2508.18190v3 [cs.Al] 2 Sep 2025

arxXiv

ST-Raptor: LLM-Powered Semi-Structured Table
Question Answering

Zirui Tang Boyu Niu Xuanhe Zhou"
Shanghai Jiao Tong University Shanghai Jiao Tong University Shanghai Jiao Tong University
tangzirui@sjtu.edu.cn nby2005@sjtu.edu.cn zhouxh@cs.sjtu.edu.cn

Boxiu Li Wei Zhou Jiannan Wang
Shanghai Jiao Tong University Shanghai Jiao Tong University Simon Fraser University
Ibxhaixing154@sjtu.edu.cn weizhoudb@sjtu.edu.cn jnwang@sfu.ca
Guoliang Li Xinyi Zhang Fan Wu

Renmin University of China
xinyizhang.info@ruc.edu.cn

Shanghai Jiao Tong University
fwu@cs.sjtu.edu.cn

Tsinghua University
liguoliang@tsinghua.edu.cn

Institute Level Duration | Professional | People | Responsible Teacher | Q1: How many students are enrolled in the Adolph Caesar, circa 1979
Postgraduate e CE 4 Zhang Yaoyao :ajr‘relgs c;/ sr::;':r;;i.; ‘:ﬁir:::"gms}‘ 5 (1933-12-05) December 5, 1933 Q6: How old was he when he started to be active?
ghi o Right: 36 : 52 i
Sehoolof Gl 169 CEandWR | 122 | Zhang Yaoyao gifferen levels and cell semantics) Harlem, New York City, U.S. P AR
Engincering | DTl CE 319 Liu Zeyu . March 6, 1986 (1986-03-06) (aged 52)
degree 4Years | CE (Sino-foreign) = 97 Xu Chong Q2: How many Zhang teachers are there? Died | Angeles, California, U.S
7 Right: 1 Wrong: 2 (Wrong cell semantics) g —
@0 UUSE &l Bai Lin Alma Mater |New York University
Actor, theatre director, Q7: How many occupation did he have?
First =~ Second | Third Fourth | Whol Occupation r
Quarter Qu‘aner Qi‘:‘:er Qua‘rter Q::mr Ye:: Q3: What's the total GODET pa playwright,d h h Right: 5 Wrong: 4 (Fail to count cell contents)
? -
Years Active |1969-1986
Beginning Accounts Payable | 35000 35000 Wrong: 211018.4 (doubled) L o
First Quarter Procurement 49714 21306 71020 ey
Second Quarter Procurement 682724 | 29259.6 97532 . Company | TD Tech |Zip Code| 213000 g:;:fe‘zefi';aef:’y:::5:3:?;::'«::::';";9"*Aand c
Third y 4 Q4: Which quarter has the highest cash Basic Info = . e J "
ird Quarter Procurement 76249.6 | 326784 | 108928 (1) o WEE TEL | 15912511251 Contacts Tim Right: 2 Wrong: 1 (Fail to distinguish merged cells)
Fourth Quarter Procurement 73416 | 73416 | Right: Forth Quarter Wrong: Whole Year Department| Group Info |/ o
Total Cash Expenditure 84714 | 895784 | 105509.2 | 1060944 | 385896 | (Fail fo understand the hierarchy) Name Age Q9: Tell me the max age of employees.
R hy | Mark 220 Right: 42 Wrong: None (Fail to locate Age column)
escarc] .
J 2
Depreciation Schedule using the Sum-of-the-Years'-Digits Method _ -, Employee one
L P g SRRt : Q5: What is the depreciation rate for the of Research 2 Ray |31 A Q10: Summarize the basic information of the
Numbering 8 Fixed Asset Centrifugal Fan first year using the sum of years method? Info Mike |25 A-
Category | Machine Equi Department | M. Department || Right: 14/105:13.33% B HR Albert | 42| As
Enable Date |2004-10-01 00:00:00 Years of Use 14 RN Scop || Vron9: 0.05 (Confusing depreciation rate Miki | 28] A
and net residual rate) [} Network B 2 A
en -

Original Asset 3960 Net Residual Rate | 0.05 | Net Residual 198

Figure 1: Example analytical questions over real-world semi-structured tables (e.g., Excel spreadsheets).

Abstract

Semi-structured tables, widely used in real-world applications (e.g.,
financial reports, medical records, transactional orders), often in-
volve flexible and complex layouts (e.g., hierarchical headers and
merged cells). These tables generally rely on human analysts to
interpret table layouts and answer relevant natural language ques-
tions, which is costly and inefficient. To automate the procedure,
existing methods face significant challenges. First, methods like
NL2SQL require converting semi-structured tables into structured
ones, which often causes substantial information loss. Second, meth-
ods like NL2Code and multi-modal LLM QA struggle to understand
the complex layouts of semi-structured tables and cannot accurately
answer corresponding questions.

To this end, we propose ST-Raptor, a tree-based framework
for semi-structured table question answering (semi-structured table
QA) using large language models. First, we introduce the Hierar-
chical Orthogonal Tree (HO-Tree), a structural model that captures
complex semi-structured table layouts, along with an effective al-
gorithm for constructing the tree by identifying headers, content
values, and their implicit relationships. Second, we define a set of
basic tree operations to guide LLMs in executing common QA tasks.

*Xuanhe Zhou is the corresponding author.

Given a user question, ST-Raptor decomposes it into simpler sub-
questions, generates corresponding tree operation pipelines, and
conducts operation-table alignment for accurate pipeline execution.
Third, we incorporate a two-stage verification mechanism: (1) for-
ward validation checks the correctness of execution steps, while (2)
backward validation evaluates answer reliability by reconstructing
queries from predicted answers. To benchmark the performance,
we present SSTQA, a dataset of 764 questions over 102 real-world
semi-structured tables. Experiments show that ST-Raptor outper-
forms nine baselines by up to 20% in answer accuracy. The code is
available at https://github.com/weAIDB/ST-Raptor.

1 Introduction

Semi-Structured Tables are a type of data structure that represents
the flexible and complex layouts commonly found in real-world data
across a variety of applications, such as Word Tables for financial
reports [1], Excel spreadsheets for medical records [2], and PDF
Tables for e-commerce transaction orders [3]. They often serve as
the major type in these applications, e.g., accounting for up to 80%
of patient records in Electronic Medical Record (EMR) systems [2].

For better understanding, in Figure 1, we showcase five exam-
ple semi-structured tables with corresponding user questions from

https://github.com/weAIDB/ST-Raptor
https://arxiv.org/abs/2508.18190v3

diverse scenarios (e.g., human resource management, financial man-
agement, and personal information). Considering the bottom-right
table (TD-Tech): (i) the top portion covers the company’s funda-
mental details, while (ii) the lower portion contains basic informa-
tion and performance ratings of employees per department. Dif-
ferent shades of blue in TD-Tech highlight the nested levels of the
table, reflecting relationships like hierarchical headers (e.g., the “Ba-
sic Info” header linked to lower-level headers like “Company” and
“TEL”) and header-to-content (e.g., both “Department” and “Level”
headers own the content values of “A”s). Even human analysts may
need to carefully analyze the layout characters to fully understand
such semi-structured tables.

This layout flexibility makes semi-structured table QA extremely
challenging and distinguishes it from other common QA tasks on
structured data (e.g., relational tables [12]) and unstructured data
(e.g., textual documents or multimedia files [7]). In Figure 1, we
showcase semi-structured table questions that commonly require
the following analysis strategies: (i) Identify the headers based
on the user question to locate the areas of relevant table cells. For
instance, Q8 first identifies the “Level” header in the “Employee
Info” sub-table, and then recognizes the “A+” cells. Meanwhile,
it is essential to distinguish that the content value “A” under the
“Department” header is different from “Level A” in the original
question. (ii) Leverage the identified cells and the original question
to analyze the surrounding table structures for capturing nested
relationships and extracting additional information. For instance,
for Q9, the merged cell “A+” applies to two employees to get the
right answer “2”. (iii) Explore all potentially relevant header and
content cells required to form an accurate answer. For instance,
for Q10, relevant information about the company is needed for
summarization.

Existing works (including powerful LLMs like GPT4-0[29] and
DeepSeek-R1 [13]) face significant limitations in semi-structured
table QA. First, NL2SQL methods [8, 10, 16, 34, 35, 41] generate SQL
statements executed on relational tables to get the final answer.
However, it requires converting semi-structured tables into fully
structured formats, causing substantial information loss. Second,
methods like NL2Code [43] generate python code to operate on
pandas dataframes. However, they struggle to understand many
complex semi-structured tables and conduct precise information
retrieval. A more promising approach involves converting tables
into images for processing with Vision Language Models (VLM) [20,
47]. But it has three main limitations: (i) Table2image causes precise
loss and often misleads to irrelevant table areas; (ii) It requires
extensive fine-tuning on QA tasks and has poor generalization
ability; (iii) It cannot work for relatively large tables those with
over 100+ rows (see more analysis in Section 2.3).

There are several challenges in achieving automatic semi-
structured table QA. First, understanding the structure of semi-
structured tables involves two main problems: (i) how to distinguish
header and content cells that could distribute in any areas of the
table, which involves semantic understanding (e.g., in the bottom-
right table of Figure 1, the “A” cells under “department” and “level”
headers) and cannot be handled by rule-based matching approaches
[9]; (ii) how to understand the nested or containment relationships
across the header and content cells, where the same question to

different cell relationships could lead to different answers. For in-
stance, in the bottom-right table of Figure 1, when splitting the
merged cell of department A, the answer to the question “what is
the second department” would be department A instead of B (C1).

Second, due to the complexity of semi-structured table layouts,
answering questions over such tables can be challenging, often
requiring a variety of analytical “tricks”. For instance, we may
need to apply both left-to-right and top-to-down lookup strategies
(e.g., identifying departments in the bottom-right table of Figure 1
by referencing the top-level title header, the left “Employee Info”
header, and the nested “Department” header). Conversely, we may
sometimes need to examine the content cells to identify the relevant
headers (i.e., bottom-up lookup), which makes the semi-structured
table QA procedure even more complicated (C2).

Third, an effective validation mechanism for semi-structured table
QA remains absent, which is especially crucial for resolving issues
such as hallucination in LLMs [10, 34]. In related tasks like NL2SQL,
many methods do not validate the accuracy of generated answers
and thus produce the final result in a single shot. Others merely
check whether executing the SQL statements yields result tables
sufficient to answer the question. However, in semi-structured table
QA, the retrieved cells can (i) still involve complex semi-structured
layouts (e.g., a single cell may contain multi-row text or even a
nested sub-table) and (ii) be derived through multiple lookups,
making it difficult for general LLMs to verify the accuracy of these
retrieved semi-structured table cells (C3).

To address these challenges, we propose a novel semi-structured
table QA framework (ST-Raptor). First, we introduce a graph model
(HO-Tree) to represent semi-structured table layouts, with nodes
denoting table headers / content values and edges capturing their
hierarchical and containment relationships. This model also in-
cludes nine basic tree operations, covering most common QA tasks
and addressing the structural complexity challenge (for C1). Sec-
ond, we present an effective HO-Tree construction strategy: (1)
a multi-modal LLM identifies semi-structured table headers, (2)
heuristic rules separate the semi-structured table into basic table
units based on the identified headers, and (3) a depth-first search
(DFS) algorithm constructs the HO-Tree. This stage addresses the
difficulty of accurately representing the complex implicit relations
of semi-structured tables. Third, we propose a question decompo-
sition method with two key techniques: (1) semantic alignment
between the input question and the derived operation pipeline,
and (2) a column-type-aware tagging approach that annotates dis-
crete, continuous, and unstructured columns (e.g., listing [man,
woman] for a sex column) to enhance data retrieval accuracy (for
C2). Finally, we introduce a two-stage QA verification mechanism
to ensure solution stability. The first stage checks constraints (e.g.,
non-empty, question-related) to validate the generated operations
and their execution results. The second stage provides a confidence
score by comparing the original questions with those derived from
the final answers (for C3).

