protocols. Crucially, it brings memory semantics and
cache coherency support between CPU caches and CXL-based
memory (as the same color in Fig. 1). Moreover, CXL has
a high bandwidth that scales with PCIe bandwidth, but has
significantly lower latency compared to PCIe/RDMA. These
advantages together offer innovative solutions to longstand-
ing challenges in database systems, particularly in areas of
large-scale data management, query processing efficiency, and
system availability. Despite extensive and in-depth research
by database researchers on distributed DBMS, they have

Guoliang Li is the corresponding author. This paper was sup-
ported by National Key R&D Program of China under Grant Number
2023YFB4503600, the China Postdoctoral Science Foundation under Grant
Number 2022M711809, NSF of China (61925205, 62232009, 62102215), and
Zhongguancun Lab.

Fabric
Manager

D
R

A
M

D
R

A
M

CPU

D
R

A
M

D
R

A
M

CPU

PCIe PCIe PCIe PCIe PCIe

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

CXL Switch

D
R

A
M

CXL Switch

CXL Switch

CXL

UPI

CXL Switch

Host 1

Host 2 Host n

shared
memory

pooled memory

leaf

spine

extended
memory

near
memory

Rack

D
R

A
M

D
R

A
M

CPU

D
R

A
M

D
R

A
M

CPU

D
R

A
M

D
R

A
M

CPU UPI

Fig. 1. Memory hierarchy with CXL protocols in a Rack: Near memory
is closest to the computing units in NUMA nodes. Extended memory is
connected through CXL protocols on PCIe slots. Pooled memory can be
scheduled and allocated by CXL switches. Shared memory ensures coherency
across multiple CPU caches. Leaf switch directly links to CXL devices, while
the spine switch facilitates communication among leaf switches.

consistently been constrained by limited interconnect capacity,
communication speed, and bandwidth, struggling to keep
pace with growing demands. The rapid advancement of CXL
and related hardware technologies makes large capacity, low
latency, and quick recovery achievable, offering promising
solutions to these persistent challenges.
Opportunity #1: Scaling buffer pool. Distributed DBMSs
are often hampered by the scattered distribution of memory
resources across diverse machines and devices, which com-
plicates memory management [10] [11]. CXL-based mem-
ory, often referred to as far memory, has coherency and
memory semantics. This enhancement allows CPUs to cache
far memory similarly to near memory, and also enables far
memory to cache data from the system memory effectively.
This simplifies memory management and the construction of
memory pooling [12] [13], opening up new opportunities for
constructing large-capacity memory buffer pools in DBMS,
simplifying memory resource management, and making the
scaling of buffer pools feasible, significantly enhancing mem-
ory utilization efficiency and performance in database systems.
Opportunity #2: Elastic memory allocation. In traditional
distributed database systems, the static allocation of memory
resources to computational resources often leads to ineffi-
ciency and stranding, especially in tasks that are memory-



intensive [14] [15]. However, CXL, as a high-speed memory
interconnect protocol, uniquely enables the dynamic reassign-
ment of far memory resources to different hosts over time,
without having to reboot these hosts. This innovative fea-
ture enables DBMS to dynamically adjust memory allocation
in response to the varying memory requirements of each
query as it executes, ensuring optimal resource utilization
throughout the query’s life cycle. Consequently, this dynamic
memory allocation mechanism not only maximizes resource
efficiency, reducing waste, but also enhances the adaptability
and responsiveness of the DBMS to diverse query workloads,
significantly improving overall performance.
Opportunity #3: Fast data recovery from far memory.
In traditional distributed DBMSs, fault recovery is a time-
consuming process, primarily dependent on recovering data
from disk transaction logs and synchronizing data across
multiple nodes [16]. Fortunately, the high bandwidth and
dynamic memory allocation of the CXL protocol hold promise
for ultra-fast fault recovery in distributed compute-memory-
storage disaggregation DBMSs. This includes, but is not lim-
ited to, swiftly reorganizing memory resources during failures
and recovering data from backups in far memory, thereby
reducing dependence on slower disk-based log recoveries.
Additionally, the support for fine-grained memory sharing
among multiple hosts, provided by the CXL switch, enables
rapid node switching to maintain uninterrupted service, even
in single-node failure scenarios, thus facilitating new avenues
for quick and efficient data recovery.
Opportunity #4: Efficient index design. Index technology is
intricately influenced by underlying technical details, including
latency and bandwidth between memory and disk accesses,
which shape structures such as B+ tree page indices, and
communication costs among distributed nodes, impacting the
maintenance of global secondary indices [17]. The CXL
protocol, with its low latency, high bandwidth, and substantial
capacity, poses novel requirements for index designs tailored
to far memory data. Unfortunately, the multiple-layer far
memory and elastic memory allocation in the CXL-based
architecture present new challenges in index maintenance.
The construction of an index for the CXL-based architecture
can fully leverage the advantages of new hardware designs,
enhancing the efficiency and scalability of index management,
and thereby boosting the overall performance of DBMS.
Contribution. This paper presents a list of challenges when
leveraging CXL protocols in DBMS design from four aspects.

• Buffer Pool Management (Sec. III): Designing and man-
aging a hybrid buffer pool that integrates the multi-
layered memory of CXL is a significant challenge.

• Elastic Memory Scaling (Sec. IV): Fully utilizing the
elastic scalability of memory requires the development of
appropriate strategies for distributed memory and data.

• Database Recovery (Sec. V): Fast database recovery
using far memory necessitates maintaining a comprehen-
sive transaction consistency mechanism to ensure data
integrity before recovery can proceed.

• Index Design (Sec. VI): The advantages of low latency
and high bandwidth support frequent data exchange,
while also introducing new requirements for lightweight
and fast index updates.

We argue that the next wave in DBMS innovation should
consider CXL. Solving the challenges proposed in this paper
will move DBMS design to the next frontier.

II. CXL CHARACTERISTICS AND PRODUCTS

The evolution of specifications and products on CXL pro-
tocols reflects the rapid development [8].

A. CXL 1.1 Specification

The CXL 1.1 Specification [1] introduces significant ad-
vancements in cache coherency and memory semantics. CXL
supports three protocols that include CXL.io, CXL.cache
and CXL.mem. CXL.io is similar to PCIe 5.0. CXL.cache
allows a device to cache data from the host memory. The
host uses CXL.mem to access device-attached memory with
load and store commands. Different combinations of these
protocols demonstrate unique applicability to various device
types. Particularly, in memory expanders (also called type 3
devices), the combination of CXL.io and CXL.mem plays
a crucial role, allowing CPUs to cache memory from these
devices. This paper focuses on exploring the potential of CXL-
based memory devices in innovative DBMS design, aiming
to enhance data management and processing efficiency. Addi-
tionally, investigating other CXL-based computing or storage
devices, such as GPUs (type 2 devices), for enhancing DBMS
design also holds certain significance, but is reserved for future
exploration.

Products encompassing this iteration are brought to mass
production between the second quarter of 2023 and the first
quarter of 2024, including Intel Sapphire Rapids Xeon pro-
cessors and Agilex 7 FPGAs for memory devices, Samsung’s
CXL Memory Expander.

