
Fast, Robust and Interpretable Participant
Contribution Estimation for Federated Learning

Yong Wang1, Kaiyu Li1∗, Yuyu Luo2, Guoliang Li1∗, Yunyan Guo1, Zhuo Wang1
1 Tsinghua University, 2HKUST (GZ)

{wangy18@mails., liguoliang@, yunyanguo@mail., wang-z18@mails.}tsinghua.edu.cn,
ky-li18@tsinghua.org.cn, yuyuluo@hkust-gz.edu.cn

Abstract—In this paper, we introduce CTFL, a fair, robust,
and interpretable framework designed to estimate clients’ contri-
butions to federated learning, aiming to incentivize high-quality
data providers to participate in the federation. Firstly, CTFL can
precisely allocate contribution credits in a single pass of model
training and inference, ensuring computational efficiency. This is
accomplished by tracking the test performance gain brought by
each participant through exploiting classification rules. Secondly,
CTFL adheres to essential theoretical properties of an ideal
contribution estimation algorithm, including symmetry, zero-
element, and additivity, ensuring fair and rational estimations.
Thirdly, CTFL demonstrates resilience against strategic and
malicious behaviors due to carefully crafted micro and macro
contribution estimation schemes. Fourthly, CTFL offers insights
into participants’ roles within the federation by interpreting their
contribution scores through respective high-frequently activated
rules. Finally, CTFL integrates logical neural networks and model
binarization techniques to ensure effectiveness and efficiency
while preserving data privacy. Extensive experiments validate
that CTFL accurately estimates contributions, significantly re-
ducing computation time by 2-3 orders of magnitude compared
to state-of-the-art methods while maintaining robustness.

Index Terms—data valuation, federated learning, contribution
estimation, interpretable machine learning

I. INTRODUCTION
Federated Learning (FL) is a collaborative machine learning

paradigm [1] wherein multiple participants (clients) jointly
train a global model while protecting their data privacy, which
has garnered significant attention in both the database [2]–[6]
and machine learning [1], [7]–[9] communities. In practice,
the clients may be reluctant to share their data due to a
lack of incentives or feel unfair about the revenue alloca-
tion results [10], [11]. Thus, developing fair and transparent
contribution estimation mechanisms in FL is crucial to moti-
vating clients to participate and subsequently maintaining the
federation’s sustainability. This paper studies the problem of
assigning scores to all the clients in horizontal FL, indicating
the importance of their respective datasets, where clients share
a common feature space but possess distinct data instances.

Challenges. In practice, the primary challenges of contribution
estimation in horizontal FL arise from three facets.

(C1) High Computational Costs. Most existing approaches
necessitate training and evaluating a considerable number of
coalitions (combinations of instances from distinct clients), for
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estimating clients’ contributions. For instance, the widely used
FL contribution estimation method, ShapleyValue [12],
requires evaluating 2n coalitions to compute clients’ contribu-
tions, where n denotes the number of participants. Efforts to
address this challenge involve optimization techniques such as
strategic sampling [9] and data distribution assumptions [13],
[14], aiming to reduce the number of evaluated coalitions
to a polynomial order [15]. Despite these strategies, the
computational overhead remains substantial and impractical
in comparison to the original FL model training, especially
when dealing with a large number of clients.

(C2) Susceptible to Adverse Behaviors. In practice, adverse
participants may attempt to gain additional contribution cred-
its by duplicating data, incorporating inaccurately labelled
records, or intentionally introducing flipped labels to disrupt
the federation. Identifying and defending against such adverse
behaviors is essential for precise contribution estimations
and the construction of robust FL models However, current
methodologies fall short in identifying these malicious behav-
iors [16], primarily because each participant’s data is usually
evaluated as a whole using an abstracted utility metric.

(C3) Poor interpretability. Exsiting methods cannot provide
evidential explanations for estimation results [17], offering
only numerical scores without reasoning. This limitation arises
from the inherent opacity of black-box models that conceal
the computation of data utility, compounded by the fact that
participants do not have access to each other’s datasets. Conse-
quently, the federation is unable to convince low-contributing
participants, or guide them to enhance their data quality.

Our Methodology. To address the challenges mentioned
above, we propose a novel contribution estimation framework
named CTFL (Contribution Tracing for Federated Learning),
which achieves fast, fair, robust, and interpretable contribution
estimation by fully exploiting rule-based models. We compare
CTFL to existing methods in Table I, based on the experimen-
tal results on benchmarks in Section VI.

First, CTFL achieves fast contribution estimation via just a
single pass of rule-based model training and inference [18],
while ensuring properties of group rationality, symmetry, zero
element and additivity. Specifically, we train a global model
on the data of all clients and then trace the test performance
gain brought by each client based on the activated classifi-



TABLE I: Comparing CTFL to Existing Approaches

Method Accuracy Efficiency Robust-
ness

Inter-
pretable

Individual [20], [21] + +++ +++ ×
LeaveOneOut [22] + ++ + ×
LeastCore [23] ++ + ++ ×

ShapleyValue [9], [24] +++ + + ×
CTFL (ours) +++ +++ +++ ✓

cation rules (addressing C1). Furthermore, the computation
process of CTFL can be fully parallelized and speeded up by
employing frequent rule sets searching algorithms [19].

Second, unlike existing methods, CTFL is robust to the
aforementioned adverse behaviors, which is attributed to ju-
diciously designed micro and macro contribution allocation
schemes (addressing C2). Specifically, our approach does not
assign additional contribution credits to those who replicate
data, recognize low-quality data by filtering training data that
cannot be traced by test instances, and identifies label-flipped
data by inspecting the performance loss brought by training
data with similar activated rules but contradictory labels.

Third, CTFL enables the interpretation of clients’ con-
tribution scores by frequently activated classification rules
(addressing C3). We summarize the beneficial and harmful
characteristics of each client by tracing the corresponding
frequently activated rules that lead to correct or miss classifi-
cations, respectively. In addition, CTFL can guide active data
collection for test cases that are not sufficiently covered by
existing training data by summarizing the frequent activation
rules of these failed test data. Last but not least, to ensure
the generalization and accuracy of the contribution estimation,
while preserving data privacy for real-world scenarios, we
develop a practical rule-based model integrating logical neural
networks [25] and model binarization techniques [26], [27].

Contributions. We make several notable contributions:
(1) Framework. We design a novel contribution estimation
framework for federated learning called CTFL (Section III-A).
CTFL achieves fast and accurate contribution estimation using
rule-based models (Section III-B & III-C). Moreover, CTFL
satisfies essential theoretical properties that ensure fair and
rational estimations (Section III-D).
(2) Robustness. CTFL is robust to adverse behaviors including
data replication, low-quality data, and label flipping, owning
to its multi-grained estimation schemes (Section IV-A).
(3) Interpretability. CTFL interprets participants’ contribution
scores via their high-frequent rule activations, provides valu-
able insights into each participant’s role, and further guides
active data collection for the federation (Section IV-B).
(4) Implementation. We develop a practical rule-based model
with high generalization ability and precise contribution trac-
ing capability while preserving data privacy (Section V).
(5) Experiments. We conduct extensive experiments on four
public benchmark datasets. Our results show that CTFL
outperforms existing approaches, and remarkably, CTFL ac-
curately estimates clients’ contributions with 2-3 orders of
magnitude less time than state-of-the-art methods (Section VI).