We summarize our contributions as follows:

(1) We present a novel framework that enables effective and robust
semi-structured table QA using large language models.

(2) We provide a tree-based representation method for semi-structured
tables (HO-Tree), and design basic tree operations in the model to
support common QA tasks.

(3) We propose a DFS-based algorithm that combines VLM and
heuristic rules to construct HO-Tree from semi-structured table.
(4) We design a question decomposition strategy that ensures se-
mantic alignment with the generated operation pipelines, and in-
troduce a column-type-aware tagging strategy to improve lookup
accuracy on relatively large semi-structured tables.

(5) We propose a two-stage QA verification mechanism that con-
ducts constraint examinations and compares the pipelines of the
origin question and those derived from the final answer.

(6) We curate the SSTQA dataset, featuring 102 diverse semi-structured
tables and 764 representative queries commonly found in real-world
scenarios.

(7) We conduct thorough evaluations to verify ST-Raptor can ef-
fectively tackle the structural and semantic complexities of semi-
structured tables, resulting in improved QA accuracy and reliability.

2 Preliminaries

In this section, we first explain the typical semi-structured table
layouts, followed by the formalization of the semi-structured table
QA task and a discussion of the limitations of existing approaches.

2.1 Semi-Structured Tables

Semi-structured tables can be far more complex than structured
ones due to the combination of diverse table layouts. However, com-
pared with other semi-structured data, they still adhere to stricter
layout constraints and may suffer information loss when stored in
formats like JSON (e.g., splitting merged cells). To preserve their
structure, richer formats like HTML [31] are required. Furthermore,
questions over such tables often demand precise layout-aware rea-
soning (e.g., interpreting layout constraints) and operator ground-
ing (e.g., identifying the intersection of relevant rows and columns).

Core Elements. In a semi-structured table T, a table cell is the
atomic unit of a semi-structured table (e.g., the intersection of one
row and column). A table header consists of one or more rows
or columns that label the table body. A merged cell spans multi-
ple adjacent rows or columns to convey hierarchical information.
A subtable is a semantically and structurally self-contained table
embedded within a parent table with at least one level of nested
headers, rows, and internal layout.

Table Layouts. The semi-structured table T (in standard form and
ignoring issues likes data cleaning [6]) can be composed of four
typical layouts (independent with each other):

(L.1) Header-Single-Value. The simplest layout pairs a header
H = h; with a single content value V = vy, arranged either vertically
or horizontal: T, = { H = hy, V = vy, H — V}. For instance, in
Table 1, the atomic header “Name” is associated with the single value
“Albert”, demonstrating this minimal semi-structured table layout.
(L.2) Header-Multiple-Values. A more prevalent structure in semi-
structured table is an atomic or hierarchical header H = h; accom-
panied by a list of values V = [01,02, . ..,0, |. We represent this as
T;={H=hy, V=|ovy,0s...,0n]|,H— V}. For instance, Table 1
presents an example in which the atomic header “Name” corresponds
to multiple values, specifically the list [“Albert”, “Tim”, “Jack”].
(L.3) Orthogonal-Subtables. An orthogonal-subtable layout con-
sists of two or more subtables, whose top-level headers appear
at the same level, either horizontally or vertically. The subtables

Table 1: Semi-Structured Table Layouts — Cells marked in blue
in examples represent table headers.

Layout Formal Representation Example
L1: Header-
Single-value T,={H=h;, V=0, H—> V}.
L2: Header-

T;={H=hy, V=]o,0,,..., Un |,
o Ve o]

Multiple-Values

T= { H=[H.H,,.... Hyl, Company | TD Tech
L3: Orthogonal Tables T = [Ty, Tp,...,Tn], Hi = Tj, Zip Code | 213000
1<i< n}. Contacts [Tim
L4: Header- Tt:{H:HP, T=[TTs....,Ty |, . InIfeA
ame ge
Orthogonal-Tables pp _, T, 1<i<n —

each contain the same number of rows, forming a parallel struc-
ture, while the content values of these subtables are weakly re-
lated or unrelated (e.g., personal information for employees in
two separate departments). Suppose we have n such subtables
Ty, To, ..., Ty. We represent their orthogonal combination as T =
{ H=[Hy,Hy, ..., Hp], T=[Ti,T.... Ty, HioTi1 < i < n}.
For instance, as demonstrated in Table 1, the three atomic-header-
single-value tables are combined in Orthogonal-Table layout.

(L.4) Header-Orthogonal-Subtables.

Header-Orthogonal-Subtables consists of an atomic or hierar-
chical header paired with one or more orthogonal-subtables ((L.3)),
which means all orthogonal-subtables in (L.4) share the same header.
Formally, let the grouped subtables be T1, Ta, . . ., T;,. We represent
this layout as Tt:{H:Hp,T:[T,To, ..., T, ,HP=T;, 1 < i < n}
For instance, in Table 1, the header “Info” groups two orthogonal
subtables (i.e., “Name” and “Age” subtables) that each follows the
Header-Multiple-Value layout.

A subtable Ty, C T follows one or a combination of the above
layouts. Note that: (1) we do not consider irregular layouts, such
as content values presented without corresponding headers [4];
(2) unlike structured tables, common semi-structured tables (e.g.,
Word tables, transaction records) are relatively small (e.g., tables
with over 100 rows are already considered large); (3) we assume the
tables are error-free, and issues such as table cleaning (e.g., missing
value imputation [5]) are beyond the scope of this paper.

Example 2.1. For the bottom-right semi-structured table in Fig-
ure 1, we can extract two orthogonal subtables sharing a com-
mon header “TD Tech” (L.4 — L.3). Within the “Employee Info”
subtable, we can extract four header-multiple-values subtables
(L.3—[L24,...,L24]). In this way, we can use the formal expression
L4—L3—[L4—{L.1y,...,L.14},L.4—>L.3—[L.2[1],...,L.2[4]]] to
recursively traverse the entire structures. Furthermore, the one-to-
many relationships between these subtables motivate us to adopt
a tree-based strategy to represent semi-structured tables (see Sec-
tion 4).

2.2 Semi-Structured Table QA

Given a semi-structured table T, the QA tasks aim to answer an
input question Q expressed in natural language based on T [36].

DEFINITION 1 (SEMI-STRUCTURED TABLE QA). Let T be a semi-
structured table with a multi-layered organization, and let Q be a
question that may reference one or multiple subtables in T. Semi-
Structured Table QA is defined as a mapping (T, Q) +— A, where

[Wrong Answer [Layout Understanding 1 Data Retrieval :] Question Reasoning
40 40 80

g 31

230{ 29 30

g 47
220 T 20 u
E 13 2

210 10

3

OGPT-40 (HTML)
Figure 2: Error Distribution — GPT-4o is evaluated on both HTML
and structured (JSON) formats; ReAcTable (NL2SQL) converts semi-
structured tables into structured representations; while TableLLaVA
utilizes LVM to process them as images.

GPT-20 (Structured Agent ReAcTabIe) O VIm (TableLLaVA)

the answer A is derived by identifying the subtables {Tg,;, | Tsup € T}
relevant to Q.

QA Tasks. Commonly, QA tasks in this problem often require
understanding the layouts of target semi-structured tables. Here we
showecase three typical QA tasks together with relevant layouts.
(1) Numerical Computation. The question Q2 in Figure ?? re-
quests the age of the oldest employee (Header-Multiple-Values in
L.2). Correctly answering it involves (i) locating the target column
“Age” within the hierarchical header “Info”, (ii) extracting all age
values from the corresponding records, and (iii) computing the
maximum value from the retrieved data. Such QA requires accurate
header identification and data retrieval, upon which we can easily
apply basic computational functions to get accurate results.

(2) Information Extraction. The question Q1 in Figure ?? relies
on the “Employee Info” layout (Header-Orthogonal-Tables in L.4).
To derive the correct answer “2”, we must extract the records of
employees meeting the rating condition and aggregate them. Failure
to properly interpret the semantic relationship between the merged
cell “A+” and its associated employees may lead to a wrong answer.
(3) Summarization. The question Q3 in Figure ?? requests a sum-
mary of the company’s basic information (Orthogonal-Tables in L.3).
Addressing this question involves two critical steps: (i) identifying
and extracting the semantically relevant table segments correspond-
ing to the question, and (ii) leveraging the reasoning capabilities of
LLMs to generate a coherent summary from the retrieved data. The
key challenge lies in robustly interpreting complex table layouts to en-
sure precise alignment between the question intent and the extracted
data to generate accurate summaries.

2.3 Limitations of Existing Methods

In this section, we discuss the limitations and challenges of existing
approaches that could potentially be adapted to semi-structured table
QA. As shown in Table 2, these methods can be categorized based
on their table representation strategies (e.g., table serialization [37],
HTML/JSON [19]) and the question comprehension techniques
(e.g.,[33]). Figure 2 illustrates the error distribution when applying
typical methods to semi-structured table QA.

(Limitation 1) Poor Table Layout Understanding. The fail-
ure in layout understanding indicates that the model incorrectly
captures structural evidence, primarily due to the limitations of
semi-structured table representation. Among existing represen-
tation methods, structured table representation (i.e., converting
semi-structured tables into fully structured formats) leads to major
loss of layout information. Alternative approaches (e.g., HTML,
JSON, Spreadsheet [37]) employ common serialization strategies

that partially preserve structural information in textual form. How-
ever, due to the inherent one-dimensional nature of these formats,
LLMs face significant challenges in effectively interpreting com-
plex table layouts. In contrast, image-based methods exhibit the
lowest layout understanding error among wrong answers (31.58%
compared to 35.48% for GPT-40 with structured input, 44.82% for
GPT-40 with HTML input, and 61.67% for NL2Code agent), but
own relatively low overall accuracy caused by the following two
limitations. This observation motivates us to design a proper semi-
structured table representation method that simultaneously stores the
structural information and content of semi-structured tables.

(Limitation 2) Inaccurate Table Data Retrieval. As shown in
Figure 2, data retrieval errors constitute a substantial proportion
of failures. Specifically, the four methods (i.e., GPT-40 with struc-
tured input, GPT-40 with HTML input, NL2Code agent, and vision-
language model) exhibit retrieval error rates of 55.17%, 54.84%,
76.67%, and 61.84%, respectively, which are primarily due to their
inability to identify question-relevant tabular data. Among these
methods, GPT-4o0 achieves superior performance, attributable to its
advanced contextual comprehension capabilities. In contrast, the
agent-based approach, which operates on structured table repre-
sentations using external tools, incurs significant information loss
during structural transformation. We observe that (1) these meth-
ods lack robust data retrieval mechanisms, and (2) vanilla LLMs
struggle to accurately locate target table content, likely due to in-
herent limitations in semantic understanding. This indicates that
significant improvements remain achievable in accurately locating
and retrieving question-relevant content in semi-structured tables.

(Limitation 3) Question Comprehension Errors. Question com-
prehension errors occur when a model misinterprets the semantics
of a question and consequently retrieves incorrect answers from
semi-structured tables, often due to inadequate integration of table
layout and content. VLMs demonstrate the weakest performance,
mainly due to their weak understanding of rich-text images. In
contrast, both GPT-40 and agent-based methods demonstrate better
performance, benefiting from the advanced reasoning capabilities
of LLMs. However, their remaining errors are predominantly at-
tributable to the failure to align the semantics of the input question
with complex semi-structured table layouts, motivating us to de-
sign tailored question decomposition and table semantic alignment
techniques for semi-structured tables.

3 ST-Raptor Overview

Architecture. Figure 3 shows the architecture of ST-Raptor, which
consists of four main modules: (1) Table2Tree converts the given
semi-structured table into a Hierarchical Orthogonal Tree (HO-
Tree), which effectively represents the header / content relation-
ships within the original table (see Section 4.2). Note that the Ta-
ble2Tree module is utilized only once when handling multiple ques-
tions related to the same table. (2) Question2Pipeline transforms
complex questions into simpler sub-questions, from which corre-
sponding operation pipeline are generated for each sub-question
(see Section 5.1). (3) AnswerGenerator then executes these opera-
tions to obtain intermediate results or produce the final answer (see
Section 5.2). (4) AnswerVerifier adopts a two-stage validation strat-
egy. In the forward stage, it checks whether the execution results

Table 2: Comparison of Relevant Methods for Semi-Structured Table QA — More stars indicates better performance.

