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Abstract

Large language models (LLMS) have shown increasing effectiveness in Text-
to-SQL tasks. However, another closely related problem, Cross-System SQL
Translation (a.k.a., SQL-to-SQL), which adapts a query written for one database
system (e.g., MySQL) into its equivalent one for another system (e.g., Click-
House), is of great practical importance but remains underexplored. Existing
SQL benchmarks are not well-suited for SQL-to-SQL evaluation, which (1) fo-
cus on a limited set of database systems (often just SQLite) and (2) cannot cap-
ture many system-specific SQL dialects (e.g., customized functions, data types,
and syntax rules). Thus, in this paper, we introduce PARROT, a Practical And
Realistic BenchmaRk for CrOss-System SQL Translation. PARROT comprises
598 translation pairs from 38 open-source benchmarks and real-world business
services, specifically prepared to challenge system-specific SQL understanding
(e.g., LLMS achieve lower than 38.53% accuracy on average). We also provide
multiple benchmark variants, including PARROT-Diverse with 28,003 translations
(for extensive syntax testing) and PARROT-Simple with 5,306 representative sam-
ples (for focused stress testing), covering 22 production-grade database systems.
To promote future research, we release a public leaderboard and source code at:
https://code4db.github.io/parrot-bench/.

1 Introduction

Understanding and processing database SQL queries is a key criterion for evaluating large language
models (LLMS) in both general and specific domains [1, 2]. However, existing researches mainly
focus on advancing LLMs in the Text-to-SQL task [3]. In contrast, Cross-System SQL translation,
so-called SQL-to-SQL, aims to adapt a SQL query written for one database system (e.g., MySQL) into
an equivalent query for another system (e.g., ClickHouse), which is of critical practical importance in
real-world scenarios, where enterprises frequently operate heterogeneous database environments and
require seamless query migration across systems. Despite its significance, existing SQL benchmarks
are mainly for Text-to-SQL, which are ill-suited for evaluating SQL-to-SQL capabilities. That is,
they typically target a narrow range of database systems (mostly SQLite) and fail to capture diverse,
system-specific dialect characteristics. As shown at the top of Figure 1, by testing with representative
SQLs, we can identify critical problems of existing models in the SQL-to-SQL problem:

• SQL- 1⃝ needs to be modified in calculation to execute in MySQL (i.e., “1 / col” → “1 / NULLIF(col,
0)”) to avoid division-by-zero errors. However, the tested LLM (GPT-4o) fails to inject this safeguard
because it lacks dialect-specific error-handling knowledge.
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SELECT 
      customer_id, 
      1 / col AS ratio 
FROM 
      sales;

   Struggle for Long SQLs 
   with Irrelevant Content

    Lack of Basic SQL  
   Translation Knowledge

  Logical Mistakes When  
   Understanding Complex SQLs

PostgreSQL -> MySQL

WITH ssr AS ( SELECT 
s_store_id, …
  SUM(return_amt) AS RETURNS,
  FROM ( SELECT 
... AS sales_price, 
    FROM store_sales ...)
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   SUM(...) / SUM(...) AS  
gross_margin, 
i_category, i_class, 
     … <158 hidden lines> ….
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(i_category, i_class)
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1 2 3
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Figure 1: Top – Example queries illustrating key limitations of LLMS in SQL-to-SQL translation.
Bottom – Empirical statistics from 28 open-source SQL-related benchmarks: (1) Left: Most bench-
marks focus solely on SQLite (limited system diversity); (2) Middle: Over 89% of BIRD benchmark
queries are system-agnostic (inadequate system coverage); (3) Right: Fewer than 13% of PostgreSQL
and MySQL queries in BIRD-mini exhibit system-specific syntax (low dialect diversity).

• SQL- 2⃝ uses “GROUP BY ROLLUP(· · · )” that requires MySQL-specific syntax adjustments.
GPT-4o cannot accurately locate and adapt the nested ‘ROLLUP’ due to distractions from lengthy
unrelated clauses and an inability to isolate dialect-critical constructs.

• SQL- 3⃝ defines an alias ‘RETURNS’ in a CTE subquery, which is not accessible in the outer
query in MySQL. However, the LLM mistakenly assumes alias visibility across scopes, resulting in a
reference to an undefined column and semantic failure during execution.

Limitations of Existing Benchmarks. Existing benchmarks lack sufficient such SQL queries for
the SQL-to-SQL task. As shown in the bottom of Figure 1, our investigation of 28 open-source
SQL-related benchmarks reveals several critical limitations. First, most benchmarks are designed
for NL2SQL tasks and focus on a limited set of systems (e.g., primarily SQLite). Their queries are
typically simple and do not require system-specific translation, making them unsuitable for this task.
In contrast, real-world queries (e.g., those involving UDFs) often demand complex translation across
database systems. Second, although a small portion of queries (e.g., fewer than 13% in BIRD-mini)
require system-specific handling, they lack corresponding labels across multiple systems, offering
only single-system SQLs, which limits their usability. Third, the volume of translation-relevant
queries is small, and many critical SQL translation scenarios are underrepresented.