B. CXL 2.0 Specification

The CXL 2.0 Specification [2], through the design of a
single-layer CXL Switch, facilitates the connection between
multiple hosts and multiple memory expansion devices. Its
key innovation lies in the introduction of dynamic memory
allocation functionality, allowing for the allocation and deal-
location of memory resources across hosts without the need for
system reboots. As shown in Fig. 1, the CXL memory space
managed by the middle CXL Switch can be reallocated from
Host 1 to Host 2 as needed, without requiring a reboot of Host
1. Pooling memory handled by CXL Switch significantly en-
hances the flexibility and efficiency of memory usage. If fully
leveraged in the development of DBMS, this technology can
effectively meet the dynamic and rapidly fluctuating memory
demands associated with hybrid query workloads. Therefore,
in designing DBMS on servers equipped with CXL Switch,
prioritizing the utilization of pooled memory resources offered
by CXL Switch is crucial for optimizing service efficiency.

2



This version is anticipated to enter mass production from the
second quarter of 2024 to the first quarter of 2025. Presently,
there are demonstrations available, such as the academically
oriented DirectCXL [18], and from the industrial sphere,
XConn Technologies demonstrates a Composable Memory
System (CMS) that leverages their CXL 2.0 switch [19].
Coupled with CXL memory expanders from Samsung, soft-
ware from MemVerge, and H3 Platform, a 2TB pooled CXL
memory system for 8 hosts is built [20].

C. CXL 3.0 Specification

First, the CXL 3.0 Specification [3] significantly extends
the boundary further by integrating CXL switches through the
use of Fabric Manager, thereby achieving enhanced scalability
with low latency. The CXL Fabric Manager facilitates the
setup, deployment, and modification of the network environ-
ment, managing up to 4096 nodes (including CPU hosts and
CXL memory devices) via port based routing. Fig. 1 illustrates
a topology diagram for a CXL fabrics use-case, categorizing
CXL switches into leaf type and spine type. The leaf switches
connect to hosts and devices, whereas the spine switches
link each leaf switch, ensuring that the communication path
between any two hosts/devices involves no more than three
CXL switches. This design, with multiple spines distributing
the communication burden, guarantees low latency.

Second, it supports dynamically composable systems at the
rack level or pod level, enabling fine-grained memory sharing
across multiple hosts. By employing hardware coherency tech-
niques, it facilitates shared coherent memory among hosts. A
major enhancement in CXL 3.0 is its ability to back invalidate
the Host’s caches. Maintaining coherency for host-managed
device-attached memory (HDM) is called enhanced coherency,
replacing bias based coherency of previous generations. As
depicted in Fig. 1, the CXL memory space in the right device
of the middle CXL switch is shared by Host 1 and Host 2, each
CPU caching it. Before Host 1 modifies any data within this
shared space, this CXL switch ensures that Host 2’s cache
is invalidated. This complex process is managed jointly by
hardware mechanisms and CXL protocols.

Products based on this version are expected to launch
from the second quarter of 2025 through the end of 2026 or
later. While this architecture is predominantly targeting high-
performance computing cluster products, the capabilities intro-
duced by CXL 3.0, such as dynamic system composition and
fine-grained memory sharing, unlock significant opportunities
to boost high concurrency, scalability, and availability in the
next-generation DBMS. Fully leveraging the advantages of this
new architecture requires DBMS designs to focus on efficient
utilization of memory resources, harmonizing with anticipated
performance features of future products to exploit CXL 3.0’s
advantages.

D. CXL 3.1 Specification

The latest (Dec 2023) CXL 3.1 Specification [4] primarily
enhances fabric connectivity features, introducing global inte-
grated memory (GIM) to facilitate communication across mul-

CPUCPU CPU

near buffer pool

far buffer pool

CPU CPU

near buffer pool

far buffer pool

shared buffer pool

Hybrid Buffer Pool 1 Hybrid Buffer Pool 2

Fig. 2. Example of the hybrid buffer pool structure, including two hosts
connected through a CXL switch. It is further divided into a near buffer pool,
a far buffer pool, and a shared buffer pool that facilitates data sharing via
the CXL switch. In DBMS, the memory management engine for the hybrid
buffer pool is required to support dynamic allocation and migration of data
pages across different buffer zones and to update the page directory to reflect
the current location of data pages (as indicated by the two arrows in the
figure), thereby improving data access efficiency and enhancing overall system
performance.

tiple hosts and improving fabric decoding and routing capa-
bilities. Moreover, it incorporates security considerations, in-
cluding support for the Trusted Execution Environment (TEE)
Security Protocol (CXL-TSP), which strengthens confidential
computing capabilities for directly attached CXL memory
expander devices. This advancement significantly contributes
to privacy protection and data security when building CXL-
based DBMS, and the exploration of these advancements will
be reserved for future discussions.

In summary, the evolution of CXL protocols opens new
avenues for the design and optimization of distributed database
systems, particularly in areas such as memory disaggrega-
tion in cloud-native databases, shared memory management,
elastic memory scaling, database fault recovery, transaction
processing, and index optimization. This paper treats CXL 1.1,
CXL 2.0, and CXL 3.0 as part of the same protocol family,
considering their characteristics collectively.

III. BUFFER POOL MANAGEMENT

In traditional distributed database systems, memory re-
sources are distributed across various machines, multiple PCIe
memory devices, and different NUMA (non-uniform memory
access) nodes. Recently emerged memory disaggregation is
striving to unify the management of these disaggregated mem-
ory resources, but the significant differences among various
communication protocols, such as TCP/IP, RDMA, PCIe, and
QPI, complicate this endeavor. The CXL, adding coherency
and memory semantics on top of PCIe, enables CPUs to handle
far memory data as easily as near memory data (but slower).
This technological breakthrough significantly simplifies the
management of disaggregated memory resources, enabling
more efficient unified management of near memory, extended
memory, pooled memory, and shared memory in DBMS.
Moreover, it opens up new opportunities for constructing

3



 low latency 
high

 bandwidth high
 latency 

low
 bandwidth 

CPUs

near buffer pool

far buffer pool

?

Fig. 3. Example of the bandwidth and latency characteristics between the Near
Buffer Pool and the Far Buffer Pool on the host, as well as the direction of data
flow. The diagram describes how CPUs interact with these two buffer pools
through channels with different bandwidth (high/low bandwidth), latency
(low/high latency), and capacity (small/large capacity) characteristics. This
setup highlights the importance of optimizing data allocation based on varying
performance requirements, within the constraints of system performance needs
and resource limitations.

large-capacity memory pools and achieving efficient buffer
pool data access within DBMS. Fig. 2 demonstrates the
complex structure of building a hybrid buffer pool in DBMS
using various types of memory, which necessitates the design
of advanced data scheduling and management techniques to
support efficient query processing.

A. Challenge #1: Hybrid Buffer Pool Construction.

As shown in Fig. 1, constructing a buffer pool necessi-
tates considering various memory layers. Given the varied
access characteristics (capacity, latency, bandwidth) of these
memory layers, we propose constructing three distinct types
of buffer pool components: (1) Near buffer pool, comprising
the near memory of NUMA nodes; (2) Far buffer pool,
consisting of extended memory from CXL memory devices
and pooled memory allocated by CXL switches; and (3)
Shared buffer pool, established on shared memory managed
by CXL switches. These three components collectively form
the hybrid buffer pool, whose logical structure is illustrated in
Fig. 2.

Traditional buffer pool management techniques primarily
focus on maximizing hit rates, aiming to increase access to
local memory as much as possible, thereby minimizing high-
latency access to local disks and remote memory in distributed
DBMS. However, uniformly managing diverse memory types
within a hybrid buffer pool, and applying a one-size-fits-all
strategy, does not adequately balance access latency, capacity,
and bandwidth to achieve optimal system performance, nor
does it fully leverage the advantages of each memory type.