. Structure Structure Data Supported Answer .
Representation Information Method Understanding Retrieval Table Scale Accuracy Main Challenge
HTML/JSON/Spreadsheet v NL2SQL - - - - Fail to operate the table.
HTML v NL2Code - - - - Fail to operate the table.
HTML/JSON v LLM * * * % * Fail to understand table structure.
JSON/Spreadsheet v NL2Code * *k ** ** Fail to understand table structure.
Structured X NL2SQL / NL2Code - * * Kk k * Structural information loss.
Structured X LLM - * ** * Structural information loss.
Structured X Agent - * ok * ok * Structural information loss.
Image v Multimodal LLM ** * * ** Fail to process big tables.
HO-Tree v ST-Raptor * %k k * %k k * %k *%% Modeling and operation.
Toble2Tree — _ 4.1 Hierarchical Orthogonal Tree
—— rinciples Layouts HO-Tree Construction
=% Raw Table — Following the recursive definition in Section 2.1, a semi-structured
Bum wplarie Vakie () table composed of layouts L.1-L.4 (Table 1) can be decomposed
| s | Header-Multiple-
Meta Info ToleHeader Vaues ® G into two parts: (1) Metadata, which provides high-level semantic
Vb . ':mgfbl Orthagonal-Tables O, abstraction (e.g., headers), and (2) Data, which contains the actual
. rthogonal Table « » . . < 5
= Aligned Info b [P ONO content values (e.g., the header “sex” associated with [‘female’,
SubTree ‘male’, ‘female’]). Both metadata and data components may exhibit
QuestionzPipeline @ . N _ Answer hierarchical and orthogonal structures. Given this inherent one-to-
eneral LLM @, Embedding Model Verifier . . .
- @ Forward many organization, we model them using trees: one for metadata
— . . orwar
=p) @ Question Boperation | Q! Topvounetrea " and one for data. In each, nodes store metadata or content values,
. Decomposer Generator Q?BaﬂamrUp Retrieval
Question Checker while edges encode containment or orthogonal relationships.
Backward
Answer Genertor [——— "~~~ %Q‘:;‘::: DEFINITION 2 (HIERARCHICAL ORTHOGONAL TREE (HO-Tree)).
Retriever + [.Eoformathn Sub-data Robuildor Given a semi-structured table T, we model T into HO-Tree that links
ﬁ Operation —— el i i inti
pperatr EYTTRRERRE PP P the m.etadata with corresponding content values bjf pointing th.e l.eaf
Reasoner | Hstory 1 Sub-answer | f G node in the MTree to each level of BTree, representing the association

Figure 3: The ST-Raptor Architecture.

are non-empty and consistent with the question; otherwise, the
operation is regenerated or terminated early. In the backward stage,
similar questions are generated from the output, and their similarity
to the original question is used to score answer’s reliability (see
Section 6).

System Workflow. When a new semi-structured table and its as-
sociated questions arrive, Table2Tree first preprocesses the table
into an HO-Tree and serializes the object into a local file. The Ques-
tion2Pipeline then decomposes each question into subquestions and
iteratively interacts with the AnswerGenerator to generate answers
for each subquestion. The answer to the final subquestion serves
as the question answer. The AnswerVerifier is involved throughout
each step of operation execution, identifying and discarding incor-
rect intermediate results, based on which ST-Raptor iterates until
generating correct answer.

4 Tree Model for Semi-Structured Table
Representation

As discussed in Section 2.1, semi-structured tables consist of complex
combinations of basic table layouts (e.g., hierarchical headers with
nested subtables). Accurately performing question answering over
such tables remains challenging even for advanced LLMs like GPT-
4o (see Section 2.3). Thus, in this section, we study how to effectively
represent the layout relationships within semi-structured tables to
enable accurate question answering.

between metadata and the corresponding table column:

(1) Meta Tree (MTree). It represents the structural information and
content of the table’s metadata. Each path from the root to a leaf
corresponds to an abstract description of a specific column. Nodes in
MTree are denoted as MNode;

(2) Body Tree (BTree). It represents the structural information and
content of the table body. Each node corresponds to a single cell value,
each path from the root to a leaf represents a row, and each level of the
tree corresponds to a column—aligned with a path in MTree. Nodes
in BT ree are denoted as BNode.

A single HO-Tree is represented as T = {MTree = M, BTree =
B,M — B}. Within a semi-structured table, a collection of such
HO-Trees may exist, each comprising an MTree and a BTree. More-
over, hierarchical containment may exist among these trees, where
one HO-Tree can serve as the value of a node within another BTree.

Example 4.1. The right part of Figure 4 illustrates an example of
a HO-Tree, where “TD Tech” serves as the top-level cell. This cell
is stored in a single-node MTree, which points to the remaining
structure stored in a HO-Tree. The subsequent MTree contains two
MNode instances (i.e., “Basic Info” and “Employee Info”), each refer-
encing a distinct BNode, with each BNode storing a sub HO-Tree.

4.2 HO-Tree Construction

Based on the definition, constructing an HO-Tree from a given semi-
structured table requires precisely identifying (1) meta-information
(table headers), (2) content values, as well as (3) the relationships
between subtables. Two main challenges remain. First, headers and
content cells can appear in arbitrary positions, making it difficult to

(1) Meta Info Detection (2) Table Partition

(3) DFS-based HO-Tree Construction

g TD Tech TD Tech
i — — % =
R ® — Basic Info |_Company TDTech |ZipCode| 213000 | w1 aT
mEEE WM Iﬁa Embedding [TEL 13912311231 | Contacts ‘ Tim o of MT [Company] [TEL] [ZipCode | [Contacts |
N = l— T T I I
Raw Table MetaInfo Aligned Info Department Group Nar::o Ao Lo & S| BT [_Dtech | 13911l M 22 M Tim] |
['TD Tech’, 'Basic Information’, '‘Company’, R » Mark 22 A MT Info
"TEL', 'Zip Code', 'Contact', 'Employee’, ...] A esearc 2a | A [Department | [_Group] Name Age Level
® Employee Jone ' '
Info Research 2 Ray 31| A
" Q
['TD Tech', , 'Company’, 'TEL, B HR Mike | 25 | A- % ol
Zip Code’ ’ T Albert | 42 | A+ 2E
Miki 28| A o
Network
¢ etwor Ben 32| A —
Position List: [(1,1,1,6), (2,1, 3,2), (2, 2,2, 2),
T: Tree; Network
(3.23,2,2424,6,434,4,1121,.] Levell /7Level2 MFLevel3 i Mefolnfo Tree FL_Hetwor

BT: Body Data Tree;

Figure 4: An example of constructing a three-level nested Hierarchical Orthogonal Tree (HO-Tree) — Different shades of blue
highlight the table’s nested levels. For example, in the bottom-right table, the metadata, marked in dark blue, is constructed top-down into a
tree of depth two, while the unshaded data section structured into a left-to-right tree of depth five.

Table 3: Table of Atomic Operations.

Operation Formal Representation Description

Children CHL(V) Get children based on the given value.
Father FAT(V) Get Father based on the given value.
Value EXT(V1, V) Get the cross of two values.

Condition Cond(D, Func) Filter values based on the function.
Calculation Math(D, Func) Calculate result based on the function.
Compare Cmp (D1, Dy, Func) Compare values based on the function.
Execute Foreach(D, Func) Apply function to the given values.
Align Align(P,HO-Tree) Operation-Table alignment.

Reason Rea(Q, D) Reasoning based on LLMs.

distinguish between them. Second, understanding the nested or con-
tainment relationships among these cells is non-trivial, especially
given the flexible and irregular structure of semi-structured tables.
Thus, next we introduce the detailed steps in HO-Tree construction.

Algorithm 1: HO-Tree Construction (HOTC)

Input: A Semi-Structured Table T
Output: Extracted HO-Tree HOTree

Metalnfo « MetalnfoDetect(T);
Tjist < TablePart(T, Metalnfo);
HOTree;s; < [1;
for Tsup in Tjis do

switch type(Ty,;,) do

case L1,Ls, L4 do
HOTreey;s;.push_back(ConsTree(Tgp));
case L3 do
| HOTreej;sy.push_back(HOTC(Tyyp));

1

[N}

=N

7 |

© ®©

10 end

11 end

-

2 return ConsTree(HOTreey;;);

4.2.1 Meta Information Detection

Unlike structured tables with fixed schemas, semi-structured tables
often exhibit complex and irregular nesting, posing challenges for
meta-information extraction. Rule-based approaches fail to capture
such nuances, especially when similar structural patterns represent
different semantics. Serializing tables (e.g., as images or structured
formats) allows prompting models for metadata extraction or for-
mat generation. However, LLMs trained on 1D text struggle with 2D

tables [23], often exhibiting issues like hallucination and the “Lost
in the Middle” effect [27], undermining consistency and reliability.

To overcome these limitations, we adopt a hybrid method that
combines rule-based matching with LLM-based reasoning. As shown
in Figure 4, given a semi-structured table in Excel format, we first
convert it to HTML, render it using a headless browser, and capture
a high-resolution screenshot as input image for the VLM. Then, we
prompt the VLM to output all possible keys that would be present
in a JSON-formatted representation of the table as the candidate
meta-information cell values. Subsequently, we calculate similarity
scores between candidates and all table cells using embedding-
based similarity metrics. Cells exceeding a predefined threshold
are identified as meta-information, and their positions guide the
subsequent table partitioning process.

4.2.2 Table Partition Principles

We introduce three principles to guide the HO-Tree construction
process by interpreting different layouts in semi-structured tables:

(Principle 1) Top-Level Header Identification. If a merged cell
spans an entire row or column, it is treated as a header in a Header-
Orthogonal-Tables layout (L.4), and adjacent cells (below or to the
right) are interpreted as a subtable.

(Principle 2) Header-Content Differentiation. When both top-
aligned and left-aligned headers are present, the one with more cells
is selected to construct the MTree, while the other is integrated
into the BTree.

(Principle 3) Orthogonal Table Identification. When Orthogonal-
Tables (L.3) are detected, we segment them and process each sub-
table recursively and sequentially.

As illustrated in Figure 4, applying these principles enables table
partitioning based on meta-information locations and the recursive
construction of HO-Trees for semi-structured tables.

4.2.3 DFS-based Tree Model Construction

An HO-Tree is then constructed for each subtable according to its
identified layout type: for layouts L.1 and L.2, the HO-Tree is built
directly; otherwise, a recursive DFS is applied. For example, in Fig-
ure 4, the vertically structured semi-structured tables demonstrate a
top-down alignment of metadata and content.

Based on the detected metadata, the table is partitioned into
a list of subtables following predefined principles. An HO-Tree

is then constructed for each subtable according to its identified
layout type: for layouts L.1 and L.2, the HO-Tree is built directly;
otherwise, a recursive DFS is applied. Take the vertically structured
semi-structured tables where metadata and content are aligned top-
down in Figure 4 as an example: (1) In the MTree, each root-to-
leaf path represents a column, and the tree grows vertically to
reflect vertical relationships among metadata. (2) In the BTree,
each path represents a row, with horizontally aligned attributes, so
the tree grows horizontally. Each leaf node in the MTree points to a
corresponding level in the BT ree, linking metadata to the associated
content column.

During DFS backtracking, we model Orthogonal-Tables and
Header-Orthogonal-Tables layouts (i.e., L.3 and L.4). In such cases,
a node in the BTree may recursively contain another HO-Tree as
its value.

Algorithm 1 outlines the HO-Tree construction process. VLMs
identify table headers via the MetalnfoDetect function (Section 4.2.1).
Using the extracted metadata and predefined principles, the table
is partitioned into subtables through the TablePart function (Sec-
tion 4.2.2). To address structural complexity, each subtable is trans-
formed into an HO-Tree via the ConsTree function (Section 4.2.3)
and recursively merged using depth-first search to reconstruct the
full structure of the original semi-structured table.