Our Methodology. To close this gap, we introduce PARROT (Practical And Realistic BenchmaRk
for CrOss-System SQL Translation), the first large-scale dataset and evaluation suite dedicated to
cross-system SQL translation. First, we curate a diverse translation corpus of 598 manually verified
query pairs from 38 public benchmarks and real-world business applications, maximizing dialect
diversity and real-world relevance. Second, we craft a specialized challenge set of 5,306 unit-style
test cases spanning 22 production-grade database systems that isolate system-specific constructs
(e.g., window-function variants, geo-types, and bitmap operations), thereby exposing brittle model
behaviors invisible in prior work. Third, we provide an augmented training pool of 28,003 SQL
statements mined and automatically tagged with dialect information. Fourth, we propose a unified
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evaluation protocol featuring reference executors, schema normalizers, and an execution-first metric
that rewards semantic correctness over superficial string similarity. Finally, we release extensive
community resources, including a public leaderboard, an open-sourced annotation toolchain, and two
lighter benchmark variants, i.e., PARROT-DIVERSE for extensive syntax tests and PARROT-SIMPLE
for focused stress testing, and so researchers and practitioners can tailor evaluation to their specific
needs. Empirical analysis reveals that state-of-the-art LLMs fail to achieve desirable performance
across different dialects (i.e., ranging from around 17% - 60%), underscoring substantial headroom
for future research.

2 Problem Formulation

Cross-System SQL Translation is the task of converting a SQL query in a source database system
(e.g., PostgreSQL) into a form that (1) strictly conforms to the target system’s SQL syntax and (2)
preserves the original query’s semantics, so that it executes with equivalent functionality on the target
database system (e.g., ClickHouse).

Functional Equivalence. The functional equivalence requires two query operations to be both syn-
tactically compatible and semantically consistent. A query operation qTi , which is an implementation
of syntax ST

i , in database DT is functionally equivalent to a query operation qSi in database DS

if it adheres to the syntax standards in DS (i.e., syntactically compatible) and produces the same
execution results or has the same effect as qSi (i.e., semantically consistent).

For example, in PostgreSQL, the function CURRENT_TIMESTAMP returns the current date
and time, while in MySQL, the equivalent function is NOW(). These operations are functionally
equivalent, both producing the current system timestamp, although their syntax (dialects) differ.

Cross-System SQL Translation. Given a query QS written in a source system SQL, QS is composed
of one or more operations {qSi }. Cross-System SQL Translation refers to the process of mapping
each operation qSi to one or more functionally equivalent operations in the target system SQL. The
translated query QT must (1) strictly follow the target dialect syntax ST (i.e., syntactically compatible
with no runtime errors) and (2) maintain functional equivalence to QS (i.e., semantically consistent
to produce the same results). We utilize dialect to refer to SQLs designed for specific data systems.

3 Collection and Curation of PARROT

PARROT is constructed using real-world SQLs for two key reasons: (1) Assembling representative
workloads by humans is both labor-intensive and requires insightful domain expertise; (2) Although
LLM-based query synthesis enables large-scale generation, the resulting queries often lack the
structural nuances and operational patterns characteristic of production workloads (e.g., complex
nested structures for specific service SQLs), making them less effective in reflecting real scenarios [4].

Overall, we first collect SQL samples from public open-source repositories as well as private
proprietary workloads. The collected queries then pass through a rigorous curation pipeline (including
clustering the SQLs based on their normalized representation and selecting the representative ones)
that retains only those queries satisfying Jim Gray’s four benchmark design principles [5].

3.1 SQL Source Collection

To make the prepared benchmark practical and realistic, we collect real-world queries from both the
open-source and private domains rather than synthesizing from scratch.

• Open-Source Domain. To make the benchmark collection more practical, we collect SQLs
available online in two ways: (1) Open-Source Benchmark: the dataset for benchmarking SQL-
related tasks, including NL2SQL benchmarks [6, 7, 8, 9] for natural language interface and database
specialized benchmarks [10, 11] for dedicated query optimization. Specifically, we collect the SQLs
from 38 benchmarks; (2) Public Code Repository: the hosting platform of actively maintained
translation tools (e.g., SQLGlot [12], jOOQ [13]), including the test cases involved in the code
repositories and the queries from the relevant GitHub issues (e.g., the ones with the keywords of
“translation”). Specifically, we collect 1,041 tesecases from the repository.
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Figure 2: SQL Source Collection and Curation Workflow of PARROT.