For instance, although extended memory boasts greater
bandwidth, its access latency, considerably slower compared
to near memory, may become a bottleneck when used in
conjunction with near memory. Likewise, pooled memory
controlled by CXL switches, while having a larger capacity,

necessitates sharing bandwidth with other hosts, potentially
affecting performance. Therefore, also as shown in Fig. 3,
the crucial challenge in managing hybrid buffer pools lies in
effectively allocating data to exploit the full potential of each
memory type.

In addition, a shared buffer pool offers the potential
for further compute-memory-storage disaggregation in cloud-
native databases, especially in supporting efficient transaction
processing and complex data analysis. While the existing
compute-storage disaggregation cloud-native databases only
decouple computing and storage nodes, but cannot decouple
the memory, thus failing to support (1) multiple writes for
multiple masters and (2) efficient shuffling for complicated
operators, e.g. sorting, grouping, joining. Fortunately, CXL
provides an opportunity to decouple the shared memory to
make further disaggregation. However, the big challenge is to
design a transparent shared memory layer to support efficient
transactions and analytics, i.e., the user can be unaware of near
memory and far memory.

In order to properly allocate data pages, transaction logs,
index pages, and temporary tables in the hybrid buffer pool, the
challenge lies in assessing the advantages and disadvantages
of storing relational data, materialized views, or other data
types in a specific type of buffer pool. This evaluation task
involves considering various factors, including but not limited
to data access frequency, read/write concurrency, data update
frequency, as well as the size and life cycle of the data.
Research into efficient, high-quality management techniques
for predicting, assessing, and allocating data in hybrid buffer
pools, especially in scenarios involving large volumes of data
and high concurrency, will have a significant and profound
impact on enhancing the efficiency and stability of database
management systems.

B. Challenge #2: Dynamic Data Page Allocation.

Moving critical data pages closer to the corresponding pro-
cessors is crucial, particularly in scenarios with dynamic work-
loads and data access patterns in high-concurrency queries.
Consequently, dynamically allocating a data page to the most
appropriate one of the three types of buffer pools in a hybrid
buffer pool, during various stages of query execution, has
emerged as a key area of research interest. The advantages
of CXL, particularly its low latency and high bandwidth,
enable more frequent movement of data pages among the
three distinct types of buffer pools. This increased flexibility
significantly enhances the capability to improve the DBMS
performance across a range of workloads.

However, the frequent movement of data pages introduces
additional challenges in maintaining an up-to-date page direc-
tory. To ensure the accurate and rapid location of data within
the hybrid buffer pool, the page directory must be continuously
updated in real-time to reflect the latest position of each page
(Fig. 4). Therefore, in the management of hybrid buffer pools
based on CXL protocols, a page directory system is required
that is not only efficient but also highly adaptable to frequent
data movements, addressing the dynamic data page allocation.

4



CPUs on Node 1

A C

YX

CPUs on Node 2

D
FE

W V

dir
1 ACD
2 EFD

dir
2 EFD
1 ACD

dir
n AC
f XYZC

dir
n EFD
f WV

C

near

far

near

far

Y

Fig. 4. Illustration of dynamic data page allocation within a hybrid buffer
pool, highlighting the necessity of real-time updates across multiple page
directories. The process of transferring data page D to Node 2’s near buffer
pool for optimized query access underscores the importance of simultaneous
directory updates across various buffer zones, ensuring precise and immediate
tracking of data.

This can be modeled as a graph partition problem, where
the vertices represent tuples and an edge exists between two
tuples if they are accessed by the same query. Page allocation
aims to partition the tuples into different memory nodes while
minimizing the number of cut edges.

Furthermore, in DBMS employing row-column hybrid stor-
age, determining the optimal allocation of both row-stored
and column-stored data pages within the hybrid buffer pool
becomes an increasingly complex task. This critical decision
requires consideration of various factors, including query
patterns, data update frequencies, data movement, and the
performance characteristics associated with maintaining con-
sistency between row-stored and column-stored data pages.
In a CXL-based hybrid buffer pool, making this decision
is essential for optimizing the efficiency of HTAP (Hybrid
Transactional/Analytical Processing).

In summary, effectively addressing the challenge of dynamic
data page allocation within the hybrid buffer pool constructed
using the CXL protocol is crucial for enhancing the query effi-
ciency of DBMS. This involves not only strategies for moving
data pages but also the efficient design and maintenance of the
page directory.

C. Challenge #3: Fine-Grained Memory Sharing for Multi-
Write Consistency.

In distributed DBMS, ensuring fine-grained data consis-
tency during multi-write transaction processing presents a
persistent core challenge. Despite numerous complex attempts,
traditional approaches still involve a compromise in query
efficiency in order to ensure data consistency. Fortunately, the
innovative design of the CXL protocol offers a breakthrough.
By supporting fine-grained memory sharing across host bound-
aries, it significantly reduces communication latency (to sub-
microsecond levels) during the processing of kilobyte-scale
data page updates [8]. This advancement enhances the re-
sponse speed and processing capacity of the shared buffer pool
in databases, offering a new solution path to this longstanding
challenge.

CPUCPU CPU

near buffer pool

far buffer pool

CPU CPU

near buffer pool

far buffer pool

shared buffer pool

Fig. 5. Illustration of fine-grained memory sharing across multiple hosts
ensuring cache consistency by CXL switch. When two hosts/nodes aim to
write to the same data row within distinct transactions, DBMS can manage
that row in the shared buffer pool to maintain consistency across transactions
by CXL switch. This approach allows CXL switches to adeptly resolve
part of conflicts arising in multi-write scenarios, thereby boosting processing
efficiency.

CXL, equipped with an efficient data sharing mechanism,
offers a more expedited approach to updating fine-grained data
in the shared buffer pool (Fig. 5). This is crucial in reducing
idling and improving overall system performance. However,
despite the high efficiency of CXL in shared memory data, ad-
ditional mechanisms are essential to guarantee ACID for multi-
write transaction processing. These mechanisms encompass
fine-grained data synchronization, conflict resolution, and the
maintenance of transaction atomicity and durability. Therefore,
in deploying CXL protocols, it’s crucial not just to focus on
enhancing the data access efficiency of the shared buffer pool
but also to pay attention to adapting and upgrading critical
components such as transaction logs and page locks.

CXL brings new developmental opportunities for shared
memory management (disaggregated shared memory, shared
storage) and avoiding distributed transaction processing
(shared nothing). However, CXL also introduces new im-
plementation challenges in shared buffer pool management,
elastic memory scaling, maintaining data consistency, and
ensuring transaction integrity.

IV. ELASTIC MEMORY SCALING

In traditional distributed DBMS, especially those based
on NUMA architecture, there is a common tight integration
of computational resources (CPUs), with memory resources
(DRAM). Within the NUMA architecture, processors are usu-
ally directly connected to their respective local/near memory,
creating a fixed allocation ratio of resources. Although this
design optimizes memory access speeds and boosts data pro-
cessing efficiency in scenarios with high concurrency, it results
in the inefficient use of computational resources in memory-
intensive tasks, where memory resources are fully utilized
but the associated computational resources are underutilized.
Such static resource coupling does not adequately tackle
the imbalance in resource demands, but CXL presents an
innovative solution to overcome this challenge.

5



Hybrid Buffer Pool

Execution
MemoryExecution Memory

CPUsCPUs

PCIe / CXL

CXL switch

PCIe / CXL

Fig. 6. A snapshot of execution memory and hybrid buffer pool during
the dynamic memory allocation process. Execution memory, which demands
lower access latency, primarily consists of near memory and can be expanded
with extended memory as needed to support more complex processing tasks.
The hybrid buffer pool encompasses various types of memory across multiple
hosts, interconnected via CXL switches and PCIe/CXL connections.