Example 4.2. Figure 4 illustrates the construction of a three-level
nested HO-Tree. The “Basic Info” subtable is initially misidentified
by the VLM as “Basic Information” and corrected by alignment.
Metadata is used to identify the L.4 — L.3 layout, guiding the par-
tition of the “Basic Info” subtable into MNode and a sub-HO-Tree
(constructing L.4). Finally, the leaf nodes of the MTree in subtree
link to corresponding levels of the BTree (constructing L.3).

5 Pipeline-based Question Answering

With the HO-Tree model in place, it poses three key challenges in
question answering over semi-structured tables. First, such questions
often require multi-hop reasoning rather than one-shot retrieval,
and unlike NL2SQL tasks, lack a standardized operation set for
pipeline construction. Second, answering necessitates hybrid tra-
versal strategies (e.g., left-to-right, top-down, bottom-up) to locate
relevant content. Third, the large number of cells in some semi-
structured tables complicates the precise identification of question-
relevant information.

To address these challenges, we propose a pipeline-based QA
strategy centered on a set of tree-specific operations that cover most
QA scenarios: (1) a question decomposition method for complex
multi-hop queries, (2) an operation generation mechanism with
parameter-content alignment, and (3) a column-type-aware tagging
mechanism that annotates columns based on data characteristics,
enabling efficient and accurate retrieval from large, complex tables.

5.1 Basic Operations over HO-Tree

We design a suite of atomic operations to enable structured and
interpretable QA over the HO-Tree. These operations support both
precise tree traversal and auxiliary tasks correspond to common
semi-structured table sub-tasks. The operations fall into four cate-
gories: (1) Data Retrieval Operations, which retrieve relevant values
from the tree; (2) Data Manipulation Operations, which process or
transform retrieved data; (3) Alignment Operations, which align

operation parameters with table content; (4) Semantic Reasoning
Operations, which invoke LLMs for contextual inference.

For any user question, we first decompose it into one or more
sub-questions, each resolved through a sequence of operations
to retrieve relevant information or derive the answer. Ideally, the
generated operation pipeline includes: (1) retrieval to collect non-
redundant data, (2) manipulation to structure the data into a model
comprehensible form, (3) alignment to ensure question-content
alignment, and (4) reasoning to produce the final answer. In worst-
case scenarios, the model may retrieve nearly the entire table and
rely heavily on reasoning, highlighting the need for fine-grained,
modular operation design.

Data Retrieval Operation. These operations are responsible for
extracting relevant table content from the HO-Tree based on argu-
ments derived from the user question.

e Children Retrieval (CHL(V)) This operation retrieves all suc-
cessor nodes of any node whose value matches V. If multiple such
nodes exist, each set of successors is returned separately. Use the
HO-Tree in Figure 4 as an example, CHL(Basic Info) returns the
HO-Tree containing the company information.

o Father Retrieval (FAT (V)) This operation is used to obtain the
set of ancestor nodes of a given tree node. For instance, in Figure
4, FAT (Department) would return the HO-Tree containing the
employee information.

e Value Retrieval (EXT(V1,V2)) This operation is used to find
nodes in a certain layer of BTree pointed to by a MTree leaf node,
while giving them a common ancestor BNode as a filtering criterion.
Specifically, one of V; and Va2 needs to be a MNode value, and the
other needs to be a BNode value. Assume that V; is the MNode
value and V3 is the BNode value, the operation returns a set of node
values that satisfy the following: (1) The BNode is in the MTree
column Vj (2) BNode with value V; is an ancestor of the BNode in
MTree column.

Data Manipulation Operation is used to perform specific opera-
tions on the data, including filtering based on conditions, perform-
ing calculations, and making comparisons.

e Condition (Cond(D, Func)) filters a data set D using a predicate
function Func and returns the filtered values or a new HO-Tree. For
instance, Condition(EXT (Lily, Grade),def(x) : returnx < 60)
retrieves Lily’s grades that are less than 60.

e Calculation (Math(D,Func)) applies a numerical com-
putation function Func over a data set D. For instance,
Math(CHL(Price),def (x) : return sum(x)) returns the sum of
the column “Price”.

e Compare (Cmp(D1, D2, Func)) compares two data sets D1 and Do
using a function Func, and returns the boolean result. For instance,
Compare(EXT(Lily, Grade), EXT(Cindy, Grade), def (x1, x2)
return x1 > x2 returns the truth value of the statement “Lily’s
grade is greater than Cindy’s”.

e Execute (Foreach(D, Func)) applies a function Func to each el-
ement in data set D and returns the resulting set. For instance,
Foreach(EXT(Lily, Grade), def (x) return x—10) retrieves all Lily’s
grades and returns the values after minus ten.

Alignment Operation aims to ensure consistency between opera-
tion parameters and the content of the HO-Tree.

SQ: Sub Question ST: Sub Tree
SD: Sub Data SA: Sub Answer

Example

Q: How many employees in
department A and C have
received a rating higher than A? Info =

SQ1 Process (Top-Down)
(1) [Employee Info] ->

SQ3 Process

Context

SQI: Count ... department A ...
SQ1 Answer 1: 2

SQ2: Count ... department C ...

Employee

[stp|[st2] [sm1]

| Question Decomposer

SQ2 Answer 2: 0

(2) Cond([Department]->, =="A") ### Question

ST11 ST12 || ST12

3
[sb1 |[sp2 || sp1 || sb2 |
[I [I

rating higher than A?

Retrieve & Answer Decompose

T
SA1 { SA2 [Answer |
Relevant Content Match 4

B = &
LLM - @ BNode Embedding
Values Match Al

rating higher than A?

SQ1 and SQ2.

SQI: How many employees
in department A received a

SQ2: How many employees
in department C received a

SQ3: Add the result of

Group Level

Department & SQ3: Add the result of history
Research 1 A+ Y questions.
A IS)
Reseirch 2 A DL_
C Network A- 8
(3) Cond([Level]->, > 'A") @ LLM
Department, Age Level Reasoning
22
A A+
24
(4) Math([name]->, count()) ### Output SQ3
Count([Mark, Jone]) = 2 Answer: 2

Figure 5: Question Decomposition and Pipeline Generation.

e Align (Align(P,HO-Tree)) This operation aligns the parame-
ters P in a given operation with the nodes in the HO-Tree using
an embedding-based similarity model [39]. The process involves
computing embeddings for the parameters and table content:

E, = Embed(ay, az, . .., an) (1)
E. = Embed(c1,¢2,...,¢m) (2)
SimMatrix = CosSim(Eg, E¢) (3)

where a; represents the i-th parameter and c; denotes the content
of the j-th node in the tree, with m representing the total number
of nodes. Cosine similarity (CosSim) is used to identify the most
semantically aligned table node for each parameter, which is then
used for downstream operations.

Example 5.1. For the operation CHL(Identification), if the meta-
information of the table is [‘ID’, ‘Name’, ‘Age’], the alignment op-
eration Align(Identification, HOTree) attempts to output “ID” to
align the operation parameter to the table content.

Semantic Reasoning Operation leverages LLMs for high-level
reasoning over retrieved data.

e Reason (Rea(Q, D)) This operation takes the original question
Q and the data D obtained from prior operations, and uses an
LLM to generate the final answer. In cases where the question is
decomposed into multiple sub-questions, semantic reasoning can
also be used to aggregate intermediate answers into a final response.

5.2 Question Decomposition and Pipeline
Generation

Figure 5 illustrates the overall process of question decomposition,
operation generation, and step-by-step data retrieval via both top-
down and bottom-up strategies.

Step 1: Question Decomposition. As shown in Figure 5, upon re-
ceiving a user question, we first utilize the semantic understanding
capabilities of an LLM to decompose complex multi-hop questions
into multiple simpler, single-step sub-questions. Specifically, we
prompt the LLM with the input question, sampled table content
as semantic supplements, and example decomposition cases that
are dynamically retrieved based on question similarity to generate
sub-questions. These sub-questions are often interdependent: some
can be directly resolved using the HO-Tree, while others rely on

intermediate results produced by earlier sub-questions. For exam-
ple, a question such as “What is the total salary for 2021 and 2022?”
can be decomposed into three sub-questions: (1) retrieve the 2021
salary, (2) retrieve the 2022 salary, and (3) compute the sum of the
two. For table operation generation, we prompt the LLMs with a
predefined set of operations and illustrative examples.

Step 2: Relevant Data Retrieval. Each sub-question is then
answered independently through a combination of top-down and
bottom-up retrieval. ST-Raptor always starts with top-down re-
trieval and switches to bottom-up retrieval when the former fails.
The left section of Figure 5 shows this iterative process. For each
sub-question, the LLM first generates an operation statement based
on the sub-question content and the meta-information extracted
from the HO-Tree. Executing this operation yields intermediate
results (i.e., sub-trees), which are then used to inform subsequent
operation generation.

We employ the Align operation for two purposes: (1) Operation-
Table Alignment, applied upon each operation’s generation to align
sub-questions with the corresponding table content, and (2) Rele-
vant Content Match, invoked when the number of data nodes is
large, to extract key entities from the question and constrain the
search space within the HO-Tree.

Step 3: Answer Generation Once the relevant sub-data is re-
trieved, each sub-question is resolved via the Reason operation,
and all sub-answers are aggregated to produce the final answer.

5.3 Relatively Large Table QA Enhancement

The abundance of available BNodes poses challenges in selecting
accurate operation parameters. To address this, we introduce a data
grouping strategy that leverages inherent structural and semantic
features, combining top-down grouping based on data characteris-
tics with parallel grouping via tree structure traversal.

1. Characteristic-based Grouping. The top-down grouping pro-
cess is performed during HO-Tree construction, clustering data
based on column characteristics. As shown in Figure 6, column
values are classified by data type (e.g., Numeric, Datetime, Unstruc-
tured String) and then further categorized as follows: Discrete —
columns with a limited set of values (e.g., grades [‘A’, ‘B’, ‘C’, ‘D’]
or binary options [Yes, No]); Continuous — columns with nu-
meric values spanning a range (e.g., height or temperature); and

(1) Feature Analysis

I Numeric I } Discrete H Unique | Level: {'A-":11,'A+": 4,"A": 2} |
| Datetime ‘ / I Conti | | :
/ inuous Range I Age: [22,53] |
String {, I Unstructured | | Embedding | Group: [61: [...], 62: [...], ...] |
Column
(2) View Construction & Retrieve
Info
| Department | | Group | | Name | | Age | | Level |
T T T T T
Research 1 (1 Mark (IH = (1 o
[A Q@ one (D24 (1

I Research 2 (1) |

Ry O 32 O 2 O

Mike (2)— 5 (o A~ (@
l : O - (2)<: Albert (2)— 2 (1 A~ @
| N N | outer (N Jalck (ORI 5I3 [OX=] AI\ (D)

Q: Retrieve department with employee's level = A

Figure 6: Characteristic-based Grouping Mechanism

Unstructured — columns with free-form text (e.g., comments or
descriptions). A rule-based classifier performs this categorization
to reduce complexity in tables with numerous similar cells. With
clearly defined rules, it achieves near-perfect accuracy.

Each category is then grouped using tailored strategies: (1) Dis-
crete values are clustered by exact matches (e.g., students with
Grade A); (2) Continuous values are sorted and partitioned into
fixed intervals to preserve numeric order (e.g., stress levels by
range); and (3) Unstructured values are grouped via embedding-
based clustering to capture semantic similarity.

As shown in Figure 6, a column with values like Grade (A+,
A, A-, ..) is classified as Discrete, allowing identical values to be
grouped. Queries such as “fetch all students with Grade A” can then
be resolved efficiently within the corresponding group.

2. Group-based Data Retrieval. The parallel-direction grouping
leverages structural relationships within the HO-Tree. After locat-
ing the target node(s) based on content, the tree is traversed to
retrieve related information by: (1) searching upwards for ancestor
nodes and (2) searching downwards for descendant nodes.