TABLE II: Model Test Acc. Across Different Participant Sets
Participant Set ∅ A B C A,B A,C B,C A,B,C
v: Test Acc. (%) 50 80 80 65 80 90 90 90

II. CONTRIBUTION ESTIMATION IN FL

A. Problem Formalization

Before defining the contribution estimation problem, we first
introduce how to quantify data quality using a specific metric.
Definition II.1 (Data Utility Metric). A data utility metric v :
D → R is a function that outputs the data utility v(D) of a
dataset D ∈ D to a specific FL task.

To be rational and accurate, v(D) should be commensurate
with the performance improvement that D provides to the task.
We focus specifically on classification tasks and adopt the typi-
cal model test accuracy to quantify data utility. This approach
can be extended to regression tasks and other performance
metrics, such as F1-score, or even task-independent metrics,
such as data quantity and participant reputation. Let D be a
training dataset and Dte = {(xte, yte)} be a test dataset, which
is collected and reserved by the federation. The utility of D
can be computed as follows.

v(D) =
1

|Dte|
∑

(xte,yte)∈Dte

1[yte = MD(xte)] (1)

where |Dte| is the test data size, MD(xte) is the inference
label of xte by a model trained on D, and 1[·] is an indicator
function that outputs 1 if the inference is correct and 0
otherwise. Based on a data utility metric, we can define the
contribution estimation problem.
Definition II.2 (Participant Contribution Estimation). Given
an FL setting with n participants N = {1, · · · , n}, each
holding a private local dataset Di, and a data utility metric v,
the participant contribution estimation problem aims to com-
pute a contribution score vector (ϕv(1), · · · , ϕv(n)) for the
participants. The contribution scores are computed according
to a contribution allocation scheme ϕv : N → R that assigns
each participant a score based on v.
Example II.1 (Participant Contribution Estimation). Suppose
there are three participants A, B and C. A and B hold similar
and sufficient typical data, while C holds a small amount of
complementary task-critical data. We adopt model test accu-
racy as the data utility metric and show the test accuracy of
models learned on the data of different combinations of A,B
and C in Table II. Suppose we use the contribution estimation
schemes described in Section II-B. If we use Individual
scheme, C’s score will be underestimated, i.e., ϕv(C) =
0.65. Alternatively, if LeaveOneOut scheme is adopted,
A and B will be considered as zero contributions due to
their substitutability. A more reasonable scheme that considers
participants’ expected marginal test gain is ShapleyValue,
which gets ϕv(A) = ϕv(B) = 11.7, and ϕv(C) = 16.6.

B. Related Work

1) Individual Scheme.: The Individual scheme uses a
participant’s individual data value as its potential contribution



TABLE III: Table of Notations
Notation Definition

N = {1, · · · , n} Participants in FL
DS , S ⊆ N The training data of participants in S

(xtr, ytr), (xte, yte) A training and a test data instance
v : D → R A data utility metric
ϕv : N → R A contribution allocation scheme
ϕv(i), i ∈ N Participant i’s contribution score
M (MD) A task model (trained on D)
r+, r− Positive and negative rule vectors
w+,w− Weight vectors of r+ and r−

ct(xte, yte) Training data related to the test case

to FL as stated in [21]. Formally, participant i’s contribution
ϕv(i) is computed as ϕv(i) = v(Di),∀i ∈ N . Despite its
simplicity and efficiency [28]–[35], the Individual scheme
is not extensively embraced, due to its limitation in capturing
the marginal contribution of participants in FL, therefore can
not comprehensively reflect its significance within the FL.

2) Leave-one-out Scheme.: As employed for cross-
validation in machine learning tasks [36], LeaveOneOut
suggests that a participant’s contribution is the performance
loss incurred by removing it from FL [22]. However, this
scheme is unfair to participants with homogeneous data with
similar distributions, because removing a single participant
from two participants sharing similar data would not result
in significant performance loss.

3) Shapley Value Scheme.: ShapleyValue [12], [24],
[37] quantifies a participant’s contribution based on the ex-
pected marginal gain derived from incorporating this par-
ticipant into all the possible combinations of other partici-
pants, i.e., ϕv(i) = ES⊆N\i[v(DS∪{i}) − v(DS)], ∀i ∈ N ,
where E is the expectation function. Although the result of
ShapleyValue is accurate, it is computationally expensive
because of evaluating exponentially many participant combi-
nations, despite many techniques being proposed to optimize
the computation process [9], [15].

4) Least Core Scheme.: According to LeastCore [38],
the contribution sum of any participant subgroup should be at
least the subgroup’s data value, and the maximum subgroup
deficit (i.e., the gap between credits and data values) should
be minimized, i.e.,,

min e s.t.
∑
i∈S

ϕv(i) + e ≥ v(DS),∀S ⊆ N (2)

where scores subject to
∑

i∈N ϕv(i) = v(DN ), and e is the
optimization objective (or deficit). LeastCore is adopted in
FL [23] due to its stability from economic perspectives [39],
i.e., any potential coalition gets the largest possible credits as
optimized. As a consequence, its contribution scores are not
fair for individuals as they are not maximized with respect to
participants’ marginal contributions.

Previous schemes either lack fairness and rationality, or are
inefficient in practical scenarios despite acceleration attempts.
Moreover, they overlook crucial robustness and interpretability
aspects. In contrast, CTFL is fast with only a single pass of
model training, and is robust and interpretable by attributing
the credits through activated rules.

III. CONTRIBUTION ESTIMATION WITH CTFL

A. An Overview of CTFL

We present our system, Contribution Tracing for Federated
Learning (CTFL), which achieves fast, accurate, robust, and
interpretable contribution estimation, as demonstrated in Fig-
ure 1. First, we employ rule-based models to avoid training
and evaluating multiple models in computing participants’
contributions (step-① in Figure 1). This approach enables us to
train only a single global model on the data of all participants
and then trace each participant’s marginal contribution to
the model’s test performance (Section III-B). Second, we
propose a rule-based tracing strategy to match (or identify)
the beneficial training data for each correctly classified test
instance based on the activated rules (step-② in Figure 1). We
then design two contribution allocation schemes to accurately
allocate credits to participants according to their beneficial
training data (step-③ in Figure 1, Section III-C). Furthermore,
CTFL satisfies four theoretical properties that ensure fair and
rational contribution estimations (Section III-D). Third, we
demonstrate that CTFL is robust against adverse behaviors
by fully exploiting the stringent contribution tracing procedure
(Section IV-A). Fourth, we interpret the beneficial and harmful
characteristics and identify the useless training data for each
participant based on their rule activation frequencies (step-
④ in Figure 1, Section IV-B). Last but not least, equip-
ping a rule-based model as a task model in CTFL raises
concerns regarding model generalizability, rule-based tracing
preciseness, and privacy risks. To address these issues, we
develop a practical rule-based model utilizing logical neural
networks and model binarization techniques. This approach
achieves high generalization ability, precise tracing capability,
and effectively addresses privacy concerns (Section V).

B. Rule-based Models

Most existing approaches require training and evaluating
multiple task models to compute the marginal performance
gain brought by each participant. However, this method is
time-consuming and resource-intensive, making it impractical
in real-world scenarios. To address this problem, we propose
training a single model on the data of all participants and
directly tracing the model test performance (or accuracy)
brought by each participant. We achieve this by using rule-
based models to monitor the activated rules of the test and
training data and trace the test accuracy gain contributed by
each participant. The rationale behind this approach is that it
allows us to identify the model’s inference basis via activated
rules, which enables us to pinpoint the training data that
contributes to the inference basis.