CXL facilitates dynamic memory allocation, eliminating
the need to reboot the host operating system or virtual
management system. Consequently, this enables DBMS to
flexibly allocate and reallocate memory resources across var-
ious processors and memory units, adapting to diverse work-
load requirements dynamically and saving CPU and memory
consumption. In memory-intensive database operations such
as large dataset management, high-concurrency read-write
processing, and real-time data analysis, this adaptability not
only enhances overall memory utilization but also alleviates
performance bottlenecks. CXL brings flexibility and efficiency
to the design and resource management of modern DBMS,
enabling more effective handling of diverse data processing
demands across various scales and types.

Fig. 6 depicts a snapshot of memory allocation during a
dynamic change process. Both execution memory and the
hybrid buffer pool’s memory are dynamically allocated by the
DBMS, optimizing the use of memory resources to enhance
processing speed and overall system performance.

A. Challenge #4: Elastic Hybrid Buffer Pool.

The implementation of an elastic hybrid buffer pool presents
a unique set of challenges, particularly in addressing the
needs of HTAP. Notably, the memory space demand of the
buffer pool fluctuates significantly during the conversion pro-
cess between row-based and column-based storages. On the
other hand, the particularity of prevalent multi-modal data
processing also adds to the complexity of managing hybrid
buffer pools. The interaction between different data types,
such as vectors, graphs, and relational data, generates complex
intermediate materialized tables, leading to diverse buffer
pool memory requirements. Therefore, accurately predicting
memory demands for a hybrid buffer pool is one of the primary
challenges.

The significant and dynamically changing memory require-
ments across different query types render traditional static

 hybrid 
buffer pool 

 hybrid
 buffer pool

scale up

scale down

CPUsCPUs

PCIe / CXL PCIe / CXL

CXL switch
scale down

scale up

Fig. 7. Illustration of a Hybrid Buffer Pool based on the CXL protocol,
demonstrating how it dynamically scales up and scales down to meet the
fluctuating memory demands in HTAP and multi-modal data processing. The
CXL switch plays a pivotal role in this architecture, dynamically allocating
memory resources and coordinating communication between CPUs and CXL
memory, thereby optimizing the efficiency of memory utilization.

memory allocation strategies inadequate. Accurately antici-
pating these dynamic changes requires a deep understanding
of workload characteristics and the application of advanced
data analytics and machine learning techniques, which is a
challenge in itself. Despite the significant advancements in
dynamic memory allocation enabled by the CXL protocol,
which is shown in Fig. 7, the intricacies of implementing
hybrid buffer pool management in a DBMS remain notably
complex.

A key challenge involves accurately predicting the latency
costs tied to memory reallocation, which encompasses aspects
like memory reallocation idling, data persistence, data loading,
and information synchronization, among others. Such latencies
directly influence the response time and overall performance of
the DBMS, particularly in scenarios involving high-frequency,
low-latency transaction processing where their impact is more
significant. Therefore, it is crucial to ensure that any latency
introduced through dynamic memory allocation is minimized
in terms of its negative effect on user experience or maintained
within tolerable limits. Therefore, while CXL offers opportu-
nities for the flexible expansion of hybrid buffer pools, it also
introduces a series of new complexities that need to be urgently
addressed.

B. Challenge #5: Optimizing Near-Far Memory Allocation.

In distributed DBMS, especially when processing workloads
such as HTAP and multi-model queries, coordinating the
allocation strategy for execution memory and data memory
(i.e., buffer pools) poses notable challenges. Opting for near
memory on NUMA nodes typically reduces access latencies,
whereas employing far memory through CXL protocol, despite
offering increased storage capacity, may entail higher latency
and bandwidth constraints. Therefore, it is important to adopt a

6



 execution
 memory

 hybrid
 buffer pool

scale up

scale down

scale down

scale up

scale up

scale down

CPUs

PCIe / CXL

CXL switch
scale up

scale down

Fig. 8. Illustrates how a hybrid buffer pool supported by the CXL protocol
dynamically expands and contracts to meet fluctuating memory demands.
The diagram emphasizes the central role of the CXL switch in dynamic
memory allocation, such as dynamically assigning memory spaces, originally
not allocated to a particular host, to execution memory or the hybrid buffer
pool, thereby ensuring the efficient use of memory resources.

strategic approach to memory allocation, aiming to balance the
advantages of near and far memory to fulfill specific workload
requirements (as shown in Fig. 8).

The CXL protocol equips DBMSs with dynamic memory
allocation capabilities, facilitating the expansion and sharing
of far memory across various database instances in response to
specific workload demands. This strategy significantly boosts
system performance, notwithstanding the inherent bandwidth
and latency constraints associated with far memory. During
distributed elastic scaling, it becomes imperative for DBMS
to strategically allocate near memory and far memory for
execution memory and data memory, respectively. This careful
data allocation is aimed at striking an optimal balance among
performance, cost, and scalability factors, ultimately achieving
a comprehensive optimum for the aggregate workload. This
also enables high performance of HTAP processing.

Moreover, the utilization of the CXL protocol in distributed
or disaggregated DBMS introduces a fundamental issue: the
effective construction of a distributed memory access cost
model that is sensitive to the latencies of near and far memory
accesses. The key challenge is to devise a unified latency
model that consistently represents the delay characteristics
at different memory layers. Establishing such a model is
not only critical for dynamic memory allocation under the
CXL protocol but also lays a theoretical foundation for query
optimization in distributed and disaggregated DBMS.

C. Challenge #6: Automatic Hot-Cold Data Tiering.

When designing dynamic elastic buffer pool scaling for
DBMS, intelligent layering of hot and cold data becomes
crucial. It not only enhances the flexibility of memory re-
sources but also introduces a range of new challenges in

CPUsCPUs

CXL       CXL

CXL switch  

scale down

scale up
Agent 

cold

load migrate

warm

hot

cold

Fig. 9. Schematic of hot and cold page movements in the hybrid buffer pool
during elastic scaling. The left side shows how the hottest pages from other
zones (e.g., the far buffer pool) are preferentially selected for loading into
the near buffer pool when scaling up; the right side illustrates the coldest
pages being migrated to suitable locations, such as into the far buffer pool
zone managed by the CXL switch, during scaling down. The efficiency
of query processing, resulting from these decisions on page loading and
migration, depends on the precision with which intelligent agents manage
page temperature.

data management. DBMS must be able to rapidly adapt to
the dynamic adjustments of hybrid buffer pool size, making
effective data layering decisions. While scaling up the hybrid
buffer pool, the system needs to prioritize loading “hot” data
pages into the newly added memory space. Conversely, when
scaling down the hybrid buffer pool, it becomes necessary to
select “cold” data pages that can be migrated or removed. This
process requires DBMS to perform real-time analysis of data
access patterns and frequencies to ensure efficient and precise
decision-making.

Furthermore, with the elastic scaling of the hybrid buffer
pool supported by CXL protocols, maintaining data locality
and minimizing data access latencies becomes increasingly
complex. This involves not only dealing with multi-layer
memory differences but also requires an intelligent agent
to continuously monitor, predict, and manage data access
patterns. Fig. 9 illustrates that intelligent agents for data page
tiering make critical decisions during the elastic scaling of
buffer areas. Additionally, the application of machine learning
models to predict data access characteristics and classify hot,
cold, and shared data is key to addressing the challenges
brought by distributed elastic memory allocation.