• Private Proprietary Domain. To make the benchmark more realistic, we further introduce a
dataset that includes real-world SQLs derived from ByteDance’s internal data business scenarios. It
encompasses 102 tables and comprises 343 SQL pairs. ByteDance has independently developed the
cloud-native data warehouse system, ByteHouse [4], which adheres to ClickHouse syntax. During
the process of migrating existing OLAP services within the company, a significant number of SQL
queries written in Postgres-variant syntax needed to be rewritten into ClickHouse syntax. This dataset
represents only a portion of the internal data. It was carefully created through manual rewriting and
subsequent verification by senior SQL experts.

More details about SQL sources, including the collected domain analysis, are presented in Section A.

3.2 SQL Curation Workflow

However, the collected SQL queries require further refinement to serve as a qualified benchmark for
cross-system translation, due to the following limitations.

1. Redundancy and Limited Complexity: Many queries are either duplicated from the same
underlying templates (e.g., with different parameter values) or rely on simple, commonly used
operations such as the SUM() and COUNT() aggregation functions. This lack of diversity and
complexity limits the effectiveness of evaluation, as these translation-friendly queries fail to reflect
the syntactic and semantic challenges present in real-world scenarios.

2. Single-Dialect Limitation: Since existing benchmarks were not designed for dialect translation,
the majority of queries are written in a single SQL dialect (one database system). Consequently,
additional annotation and mapping are necessary to construct functionally equivalent queries in other
dialects, enabling effective cross-dialect evaluation.

To address these issues, PARROT proposes a comprehensive SQL curation workflow dedicated to
the translation benchmark construction. As shown in Figure 2, it consists of five steps.

• Step 1: Real-World SQL Preprocessing. Since SQLs from different benchmarks are typically
structured in a heterogeneous format, we first integrate these SQLs into a standardized representation
to facilitate the subsequent steps. Specifically, we collect SQLs from the domains mentioned above,
format these SQLs (e.g., remove redundant whitespace) and deduplicate the repetitive ones, where
each line corresponds to a single SQL. Moreover, to protect privacy in benchmarks derived from
proprietary domains, we apply three levels of anonymization.

(1) Entity-level Anonymization: Obscure schema semantics by replacing descriptive table and column
names with generic identifiers (e.g., table_1, column_1) and randomly merging tables based on
join relationships to mask the original schema structure.

(2) Field-level Anonymization: Protect sensitive data in the field content by injecting noise into
numeric fields and substituting text fields with synthetic or placeholder values (e.g., NULL), while
preserving data utility, as specific values typically do not affect cross-system translation.
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(3) Query-level Anonymization: Remove identifiable query patterns by abstracting structural elements
such as continuous identical filter conditions. The redundant snippets are pruned to generalize the
query form while maintaining its syntactic integrity and logical flow.

• Step 2: Type-Based SQL Filter. To eliminate low-quality SQL queries from the large corpus and
reduce the burden of subsequent steps, we propose automated filtering strategies tailored to address
different types of deficiencies in the collected SQLs.

(1) Syntax and Semantic Checking for Equivalent SQLs: Given that some of the integrated SQLs
might already be equivalent in the target systems, wastes over assessing these SQLs should be
prevented. Therefore, we first utilize parsers with dialect syntax (e.g., the ANTLR) to exclude SQLs
that are already compatible (i.e., no parsing error raised).

(2) Clustering then Selection for Repetitive SQLs: Based on the observation that queries originating
from the same query template (i.e., only differ in the parameters) occupy a large proportion, we
employ clustering then selection for this problem. First, we normalize the SQLs and propose a
prefix-based method to cluster them into several groups. Specifically, we normalize the identifiers
in the SQLs (e.g., replace specific table and column names with the unified “table” and “column”
representation). Moreover, to enhance the clustering accuracy, we shrink multiple identifiers into
a single one representation (e.g., transform continuous “table, table, table” into a single
“table”). With a specified prefix length proportional to the original SQL length (e.g., 0.25), we
cluster SQLs of the same prefix into the same groups. Second, we select the SQLs based on the
clustered groups and utilize a code coverage assessment tool to enrich the diversity. We sort the SQLs
in the descending order over the average SQL length within one group with the intuition that longer
SQLs are typically more complex and diverse. Then, we successively sample one SQL from the
current group and invoke the coverage assessment tool to determine whether it can increase the code
coverage of the parser. If so, the corresponding SQL is added to an unique set for later processing.
We proceed to the next group if the sample SQLs fail to increase the coverage within specified rounds
(e.g., 5) and the whole process terminates for the last group.