This idea is inspired by doctors’ diagnoses, which rely on
summarized symptoms from historical cases. When diagnosing
a patient, the doctor determines the disease type by comparing
symptoms to those of previous patients. This process is similar
to contribution tracing, where the training data from all partic-
ipants represents the historical cases, the learned model acts
as the doctor, the activated rules represent the symptoms, and
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Fig. 1: An Overview of CTFL
the reserved test data for performance evaluation represents
new patients. Therefore, we determine the beneficial training
data that corresponds to correctly classified test instances using
activated classification rules. Based on these intuitions, we
present the rule-based models. Meanwhile, this evaluation
process is efficient because it only requires training and
evaluating a single model.
Definition III.1 (Rule). A rule r, in terms of classification, is
a logical formula composed of one or more logical predicates
that relate to the values of the input features. For an input x,
r(x) = 1 if x fulfills r’s logical predicates, i.e., r is activated,
and r(x) = 0 otherwise.

Each rule explicitly associates with (or supports) an output
class label. Without loss of generality, we restrict our discus-
sion to binary classification for ease of presentation, which
can be extended to multi-class with minor changes. In this
context, r can either be associated with the positive class
label or the negative class label, i.e., be positive (denoted as
r+) or negative (denoted as r−), respectively. We specifically
consider atomic predicates >,<,≤,≥ for continuous features
and =, ̸= for discrete features, and support three types of
operations: conjunction (∧), disjunction (∨), and negation (¬).
Example III.1 (Rule). Figure 2 (c) shows four rules gener-
ated for an income-level prediction task. For instance, r+1 :
capital-gain > 21k is a single-predicate rule that supports the
positive label (i.e., high income), and r−2 : work-hours > 14∨
marital-status = never is a rule of two predicates under
disjunction that supports the negative label (i.e., low income).
Note that logical operations can be recursively applied to
produce compound rules.

In this paper, the rules are derived from the training data
automatically using logical neural network [40] by seamlessly
blending the learning capabilities of neural networks with
the structured reasoning of symbolic logic, enabling learning
complex relationships in the data as understandable rules
(Section V). We are now ready to describe rule-based task
models which classify input data using the weighted sum of
a collection of activated positive and negative rules.
Definition III.2 (Rule-based Model). A rule-based model M
is defined as a set of rules that are used for classification. The
model consists of a positive rule vector r+ and a negative
rule vector r−, each of length m+ and m−, respectively. The
positive and negative rule vectors are associated with impor-

tance weights w+ and w−, respectively. The classification of
an input x is performed using a weighted voting mechanism:

M(x) = 1[w+ · r+(x) ≥ w− · r−(x)] (3)

Utilizing the set M, an input x is categorized as positive
if the weighted sum of activated positive rules surpasses the
weighted sum of activated negative rules; otherwise, it is
classified as negative (as illustrated in Figure 2 (a)).
Example III.2 (Rule-based Model). Recall the rules in Fig-
ure 2 (c). Suppose that the rules’ weights are w+

1 = w+
2 =

w−
1 = 1, w−

2 = 0.5, and test instance (x
(1)
te , y

(1)
te = 1) have r+2

and r−2 activated. We have ŷte = M(x
(1)
te ) = 1[w+

2 ∗ r+2 ≥
w−

2 ∗ r−2 ] = 1[1 > 0.5] = yte.
Significantly, the aforementioned rule-based models are

recognized as rule-based ensemble classifiers [41], wherein
learned biases are typically incorporated before employing
the indicator function to accommodate non-linear relationships
(details omitted for clarity). To attain robust generalization
and accurate contribution tracing capabilities while upholding
data privacy, we will introduce a practical implementation of a
rule-based model utilizing logical neural networks and model
binarization techniques in Section V.

C. Tracing Participants’ Contributions
CTFL estimates participants’ contributions by training only

a single rule-based model on the data of all participants and
then tracing the model test performance gain brought by each
participant using activated rules. To accomplish this, we first
establish the tracing principles with respect to class labels.
In particular, when a test instance is correctly classified, the
training data (a) in the same class and (b) with similar activated
rules on this class are related and considered beneficial.
On the other hand, when a test instance is misclassified,
then the training data (a) in the wrong class and (b) with
similar activated rules on this class are related and considered
detrimental. Specifically, given a rule-based model MDN

and
a test instance (xte, yte), there are four tracing cases:
1) Case-1: True Positive (TP). MDN

correctly classifies xte

as positive. In this case, participants who have training data
that learn the activated positive rules which correctly classify
xte, receive a positive credit. For instance, in Figure 2-(b), if
the positive rules activated by xte is r+2 , then participant A,
with positive training data that learn r+2 , is awarded as TP.
2) Case-2: True Negative (TN). MDN

correctly classifies xte

as negative. In this case, participants who have training data
that learn the activated negative rules which correctly classify
xte, receive a positive credit. Similarly, in Figure 2, TN credit
awards to participants B and C which learn r−1 and r−2 .
3) Case-3: False Positive (FP). MDN

misclassifies xte as
positive. In this case, participants with training data that learn
the activated positive rules, is responsible for the performance
loss and receive a negative credit. For instance, in Figure 2,
FP credit corresponds to participants which learn r+m (no one
matched in this example).
4) Case-4: False Negative (FN). MDN