Overall, while CXL endows the hybrid buffer pool with dy-
namic elastic scaling capabilities, it also brings new challenges
in intelligent data layering. These challenges primarily revolve
around efficiently managing data within dynamically changing
memory resources, maintaining data locality, and implement-
ing precise hot and cold data layering and processing.

V. DATABASE RECOVERY

In traditional distributed DBMS, fault recovery is typically
a complex and time-consuming process. This process relies
on transaction log rollbacks (undo) for atomicity and redos

7



Page1 New
Page1

Log
Transaction 4

Transaction 5

Page1

Log
Transaction 4567

Transaction 4568

checkpoint

checkpoint

CPU

Page1
replica

C
om

pu
te

M
em

or
y

St
or
ag
e

CPU ...

Page2 Page1

CPU

Fig. 10. Dual Checkpoint for two tiers data recovery. The architecture
employs a three-layer separation of computing, memory, and storage. The
memory layer consists of pooled and shared memory resources managed and
communicated via CXL switches, based on the CXL protocol.

for durability, as well as data synchronization and consistency
checks across multiple nodes. Particularly, recovering while
maintaining data consistency across nodes often depends on
slow and complex communication protocols, such as TCP/IP.
However, the new features of the CXL protocols bring new
opportunities for fast fault recovery in distributed DBMS.
For instance, memory resources can be quickly restructured
or reallocated for a failure, allowing the system to rapidly
transfer critical data from affected nodes to active ones, or
to use extended memory as an immediate data backup space,
thereby reducing the time required to recover data from disk
logs. Furthermore, the fine-grained memory sharing among
multiple hosts supported by the CXL switch provides a new
mechanism for rapid data recovery in distributed DBMS,
where other nodes can quickly access necessary data through
shared memory even when a single node fails.

A. Challenge #7: Dual Checkpoint Mechanisms.

In traditional distributed DBMS, data recovery techniques
primarily focus on tightly coupled processor-memory-storage
nodes, where failures are recovered from the storage by
replaying the logs, leading to low recovery speed due to the
high latency of disk-based log replay. To address this problem,
we can disaggregate the DBMS into compute node, memory
node, and storage node based on resource allocation to further
improve the elasticity. The recovery of compute nodes can
utilize memory checkpoints (if the memory nodes are active)
or storage checkpoints, and thus the recovery speed can be
significantly improved. The recovery of memory nodes can
utilize their replicas or storage nodes. To achieve this, fully
leveraging the efficient far memory access facilitated by CXL
protocols becomes crucial for designing rapid data recovery
techniques for both compute nodes and memory nodes.

The unified memory semantics and dynamic memory alloca-
tion capabilities of CXL enable the development of innovative
recovery approaches. For instance, memory node data pages
can be used to restore compute node data, while storage node
logs assist in memory node data recovery. These processes,
harnessing the low latency and high bandwidth advantages of
CXL, substantially accelerate data recovery. For example, in
the event of a compute node failure, data can be swiftly re-
stored from remote memory nodes, reducing system downtime.
Similarly, the fine-grained memory sharing supported by CXL
enhances cross-node data recovery efficiency, allowing quick
access to essential data in the event of single node failures.

However, implementing these designs effectively requires
addressing the challenges posed by dual checkpoint mecha-
nisms. As illustrated in Fig. 10, setting dual checkpoints in far
memory and disk logs involves maintaining data consistency
and synchronization across both levels. This adds complexity
to data management and increases the requirements for data
consistency. While CXL protocols enhance memory access
efficiency, they must also ensure effective data exchange
with disk storage, minimizing performance costs associated
with data synchronization. Thus, effectively implementing a
dual checkpoint mechanism, balancing recovery speed with
data consistency, and utilizing the CXL protocol for flexible
memory resource management and low access latency, pose
significant challenges in ensuring rapid and accurate system
recovery in case of failures.

B. Challenge #8: Synchronizing Dirty Pages in Shared Mem-
ory.

In traditional distributed DBMS, utilizing dirty page lists
for cross-node data recovery presents a complex task, espe-
cially in high-concurrency and data-intensive query processing
requirements. The low latency, high bandwidth, and large
capacity features of the CXL protocol have revolutionized
the maintenance of dirty page lists, making their storage in
CXL extended memory feasible. This design not only reduces
access latency but also enhances the frequency of updates,
significantly improving the efficiency of using far memory data
to recover from failures of near memory.

However, storing dirty page lists in CXL extended memory
introduces new challenges, particularly considering the risk of
failure in the extended memory itself. To address this risk,
pooled memory under the CXL protocol becomes an ideal
choice for backing up dirty page lists. This multi-tiered backup
strategy ensures that even in the event of extended memory
failure, dirty page information can be rapidly recovered from
pooled memory, guaranteeing continuity and efficiency in data
recovery (as shown in Fig. 11). Overall, the CXL protocol
offers new possibilities for efficient fault recovery based on far
memory dirty page lists, while also introducing new challenges
in designing and maintaining these lists, especially in ensuring
efficiency and consistency in the recovery process.

8



compute node memory node new compute node

near memory

CPUs

dirty
page1

near memory

CPU

new
page1

CXL switch

CPU

shared memory

page1
replica

st
or

ag
e 

no
de

P1

persistent

refresh recovery

recovery

P2P3

Fig. 11. Dirty page synchronization and recovery process. It illustrates the
dynamic interaction between compute nodes, memory nodes, and storage
nodes. Normally, dirty pages from compute nodes are frequently synchronized
to memory nodes with CXL switches, and the memory nodes are responsible
for persisting to storage nodes. Upon failure of a compute node, rapid
data recovery for a new compute node is facilitated through efficient data
synchronization and recovery from memory nodes via CXL switches, or from
storage nodes when the memory node has also failed.

C. Challenge #9: Force Commit with CXL and Persistent
Memory.

While traditional distributed database systems commonly
adopt the no-force commit strategy due to its high cost,
the emergence of the CXL protocol opens new avenues for
reconsidering the force-commit mechanism. According to the
white paper on the CXL protocol, it can serve as an efficient
transmission protocol between CPUs and Persistent Memory
(PMEM). Within this technological framework, there is a
potential shift towards a force-commit mechanism in database
transaction processing, which involves immediate flushing of
dirty pages upon transaction completion. The feasibility of this
approach largely depends on the bandwidth and latency per-
formance when accessing PMEM via the CXL protocol. The
key challenge lies in assessing whether the force commit can
maintain transaction processing speeds within an acceptable
range for users.

The force commit mechanism based on CXL offers sig-
nificant advantages. In the event of a system failure, all
committed transactions can be rapidly recovered without the
need for traditional redo operations, greatly enhancing the
efficiency of data recovery and the overall reliability and
stability of the system. However, the implementation of this
mechanism requires a careful balance of the performance
characteristics of the CXL protocol to ensure that the speed
of transaction processing aligns with the demands of practical
applications. Moreover, the redo logs are widely used between
the master-standby mechanism and the cross-region disaster
recovery mechanism. Thus, it is challenging if the redo logs

NVM

compute node new compute node

near memory

CXL

CPUs

dirty
page1

near memory

CXL

CPUs

new
page1

st
or

ag
e 

no
de

P1

force commit

recovery

Fig. 12. Force commit with CXL protocol and persistent memory. Compute
nodes synchronize dirty pages to storage nodes with persistent memory, and
execute forced commit transactions via the CXL protocol. This mechanism
allows for immediate persistence of data changes to NVM storage upon
transaction completion, enabling rapid data recovery on new nodes in the
event of system failures, while ensuring the efficiency and consistency of
transaction processing.

are removed from the DBMS.