• Step 3: Ensemble SQL Annotator. Given that existing benchmark only provides SQLs within
single dialect, we introduce an automatic annotation mechanism to effectively expand these SQLs to
other dialects. Specifically, we utilize the traditional rule-based tools to derive the initial annotations
(which will be validated in later steps). Considering different methods might vary in the effectiveness
across different dialects [14], we adopt an ensemble paradigm to enhance the annotation accuracy.
We employ multiple tools (i.e., SQLGlot [12], jOOQ [13]) for translation and accumulate their
results. We also consider a recent LLM-based method as the candidate annotator [14]. However,
we prioriterize the rule-based tools considering their efficiency and effectiveness over the collected
diverse SQLs of a large volume. Besides, we also employ small-scale LLMS (e.g., Llama3.1-8B [15])
as the annotator and grounded as the baseline for a guidance of later selection. These annotated SQLs
are then serve as the input to the next step for validation and selection.

• Step 4: Error-Guided SQL Selector. The translation tools might inevitably produce incorrect
translations (e.g., missing specific rules), introducing errors in the constructed benchmark. Therefore,
we further employ a hybrid strategy to select and revise the annotated SQLs based on the possible
error types. Overall, the translation errors can be classified into two categories, tightly coupled with
the characteristics of this problem introduced in Section 2.

(1) Incorrect Syntax: We rely on parsers with dialect syntax (e.g., the ANTLR [16]) to verify whether
the annotated SQLs violate dialect-specific syntax standards. For SQLs that raise parsing errors, we
call for human experts (e.g., ByteHouse engineers) to fix these errors. The human experts collaborate
with LLMS (e.g., provide related hints as assistants) in the fixing process to enhance both the accuracy
and the efficiency. The revised SQLs are passed to the same parsers to check if any syntax errors
persist. If the syntax errors can be not resolved within given attempts, the corresponding SQLs will
be excluded in the benchmark. In contrast, the syntactically-correct SQLs undergo the subsequent
semantic checking.

(2) Inconsistent Semantic: Total reliance on human experts to perform semantic checking over SQLs
of large volume is impractical. Hence, we propose an automatic strategy to determine the equivalence
based on the execution results of the generated testcases. Recent studies have shown that LLMS
have the capability to generate effective testcases, thus we also utilize LLMS for testcase generation.
Specifically, we carefully prompt LLMS to generate SQLs (i.e., the INSERT statements) that ensure
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Table 1: Statistics of Different Datasets in PARROT.

Dataset #Dialect #SQL #Token / SQL #Translation Type
25th Medium 75th

PARROT 8 598 75.0 249.0 951.0 7
PARROT-Diverse 22 28,003 29.0 47.0 71.0 7
PARROT-Simple 22 5,306 4.0 6.0 10.0 7
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Figure 3: SQL Distribution over Different Dialects in PARROT.

non-empty execution results of the two SQLs. We also specify to steer LLMS to generate SQLs that
can lead to inconsistent results in the instructions. This generation process takes place within given
rounds (e.g., 5) and the SQLs are excluded from the final benchmark once inconsistent result occurs.
Besides, we also remove the SQLs if they can be already successfully translated by the small-scale
LLMS in the last step to enhance the difficulty of the constructed benchmark.

• Step 5: Unified SQL Serialization. With the above processing steps, we finally dump the
benchmark into a unified “.json” file. As shown in Figure 2, each item in the file corresponds to a
SQL pair including the specification of the unique data id, the source dialect, the target dialect, and
the corresponding SQLs.

4 PARROT Benchmark Analysis

We present more details about how PARROT meets with the benchmark design criteria proposed by
Jim Gray [5] and showcase detailed information about the underlying benchmark statistics.

• Relevance. PARROT is the first benchmark for assessing LLMS in dialect translation, including a
collection of 33,952 SQL pairs across 22 data systems. It accumulates the real-world SQLs from both
open-source domains and private domains, including 38 SQL-relevant benchmarks and enterprise
customer workloads encompassing 102 tables in ByteHouse business scenarios. Furthermore, these
SQLs vary in the intrinsic complexity (e.g., the token length can up to 2,182 tokens) and the translation
difficulty (i.e., involve multiple translation types introduced in Section 2).

• Scalability. PARROT offers several variants with additional expanded datasets to satisfy the
assessment purposes in diverse scenarios. Apart from the main dataset, it provides three variants.

(1) PARROT-DIVERSE: It consists 28,003 samples of SQL pairs across 22 dialects. It is aimed
at the evaluation of LLMS across diverse data systems and can measure whether LLMS perform
equivalent well among the data systems (i.e., obtain superior translation performance).