misclassifies xte as
negative. In this case, participants with training data that learn
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<latexit sha1_base64="38dD7vPgdMC1/OkXmCPKauqxjqU=">AAACP3icbVDLSsNAFJ3UV62vqEs3g0WoSEsigi6LblxWsA9oYplMJu3QyYOZiVpC/syNv+DOrRsXirh156RNobYeGDhz7rnce48TMSqkYbxqhaXlldW14nppY3Nre0ff3WuJMOaYNHHIQt5xkCCMBqQpqWSkE3GCfIeRtjO8yurte8IFDYNbOYqI7aN+QD2KkVRST29ZPpIDx0se0rsTC7uhhFOFK6Uy/Tymx7A6460ueKuz3p5eNmrGGHCRmDkpgxyNnv5iuSGOfRJIzJAQXdOIpJ0gLilmJC1ZsSARwkPUJ11FA+QTYSfj+1N4pBQXeiFXL5BwrM52JMgXYuQ7ypmtKOZrmfhfrRtL78JOaBDFkgR4MsiLGZQhzMKELuUESzZSBGFO1a4QDxBHWKrISyoEc/7kRdI6rZlGzbw5K9cv8ziK4AAcggowwTmog2vQAE2AwRN4Ax/gU3vW3rUv7XtiLWh5zz74A+3nFzftsNA=</latexit><latexit sha1_base64="38dD7vPgdMC1/OkXmCPKauqxjqU=">AAACP3icbVDLSsNAFJ3UV62vqEs3g0WoSEsigi6LblxWsA9oYplMJu3QyYOZiVpC/syNv+DOrRsXirh156RNobYeGDhz7rnce48TMSqkYbxqhaXlldW14nppY3Nre0ff3WuJMOaYNHHIQt5xkCCMBqQpqWSkE3GCfIeRtjO8yurte8IFDYNbOYqI7aN+QD2KkVRST29ZPpIDx0se0rsTC7uhhFOFK6Uy/Tymx7A6460ueKuz3p5eNmrGGHCRmDkpgxyNnv5iuSGOfRJIzJAQXdOIpJ0gLilmJC1ZsSARwkPUJ11FA+QTYSfj+1N4pBQXeiFXL5BwrM52JMgXYuQ7ypmtKOZrmfhfrRtL78JOaBDFkgR4MsiLGZQhzMKELuUESzZSBGFO1a4QDxBHWKrISyoEc/7kRdI6rZlGzbw5K9cv8ziK4AAcggowwTmog2vQAE2AwRN4Ax/gU3vW3rUv7XtiLWh5zz74A+3nFzftsNA=</latexit><latexit sha1_base64="38dD7vPgdMC1/OkXmCPKauqxjqU=">AAACP3icbVDLSsNAFJ3UV62vqEs3g0WoSEsigi6LblxWsA9oYplMJu3QyYOZiVpC/syNv+DOrRsXirh156RNobYeGDhz7rnce48TMSqkYbxqhaXlldW14nppY3Nre0ff3WuJMOaYNHHIQt5xkCCMBqQpqWSkE3GCfIeRtjO8yurte8IFDYNbOYqI7aN+QD2KkVRST29ZPpIDx0se0rsTC7uhhFOFK6Uy/Tymx7A6460ueKuz3p5eNmrGGHCRmDkpgxyNnv5iuSGOfRJIzJAQXdOIpJ0gLilmJC1ZsSARwkPUJ11FA+QTYSfj+1N4pBQXeiFXL5BwrM52JMgXYuQ7ypmtKOZrmfhfrRtL78JOaBDFkgR4MsiLGZQhzMKELuUESzZSBGFO1a4QDxBHWKrISyoEc/7kRdI6rZlGzbw5K9cv8ziK4AAcggowwTmog2vQAE2AwRN4Ax/gU3vW3rUv7XtiLWh5zz74A+3nFzftsNA=</latexit><latexit sha1_base64="38dD7vPgdMC1/OkXmCPKauqxjqU=">AAACP3icbVDLSsNAFJ3UV62vqEs3g0WoSEsigi6LblxWsA9oYplMJu3QyYOZiVpC/syNv+DOrRsXirh156RNobYeGDhz7rnce48TMSqkYbxqhaXlldW14nppY3Nre0ff3WuJMOaYNHHIQt5xkCCMBqQpqWSkE3GCfIeRtjO8yurte8IFDYNbOYqI7aN+QD2KkVRST29ZPpIDx0se0rsTC7uhhFOFK6Uy/Tymx7A6460ueKuz3p5eNmrGGHCRmDkpgxyNnv5iuSGOfRJIzJAQXdOIpJ0gLilmJC1ZsSARwkPUJ11FA+QTYSfj+1N4pBQXeiFXL5BwrM52JMgXYuQ7ypmtKOZrmfhfrRtL78JOaBDFkgR4MsiLGZQhzMKELuUESzZSBGFO1a4QDxBHWKrISyoEc/7kRdI6rZlGzbw5K9cv8ziK4AAcggowwTmog2vQAE2AwRN4Ax/gU3vW3rUv7XtiLWh5zz74A+3nFzftsNA=</latexit>

f(x) =

⇢
1, if x � 0
0, if x < 0

<latexit sha1_base64="6r0urLNiRaE6RLK9mlUBVUoegok="></latexit><latexit sha1_base64="6r0urLNiRaE6RLK9mlUBVUoegok="></latexit><latexit sha1_base64="6r0urLNiRaE6RLK9mlUBVUoegok="></latexit><latexit sha1_base64="6r0urLNiRaE6RLK9mlUBVUoegok="></latexit>

+ -

(c) An Example Task and Its Classification Rules 

Example Task: High (+) and low (-) Income Prediction, 3 participants with 4 test records  
r+
2 : edu-years > 15 ^

<latexit sha1_base64="1VOHE6sTBCD0leot3bxxPBkrGbg=">AAACDXicbVDLSgNBEJz1GeMr6tHLYBQEMewGRfEgQS8eI5hESGKYne3EIbMPZnrVsKwf4MVf8eJBEa/evfk3Th4HjRY0FFXddHe5kRQabfvLmpicmp6Zzcxl5xcWl5ZzK6tVHcaKQ4WHMlSXLtMgRQAVFCjhMlLAfFdCze2e9v3aDSgtwuACexE0fdYJRFtwhkZq5TbV1U6reEQT8OIGwh0mu2kPmNLHzn56Txu34HWglcvbBXsA+pc4I5InI5Rbuc+GF/LYhwC5ZFrXHTvCZsIUCi4hzTZiDRHjXdaBuqEB80E3k8E3Kd0yikfboTIVIB2oPycS5mvd813T6TO81uNeX/zPq8fYPmwmIohihIAPF7VjSTGk/WioJxRwlD1DGFfC3Er5NVOMowkwa0Jwxl/+S6rFgmMXnPO9fOlkFEeGrJMNsk0cckBK5IyUSYVw8kCeyAt5tR6tZ+vNeh+2TlijmTXyC9bHN5oam0M=</latexit><latexit sha1_base64="1VOHE6sTBCD0leot3bxxPBkrGbg=">AAACDXicbVDLSgNBEJz1GeMr6tHLYBQEMewGRfEgQS8eI5hESGKYne3EIbMPZnrVsKwf4MVf8eJBEa/evfk3Th4HjRY0FFXddHe5kRQabfvLmpicmp6Zzcxl5xcWl5ZzK6tVHcaKQ4WHMlSXLtMgRQAVFCjhMlLAfFdCze2e9v3aDSgtwuACexE0fdYJRFtwhkZq5TbV1U6reEQT8OIGwh0mu2kPmNLHzn56Txu34HWglcvbBXsA+pc4I5InI5Rbuc+GF/LYhwC5ZFrXHTvCZsIUCi4hzTZiDRHjXdaBuqEB80E3k8E3Kd0yikfboTIVIB2oPycS5mvd813T6TO81uNeX/zPq8fYPmwmIohihIAPF7VjSTGk/WioJxRwlD1DGFfC3Er5NVOMowkwa0Jwxl/+S6rFgmMXnPO9fOlkFEeGrJMNsk0cckBK5IyUSYVw8kCeyAt5tR6tZ+vNeh+2TlijmTXyC9bHN5oam0M=</latexit><latexit sha1_base64="1VOHE6sTBCD0leot3bxxPBkrGbg=">AAACDXicbVDLSgNBEJz1GeMr6tHLYBQEMewGRfEgQS8eI5hESGKYne3EIbMPZnrVsKwf4MVf8eJBEa/evfk3Th4HjRY0FFXddHe5kRQabfvLmpicmp6Zzcxl5xcWl5ZzK6tVHcaKQ4WHMlSXLtMgRQAVFCjhMlLAfFdCze2e9v3aDSgtwuACexE0fdYJRFtwhkZq5TbV1U6reEQT8OIGwh0mu2kPmNLHzn56Txu34HWglcvbBXsA+pc4I5InI5Rbuc+GF/LYhwC5ZFrXHTvCZsIUCi4hzTZiDRHjXdaBuqEB80E3k8E3Kd0yikfboTIVIB2oPycS5mvd813T6TO81uNeX/zPq8fYPmwmIohihIAPF7VjSTGk/WioJxRwlD1DGFfC3Er5NVOMowkwa0Jwxl/+S6rFgmMXnPO9fOlkFEeGrJMNsk0cckBK5IyUSYVw8kCeyAt5tR6tZ+vNeh+2TlijmTXyC9bHN5oam0M=</latexit><latexit sha1_base64="1VOHE6sTBCD0leot3bxxPBkrGbg=">AAACDXicbVDLSgNBEJz1GeMr6tHLYBQEMewGRfEgQS8eI5hESGKYne3EIbMPZnrVsKwf4MVf8eJBEa/evfk3Th4HjRY0FFXddHe5kRQabfvLmpicmp6Zzcxl5xcWl5ZzK6tVHcaKQ4WHMlSXLtMgRQAVFCjhMlLAfFdCze2e9v3aDSgtwuACexE0fdYJRFtwhkZq5TbV1U6reEQT8OIGwh0mu2kPmNLHzn56Txu34HWglcvbBXsA+pc4I5InI5Rbuc+GF/LYhwC5ZFrXHTvCZsIUCi4hzTZiDRHjXdaBuqEB80E3k8E3Kd0yikfboTIVIB2oPycS5mvd813T6TO81uNeX/zPq8fYPmwmIohihIAPF7VjSTGk/WioJxRwlD1DGFfC3Er5NVOMowkwa0Jwxl/+S6rFgmMXnPO9fOlkFEeGrJMNsk0cckBK5IyUSYVw8kCeyAt5tR6tZ+vNeh+2TlijmTXyC9bHN5oam0M=</latexit>