This bi-directional traversal allows for the reconstruction of a
minimal sub-tree that contextualizes the target node, revealing
the complete information associated with the same entity (e.g.,
retrieving all attributes of a specific student or transaction).

6 Two-Stage QA Verification

Robust validation mechanisms are essential for the reliability of
semi-structured table QA, particularly given that existing solutions
(e.g., NL2SQL [24, 41]) often lack comprehensive answer verifica-
tion. The main challenge arises from the fact that, different from
structured table QA, the retrieved result cells in semi-structured
table QA often exhibit complex layouts and may be derived through
multi-step lookup processes, which is tricky for general LLMs to
verify. To address this problem, we propose a two-stage verification
framework that integrates both forward and backward validation
to enhance the robustness and trustworthiness of the final answers.
Forward Verification. The first stage focuses on validating the
correctness of intermediate operations and execution results dur-
ing the QA process. Specifically, at each step of generating and

executing operations, we verify whether the parameters produced
by LLM are consistent with the actual contents of the table (e.g.,
when asking for company information and the given data only
contain employee information, we stop the process). This involves
directly matching generated parameters against table cells to ensure
semantic and syntactic alignment.

After executing each operation over the HO-Tree, the general
LLM evaluates whether the resulting data sufficiently answers the
corresponding sub-question. If the result is found to be inadequate, a
new operation statement is generated to continue the reasoning pro-
cess. Notably, real-world queries often lack sufficient information
to be answered directly from the table, which may cause the model
to hallucinate incorrect answers. To mitigate this issue, the forward
verification mechanism allows the model to halt the pipeline and
return an “unanswerable” signal when it detects that the answer
cannot be reliably inferred. Furthermore, when operation state-
ments are found to misalign with the table content, the system
triggers a regeneration process to refine and correct the statements,
thereby improving both the data retrieval accuracy and efficiency.

Backward Verification. In the second stage, we evaluate the cor-
rectness of the generated operation pipeline by verifying it against
alternative reasoning paths. Notably, different questions over the
same semi-structured table may yield identical answers via distinct
yet similar pipelines (e.g., “Who is the highest-paid employee?”
vs. “Who leads the technical department?”). Leveraging this prop-
erty, we perform backward verification by generating alternative
questions with the same answer, deriving corresponding pipelines,
and measuring their similarity to the original. The average similar-
ity serves as an implicit indicator of pipeline and answer reliabil-
ity. Specifically, we employ few-shot learning, retrieving question-
similar examples to guide the generation of alternative questions to
solve the problem that questions with the same answers may show
tremendous difference in their operation pipeline.

7 Experiments
7.1 Experiment Setup

LLMs. We use InterVL2.5 26B [11] as the vision language model,
Deepseek-V3 [14] as the general LLM, and Multilingual-E5-Large [39]
as the semantic embedding model.

Evaluated Methods. The evaluated methods include: (1) NL2SQL.
OpenSearch-SQL [41] employs a dynamic few-shot learning strat-
egy (Query-CoT-SQL) and introduces an SQL-Like intermediate
language to optimize reasoning chains. (2) Foundation Model.
GPT-40 [30], the cutting-edge LLM developed by OpenAl, and
DeepSeekV3 [14], a strong Mixture-of-Experts LLM developed by
DeepSeek-Al is evaluated. (3) Fine-tuning based Methods. TableL-
LaMA [44] is a fine-tuned version of LLaMA-2 7B tailored for tab-
ular data processing across eight table-specific tasks. The model
handles various table types, including Wikipedia tables and spread-
sheets. TableLLM [45] is a 13B-parameter LLM designed for tabular
data manipulation tasks, which is fine-tuned on a diverse mix of
table-centric datasets in processing document tables and spread-
sheets, making it well-suited for real-world office scenarios. (4)
Agent based Methods. ReAcTable [46] is an agent-driven approach
that integrates reasoning and action-based decision-making for

Table 4: Characteristics of SSTQA Benchmark.

. . Cell Avg.length

Dataset Nesting Depth Merge Ratio Count of Contents
WikiTQ 1.2970 0.0091 178.3564 1.9568
TEMPTABQA 2.0000 0.1780 44.8350 3.6696
INFOTABS 2.0000 0.0548 23.6683 2.0769
SSTQA 2.5196 0.0544 147.4608 2.7287

table question answering. It iteratively generates operations, up-
dates the table, and constructs a reasoning chain as a proxy for
intermediate thought processes through prompting LLMs and in-
context learning. TAT-LLM [48] extracts relevant segments from
the context, generates logical rules or equations, and then applies
these rules or executes the equations to derive the final answer
through LLM prompting. (5) VLM based Methods. TableLLaVA [47]
extends the training of LLaVA-7B/13B on 150K table recognition
samples, allowing the model to align table structures and elements
with textual modality. We choose the 7B version in our experiment.
mPLUG-DocOwl1.5 [20] is a fine-tuned VLM with 8B parameters. It
incorporates a spatial-aware vision-to-text module designed to rep-
resent high-resolution, text-rich images while preserving structural
information and reducing the length of visual features.

Input Formats. NL2SQL and agent-based methods take structured
tables as input, typically stored in databases or CSV files. Fine-
tuning-based approaches operate on structured tables in Markdown
format, while VLM-based methods accept table images as input.
Foundation models generally utilize the HTML representation of
tables. ST-Raptor currently supports Excel as the input format and
is compatible with all lossless table representations like HTML.

Benchmarks. We evaluate nine baselines and ST-Raptor on three
benchmarks: (i) WikiTQ, featuring Wikipedia tables with complex
natural language questions, (ii) TempTabQA, targeting on temporal
question answering over semi-structured tables, and (iii) SSTQA,
our proposed dataset detailed in Section 7.2. Since the table formats
in other datasets do not fully adhere to the definition of semi-
structured tables, we select a subset of tables that meet the criteria
and denote them as WikiTQ-ST and TempTabQA-ST, respectively.

7.2 SSTQA Benchmark

Existing semi-structured table datasets face two key limitations: (1)
they consist of small, structurally simple tables that fail to evaluate
a model’s capacity to comprehend complex semi-structured tables;
and (2) their queries are misaligned with practical applications, lim-
iting real-world utility. For example, although WikiTQ [31] includes
a large number of semi-structured tables from Wikipedia, these
tables typically exhibit simple layouts with merged cells and are
converted into structured formats as part of the benchmark prepro-
cessing. Meanwhile, TempTabQA [17] consists solely of shallowly
nested tables with fewer than five columns, lacking the structural
complexity commonly observed in real-world datasets.

To fill the gap, we introduce SSTQA, a dataset specifically de-
signed to evaluate a model’s ability to conduct Semi-Structured
Table Question Answering task in real-world scenarios. As shown
in Table 4, WikiTQ has the highest cell count but the shallowest
nesting depth. In contrast, SSTQA exhibits the deepest nesting and
the relatively large table size among the existing semi-structured
table benchmarks.

Table 5: Overall Performance Comparison.

WikiTQ-ST TempTabQA-ST SSTQA
Methods Acc Acc ROUGE-L Acc
OpenSearch-SQL [41] 38.89 4.76 23.87 24.00
TableLLaMA [44] 35.01 32.70 26.71 40.39
TableLLM [45] 62.40 9.13 2.93 7.84
ReAcTable [46] 68.00 35.88 7.49 37.24
TAT-LLM [48] 23.21 61.86 19.26 39.78
TableLLaVA [47] 20.41 6.91 5.92 9.52
mplug-DocOwl1.5 [20] 39.8 39.80 28.43 29.65
GPT-40 [30] 60.71 74.83 43.86 66.45
DeepSeekV3 [14] 69.64 63.81 46.17 63.22
ST-Raptor (Ours) 71.17 77.59 52.19 72.39

Data Collection. The 102 tables in SSTQA are carefully curated
from over 2031 real-world tables coverage across 19 representative
real scenarios (e.g., administrative and financial management) by
considering tables featuring semi-structured formats, such as nested
cells, multi-row/column headers, irregular layouts, which ensures
the representativeness both in structure and information.

For question-answer pair generation, we employ a two-stage
approach. First, we augment the question set by extracting infor-
mation from tables as answers, then generating corresponding
questions to enhance QA pair alignment. Second, we sample ques-
tion templates and prompt a LLM to generate open-ended question-
answer pairs based on the table and template. To ensure data quality,
we implement a two-step verification process. Initially, a LLM vali-
dates the alignment between tables, queries, and answers. This is
followed by manual inspection to verify answer correctness by 11
professional annotators, which results in a high-quality dataset of
764 meticulously curated table-based QA pairs.

Table Complexity. We categorize table difficulty based on a weighted
combination of three key features: (i) nesting depth (0.5), (ii) struc-
tural irregularity, including the number of header rows and column
spans (0.3), and (iii) average cell content length (0.2). After z-score
normalization and feature aggregation, SSTQA tables are grouped
into 59 simple, 33 medium, and 10 hard instances.

Table + QA Complexity. Table-question difficulty varies with the
combination of table structure and query complexity. Accordingly,
we categorize Table+QA tasks into three levels: (i) simple, where
answers can be directly retrieved from the table; (ii) medium, re-
quiring logical inference or conditional operations; and (iii) hard,
where answers are not explicitly present and demand semantic rea-
soning. We obtain 299 simple, 284 medium, and 178 hard cases. The
corresponding experimental results are presented in section 7.3.

Evaluation Metrics. We adopt two primary evaluation metrics:
Answer Accuracy (Acc), following prior work [23, 44], and ROUGE-
L to accommodate summarization-style questions in SSTQA. To
address the limitations of exact string matching, we further employ
general-purpose LLMs to compare model predictions and ground-
truth answers, enabling a more nuanced evaluation.

7.3 Overall Performance Comparison

We conduct a comprehensive evaluation of ST-Raptor against nine
state-of-the-art table question answering (QA) methods, spanning
five technical paradigms, i.e., NL2SQL, fine-tuning based methods,
agent based methods, VLM based methods, and foundation LLMs.
The general accuracy of these methods across three semi-structured
table QA benchmarks is shown in Table 5. Then, we further classify

[ST-Raptor =3 GPT-40] ReAcTable [TableLLavVA [TAT-LLM
ENN Deepseek-V3 [mPLUG EZZ] TableLLaMA X3 TableLLM

RN

0.8

+13.04% +20.26%

o
o
}

SH

Accuracy
o o
N £y

o
o

o
o

+5.64% i +10.90%

+6.66%

ROGUEL
o

'S

}

o
71

0.0

Simple Medium Hard

Figure 7: Evaluation Results under Different Table Difficulty.

the difficulty of semi-structured tables into Simple, Medium, and
Hard tiers, and visualize the accuracy variation upon different table
difficulties, which is shown in Figure 7.

s Overall Accuracy. Experiments show that ST-Raptor consis-

tently outperforms all nine baselines across the evaluated WikiTQ-

ST, TempTabQA-ST and SSTQA benchmarks. Table 5 shows ST-Raptor

achieves the highest accuracy, exceeding the second-best method
by 10.23% on SSTQA benchmark. This consistent outperformance
can be attributed to three folds.

First, ST-Raptor leverages the HO-Tree to represent semi-structured

tables, enabling explicit structural modeling while decoupling lay-
out understanding from question answering. This design allows the
general-purpose LLM to operate without directly parsing complex
table layouts. Instead, given JSON-formatted header information,
ST-Raptor generates atomic operations and executes them on the
HO-Tree for relevant data retrieval. In contrast, most methods,
excluding vision-language models (VLMs) which can directly per-
ceive layout information from table images, struggle to capture
two-dimensional semantics using linear text representations.

Second, ST-Raptor incorporates a novel question decomposition
mechanism that breaks complex queries into simpler sub-questions,
followed by precise operation-table alignment. This improves both
operation generation accuracy and execution reliability, thereby
improving overall question answering performance.