(2) PARROT-SIMPLE: It consists of 5,306 SQL pairs based on testcases collected from the code
repository of rule-based translation tools. The testcases are typically SQL snippets dedicated to a
single translation type. Therefore, this variant can be utilize to measure whether LLMS internalize
specific translations.
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Table 2: Translation Accuracy (%) over PARROT across Diverse Dialects (* → PostgreSQL
indicates PostgreSQL serves as the target dialect in the translation process).

Model
*
↓

PostgreSQL

*
↓

MySQL

*
↓

Oracle

*
↓

DuckDB

*
↓

SQL Server
Open-Source LLM

DeepSeek-R1 7B 17.24 20.59 17.24 14.29 15.79
DeepSeek-R1 32B 58.62 58.82 39.66 10.71 42.11
DeepSeek-Coder-V2 Lite 34.48 32.35 32.76 3.57 21.05
DeepSeek V3 671B 55.17 55.88 51.72 53.57 36.84
DeepSeek R1 671B 48.28 44.12 50.00 42.86 36.84

Proprietary LLM
GPT-4o 58.62 50.00 55.17 60.71 42.11
o3-mini 31.03 8.82 43.10 35.71 21.05
Claude 3.7 Sonnet 58.62 44.12 58.00 42.86 36.84

• Simplicity. PARROT selects representative SQL queries from diverse domains while avoiding
redundancy that could compromise evaluation efficiency. As outlined in Section 3, it follows a
systematic SQL collection and curation workflow to prepare high-quality benchmark queries. This
process significantly reduces the volume of raw SQLs, e.g., distilling 9,912,231 SQL pairs down
to 28,003 representative queries, by identifying and retaining only those that are structurally and
semantically diverse within defined groups.

• Portability. PARROT proposes multiple assessment strategy in terms of different aspects to
enable it adapt to diverse setting and evaluation scenarios. Specifically, it currently supports the
following assessment criteria corresponding to two aspects (i.e., syntax and semantic) in functional
equivalence defined in Section 2.

(1) Dialect Compatability (AccEX ): The ratio of the translated queries that are executable (i.e.,
syntactically correct) in the target database without raising incompatibility error (e.g., incorrect data
types or functions);

(2) Result Consistency (AccRES): The ratio of the translated queries that return the strictly identical
results (i.e., semantically consistent) in the target database as the source queries in the source database,
including the returned data format, precision, and displayed order.

The SQLs which require translation are typically tightly coupled with the daily business service.
Hence, their execution efficiency is also an important factor, where we can also propose an relevant
efficiency score [17]. However, the efficiency can be enhanced by subsequent utilization of external
tools [18], our primary focus lies in the translation accuracy in this paper.

5 Experiments

5.1 Experimental Setup

Baselines. We assess the translation performance of prevalent LLMS in terms of three aspects in
the experiments. (1) Usage License: We consider both the open-source LLMS (e.g., DeepSeek-V3
671B [19]) and the proprietary LLMS (e.g., Claude 3.7 sonnet and GPT-4o [20]); (2) Parameter
Scale: We consider LLMS with varied and increasing parameter scales (e.g., from DeepSeek-R1
7B [21] to o3-mini and o1-preview); (3) Task Scope: We consider both LLMS that can handle
diverse tasks with a general purpose (e.g., DeepSeek-R1 671B [21]) and dedicated to specialized
code-related tasks (e.g., DeepSeek-Coder-V2 Lite). Each LLM performs dialect translations based
on the well-crafted prompt including detailed problem instructions that can be found at Section A.

Evaluation. We adopt the evaluation metrics (i.e., AccEX and AccRES) defined in Section 4. The
workstation setup is two Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz, 256 GB main memory, and
four GeForce RTX 3080 and H100 Ti graphics cards.

5.2 Comparative Analysis

We assess the translation performance across diverse dialects of different LLMS over PARROT.
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Table 3: Translation Accuracy (%) over PARROT with Real-World Workload in ByteHouse.

Model AccEX AccRES

Open-Source LLM
DeepSeek-R1 32B 21.00 16.91
DeepSeek-V3 671B 39.94 32.65
DeepSeek-R1 671B 46.94 40.52

Proprietary LLM
GPT-4o 23.91 21.87
o3-mini 58.60 54.23
o1-preview 56.26 48.69
Claude 3.7 sonnet 24.20 22.74

(Observation 1) - LLMS exhibit performance oscillation across the translations among different
dialects. As shown in Table 2, we notice that LLMS showcase different capabilities over the evaluated
dialects. Specifically, GPT-4o achieves the highest accuracy (i.e., 58.62%) over the translation to
PostgreSQL while its performance degrades with the accuracy (i.e., 50.00%) over the translation
to MySQL, even lower than DeepSeek-R1 32B. It corresponds to the characteristics of the dialect
translation problem, which involves a collection of stringent syntax standards among different
dialects. Therefore, LLMS are expected to clearly capture the nuanced differences of diverse dialect
standards to perform well. This phenomenon makes us reflect upon how to design a LLM or augment
existing ones to specifically enhance the dialect translation capability so that different dialects can
be equivalently handled well. Moreover, the capability can only be obtained to develop specialized
LLM for each or similar dialect pairs.