work � class = state-gov
<latexit sha1_base64="ZMBZ0UdFZCF6U2l/zy4pR/q1z2s=">AAACBnicbVDLSgNBEJyNrxhfUY8iLAbBS8KuCHoRgl48RjAPSJYwO+lNhszuLDO90bDk5MVf8eJBEa9+gzf/xsnjoIkFDUVV90x3+bHgGh3n28osLa+srmXXcxubW9s7+d29mpaJYlBlUkjV8KkGwSOoIkcBjVgBDX0Bdb9/PfbrA1Cay+gOhzF4Ie1GPOCMopHa+cP0Xqp+kQmq9aVGitBCeMC0OOrKwaidLzglZwJ7kbgzUiAzVNr5r1ZHsiSECCdPNl0nRi+lCjkTMMq1Eg0xZX3ahaahEQ1Be+nkjJF9bJSOHUhlKkJ7ov6eSGmo9TD0TWdIsafnvbH4n9dMMLjwUh7FCULEph8FibBR2uNM7A5XwFAMDaFMcbOrzXpUUYYmuZwJwZ0/eZHUTkuuU3Jvzwrlq1kcWXJAjsgJcck5KZMbUiFVwsgjeSav5M16sl6sd+tj2pqxZjP75A+szx9w7pm7</latexit><latexit sha1_base64="ZMBZ0UdFZCF6U2l/zy4pR/q1z2s=">AAACBnicbVDLSgNBEJyNrxhfUY8iLAbBS8KuCHoRgl48RjAPSJYwO+lNhszuLDO90bDk5MVf8eJBEa9+gzf/xsnjoIkFDUVV90x3+bHgGh3n28osLa+srmXXcxubW9s7+d29mpaJYlBlUkjV8KkGwSOoIkcBjVgBDX0Bdb9/PfbrA1Cay+gOhzF4Ie1GPOCMopHa+cP0Xqp+kQmq9aVGitBCeMC0OOrKwaidLzglZwJ7kbgzUiAzVNr5r1ZHsiSECCdPNl0nRi+lCjkTMMq1Eg0xZX3ahaahEQ1Be+nkjJF9bJSOHUhlKkJ7ov6eSGmo9TD0TWdIsafnvbH4n9dMMLjwUh7FCULEph8FibBR2uNM7A5XwFAMDaFMcbOrzXpUUYYmuZwJwZ0/eZHUTkuuU3Jvzwrlq1kcWXJAjsgJcck5KZMbUiFVwsgjeSav5M16sl6sd+tj2pqxZjP75A+szx9w7pm7</latexit><latexit sha1_base64="ZMBZ0UdFZCF6U2l/zy4pR/q1z2s=">AAACBnicbVDLSgNBEJyNrxhfUY8iLAbBS8KuCHoRgl48RjAPSJYwO+lNhszuLDO90bDk5MVf8eJBEa9+gzf/xsnjoIkFDUVV90x3+bHgGh3n28osLa+srmXXcxubW9s7+d29mpaJYlBlUkjV8KkGwSOoIkcBjVgBDX0Bdb9/PfbrA1Cay+gOhzF4Ie1GPOCMopHa+cP0Xqp+kQmq9aVGitBCeMC0OOrKwaidLzglZwJ7kbgzUiAzVNr5r1ZHsiSECCdPNl0nRi+lCjkTMMq1Eg0xZX3ahaahEQ1Be+nkjJF9bJSOHUhlKkJ7ov6eSGmo9TD0TWdIsafnvbH4n9dMMLjwUh7FCULEph8FibBR2uNM7A5XwFAMDaFMcbOrzXpUUYYmuZwJwZ0/eZHUTkuuU3Jvzwrlq1kcWXJAjsgJcck5KZMbUiFVwsgjeSav5M16sl6sd+tj2pqxZjP75A+szx9w7pm7</latexit><latexit sha1_base64="ZMBZ0UdFZCF6U2l/zy4pR/q1z2s=">AAACBnicbVDLSgNBEJyNrxhfUY8iLAbBS8KuCHoRgl48RjAPSJYwO+lNhszuLDO90bDk5MVf8eJBEa9+gzf/xsnjoIkFDUVV90x3+bHgGh3n28osLa+srmXXcxubW9s7+d29mpaJYlBlUkjV8KkGwSOoIkcBjVgBDX0Bdb9/PfbrA1Cay+gOhzF4Ie1GPOCMopHa+cP0Xqp+kQmq9aVGitBCeMC0OOrKwaidLzglZwJ7kbgzUiAzVNr5r1ZHsiSECCdPNl0nRi+lCjkTMMq1Eg0xZX3ahaahEQ1Be+nkjJF9bJSOHUhlKkJ7ov6eSGmo9TD0TWdIsafnvbH4n9dMMLjwUh7FCULEph8FibBR2uNM7A5XwFAMDaFMcbOrzXpUUYYmuZwJwZ0/eZHUTkuuU3Jvzwrlq1kcWXJAjsgJcck5KZMbUiFVwsgjeSav5M16sl6sd+tj2pqxZjP75A+szx9w7pm7</latexit>