VI. INDEX DESIGN

Long-standing latency challenges in distributed DBMS are
being readdressed with the advent of the CXL protocols.
These protocols, offering large capacity, low latency, and
high scalability, unlock new possibilities in optimizing in-
dexing strategies within disaggregated DBMS. Particularly,
the novel features of CXL create unprecedented opportunities
for accelerating index-based data access, while simultaneously
introducing new challenges in index design.

Traditional single-node indexes have constraints on the
limited size of the buffer pool, and thus are inefficient for a
large volume of data. There are two possible ways to improve
the scalability of indexes. The first partitions the data, builds
a local index for each partition and constructs a global index
across the partitions. However, this method involves distributed
transactions and has high write latency. The second utilizes the
shared memory to offer large memory space for improving
index performance. Obviously, CXL provides opportunities
for simplifying memory management and usage with near/far
memory. However, there are several challenges in designing
CXL-powered indexes.

A. Challenge #10: Memory Allocation for B+ Tree Nodes.

In the process of designing memory allocation strategies
for B+ trees, it’s essential to thoroughly analyze the rela-
tionship between the basic structure of B+ trees and their

9



data access patterns. B+ trees consist of high-level non-leaf
nodes and data-storing leaf nodes, with data within the leaf
nodes being orderly stored. This structural design facilitates
efficient data localization during index scans, allowing for
swift top-down data location. During such operations, non-
leaf nodes are accessed more frequently than leaf nodes,
hence placing these frequently accessed nodes in near memory
significantly reduces the need for far memory access, thereby
enhancing the efficiency of frequent data queries. However,
data operations extend beyond scans to include insertions
and deletions, complicating the memory allocation strategy.
Particularly during insertions, the access pattern inversely
shifts, significantly increasing the frequency of certain leaf
nodes being accessed. This indicates that memory placement
strategies optimized for search operations are not suitable
for insertions or deletions due to their differing node access
requirements.

Therefore, formulating a memory allocation strategy for
B+ tree nodes requires considering the ratio of different
types of data operations within the workload, as well as the
sequence of these operations. Additionally, it necessitates fully
leveraging the bandwidth, latency, and capacity features of the
CXL protocol to formulate the memory allocation strategy,
including the cost of allocation and its potential benefits
estimation. Such comprehensive consideration aims to achieve
an optimal balance amid various data operations, avoiding
frequent far memory access, and ultimately optimizing overall
performance, presenting a significant challenge.

B. Challenge #11: Dynamic Memory Allocation for Data
Modifications.

The dynamic memory allocation capability enhanced by
CXL-powered DBMS opens up new possibilities for dynam-
ically allocating memory space for data insertions and dele-
tions. By reserving sufficient memory space for newly inserted
data and promptly recycling memory space from deleted
data, system memory usage efficiency can be significantly
optimized. However, achieving this goal also faces challenges.

Firstly, DBMS must accurately predict the memory space
required for each insertion or deletion operator. This involves
forecasting the B+ tree nodes involved and their access
frequencies to optimize the allocation between near and far
memory. During this decision-making process, predicting the
cost of node splitting, merging, and balancing mechanisms is
crucial, as different mechanisms have varied costs associated
with accessing different memory layers. Although the CXL
switch offers a relatively lightweight dynamic memory alloca-
tion solution, the cost of memory scaling must still be carefully
weighed.

Secondly, it is critical to predict and adapt to the trend of
data modifications, enabling the DBMS to dynamically allo-
cate memory based on real-time query patterns and upcoming
data access frequencies. This strategy not only addresses the
current workload but also anticipates future access patterns,
ensuring that frequently accessed nodes remain in near mem-
ory to reduce latency, while less accessed nodes are allocated

to far memory to utilize its larger capacity. This requires a
finely balanced approach, taking into account the bandwidth
and latency of the CXL protocol and the costs associated
with dynamic memory scaling to optimize overall database
performance.

By overcoming these challenges and effectively leveraging
the capabilities of the CXL protocol, DBMS can support
highly dynamic data workloads with unprecedented efficiency
and flexibility, meeting the evolving needs of data-intensive
applications. This significantly enhances the performance and
scalability of index-based data management in DBMS.

C. Challenge #12: Enhancing Index Concurrency for Struc-
ture Updates.

Index, supporting concurrent reads, further enhances data
access efficiency. However, the complex index structure up-
dates, which include the writing processes involved in B+ tree
node splitting, merging, and balancing, pose significant chal-
lenges to maintaining index consistency in high-concurrency
data modification scenarios. Traditional DBMSs maintain in-
dex consistency and accuracy by minimizing lock contention.
Optimistic Concurrency Control (OCC) technology, which
assumes conflicts are rare and checks for violations at trans-
action commit, represents a promising approach. Nonetheless,
effectively applying OCC to index structures requires careful
design to minimize the cost of false positives and efficiently
manage rollback mechanisms. Traditional locking mechanisms
can become bottlenecks, severely hindering the performance
and scalability of database systems.

The CXL switch, by offering shared memory and cache
coherence, paves new pathways for addressing concurrent in-
dex update challenges. While the CXL switch can effortlessly
manage conflicts in shared CXL memory data under multi-
write scenarios through hardware and CPU-memory com-
munication mechanisms, the primary challenge lies in fully
leveraging this advantage to develop an efficient and reliable
index update strategy that includes the splitting, merging, and
balancing of B+ tree nodes. Additionally, the adaptability of
the index structure to the dynamic allocation capabilities of
CXL memory introduces further complexity. Indices need to
efficiently scale up, scale down, and re-balance in response
to variations in data sets and workloads, all while supporting
high concurrency. This demands sophisticated algorithms to
dynamically adjust the index structure without compromising
the overall database performance.

VII. RELATED WORK

CXL for Database Systems. Recent research demonstrated
the performance of utilizing CXL-based extended memory in
In-Memory Database Management Systems (IMDBMS) [21]
[15]. The first study [21] evaluated CXL memory with OLTP
and OLAP workloads, finding that reasonable data allocation
can mitigate the throughput impact. The second study [15] ex-
amined CXL memory pooling’s potential limitations, observ-
ing that initial CXL versions had bandwidth issues for OLAP
workloads. A recent tutorial [10] has concurred that CXL, as

10



an interconnect technology surpassing RDMA in speed, offers
two principal methodologies for utilization within IMDBMS.
The first approach considers memory connected via CXL as
part of a unified memory space with the host’s local memory,
while the second distinctively separates CXL memory from
local memory, enabling explicit data management between the
two to optimize performance. However, detailed perspectives
on how CXL might transform the architectures of various
disaggregated database systems remain under-explored. Re-
searchers not only tested the performance enhancement of
IMDBS through the use of CXL-based extended memory, but
also demonstrated its application in data analytics platforms,
e.g., Apache Spark [6]. By employing CXL extended memory
for storing intermediate data in Spark Shuffle, it effectively
reduced the latency of TeraSort operations. The DB commu-
nity’s attempts at utilizing CXL protocol represent a promising
start. Thus it requires further in-depth study on how to utilize
CXL to optimize database systems.
Difference between CXL and RDMA. Remote Direct Mem-
ory Access (RDMA) protocol enables direct data transfer
from the memory of one host to another without CPU inter-
vention, enhancing the efficiency of remote memory access.
RDMA has supported the development of shared memory and
compute-memory disaggregation architectures in distributed
DBMS. However, when comparing RDMA with CXL, there
are significant differences in bandwidth, latency, capacity,
data access granularity, data consistency, and shared memory
management.