(Observation 2) - A larger scale of the parameter volume might not contribute to the consistent
improvement of the translation accuracy. As displayed in Table 2, we observe that large scale or
more advanced LLMS might not perform better than the smaller ones. For example, DeepSeek-R1
32B performs better over translations to PostgreSQL, MySQL, and SQL Server with the respective
accuracy 58.62%, 58.82%, and 42.11% than 48.28%, 44.12%, and 36.84% by DeepSeek-R1 671B.
Moreover, to our surprise, we notice that advanced reasoning LLMS (i.e., o3-mini) exhibit undesirable
translation performance. This result reflects the mismatched capability enhancement of large scale or
advanced LLMS, typically aimed at complex problems with intrincate reasoning process unlike the
capability required in cross-system dialect translation. Based on the experimental results, we identify
two abilities are desired for accurate translation: (1) the SQL understanding ability to analyze and
write specific SQLs and (2) the SQL syntax matching ability to be aware of the equivalent operations.

We present a more fine-grained analysis about the translation performance of LLMS considering
the characteristics of input SQLs. Specifically, we tokenize the SQLs and classify them into several
groups based on the number of derived tokens. Table 3 presents the corresponding results.

(Observation 3) - LLMS struggle to obtain accurate translation when the SQLs become more lengthy
with more complex operations. As shown in Table 3 and Figure 3, we observe that all the LLMS
encounter performance regression when the SQLs evolve to be more lengthy. Specifically, all the
LLMS exhibit an average performance degration when the number of tokens involved in the SQL
increase from 0 − 402 to 1214 − 2182. This result can be attributed to two aspects: (1) longer
queries typically involve more operations to be resolved, thus increasing the translation difficulty; (2)
lengthy queries increase the risk of triggering the limitation of LLMS, including the hallucination
and lost-in-the-middle problem. Therefore, it calls for techniques to enable LLMS perform accurate
translation over lengthy SQLs (e.g., the segment-based translation strategy proposed in [14]).

5.3 Case Study

We perform a case study based on the detailed analysis of an SQL query that failed to be translated
by LLMS. As shown in Table 4, this SQL is extracted from the ByteHouse real-world customer
workloads, where LLMS (e.g., o3-mini) incur two translation errors. The first error involves the
translation over operation that intends to convert the input string into a datetime data type. Specifi-
cally, the source PostgreSQL-variant SQL operation (i.e., TO_TIMESTAMP(virtual_T1."day" ||
‘’, ‘YYYYMMDD’)) converts the column values (i.e., virtual_T1."day") into a time stamp data
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Table 4: Case Study of Translation Errors Incurred by LLM.

Original PostgreSQL SQL Correct ClickHouse SQL Translation by o3-mini

SELECT 
  TO_CHAR( 
    TO_TIMESTAMP( 
      virtual_T1."day" || '', 
      'YYYYMMDD' ), 'YYYY' 
  ) AS "col1_2", ... 
FROM ( ... 
    UNION ALL SELECT ... 
      CASE WHEN NOT 
        t1.p_rate IS NULL 
        THEN CONCAT( 
          t1.p_rate, '%' 
        ) ELSE '' 
      END AS p_rate, ... 
    FROM ... AS t1 
    WHERE t1.rn = 1 
  ) AS virtual_T1 
... 
 

SELECT 
 formatDateTime( 
 parseDateTimeOrNull( 
 virtual_T1."day" || '', 
 '%Y%m%d' ), '%Y' 

 ) AS "col1_2", ... 
FROM ( ... 
 UNION ALL SELECT ... 
 CASE WHEN NOT ( 
 t1.p_rate IS NULL 

 ) THEN CONCAT( 
 t1.p_rate, '%' 

 ) ELSE '' 
 END AS p_rate, ... 

 FROM ... AS t1 
 WHERE t1.rn = 1 
) AS virtual_T1 
... 

√

√

SELECT 
 formatDateTime( 
 parseDateTimeBestEffort( 
 virtual_T1.day 

 ), '%Y') AS col1_2, ... 
FROM ( ... 
 UNION ALL SELECT ... 
 if( t1.p_rate != '', 
 concat(t1.p_rate, '%'), 
 '' ) AS p_rate, ... 