r+
1 : capital-gain > 21k

<latexit sha1_base64="cEjKtHyABzFvJ2htb1A4k7qy79A=">AAACC3icbVDLSgNBEJz1GeMr6tHLkCAIYtgNguJBgl48RjAPSGLonUySIbOzy0yvGJbcvfgrXjwo4tUf8ObfOHkcNLGgoajqprvLj6Qw6LrfzsLi0vLKamotvb6xubWd2dmtmDDWjJdZKENd88FwKRQvo0DJa5HmEPiSV/3+1civ3nNtRKhucRDxZgBdJTqCAVqplcnqu6OWd04TBpFAkA3kD5gcD7sgFL2gBa8/bGVybt4dg84Tb0pyZIpSK/PVaIcsDrhCJsGYuudG2ExAo2CSD9ON2PAIWB+6vG6pgoCbZjL+ZUgPrNKmnVDbUkjH6u+JBAJjBoFvOwPAnpn1RuJ/Xj3GzlkzESqKkSs2WdSJJcWQjoKhbaE5QzmwBJgW9lbKeqCBoY0vbUPwZl+eJ5VC3nPz3s1Jrng5jSNF9kmWHBKPnJIiuSYlUiaMPJJn8krenCfnxXl3PiatC850Zo/8gfP5A0mgmes=</latexit><latexit sha1_base64="cEjKtHyABzFvJ2htb1A4k7qy79A=">AAACC3icbVDLSgNBEJz1GeMr6tHLkCAIYtgNguJBgl48RjAPSGLonUySIbOzy0yvGJbcvfgrXjwo4tUf8ObfOHkcNLGgoajqprvLj6Qw6LrfzsLi0vLKamotvb6xubWd2dmtmDDWjJdZKENd88FwKRQvo0DJa5HmEPiSV/3+1civ3nNtRKhucRDxZgBdJTqCAVqplcnqu6OWd04TBpFAkA3kD5gcD7sgFL2gBa8/bGVybt4dg84Tb0pyZIpSK/PVaIcsDrhCJsGYuudG2ExAo2CSD9ON2PAIWB+6vG6pgoCbZjL+ZUgPrNKmnVDbUkjH6u+JBAJjBoFvOwPAnpn1RuJ/Xj3GzlkzESqKkSs2WdSJJcWQjoKhbaE5QzmwBJgW9lbKeqCBoY0vbUPwZl+eJ5VC3nPz3s1Jrng5jSNF9kmWHBKPnJIiuSYlUiaMPJJn8krenCfnxXl3PiatC850Zo/8gfP5A0mgmes=</latexit><latexit sha1_base64="cEjKtHyABzFvJ2htb1A4k7qy79A=">AAACC3icbVDLSgNBEJz1GeMr6tHLkCAIYtgNguJBgl48RjAPSGLonUySIbOzy0yvGJbcvfgrXjwo4tUf8ObfOHkcNLGgoajqprvLj6Qw6LrfzsLi0vLKamotvb6xubWd2dmtmDDWjJdZKENd88FwKRQvo0DJa5HmEPiSV/3+1civ3nNtRKhucRDxZgBdJTqCAVqplcnqu6OWd04TBpFAkA3kD5gcD7sgFL2gBa8/bGVybt4dg84Tb0pyZIpSK/PVaIcsDrhCJsGYuudG2ExAo2CSD9ON2PAIWB+6vG6pgoCbZjL+ZUgPrNKmnVDbUkjH6u+JBAJjBoFvOwPAnpn1RuJ/Xj3GzlkzESqKkSs2WdSJJcWQjoKhbaE5QzmwBJgW9lbKeqCBoY0vbUPwZl+eJ5VC3nPz3s1Jrng5jSNF9kmWHBKPnJIiuSYlUiaMPJJn8krenCfnxXl3PiatC850Zo/8gfP5A0mgmes=</latexit><latexit sha1_base64="cEjKtHyABzFvJ2htb1A4k7qy79A=">AAACC3icbVDLSgNBEJz1GeMr6tHLkCAIYtgNguJBgl48RjAPSGLonUySIbOzy0yvGJbcvfgrXjwo4tUf8ObfOHkcNLGgoajqprvLj6Qw6LrfzsLi0vLKamotvb6xubWd2dmtmDDWjJdZKENd88FwKRQvo0DJa5HmEPiSV/3+1civ3nNtRKhucRDxZgBdJTqCAVqplcnqu6OWd04TBpFAkA3kD5gcD7sgFL2gBa8/bGVybt4dg84Tb0pyZIpSK/PVaIcsDrhCJsGYuudG2ExAo2CSD9ON2PAIWB+6vG6pgoCbZjL+ZUgPrNKmnVDbUkjH6u+JBAJjBoFvOwPAnpn1RuJ/Xj3GzlkzESqKkSs2WdSJJcWQjoKhbaE5QzmwBJgW9lbKeqCBoY0vbUPwZl+eJ5VC3nPz3s1Jrng5jSNF9kmWHBKPnJIiuSYlUiaMPJJn8krenCfnxXl3PiatC850Zo/8gfP5A0mgmes=</latexit>

r�1 : capital-gain < 5k
<latexit sha1_base64="O3Z1bckwTXHoTu41GAhbl5JJqHQ=">AAACCnicbVA9SwNBEN3zM8avqKXNahBsEu5EUcQiaGMZwXxAEsPcZpMs2ds7dufEcKS28a/YWChi6y+w89+4+Sg08cHA470ZZub5kRQGXffbmZtfWFxaTq2kV9fWNzYzW9tlE8aa8RILZairPhguheIlFCh5NdIcAl/yit+7GvqVe66NCNUt9iPeCKCjRFswQCs1M3v6Ltf0zmnCIBIIso78AZPcoANC0Qt60hs0M1k3745AZ4k3IVkyQbGZ+aq3QhYHXCGTYEzNcyNsJKBRMMkH6XpseASsBx1es1RBwE0jGb0yoAdWadF2qG0ppCP190QCgTH9wLedAWDXTHtD8T+vFmP7rJEIFcXIFRsvaseSYkiHudCW0Jyh7FsCTAt7K2Vd0MDQppe2IXjTL8+S8lHec/PezXG2cDmJI0V2yT45JB45JQVyTYqkRBh5JM/klbw5T86L8+58jFvnnMnMDvkD5/MH05uZsw==</latexit><latexit sha1_base64="O3Z1bckwTXHoTu41GAhbl5JJqHQ=">AAACCnicbVA9SwNBEN3zM8avqKXNahBsEu5EUcQiaGMZwXxAEsPcZpMs2ds7dufEcKS28a/YWChi6y+w89+4+Sg08cHA470ZZub5kRQGXffbmZtfWFxaTq2kV9fWNzYzW9tlE8aa8RILZairPhguheIlFCh5NdIcAl/yit+7GvqVe66NCNUt9iPeCKCjRFswQCs1M3v6Ltf0zmnCIBIIso78AZPcoANC0Qt60hs0M1k3745AZ4k3IVkyQbGZ+aq3QhYHXCGTYEzNcyNsJKBRMMkH6XpseASsBx1es1RBwE0jGb0yoAdWadF2qG0ppCP190QCgTH9wLedAWDXTHtD8T+vFmP7rJEIFcXIFRsvaseSYkiHudCW0Jyh7FsCTAt7K2Vd0MDQppe2IXjTL8+S8lHec/PezXG2cDmJI0V2yT45JB45JQVyTYqkRBh5JM/klbw5T86L8+58jFvnnMnMDvkD5/MH05uZsw==</latexit><latexit sha1_base64="O3Z1bckwTXHoTu41GAhbl5JJqHQ=">AAACCnicbVA9SwNBEN3zM8avqKXNahBsEu5EUcQiaGMZwXxAEsPcZpMs2ds7dufEcKS28a/YWChi6y+w89+4+Sg08cHA470ZZub5kRQGXffbmZtfWFxaTq2kV9fWNzYzW9tlE8aa8RILZairPhguheIlFCh5NdIcAl/yit+7GvqVe66NCNUt9iPeCKCjRFswQCs1M3v6Ltf0zmnCIBIIso78AZPcoANC0Qt60hs0M1k3745AZ4k3IVkyQbGZ+aq3QhYHXCGTYEzNcyNsJKBRMMkH6XpseASsBx1es1RBwE0jGb0yoAdWadF2qG0ppCP190QCgTH9wLedAWDXTHtD8T+vFmP7rJEIFcXIFRsvaseSYkiHudCW0Jyh7FsCTAt7K2Vd0MDQppe2IXjTL8+S8lHec/PezXG2cDmJI0V2yT45JB45JQVyTYqkRBh5JM/klbw5T86L8+58jFvnnMnMDvkD5/MH05uZsw==</latexit><latexit sha1_base64="O3Z1bckwTXHoTu41GAhbl5JJqHQ=">AAACCnicbVA9SwNBEN3zM8avqKXNahBsEu5EUcQiaGMZwXxAEsPcZpMs2ds7dufEcKS28a/YWChi6y+w89+4+Sg08cHA470ZZub5kRQGXffbmZtfWFxaTq2kV9fWNzYzW9tlE8aa8RILZairPhguheIlFCh5NdIcAl/yit+7GvqVe66NCNUt9iPeCKCjRFswQCs1M3v6Ltf0zmnCIBIIso78AZPcoANC0Qt60hs0M1k3745AZ4k3IVkyQbGZ+aq3QhYHXCGTYEzNcyNsJKBRMMkH6XpseASsBx1es1RBwE0jGb0yoAdWadF2qG0ppCP190QCgTH9wLedAWDXTHtD8T+vFmP7rJEIFcXIFRsvaseSYkiHudCW0Jyh7FsCTAt7K2Vd0MDQppe2IXjTL8+S8lHec/PezXG2cDmJI0V2yT45JB45JQVyTYqkRBh5JM/klbw5T86L8+58jFvnnMnMDvkD5/MH05uZsw==</latexit>