Third, ST-Raptor dynamically combines top-down and bottom-
up retrieval strategies based on question characteristics, enabling
robust handling of diverse semi-structured table QA scenarios. When
the top-down retrieval fails or a question lacks explicit header
references, bottom-up retrieval is employed. This flexible approach
allows the system to effectively navigate complex table structures,
outperforming other methods in challenging scenarios.

Additionally, we observe performance increase (around 3%) even
on the simple tables of WikiTQ-ST and TempTabQA-ST. For Wik-
iTQ, where the majority of tables are fully structured, ST-Raptor
outperforms the second-best model by around 2%. This modest im-
provement reflects ST-Raptor’s specialization for semi-structured
tables with complex nested hierarchies. In contrast, on TempTabQA,
where all tables are semi-structured but exhibit only shallow nesting
and small sizes, ST-Raptor achieves around 3% improvement over
the second-best approach. While our model could effectively mod-
els such structures, the overall retrieval pipeline remains relatively

simple, limiting the performance gap over LLMs like Deepseek-V3
which can directly interpreting relevant information.

Meanwhile, the experimental results highlight significant perfor-
mance variations among the methods. NL2SQL-based approaches
perform the worst on the SSTQA and TempTabQA dataset but
achieve better results on WikiTQ, as the SQL generation paradigm
is ill-suited for non-relational data, making it ineffective for semi-
structured tables. TableLLM ranks second-lowest on SSTQA due
to two main limitations: (1) its training is restricted to structured
datasets, reducing its generalizability to semi-structured formats,
and (2) it struggles with large-scale tables and complex layouts
due to limited context length and one-dimensional semantic rea-
soning. Its improved performance on WikiTQ can be attributed
to task-specific fine-tuning on this dataset. Agent-based methods
perform better on SSTQA due to their integration of external tools,
but they fail to operate directly on semi-structured tables. The trans-
formation of semi-structured data into structured formats results
in the loss of critical layout information, reducing their effective-
ness. TAT-LLM exhibits unexpectedly strong performance on the
TempTabQA dataset. We attribute this to its fine-tuning on a large
volume of financial data, which shares similarities with the tempo-
ral question types prevalent in TempTabQA, thereby contributing
to its effectiveness. Vision-language models excel at layout recog-
nition through visual encoding but underperform in text-dense
scenarios due to limited textual comprehension, especially in ta-
bles requiring strong semantic understanding. Foundation models,
while not explicitly designed for table-related tasks, achieve the
second-best performance on SSTQA dataset. This is attributed to
their robust contextual reasoning and semantic interpretation abili-
ties, enabling accurate answer inference especially when tabular
layout understanding is secondary to interpreting textual content.

Accuracy under Different Table Difficulties. We categorize ta-
bles in SSTQA benchmark into three levels of difficulty (i.e., Simple,
Medium, Hard) by layout complexity and content length. Figure 7
presents the comparative performance evaluation across these dif-
ficulty levels. Three key observations emerge from our analysis.

First, both ST-Raptor and foundation models exhibit progres-
sively decreasing performance as table difficulty increases, under-
scoring the inherent challenges posed by complex layouts and large-
scale semi-structured tables. In contrast, other methods demonstrate
only marginal performance variation across difficulty levels. We
posit that these models primarily address questions with less table
structure comprehension. Consequently, performance differences
among them are largely driven by architectural variations rather
than structural modeling capabilities.

Second, although ST-Raptor shows a modest performance de-
cline on hard-level tables, it consistently outperforms all methods
by a substantial margin (e.g., exceeding the second-best model by
over 20% on the SSTQA dataset). The reasons are three-fold: (1) the
hierarchical HO-Tree representation, which facilitates efficient pro-
cessing of large tables; (2) the question decomposition mechanism,
which simplifies complex queries into tractable sub-questions; and
(3) the operation-table alignment strategy, which ensures accurate
and context-aware data retrieval.

Third, performance differences across models are less pronounced.
This can be attributed to three key factors: (1) the smaller table

Table 6: Analysis of Table + QA Difficulty on SSTQA.

Methods (Acc) Simple Medium Hard

DeepseekV3 92.94% 61.83% 47.19%
GPT-40 86.64% 59.75% 43.26%
ST-Raptor 93.97% 62.66% 58.43%

sizes, which reduce structural complexity; (2) the predominance
of semantically driven questions that require less explicit layout
reasoning; and (3) the dataset’s focus on temporal question answer-
ing within a single scenario, which limits question diversity and
diminishes the impact of advanced structural modeling.

Analysis on Table + QA Difficulty. We categorize the Table+QA
tasks into three difficulty levels. As shown in Table 6, ST-Raptor
outperforms all baselines across these levels. While both founda-
tion models and ST-Raptor perform well on simple cases, accuracy
drops as difficulty increases. Notably, ST-Raptor demonstrates su-
perior performance on hard cases, attributed to its HO-Tree-based
representation and operation-pipeline-driven QA strategy.

We categorize Table+QA tasks into three difficulty levels (Ta-
ble 6). ST-Raptor consistently outperforms all baselines across
these levels. While both foundation models and ST-Raptor per-
form well on simple cases, accuracy drops as difficulty increases.
Notably, ST-Raptor excels on hard cases, benefiting from its HO-
Tree representation and operation-pipeline-driven QA strategy.

7.4 Fine-grained Analysis

In this section, we discuss the quality of meta-information detection,
analyze question answering latency, and examine the impact of
pipeline errors.

Quality of Meta Information Detection. We evaluate the Ta-
ble2Tree module’s accuracy in converting semi-structured table into
HO-Tree. Experiment results show that the untuned VLM achieves
93.14% on SSTQA, 94.32% on TempTabQA and 92.31% on WikiTQ,
which is sufficiently high for accurate HO-Tree construction.

Analysis of Backward Verification.

To assess the potential negative impact of generating suboptimal
question alternatives on question answering accuracy, we quan-
tify the number of such bad alternatives and their corresponding
answers on the SSTQA dataset. Experimental results show a false
negative rate of 4.78% under the few-shot learning setting, indi-
cating that misjudgments in backward verification have minimal
impact on table QA performance.

Latency Analysis. The runtime of ST-Raptor is primarily influ-
enced by the cost of accessing the LLM, largely due to network
latency. As ST-Raptor performs question answering via pipeline-
based operation generation, the runtime per query is inherently
unstable. ST-Raptor requires around 30 seconds per question (ig-
noring bias caused by factors like network communications), with
2.89 pipeline operations on average. This is substantially faster
than the agent-based method, which incurs higher latency due to
a greater number of operations with more API calls, and slightly
slower than the fine-tuning approach, which benefits from local
deployment and direct reasoning.

Effects of Pipeline Mistakes. Pipeline Mistakes Analysis. Mis-

takes in the ST-Raptor pipeline primarily arise from two sources.
First, mistakes in meta-information detection by the VLM can lead
to incorrect HO-Tree representations, resulting in more complex

Table 7: Ablation Study on ST-Raptor Modules

SSTOQA
Model Acc ROUGE-L
Full Model (DeepseekV3) 72.39% 52.19%
GPT-40 62.12% 43.86%
DeepseekV3 62.26% 46.17%
w/o Table2Tree 57.24%(-15.15%) 41.55%(-10.64%)

w/0 Question Decomposition 68.06%(-4.33%) 48.09%(-4.10%)

w/o Operation-Table Alignment 71.07%(-1.32%) 50.86%(-1.33%)
w/o Data Manipulation Operation 65.09%(-7.30%) 47.13%(-5.06%)
w/o Answer Verifier 66.10%(-6.29%) 47.46%(-4.73%)

data retrieval paths (e.g., locating related data dispersed across dif-
ferent subtrees) and reduced overall efficiency (e.g., from 10 to 40
seconds). Second, semantic misinterpretations by the LLM, such
incorrectly splitting a combined address-phone entry into separate
fields, can trigger unnecessary lookups and potentially yield incor-
rect answers, leading to additional verification and iteration, and
thereby diminishing efficiency.

7.5 Ablation Study on ST-Raptor Modules

In this section, we perform an ablation study on ST-Raptor from
five perspectives. Results are reported in Table 7.

Without Table2Tree. We disable the Table2Tree module and in-
stead apply ST-Raptor directly to raw semi-structured tables, which
evaluates the importance of explicit table layout modeling. The
removal leads to the most significant degradation (an absolute ac-
curacy drop of 15.15%), demonstrating the critical role of HO-Tree-
based structural representation in handling complex semi-structured
tables. This also highlights that foundation models alone struggle
to capture intricate layout semantics without explicit structural
guidance.

Without Question Decomposition. We remove the question
decomposition module, requiring ST-Raptor to process complex
queries in a single step. This results in a 4.33% accuracy drop, con-
firming the necessity of decomposition for effective multi-hop rea-
soning. Without decomposition, the ST-Raptor fails to isolate inter-
mediate steps, leading to compounding errors in reasoning chains.

Without Operation-Table Alignment. We omit the operation-
table alignment mechanism to test whether the LLM in ST-Raptor
can inherently align operations with table content. A 1.32% per-
formance decline is observed, indicating that while LLMs possess
semantic reasoning ability, explicit alignment could still improve
execution precision. This suggests that structural grounding re-
mains beneficial even for advanced models with strong language
understanding capabilities.

Without Data Manipulation Operations. We restrict ST-Raptor
to data retrieval, alignment, and reasoning operations, disabling
data manipulation functions. This leads to a 7.30% accuracy drop,
underscoring the frequent necessity of manipulation operations
and validating the completeness of our atomic operation set. Many
questions inherently require operations such as filtering and calcu-
lation, which cannot be bypassed through reasoning alone.

Without Answer Verifier. To evaluate the impact of self-verification,
we remove the answer verifier module. Accuracy drops by 6.29%,
suggesting that the verifier plays a vital role in detecting and cor-
recting execution errors, thereby enhancing output reliability. This

Table 8: Case Study on SSTQA Dataset.

Table Table . . mPLUG-
I Difficulty Layout Representation Question TableLLaMA ReAcTable DocOwlL.5 GPT-40 ST-Raptor
. Summarize the reimbursement
5 Simple L4 —L3— [L2y,...,L.21] activities of Tian Xiaohong. x x x X x
19 Simple L4 — L3 — [L.24,..., L.23] What are the components of employee compensation? X X v v 4
What documents must a Continuity and
15 Simple L.4 — L.3 — [L.21,L.2;,L.23] Availability Planner submit to the IT X v v v v
Service Management Committee?
L4—>L3— [{L4] . .
m Smple L3> (L2 Ly, Wt he categories of varable v x X v v
{L.4 —> [L.2y,...,L.2]}2])
. L3 — [{L.4 — [L.21,L.23,L.23]};, How many items are there in
4 Medium ..., {L.4 > [L.2,L.25,L.25]6}] drawing technology? x X X x 4
95 Medium L.4 — L3 — [L.2y,...,L.25] Which emplo.yees in the table have 18 X X X X v
years of service?
. L4—>{L4—>L3—> What is the net cash flow generated
100 Medium [L.1y,L.15,...,L.134]} from investing activities? 4 4 4 x 4
87 Medium L4 — L3 — [L.2,,...,L.210] What are the evaluation criteria for X X X v v/
work attitude?
L4 — [L.1,{L.4— {L3 How many secondary indicators are
1 Hard — [L.13,L.13]}}, {L.4 —> {L.3 included under the performance X X X X v
— [L.24,..., L.24]}}a,. .. metric’s efficiency indicators?
L3 — [{L.4— [L.21,L.2;]}4, How many phases are included in the
10 Hard ...,{L.4— [L.21,L.2;]4}] Change Phase Code Table? x X X 4 4
91 Hard L.4— L.3— [L.2y,...,L.2] What are the beginning and ending X X X % v/
balances of total assets?
30 Hard L3 — [L1L2,...,L2] How many categories are there for service X X X X v/

sub items with service number *XX-R-1-4’?

module is especially useful when wrong intermediate results or
final answer are generated during multi-step execution.
Collectively, these results demonstrate that each module in
ST-Raptor addresses distinct yet complementary challenges in
semi-structured table QA, and their synergistic integration is vital
for effectively tackling the layout-intensive questions in SSTQA.