 FROM ... AS t1 
 WHERE rn = 1 
) AS virtual_T1 
... 

×

×

type based on the specified format (i.e., ‘YYYYMMDD’). Since the column (i.e., virtual_T1."day")
is defined as an integer data type, it utilizes an additional expression (i.e., || ‘’) to transform
it into a string data type so that it can be processed by the TO_TIMESTAMP() function. However,
o3-mini directly translates this operation into parseDateTimeBestEffort(virtual_T1.day)
in ByteHouse, where the column (i.e., virtual_T1.day) is not converted to an integer data
type and leads to runtime errors (i.e., Illegal type Int64 of first argument of function
parseDateTimeBestEffort). Moreover, the datetime format equivalent to ‘YYYYMMDD’ in the
source SQL is left out. The second error refers to the incorrect processing of columns with NULL val-
ues. Specifically, the CASE WHEN NOT t1.p_rate IS NULL THEN CONCAT(t1.p_rate, ‘%’)
ELSE ‘’ END in the source PostgreSQL-variant SQL processes t1.p_rate with different log-
ics (i.e., CASE WHEN) by validating whether it corresponds to NULL values with IS NOT NULL
operation. However, o3-mini incorrectly translates the validation over the NULL values to
!= ‘’ and leads to a runtime error (i.e., Cannot read floating point value: while
converting ‘’ to Float64). Based on these error analyses, we notice that even though LLMS
can identify certain equivalent translations with internal knowledge (e.g., TO_TIMESTAMP() and
parseDateTimeBestEffort() functions), they are still too careless to miss some operations in the
source SQLs and struggle to ensure the consistency over stringent dialect syntax standards.

6 Related Work

Dialect Translation Tools. Tools such as SQLGlot [12], SQLines [22], and jOOQ [13] support
rule-based translation across dialects. These systems typically encode translation logic through
handcrafted rules or pattern-based templates, enabling basic conversion of common syntax.

NL2SQL Benchmarks. Benchmarks such as Spider [8], BIRD [17], and WikiSQL [9] have
significantly advanced NL2SQL research by providing large-scale datasets of natural language
questions paired with SQL queries. However, these datasets primarily target a single SQL dialect
(most commonly SQLite) and do not reflect the syntactic or semantic variations across database
systems. For instance, they lack annotations indicating dialect-specific syntax. This limits the
applicability of existing NL2SQL benchmarks to the problem of cross-system SQL translation, where
both syntactic fidelity and semantic correctness must be preserved across diverse systems.

7 Conclusion
In this paper, we propose PARROT, which is the first benchmark for effectively evaluating cross-
system SQL translation. Through a carefully curated and richly diverse dataset, specialized diagnostic
cases, and a robust evaluation protocol, PARROT enables a comprehensive and practical assessment
of existing LLMS in system-specific translation. Our benchmark not only facilitates reproducible
research but also empowers the development of more robust, accurate, and generalizable SQL
translation methods across different database systems.
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A Technical Appendices and Supplementary Material

PARROT categorizes cross-dialect SQL translation challenges into several common types based on
structural, lexical, and functional differences across database systems.

Table 5: Typically Translation Types in PARROT.

Translation Description

Syntax Rule Differences in syntactic structure
requirements across databases.

Keyword Naming differences for reserved
words or functional keywords.

Data Type Naming or precision differences
for equivalent logical data types.

Operator &
Built-in Function

Name/behavior differences for
operators or built-in functions.

Stored Procedure Differences in definition
and invocation syntax.

UDF Differences in creation and
usage of user-defined functions.

Other Miscellaneous special differences
(e.g., variable prefixes, comment symbols).

Below, we present the details of the collected benchmarks included in PARROT, highlighting their
sources, dialect coverage, and key statistics.

Table 6: Details of Collected Benchmarks in PARROT.

Benchmark Year SQL Dialects
Supported

Language Domain Type Turn Collection

ATIS 1994 SQLite, MySQL English Single-domain Single Manual
GeoQuery 1996 MySQL, SQLite English Single-domain Single Manual
Restaurants 2000 SQLite English Single-domain Single Manual
Academic 2014 Unspecified English Single-domain Single Manual
IMDb 2017 Unspecified English Single-domain Single Manual
Yelp 2017 Unspecified English Single-domain Single Manual
Scholar 2017 Unspecified English Single-domain Single Manual
WikiSQL 2017 SQLite3 English Cross-domain Single Manual
Advising 2018 SQLite, MySQL English Single-domain Single Manual
Spider 2018 SQLite English Cross-domain Single Manual
SParC 2019 SQLite English Cross-domain Multiple Manual
CoSQL 2019 SQLite English Cross-domain Multiple Manual
CSpider 2019 SQLite Chinese Cross-domain Single Manual
MIMICSQL 2020 SQLite English Single-domain Single Hybrid†