marital-status = never
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Fig. 2: Tracing Participants’ Contributions Using Rule-based Models

the activated negative rules, is responsible for the performance
loss and receive a negative credit. Similarly, in Figure 2, FN
credit corresponds to participant C which learns r−2 .

Based on the above contribution tracing principles, we focus
on tracing cases TP and TN with correct classifications for
contribution computation as we use test accuracy as the data
utility metric. Additionally, we consider cases FP and FN
to identify malicious participants, which will be described in
Section IV-A.

Rule-based Tracing. According to the above tracing princi-
ples, we now compute the related training data ct(xte, yte)
for each test instance (xte, yte) ∈ Dte. Intuitively, in a strict
tracing manner, a training instance (xtr, ytr) is related to
(xte, yte) if (a) ytr = yte and (b) the activated rules of xtr

include all the activated rules of xte that support yte. However,
this strategy is too strict and overlooks the training data that
only contribute to a core subset of the corresponding rules.
Therefore, we present a softer rule-based tracing strategy to
lower the barrier and overcome this limitation for complex
scenarios. Specifically, a training instance (xtr, ytr) is related
to xte if (a) ytr = yte and (b) the activated rules of xtr

comprise more than τw of the activated rules of xte that
support yte (e.g., τw = 0.6), where τw is a predefined
threshold:

ct(xte, yte, τw) = {(xtr, ytr) ∈ DN |ytr = yte, and
w∗⊙r∗(xtr)·r∗(xte)

w∗·r∗(xte)
≥ τw} (4)

where DN =
⋃

i∈N Di, r∗ (w∗) refers to r+ (w+) if yte = 1
and r− (w−) otherwise, w∗ ·r∗(xte) is the number of activated
rules of xte, ⊙ denotes element-wise multiplication and w∗⊙
r∗(xtr) · r∗(xte) is the number of Intersecting activated rules
between xtr and xte.

Remark. The choice of τw significantly impacts the precision
of contribution tracking. A high τw might lead to acknowl-
edgment of fewer clients’ contributions. Conversely, a low τw
might imply equal contribution from all clients. Our empirical
findings, outlined in Section VI, show that τw should be set to
nearly 1.0 for datasets with abundant rules. Yet, for datasets
compromised by data poisoning [42], a lower τw is advisable
to recognize more contributing records in the training set.

Example III.3 (Rule-based Tracing). Recall Figure 2-(b) and
examine test instance (x

(3)
te , y

(3)
te = 0) with r−2 and r−2

activated, each with weights w−
1 = 1, w−

2 = 0.5, respectively.
ct(x

(3)
te , y

(3)
te , τw = 1) are training data with the negative label

and both r−1 and r−2 activated (6 records from participant B).
Additionally, the training data with the negative label and only
r−1 activated (2 training records from participant C), are also
included by employing a softer threshold of τw = 0.6 (i.e.,
60% of weighted activated rules), as w−

1

w−
1 +w−

2

= 2
3 ≥ 0.6.

Contribution Allocation. We now present how to compute
participants’ contributions by allocating credits to the cor-
responding participants based on the related training data
computed using the above tracing strategy. The key issue is
to determine the relationship between the amount of related
training data and the magnitude of contribution. To this end,
we need to identify the differences in effects that various
amounts of training data exert on the learned model. According
to the classic Federated Averaging (FedAvg) algorithm [43],
during training the global model on the data of all partici-
pants, the federation computes the aggregated model (weights)
update using averaging weighted on the number of training
data. Therefore, a larger amount of training data leads to
proportionally a larger impact on the learned model. Based on
this observation, we propose a micro contribution allocation
scheme ϕm

v (i) that distributes the performance gain credits to
participants based on the numbers of related training instances:

ϕm
v (i) =

1

|Dte|
∑

(xte,yte)∈Dte

1[ŷ = yte] · |Di ∩ ct(xte, yte, τw)|∑
j∈N |Dj ∩ ct(xte, yte, τw)|

(5)
where ŷ = MDN

(xte) is the inference label, and 1[ŷ = yte]
means we only consider correctly classified test records for
contribution allocation, because we use test accuracy as the
data metric.

However, there is a potential vulnerability in the micro
contribution allocation scheme, as a strategic participant can
replicate its data to earn more credits on its matched test
instances. This leads to a deficit of other participants that
also match these test instances, as the credit allocation is
proportional to the amount of related training data. To address



this issue, we propose an alternative macro (or replication-
robust) contribution allocation scheme ϕM

v (i) that averagely
distributes credits to participants with more than a minimally
required amount of related training data:

ϕM
v (i) =

1

|Dte|
∑

(xte,yte)∈Dte

1[ŷ = yte] · 1[|Drelated| ≥ δ]∑
j∈N 1[|Drelated| ≥ δ]

(6)

where Drelated = Di ∩ ct(xte, yte, τw), δ is a threshold of
minimum related training instances. Intuitively, a higher vol-
ume of training data requires a relatively larger δ. Fortunately,
we can generate scores for multiple δ values progressively
without much extra computation.
Example III.4 (Contribution Allocation). Based on the con-
tribution tracing results with 3 participants and 4 test records
shown in Figure 2-(b), we compute micro and macro contribu-
tion scores for each participant in Figure 2-(d) and Figure 2-
(e), respectively. For instance, participants B and C match
the test instance (x

(3)
te , y

(3)
te = 0), with 6 and 2 related training

data, respectively. According to the micro scheme, ϕm
v (B) =

1
4 ∗ 6

6+2 = 3
16 while ϕm

v (C) = 1
4 ∗ 2

6+2 = 1
16 , i.e., proportional

to the number of matched training data. According to the
macro scheme with δ = 2, ϕM

v (B) = ϕM
v (C) = 1

4 ∗ 1
2 = 1

8 ,
i.e., averagely distributed to related participants.

Discussion. We primarily use the micro contribution estima-
tion scheme as the contribution scoring metric, and employ
the macro scheme as the auxiliary scheme to identify strategic
data replication that results in inflated micro scores (refer to
Section IV-A for more details). Notably, computing both of
the micro and macro contribution allocation schemes does not
add extra computational costs as contribution allocation and
rule tracing are independent, and both schemes use the same
rule tracing results.