7.6 Case Study on SSTQA Dataset

For each table difficulty level in the SSTQA dataset, we select four
representative question-answering cases. Table 8 presents the ab-
stract semi-structured table layout representations, the correspond-
ing questions, and the results from five selected methods. The layout
representations follow the table definitions introduced in Section 3,
where L.1 denotes a Header-Single-Value structure, L.2 denotes
Header-Multiple-Value, L.3 denotes Orthogonal Tables, and L.4 de-
notes Header-Orthogonal-Tables. A rightward arrow indicates the
construction of a layout. For example, L.4 — L.2 indicates that
headers are added to the L.2 layout.

Two key observations emerge from the Table 8: (1) In terms of
structural complexity, tables with complex layouts (e.g., Tables 20,
4,1, 10) often lead to errors for most methods except ST-Raptor. (2)
Regarding questions, those requiring math operations (e.g., Tables
4, 1, 30) demand a deeper understanding of table structure, where
ST-Raptor consistently excels other methods.

Regarding limitations, ST-Raptor may occasionally irregular
layout patterns, such as erroneously treating horizontally merged
content cells as headers, which can negatively affect the QA accu-
racy. Besides, both ST-Raptor and the baselines face challenges in
decomposing questions involving complex pipelines (e.g., resem-
bling multi-level nested SQL queries), requiring techniques such as
specialized LLM fine-tuning. Nonetheless, such cases are infrequent
in semi-structured table QA tasks.

8 Related Works

8.1 Structured Table QA.

Mainstream approaches can be categorized into NL2SQL, NL2Code
and vision-language model based methods. NL2SQL [16, 24, 41]
focuses on translating natural language queries into structured SQL
commands by leveraging techniques such as (1) schema linking,
which aligns user intents with database schema to resolve ambigui-
ties, and (2) content retrieval, which dynamically extracts relevant
information from the database to refine query generation. VLM
based methods [20, 47] transform the table into image for analysis
and question answering.

8.2 Semi-Structured Table QA.

Semi-structured tables bring a large challenge for table understand-
ing and render traditional Text2SQL strategy ineffective. To address
the issue, numerous excellent research efforts have been carried
out [21, 26, 32, 38]. For instance, Wang et al. proposed an end-to-end
system [38] that uses semi-structured tables as knowledge sources
by first finding the most similar tables and then selecting the most
relevant table cells to derive the answer. Additionally, Liu et al.
proposed the GrabTab method [26] featuring a Component Delib-
erator that efficiently leverages multiple table components without
requiring complex post-processing, for addressing the challenge
of recognizing complex and irregular table structures. Inspired by
NL2SQL techniques, Lu et al. [28] propose to convert natural lan-
guage queries into NoSQL ones, but only produce intermediate
results, lacking the end-to-end semi-structured table QA capabil-
ity like ST-Raptor. Moreover, Gupta et al. built a TEMPTABQA
dataset [18] from 1,208 Wikipedia Infobox tables to evaluate the tem-
poral reasoning capabilities, and found that even top-performing
LLMs fall behind human performance by over 13.5 F1 points. Some
works conduct information extraction over semi-structured data.
TWIX [25] assumes that many semi-structured data is generate
from one similar layout template and proposes a method that first

reconstruct the template than extract the content. However, it lacks
support for merged cells and cannot be readily transformed into
HO-Trees within our problem scope. Another approach is convert
the semi-structured data into structured formats for downstream
analysis [6]. However, this conversion process can introduce infor-
mation loss and reduce answer accuracy. Overall, these findings
highlight that despite significant advancements, substantial chal-
lenges remain in effectively addressing semi-structured table QA.

8.3 In-Context Table QA.

Although table-based reasoning has shown remarkable progress
with the emergence of LLMs [15], table QA solutions encounter
significant performance degradation when confronted with the
rich and diverse evidence present in tables. To enable LLMs to
sufficiently understand both the tables and question information,
decomposition plays a pivotal role in table QA [22, 24, 40, 42, 46].
Ye et al. [42] introduces a method that effectively leverages LLMs
to decompose large tables into relevant sub-tables and complex
questions into simpler sub-questions through in-context prompting.
In addition to in-context learning from data sources, the ReAcTable
framework [46] proposed by Zhang et al. aims to improve complex
table QA performance by incorporating execution feedback. This
feedback mechanism, rooted in the ReAct framework, enables the
system to dynamically adjust its operations based on the results
of previous actions and addresses challenges such as interpreting
complex data semantics, handling generated errors, and performing
intricate data transformations.

9 Conclusion

In this paper, we introduced ST-Raptor, a tree-based framework
aimed at addressing the critical challenges of automating question
answering over semi-structured tables. Central to our approach is
the Hierarchical Orthogonal Tree (HO-Tree), a formal representa-
tion capable of capturing complex table layouts, including hierarchi-
cal headers, merged cells, and implicit relationships. We designed
a set of basic tree operations over HO-Trees to enable LLMs to
perform layout-aware tasks. Given a user question, ST-Raptor de-
composes it into simpler subquestions, constructs corresponding
tree-operation pipelines, and executes them to retrieve relevant
information or derive the final answer. To ensure both execution
correctness and answer reliability, we proposed a two-stage verifica-
tion mechanism combining forward constraint checking and back-
ward answer validation. Additionally, we constructed the SSTQA
benchmark, consisting of 764 questions over 102 real-world semi-
structured tables. Experimental results demonstrate that ST-Raptor
outperforms all baselines by up to 20% in answer accuracy.

References

[10

[11]

[12]

[13

[14]

[15

[16

[17

[18

[19]

[20]

[n.d.]. https://www.frontiersin.org/research-topics/21489/knowledge-discovery-
from-unstructured-data-in-finance

[nd.]. https://enterprises.upmc.com/resources/insights/health-cares-
unstructured- data-challenge/

[n.d.]. https://pages.cs.wisc.edu/~jbeckham/TR/cnet.pdf

Serge Abiteboul. 1997. Querying semi-structured data. In Database Theory —
ICDT ’97, Foto Afrati and Phokion Kolaitis (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 1-18.

Majed Alwateer, El-Sayed Atlam, Mahmoud Mohammed Abd El-Raouf, Osama A.
Ghoneim, and Ibrahim Gad. 2024. Missing Data Imputation: A Comprehensive
Review. Journal of Computer and Communications 12, 11 (2024), 53-75. https:
//doi.org/10.4236/jcc.2024.1211004

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Ho-
jel, Immanuel Trummer, and Christopher Ré. 2025. Language Models Enable
Simple Systems for Generating Structured Views of Heterogeneous Data Lakes.
arXiv:2304.09433 [cs.CL] https://arxiv.org/abs/2304.09433

Camille Barboule, Benjamin Piwowarski, and Yoan Chabot. 2025. Survey on
Question Answering over Visually Rich Documents: Methods, Challenges, and
Trends. arXiv:2501.02235 [cs.CL] https://arxiv.org/abs/2501.02235

Lukasz Borchmann and Marek Wydmuch. 2025. Query and Conquer: Execution-
Guided SQL Generation. arXiv:2503.24364 [cs.CL] https://arxiv.org/abs/2503.
24364

Douglas Burdick, Marina Danilevsky, Alexandre V. Evfimievski, Yannis Katsis,
and Nancy Wang. 2020. Table Extraction and Understanding for Scientific and
Enterprise Applications. Proc. VLDB Endow. 13, 12 (2020), 3433-3436. https:
//doi.org/10.14778/3415478.3415563

Kaiwen Chen, Yueting Chen, Nick Koudas, and Xiaohui Yu. 2025. Reliable Text-
to-SQL with Adaptive Abstention. Proceedings of the ACM on Management of
Data 3, 1 (Feb. 2025), 69:1-69:30. https://doi.org/10.1145/3709719

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui,
Jinguo Zhu, Shenglong Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang,
Qingyun Li, Yimin Ren, Zixuan Chen, Jiapeng Luo, Jiahao Wang, Tan Jiang, Bo
Wang, Conghui He, Botian Shi, Xingcheng Zhang, Han Lv, Yi Wang, Wengi Shao,
Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng Deng, Jiaye Ge, Kai
Chen, Kaipeng Zhang, Limin Wang, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu,
Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang. 2025. Expanding Performance
Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time
Scaling. arXiv:2412.05271 [cs.CV] https://arxiv.org/abs/2412.05271

E.F. Codd. 1970. A relational model of data for large shared data banks. Commun.
ACM 13, 6 (June 1970), 377-387. https://doi.org/10.1145/362384.362685
DeepSeek-AlL 2025. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs
via Reinforcement Learning. arXiv:2501.12948 [cs.CL] https://arxiv.org/abs/2501.
12948

DeepSeek-Al Aixin Liu, Bei Feng, et al. 2025. DeepSeek-V3 Technical Report.
arXiv:2412.19437 [cs.CL] https://arxiv.org/abs/2412.19437

Naihao Deng, Zhenjie Sun, Ruiqi He, Aman Sikka, Yulong Chen, Lin Ma, Yue
Zhang, and Rada Mihalcea. 2024. Tables as Texts or Images: Evaluating the
Table Reasoning Ability of LLMs and MLLMs. In Findings of the Association for
Computational Linguistics: ACL 2024. Association for Computational Linguistics,
Bangkok, Thailand, 407-426. https://doi.org/10.18653/v1/2024.findings-acl.23
Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi Li,
Wei Li, Yuntao Hong, Zhiling Luo, Jinyang Gao, Liyu Mou, and Yu Li. 2025. A
Preview of XiYan-SQL: A Multi-Generator Ensemble Framework for Text-to-SQL.
arXiv:2411.08599 [cs.Al] https://arxiv.org/abs/2411.08599

Vivek Gupta, Pranshu Kandoi, Mahek Vora, Shuo Zhang, Yujie He, Ridho
Reinanda, and Vivek Srikumar. 2023. TempTabQA: Temporal Question Answer-
ing for Semi-Structured Tables. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, Houda Bouamor, Juan Pino, and Kalika
Bali (Eds.). Association for Computational Linguistics, Singapore, 2431-2453.
https://doi.org/10.18653/v1/2023.emnlp-main.149

Vivek Gupta, Pranshu Kandoi, Mahek Vora, Shuo Zhang, Yujie He, Ridho
Reinanda, and Vivek Srikumar. 2023. TempTabQA: Temporal Question Answer-
ing for Semi-Structured Tables. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, Houda Bouamor, Juan Pino, and Kalika
Bali (Eds.). Association for Computational Linguistics, Singapore, 2431-2453.
https://doi.org/10.18653/v1/2023.emnlp-main.149

Jonathan Herzig, Pawet Krzysztof Nowak, Thomas Miiller, Francesco Piccinno,
and Julian Martin Eisenschlos. 2020. TAPAS: Weakly Supervised Table Parsing
via Pre-training. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics (ACL). Association for Computational Linguistics,
4320-4333. https://doi.org/10.18653/v1/2020.acl-main.398

Anwen Hu, Haiyang Xu, Jiabo Ye, Ming Yan, Liang Zhang, Bo Zhang,
Chen Li, Ji Zhang, Qin Jin, Fei Huang, and Jingren Zhou. 2024. mPLUG-
DocOwl 1.5: Unified Structure Learning for OCR-free Document Understanding.
arXiv:2403.12895 [cs.CV] https://arxiv.org/abs/2403.12895

[21

[22

[23

[24

[25

[26

[27

[28

[29

[30

[31

(32

[33

[35

[36

[37

[38

]

]

]

Sujay Kumar Jauhar, Peter Turney, and Eduard Hovy. 2016. Tables as Semi-
structured Knowledge for Question Answering. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Katrin Erk and Noah A. Smith (Eds.). Association for Computational Linguistics,
Berlin, Germany, 474-483. https://doi.org/10.18653/v1/P16-1045

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Pe-
ter Clark, and Ashish Sabharwal. 2023. Decomposed Prompting: A Modu-
lar Approach for Solving Complex Tasks. arXiv:2210.02406 [cs.CL] https:
//arxiv.org/abs/2210.02406