SQUALL 2020 SQLite English Cross-domain Single Manual
FIBEN 2020 Db2, PostgreSQL English Single-domain Single Manual
ViText2SQL 2020 General SQL Vietnamese Cross-domain Single Manual
DuSQL 2020 Unspecified Chinese Cross-domain Single Hybrid†

PortugueseSpider 2021 SQLite Portuguese Cross-domain Single Hybrid†

CHASE 2021 SQLite Chinese Cross-domain Multiple Manual
Spider-Syn 2021 SQLite English Cross-domain Single Manual
Spider-DK 2021 SQLite English Cross-domain Single Manual
Spider-Realistic 2021 SQLite English Cross-domain Single Manual
KaggleDBQA 2021 SQLite English Cross-domain Single Manual
SEDE 2021 T-SQL English Single-domain Single Manual
MT-TEQL 2021 SQLite English Cross-domain Single Automatic
PAUQ 2022 SQLite Russian Cross-domain Single Manual
knowSQL 2022 Unspecified Chinese Cross-domain Single Manual

Continued on next page
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Table 6 – continued from previous page
Benchmark Year SQL Dialects

Supported
Language Domain Type Turn Collection

Dr.Spider 2023 SQLite English Cross-domain Single Hybrid†

BIRD 2023 SQLite English Cross-domain Single Manual
AmbiQT 2023 SQLite English Cross-domain Single LLM-

aided
ScienceBenchmark 2024 General SQL English Single-domain Single Hybrid†

BookSQL 2024 SQLite English Single-domain Single Manual
Archer 2024 SQLite English/

Chinese
Cross-domain Single Manual

BULL 2024 SQLite English/
Chinese

Single-domain Single Manual

Spider2 2024 SQLite, DuckDB,
PostgreSQL

English Cross-domain Single Manual

TPC-H FROID 2018 T-SQL,
PostgreSQL

English Cross-domain Single Hybrid†

DSB 2021 T-SQL,
PostgreSQL

English Decision Support Single Hybrid†

TPC-DS 2005 T-SQL,
PostgreSQL

English Decision Support Single Hybrid†

SQL-ProcBench 2021 SQL Server,
PostgreSQL,

IBM Db2

English Enterprise
workloads

Single Production-
derived

† Hybrid means the dataset was created using both automatic generation and manual annotation.

We introduce the SQL annotation interface and prompt design adopted in PARROT, which facilitate
efficient user interaction and enhance LLM-guided SQL understanding.

Table 7: SQL Annotation System and User Prompt in PARROT.

System Prompt
## CONTEXT ##
You are a database expert specializing in various SQL dialects, such as **{src_dialect}** and
**{tgt_dialect}**, with a focus on accurately translating SQL queries between these dialects.

## OBJECTIVE ##
Your task is to translate the input SQL from **{src_dialect}** into **{tgt_dialect}**, ensuring
the following criteria are met:
1. **Grammar Compliance**: The translated SQL must strictly adheres to the grammar and
conventions of {tgt_dialect} (e.g., correct usage of keywords and functions);
2. **Functional Consistency**: The translated SQL should produce the same results and
maintain the same functionality as the input SQL (e.g., same columns and data types).
3. **Clarity and Efficiency**: The translation should be clear and efficient, avoiding unneces-
sary complexity while achieving the same outcome.

During your translation, please consider the following candidate translation points:
1. **Keywords and Syntax**: Ensure {tgt_dialect} supports all the keywords from the input
SQL, and that the syntax is correct;
2. **Built-In Functions**: Verify that any built-in functions from {src_dialect} are available
in {tgt_dialect}, paying attention to the argument types and the return types;
3. **Data Types**: Ensure that {tgt_dialect} supports the data types used in the input SQL.
Address any expressions that require explicit type conversions;
4. **Incompatibilities**: Resolve any other potential incompatibility issues during translation.

Continued on next page
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Table 7 – continued from previous page

This task is crucial, and your successful translation will be recognized and rewarded.
Please start by carefully reviewing the input SQL and then proceed with the translation.

User Prompt
## INPUT ##
Please translate the input SQL from **{src_dialect}** to **{tgt_dialect}**.
The input SQL is:
“‘sql
{sql}
“‘
## OUTPUT FORMAT ##
Please return your response without any redundant information, strictly adhering to the
following format:
“‘json
{{
"Answer": "The translated SQL",
"Reasoning": "Your detailed reasoning for the translation steps (clear and succinct, no more
than 200 words)",
"Confidence": "The confidence score about your translation (0 - 1)"
}}
“‘

## OUTPUT ##
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