RDMA offers larger access granularity, whereas CXL pro-
vides fine-grained data access. Thus, data organization and al-
gorithms based on the RDMA protocol are not entirely suitable
for memory management based on the CXL protocol and need
to be redesigned. For example, data organization could shift
from page-based to more fine-grained (a batch of) tuple-based
granularities. Moreover, differences in bandwidth and latency
imply that the types of workloads suitable for RDMA and CXL
might differ, necessitating optimized execution strategies for
the specific technology.

Most importantly, the cache coherency provided by the
CXL protocol, along with future support for shared memory
cache consistency, brings new opportunities for DBMS. This
cache coherency feature, absent in RDMA, means the perfor-
mance sacrifices made to ensure data consistency with RDMA
protocol can be avoided in architectures based on the CXL
protocol. Therefore, DBMS architectures, query optimization,
and transaction processing based on the CXL protocol need
to be redesigned to fully leverage its advanced features.
Memory Disaggregation. With the emergence of RDMA,
researchers highlighted the necessity of redesigning the archi-
tecture of distributed DBMS to fully utilize high-performance
networks [22]. The rise of disaggregated data centers prompts
a shift towards disaggregated database designs [23], [24].
These advancements presented significant challenges [11]. In
response, PolarDB Serverless [25], [26] was developed to
enable each resource pool to independently adjust its size, in-
troducing key optimizations like optimistic locking and index-

aware prefetching to enhance performance and scalability.
Farview [27] is implemented through FPGA-based smart NICs
to support offloading queries by using operators such as se-
lection, projection, aggregation, regular expression matching,
and encryption. Redy [28] provides high-performance caches
using remote memory through automatic RDMA configuration
tuning. LegoBase [16] proposed a two-tier ARIES protocol to
handle failures of compute nodes and the remote memory on
memory disaggregation architecture. However, the difference
between RDMA and CXL requires rethinking the DBMS-
specific techniques on CXL-based memory disaggregation
architecture.
CXL for Memory Pooling. Pond [14] leveraged the CXL
protocol to develop a memory pooling system for cloud
computing platforms, achieving both rapid response require-
ments and a reduction in memory costs. Another work [7]
attempted to build a simulated CXL-enabled DRAM-SSD
hybrid memory pool, with experiments showing no signif-
icant performance degradation for compute-intensive tasks.
DirectCXL [18] provided a laboratory product that connects
the operating system and software/hardware modules to realize
memory pooling, which is of great significance. TPP [29]
proposed an OS-level lightweight mechanism to identify and
place hot/cold pages to appropriate memory tiers to improve
the performance. However, they do not study how these
memory pooling techniques affect database systems.
Beyond Memory. Firstly, within multi-core computing archi-
tectures, the CXL protocol has the potential to fully leverage
computational resources, also offering more possibilities for
solving challenges such as HTAP. Architectures based on the
CXL protocol can also be viewed as ”expanded NUMA”, with
the evolution from NUMA-aware to CXL-aware enhancing the
performance and scalability of DBMS. Moreover, the advan-
tages of the CXL protocol play a crucial role in promoting
the development of record-based DBMS (as opposed to page-
based DBMS), enabling fine-grained data processing. Lastly,
the combination of the CXL protocol with SSDs [30]–[32],
as well as interactions between CXL protocol and GPUs [33],
brings new development opportunities for DBMS tailored to
new hardware.

VIII. CONCLUSION

We argue that CXL has high potential to revolutionize
the design of DBMS. The new features, high bandwidth,
low latency, and support for cache coherency and memory
semantics, provide a new direction for addressing the limita-
tions and bottlenecks faced by traditional distributed database
systems. This paper provides several challenges of buffer pool
management, distributed elastic memory management, fast
data recovery, and distributed index design. We believe that
solving these challenges is a significant first step to inspire
cutting-edge approaches in future DBMS design to achieve
efficiency, reliability, and lower total cost of ownership. This
paper will open up new research directions for CXL-powered
database systems.

11



REFERENCES

[1] Cxl consortium. introduction to compute express link. [Online].
Available: https://computeexpresslink.org/wp-content/uploads/2023/12/
0c1418 d9878707bbb7427786b70c3c91d5fbd1.pdf

[2] Cxl consortium. compute express link 2.0 white paper. [Online].
Available: https://computeexpresslink.org/wp-content/uploads/2023/12/
CXL2.0 White Paper November-2020 FINAL.pdf

[3] Cxl consortium. cxl 3.0 specification. [Online]. Avail-
able: https://computeexpresslink.org/wp-content/uploads/2023/12/CXL
3.0 white-paper FINAL.pdf

[4] Cxl consortium. cxl 3.1 specification. [Online]. Avail-
able: https://computeexpresslink.org/wp-content/uploads/2023/12/CXL
3.1-White-Paper FINAL.pdf

[5] M. Arif, K. Assogba, M. M. Rafique, and S. Vazhkudai, “Exploiting
cxl-based memory for distributed deep learning,” in ICPP. ACM,
2022, pp. 19:1–19:11. [Online]. Available: https://doi.org/10.1145/
3545008.3545054

[6] S. Ryu, S. Kim, J. Jun, D. Moon, K. Lee, J. Choi, S. Kim, H. Kim,
L. Kim, W. H. Choi, M. Nam, D. Hwang, H. Roh, and Y. Joo, “System
optimization of data analytics platforms using compute express link
(CXL) memory,” in BigComp. IEEE, 2023, pp. 9–12. [Online].
Available: https://doi.org/10.1109/BigComp57234.2023.00011

[7] Q. Yang, R. Jin, B. Davis, D. Inupakutika, and M. Zhao, “Performance
evaluation on cxl-enabled hybrid memory pool,” in NAS. IEEE, 2022,
pp. 1–5. [Online]. Available: https://doi.org/10.1109/NAS55553.2022.
9925356

[8] D. D. Sharma, R. Blankenship, and D. S. Berger, “An introduction to the
compute express link (CXL) interconnect,” CoRR, vol. abs/2306.11227,
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2306.11227

[9] A. Geyer, D. Ritter, D. H. Lee, M. Ahn, J. Pietrzyk, A. Krause,
D. Habich, and W. Lehner, “Working with disaggregated systems. what
are the challenges and opportunities of RDMA and cxl?” in BTW, ser.
LNI, vol. P-331. Gesellschaft für Informatik e.V., 2023, pp. 751–755.
[Online]. Available: https://doi.org/10.18420/BTW2023-47

[10] J. Wang and Q. Zhang, “Disaggregated database systems,” in
SIGMOD. ACM, 2023, pp. 37–44. [Online]. Available: https:
//doi.org/10.1145/3555041.3589403

[11] R. Wang, J. Wang, S. Idreos, M. T. Özsu, and W. G. Aref, “The case
for distributed shared-memory databases with rdma-enabled memory
disaggregation,” Proc. VLDB Endow., vol. 16, no. 1, pp. 15–22, 2022.
[Online]. Available: https://www.vldb.org/pvldb/vol16/p15-wang.pdf

[12] D. Boles, D. G. Waddington, and D. A. Roberts, “Cxl-enabled enhanced
memory functions,” IEEE Micro, vol. 43, no. 2, pp. 58–65, 2023.
[Online]. Available: https://doi.org/10.1109/MM.2022.3229627

[13] D. Gouk, M. Kwon, H. Bae, S. Lee, and M. Jung, “Memory pooling
with CXL,” IEEE Micro, vol. 43, no. 2, pp. 48–57, 2023. [Online].
Available: https://doi.org/10.1109/MM.2023.3237491