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang,
Danielle Rifinski Fainman, Dongmei Zhang, and Surajit Chaudhuri. 2023. Table-
GPT: Table-tuned GPT for Diverse Table Tasks. arXiv:2310.09263 [cs.CL]
https://arxiv.org/abs/2310.09263

Zhishuai Li, Xiang Wang, Jingjing Zhao, Sun Yang, Guoqing Du, Xiaoru Hu,
Bin Zhang, Yuxiao Ye, Ziyue Li, Rui Zhao, and Hangyu Mao. 2024. PET-
SQL: A Prompt-Enhanced Two-Round Refinement of Text-to-SQL with Cross-
consistency. arXiv:2403.09732 [cs.CL] https://arxiv.org/abs/2403.09732

Yiming Lin, Mawil Hasan, Rohan Kosalge, Alvin Cheung, and Aditya G.
Parameswaran. 2025. TWIX: Automatically Reconstructing Structured Data
from Templatized Documents. arXiv:2501.06659 [cs.DB] https://arxiv.org/abs/
2501.06659

Hao Liu, Xin Li, Mingming Gong, Bing Liu, Yunfei Wu, Degiang Jiang, Yinsong
Liu, and Xing Sun. 2024. Grab What You Need: Rethinking Complex Table
Structure Recognition with Flexible Components Deliberation. Proceedings of
the AAAI Conference on Artificial Intelligence 38, 4 (Mar. 2024), 3603-3611. https:
//doi.org/10.1609/aaai.v38i4.28149

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2023. Lost in the Middle: How Language Models
Use Long Contexts. arXiv:2307.03172 [cs.CL] https://arxiv.org/abs/2307.03172
Jinwei Lu, Yuanfeng Song, Zhiqian Qin, Haodi Zhang, Chen Zhang, and Raymond
Chi-Wing Wong. 2025. Bridging the Gap: Enabling Natural Language Queries for
NoSQL Databases through Text-to-NoSQL Translation. arXiv:2502.11201 [cs.DB]
https://arxiv.org/abs/2502.11201

OpenAL 2024. GPT-40 System Card. arXiv:2410.21276 [cs.CL] https://arxiv.org/
abs/2410.21276

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, et al. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
https://arxiv.org/abs/2303.08774

Panupong Pasupat and Percy Liang. 2015. Compositional Semantic Parsing
on Semi-Structured Tables. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), Chengqing Zong and
Michael Strube (Eds.). Association for Computational Linguistics, Beijing, China,
1470-1480. https://doi.org/10.3115/v1/P15-1142

Panupong Pasupat and Percy Liang. 2015. Compositional Semantic Parsing
on Semi-Structured Tables. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), Chengqing Zong and
Michael Strube (Eds.). Association for Computational Linguistics, Beijing, China,
1470-1480. https://doi.org/10.3115/v1/P15-1142

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, Jinyang Li, Binhua Li, Ruiying
Geng, Rongyu Cao, Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022. A Survey on
Text-to-SQL Parsing: Concepts, Methods, and Future Directions. arXiv preprint
arXiv:2208.13629 (2022). https://arxiv.org/abs/2208.13629

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo, Chenhao Ma, and Reynold
Cheng. 2024. Before Generation, Align it! A Novel and Effective Strategy for Miti-
gating Hallucinations in Text-to-SQL Generation. In Findings of the Association for
Computational Linguistics: ACL 2024. Association for Computational Linguistics,
Bangkok, Thailand, 5456-5471. https://doi.org/10.18653/v1/2024.findings-acl.324
Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, Online and
Punta Cana, Dominican Republic, 9895-9901. https://doi.org/10.18653/v1/2021.
emnlp-main.779

Tal Schuster, Adam Lelkes, Haitian Sun, Jai Gupta, Jonathan Berant, William Co-
hen, and Donald Metzler. 2024. SEMQA: Semi-Extractive Multi-Source Question
Answering. In Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers). Association for Computational Linguistics, Mexico City,
Mexico, 1363-1381. https://doi.org/10.18653/v1/2024.naacl-long.74

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and Dongmei Zhang. 2024. Table
Meets LLM: Can Large Language Models Understand Structured Table Data? A
Benchmark and Empirical Study. In Proceedings of the 17th ACM International Con-
ference on Web Search and Data Mining (WSDM 2024). Association for Computing
Machinery, Mérida, Mexico, 123-134. https://doi.org/10.1145/3616855.3635752
Hao Wang, Xiaodong Zhang, Shuming Ma, Xu Sun, Houfeng Wang, and Mengxi-
ang Wang. 2018. A Neural Question Answering Model Based on Semi-Structured

https://www.frontiersin.org/research-topics/21489/knowledge-discovery-from-unstructured-data-in-finance
https://www.frontiersin.org/research-topics/21489/knowledge-discovery-from-unstructured-data-in-finance
https://enterprises.upmc.com/resources/insights/health-cares-unstructured-data-challenge/
https://enterprises.upmc.com/resources/insights/health-cares-unstructured-data-challenge/
https://pages.cs.wisc.edu/~jbeckham/TR/cnet.pdf
https://doi.org/10.4236/jcc.2024.1211004
https://doi.org/10.4236/jcc.2024.1211004
https://arxiv.org/abs/2304.09433
https://arxiv.org/abs/2304.09433
https://arxiv.org/abs/2501.02235
https://arxiv.org/abs/2501.02235
https://arxiv.org/abs/2503.24364
https://arxiv.org/abs/2503.24364
https://arxiv.org/abs/2503.24364
https://doi.org/10.14778/3415478.3415563
https://doi.org/10.14778/3415478.3415563
https://doi.org/10.1145/3709719
https://arxiv.org/abs/2412.05271
https://arxiv.org/abs/2412.05271
https://doi.org/10.1145/362384.362685
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://doi.org/10.18653/v1/2024.findings-acl.23
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2411.08599
https://doi.org/10.18653/v1/2023.emnlp-main.149
https://doi.org/10.18653/v1/2023.emnlp-main.149
https://doi.org/10.18653/v1/2020.acl-main.398
https://arxiv.org/abs/2403.12895
https://arxiv.org/abs/2403.12895
https://doi.org/10.18653/v1/P16-1045
https://arxiv.org/abs/2210.02406
https://arxiv.org/abs/2210.02406
https://arxiv.org/abs/2210.02406
https://arxiv.org/abs/2310.09263
https://arxiv.org/abs/2310.09263
https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2501.06659
https://arxiv.org/abs/2501.06659
https://arxiv.org/abs/2501.06659
https://doi.org/10.1609/aaai.v38i4.28149
https://doi.org/10.1609/aaai.v38i4.28149
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2502.11201
https://arxiv.org/abs/2502.11201
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://arxiv.org/abs/2208.13629
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2024.naacl-long.74
https://doi.org/10.1145/3616855.3635752

Tables. In Proceedings of the 27th International Conference on Computational
Linguistics, Emily M. Bender, Leon Derczynski, and Pierre Isabelle (Eds.). Asso-
ciation for Computational Linguistics, Santa Fe, New Mexico, USA, 1941-1951.
https://aclanthology.org/C18-1165/

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder,
and Furu Wei. 2024. Multilingual E5 Text Embeddings: A Technical Report.
arXiv:2402.05672 [cs.CL] https://arxiv.org/abs/2402.05672

Zhongyuan Wang, Richong Zhang, Zhijie Nie, and Jaein Kim. 2024. Tool-
Assisted Agent on SQL Inspection and Refinement in Real-World Scenarios.
arXiv:2408.16991 [cs.CL] https://arxiv.org/abs/2408.16991

Xiangjin Xie, Guangwei Xu, Lingyan Zhao, and Ruijie Guo. 2025. OpenSearch-
SQL: Enhancing Text-to-SQL with Dynamic Few-shot and Consistency Align-
ment. arXiv:2502.14913 [cs.CL] https://arxiv.org/abs/2502.14913

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. 2023.
Large Language Models are Versatile Decomposers: Decompose Evidence and
Questions for Table-based Reasoning. arXiv:2301.13808 [cs.CL] https://arxiv.
org/abs/2301.13808

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan,
Yongji Wang, and Jian-Guang Lou. 2023. Large Language Models Meet NL2Code:
A Survey. In Proceedings of the 61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Association for Computational Linguis-
tics, Toronto, Canada, 7443-7464. https://doi.org/10.18653/v1/2023.acl-long.411

[44] Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun. 2024. TableLlama: To-

wards Open Large Generalist Models for Tables. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers). Associa-
tion for Computational Linguistics, Mexico City, Mexico, 6024-6044. https:
//doi.org/10.18653/v1/2024.naacl-long.335

Xiaokang Zhang, Sijia Luo, Bohan Zhang, Zeyao Ma, Jing Zhang, Yang Li, Guanlin
Li, Zijun Yao, Kangli Xu, Jinchang Zhou, Daniel Zhang-Li, Jifan Yu, Shu Zhao,
Juanzi Li, and Jie Tang. 2025. TableLLM: Enabling Tabular Data Manipulation by
LLMs in Real Office Usage Scenarios. arXiv:2403.19318 [cs.CL] https://arxiv.org/
abs/2403.19318

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen Deep,
and Jignesh M. Patel. 2023. ReAcTable: Enhancing ReAct for Table Question
Answering. arXiv:2310.00815 [cs.DB] https://arxiv.org/abs/2310.00815
Mingyu Zheng, Xinwei Feng, Qingyi Si, Qiaogiao She, Zheng Lin, Wen-
bin Jiang, and Weiping Wang. 2024. Multimodal Table Understanding.
arXiv:2406.08100 [cs.CL] https://arxiv.org/abs/2406.08100

Fengbin Zhu, Ziyang Liu, Fuli Feng, Chao Wang, Moxin Li, and Tat-Seng Chua.
2024. TAT-LLM: A Specialized Language Model for Discrete Reasoning over
Tabular and Textual Data. arXiv:2401.13223 [cs.CL] https://arxiv.org/abs/2401.
13223

https://aclanthology.org/C18-1165/
https://arxiv.org/abs/2402.05672
https://arxiv.org/abs/2402.05672
https://arxiv.org/abs/2408.16991
https://arxiv.org/abs/2408.16991
https://arxiv.org/abs/2502.14913
https://arxiv.org/abs/2502.14913
https://arxiv.org/abs/2301.13808
https://arxiv.org/abs/2301.13808
https://arxiv.org/abs/2301.13808
https://doi.org/10.18653/v1/2023.acl-long.411
https://doi.org/10.18653/v1/2024.naacl-long.335
https://doi.org/10.18653/v1/2024.naacl-long.335
https://arxiv.org/abs/2403.19318
https://arxiv.org/abs/2403.19318
https://arxiv.org/abs/2403.19318
https://arxiv.org/abs/2310.00815
https://arxiv.org/abs/2310.00815
https://arxiv.org/abs/2406.08100
https://arxiv.org/abs/2406.08100
https://arxiv.org/abs/2401.13223
https://arxiv.org/abs/2401.13223
https://arxiv.org/abs/2401.13223

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Semi-Structured Tables
	2.2 Semi-Structured Table QA
	2.3 Limitations of Existing Methods

	3 ST-Raptor Overview
	4 Tree Model for Semi-Structured Table Representation
	4.1 Hierarchical Orthogonal Tree
	4.2 HO-Tree Construction

	5 Pipeline-based Question Answering
	5.1 Basic Operations over HO-Tree
	5.2 Question Decomposition and Pipeline Generation
	5.3 Relatively Large Table QA Enhancement

	6 Two-Stage QA Verification
	7 Experiments
	7.1 Experiment Setup
	7.2 SSTQA Benchmark
	7.3 Overall Performance Comparison
	7.4 Fine-grained Analysis
	7.5 Ablation Study on ST-Raptor Modules
	7.6 Case Study on SSTQA Dataset

	8 Related Works
	8.1 Structured Table QA.
	8.2 Semi-Structured Table QA.
	8.3 In-Context Table QA.

	9 Conclusion
	References