[14] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic,
M. Shah, S. Rajadnya, S. Lee, I. Agarwal, M. D. Hill, M. Fontoura,
and R. Bianchini, “Pond: Cxl-based memory pooling systems for
cloud platforms,” in ASPLOS. ACM, 2023, pp. 574–587. [Online].
Available: https://doi.org/10.1145/3575693.3578835

[15] D. Lee, T. Willhalm, M. Ahn, S. M. Desai, D. Booss, N. Singh,
D. Ritter, J. Kim, and O. Rebholz, “Elastic use of far memory for
in-memory database management systems,” in SIGMOD, DaMoN 2023.
ACM, 2023, pp. 35–43. [Online]. Available: https://doi.org/10.1145/
3592980.3595311

[16] Y. Zhang, C. Ruan, C. Li, J. Yang, W. Cao, F. Li, B. Wang, J. Fang,
Y. Wang, J. Huo, and C. Bi, “Towards cost-effective and elastic
cloud database deployment via memory disaggregation,” Proc. VLDB
Endow., vol. 14, no. 10, pp. 1900–1912, 2021. [Online]. Available:
http://www.vldb.org/pvldb/vol14/p1900-zhang.pdf

[17] R. Wang, J. Wang, P. Kadam, M. T. Özsu, and W. G. Aref,
“dlsm: An lsm-based index for memory disaggregation,” in ICDE.
IEEE, 2023, pp. 2835–2849. [Online]. Available: https://doi.org/10.
1109/ICDE55515.2023.00217

[18] D. Gouk, S. Lee, M. Kwon, and M. Jung, “Direct access,
high-performance memory disaggregation with directcxl,” in ATC.
USENIX Association, 2022, pp. 287–294. [Online]. Available:
https://www.usenix.org/conference/atc22/presentation/gouk

[19] Cxl 2.0 switch from xconn. [Online]. Available: https://www.youtube.
com/watch?v=mUMo5fReiTk&t=127s

[20] Pooled cxl memory system at fms. [Online]. Available: https:
//tinyurl.com/yc7ycyvu

[21] M. Ahn, A. Chang, D. Lee, J. Gim, J. Kim, J. Jung, O. Rebholz,
V. Pham, K. T. Malladi, and Y. Ki, “Enabling CXL memory
expansion for in-memory database management systems,” in SIGMOD,
DaMoN 2022. ACM, 2022, pp. 8:1–8:5. [Online]. Available:
https://doi.org/10.1145/3533737.3535090

[22] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zamanian,
“The end of slow networks: It’s time for a redesign,” Proc. VLDB
Endow., vol. 9, no. 7, pp. 528–539, 2016. [Online]. Available:
http://www.vldb.org/pvldb/vol9/p528-binnig.pdf

[23] Q. Zhang, Y. Cai, S. Angel, V. Liu, A. Chen, and B. T.
Loo, “Rethinking data management systems for disaggregated data
centers,” in 10th Conference on Innovative Data Systems Research,
CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020,
Online Proceedings. www.cidrdb.org, 2020. [Online]. Available:
http://cidrdb.org/cidr2020/papers/p6-zhang-cidr20.pdf

[24] Q. Zhang, Y. Cai, X. Chen, S. Angel, A. Chen, V. Liu, and
B. T. Loo, “Understanding the effect of data center resource
disaggregation on production dbmss,” Proc. VLDB Endow., vol. 13,
no. 9, pp. 1568–1581, 2020. [Online]. Available: http://www.vldb.org/
pvldb/vol13/p1568-zhang.pdf

[25] W. Cao, Y. Zhang, X. Yang, F. Li, S. Wang, Q. Hu, X. Cheng,
Z. Chen, Z. Liu, J. Fang, B. Wang, Y. Wang, H. Sun, Z. Yang,
Z. Cheng, S. Chen, J. Wu, W. Hu, J. Zhao, Y. Gao, S. Cai,
Y. Zhang, and J. Tong, “Polardb serverless: A cloud native database
for disaggregated data centers,” in SIGMOD ’21, Virtual Event, China,
June 20-25, 2021. ACM, 2021, pp. 2477–2489. [Online]. Available:
https://doi.org/10.1145/3448016.3457560

[26] Y. Zhang, C. Ruan, C. Li, J. Yang, W. Cao, F. Li, B. Wang, J. Fang,
Y. Wang, J. Huo, and C. Bi, “Towards cost-effective and elastic
cloud database deployment via memory disaggregation,” Proc. VLDB
Endow., vol. 14, no. 10, pp. 1900–1912, 2021. [Online]. Available:
http://www.vldb.org/pvldb/vol14/p1900-zhang.pdf

[27] D. Korolija, D. Koutsoukos, K. Keeton, K. Taranov, D. S.
Milojicic, and G. Alonso, “Farview: Disaggregated memory with
operator off-loading for database engines,” in 12th Conference on
Innovative Data Systems Research, CIDR 2022, Chaminade, CA,
USA, January 9-12, 2022. www.cidrdb.org, 2022. [Online]. Available:
https://www.cidrdb.org/cidr2022/papers/p11-korolija.pdf

[28] Q. Zhang, P. A. Bernstein, D. S. Berger, and B. Chandramouli,
“Redy: Remote dynamic memory cache,” Proc. VLDB Endow.,
vol. 15, no. 4, pp. 766–779, 2021. [Online]. Available: https:
//www.vldb.org/pvldb/vol15/p766-zhang.pdf

[29] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal,
P. Bhattacharya, C. Petersen, M. Chowdhury, S. O. Kanaujia,
and P. Chauhan, “TPP: transparent page placement for cxl-enabled
tiered-memory,” in ASPLOS 2023, Vancouver, BC, Canada, March
25-29, 2023. ACM, 2023, pp. 742–755. [Online]. Available:
https://doi.org/10.1145/3582016.3582063

[30] S. Lee, A. Lerner, P. Bonnet, and P. Cudré-Mauroux, “Database
kernels: Seamless integration of database systems and fast storage via
cxl,” in 14th Conference on Innovative Data Systems Research, CIDR
2024, Chaminade, USA, January 14-17, 2024. www.cidrdb.org, 2024.
[Online]. Available: https://www.cidrdb.org/cidr2024/papers/p43-lee.pdf

[31] S. Yang, M. Kim, S. Nam, J. Park, J. Choi, E. H. Nam,
E. Lee, S. Lee, and B. S. Kim, “Overcoming the memory
wall with cxl-enabled ssds,” in 2023 USENIX Annual Technical
Conference, USENIX ATC 2023, Boston, MA, USA, July 10-12,
2023. USENIX Association, 2023, pp. 601–617. [Online]. Available:
https://www.usenix.org/conference/atc23/presentation/yang-shao-peng

[32] M. Kwon, S. Lee, and M. Jung, “Cache in hand: Expander-driven CXL
prefetcher for next generation CXL-SSD,” in Proceedings of the 15th
ACM/USENIX Workshop on Hot Topics in Storage and File Systems,
HotStorage 2023, Boston, MA, USA, 9 July 2023. ACM, 2023, pp.
24–30. [Online]. Available: https://doi.org/10.1145/3599691.3603406

[33] S. Sano, Y. Bando, K. Hiwada, H. Kajihara, T. Suzuki, Y. Nakanishi,
D. Taki, A. Kaneko, and T. Shiozawa, “GPU graph processing on
cxl-based microsecond-latency external memory,” in Proceedings of
the SC ’23 Workshops of The International Conference on High
Performance Computing, Network, Storage, and Analysis, SC-W 2023,
Denver, CO, USA, November 12-17, 2023. ACM, 2023, pp. 961–972.
[Online]. Available: https://doi.org/10.1145/3624062.3624173

12