Efficient Computation of CTFL. We have |DN | rule activa-
tion vectors of training data and |Dte| rule activation vectors
of test data. During the training stage, the overhead is the
computation time of a single model learned on DN . During the
model inference phase for contribution allocation, a brute-forth
method would involve comparing the rule activation vector
of each test instance with the rule activation vectors of all
the training data, resulting in O(|Dte| · |DN |) computation
overhead. Fortunately, the contribution computation of test
instances is not interdependent, and thus the computation pro-
cess can be fully parallelized with GPUs. However, when the
training and test data sets are significantly large, this estimation
process is much slower. In such cases, we employ frequent
item sets searching algorithms such as Max-Miner [19] to
partition the test data into groups, where each group includes
test data with the same subset of frequently activated rules.
We then compute the related training data for each specific
group of test data based on its frequently activated rule subset.
Finally, we compute the exact set of related training data for
each test instance based on the much smaller-sized related
training data belonging to its enclosing group and compute
the contribution as usual.

D. Theoretical Properties of CTFL
A critical question is that whether CTFL, with the above

contribution tracing and allocation techniques, can accu-
rately estimate participant contributions, as the state-of-the-art
ShapleyValue scheme. Fortunately, CTFL is designed to
fulfill the following essential theoretical properties, ensuring
fair and rational estimates.
• Group Rationality. The sum of all participants’ contributions
should be equal to the data utility of all participants, i.e.,∑N

i=1 ϕv(i) = v(DN ). It can be verified that CTFL satisfies
this:

∑N
i=1 ϕv(i) = 1

|Dte|
∑

xte,yte
1[ŷ = yte] = v(DN ),

where v(DN ) is the test accuracy of the global model. Notably,
group rationality can also be applied to other performance
metrics such as F-1 score by modifying the allocation formula
according to the performance metric.
• Symmetry. If two participants bring the same performance
gain to a global model, their contributions should be the same.
If the performance gain brought by two participants are same,
they contribute to the same number of correctly classified test
instances, and the contribution allocation of CTFL produces
the same contributions.
• Zero Element. When the performance gain brought by a
participant is zero, its data contribution should also be zero.
Specifically, if a participant i does not contribute to classifying
any test instance, under the procedure of CTFL, the data
contribution attributed to i is zero, i.e., ϕv(i) = 0. This is
because participants are unlikely to coincidently hit the rule
activation vectors of the test data, since the rules are composed
of complicated conjunctive and disjunctive predicates, and
there are multiple activated rules to be matched.
• Additivity. When utilizing multiple data utility metrics, the
contribution are cumulative over these metrics, i.e., ϕu+v(i) =
ϕu(i) + ϕv(i), where u and v represent two metrics. As
CTFL’s contribution estimation is based on deterministic al-
location formulas, it can compute the contribution including a
new metric incrementally, instead of constrained optimizations
(e.g., LeastCore) where the optimal boundary changes with
new constraints.

IV. ROBUSTNESS AND INTERPRETABILITY

A. Robustness of CTFL
In FL, participants are generally assumed to be semi-

honest [44]. This assumption implies that while they will
cooperate in learning the global model, they may still attempt
to inflate their contribution scores to get a larger revenue.
For example, participants might attempt to replicate data or
include low-quality data, such as poorly labeled (or annotated)
records [45]. Regrettably, ShapleyValue method [9], [24]
cannot address and combat these attempts due to its black-
box data utility evaluation methodology. In other words, the
data utility of each participant is indirectly evaluated as a
whole through the performance metric. Moreover, current
black-box approaches are also susceptible to malicious attacks
with insignificant contribution fluctuations. Consider the well-
known label-flipping attack, in which a malicious participant



introduces a small set of label-flipped training data that does
not significantly impact the test performance but is detrimental
to the deployed FL model [46], [47]. Nevertheless, our pro-
posed method (CTFL) is devised to be robust against these
strategic and malicious behaviors by examining the model
performance gain and loss caused by each participant.
• Data Replication. The macro contribution allocation scheme
of CTFL is designed to withstand data replication since clients
with related training data of a certain threshold or above
receive an identical share of given credits. Specifically, Equa-
tion (6) ensures all associated clients to receive the same credit
allocation for the test instance, without taking the number of
training data beyond a certain threshold into account. This
prevents strategic participants from gaining additional benefits.
For example, in Figure 2-(d) and (e), the macro scheme
allocates participants B and C the same contribution scores,
despite that B has 4 more related training instances than C.
• Low-quality Data. Low-quality data does not account for
contribution credits, because we use a stringent rule-based
contribution tracing strategy to identify poorly labeled low-
quality data. The utilized logical rules consist of complex
predicates featuring various conjunctions and disjunctions.
Moreover, to match with a test instance, several interconnected
rules must be activated simultaneously. Therefore, it is chal-
lenging to manipulate scores by matching multi-dimensional
rules coincidentally, especially under a strict strategy with a
large τw. It is important to note that participants cannot activate
all rules to align with the withheld test data, as the potential
combinations of rules are exponentially vast, and some rules
may be mutually contradictory.
• Label-flipped Data. Although the activated rules for label-
flipped data may align with corrsponding test records, this
alignment fails to account for contribution credits because the
associated labels are flipped, i.e., cannot fulfill 1[ŷ = yte].
Furthermore, by analyzing instances of performance loss (false
positives and false negatives), we are able to identify and elim-
inate such label-flipped data. Specifically, we can trace the loss
caused by each participant by modifying the indicator function
of Equation (5) from 1[ŷ = yte] to 1[ŷ ̸= yte] (also applies
to Equation (6)). This approach can identify potential label-
flipping attacks because, in unintentional misclassification test
cases, there will be much fewer coincident matching of rule
activation vectors with contradictory labels. For example, in
Figure 2-(b), normally misclassified test records cannot be
aligned with many training data, e.g., false positive x(2)

te , which
does not match any training data. However, if a participant
such as C has more training instances of label-flipped matches,
e.g., x(4)

te , it could be a malicious participant.

Discussion. The ability of adverse clients to manipulate data
is limited by their lack of knowledge regarding the test
set and the applied rules. Nevertheless, in situations where
malicious clients have knowledge of the test set, the applied
rules, or the data belonging to other participants, they could
potentially create poisoned data. This issue is particularly acute
in cases of attack collusion within FL [42], [48]. Tackling these

challenges technically exceeds our present capabilities.

B. Interpret Participants’ Contributions
We introduce how to interpret participants’ beneficial and

harmful characteristics by fully exploiting the contribution
tracing procedure. Naturally, we can record the rule activation
times for each participant during the contribution tracing
process, based on which we can identify the high-frequently
activated rules to understand each participant’s beneficial char-
acteristics. Similarly, we can interpret the harmful characteris-
tics of potential malicious participants, if any, by recording
the high-frequently activated rules of each participant that
lead to misclassifications. Additionally, we can also determine
the useless (or low-quality) data ratio of each participant
by recording the matching times of the training data on
the test records and reporting the ratio of data that never
being matched. Notably, the above rule activation counts are
regularized according to the rule weights, i.e., rules with higher
weights are more important and should be prioritized.
Example IV.1 (Interpret Participants’ Contributions). In Fig-
ure 2-(b) and (c), the beneficial characteristics of partic-
ipant A are summarized by r+2 = edu-years > 15 ∧
work-class = state-gov, which corresponds to 4 training
instances of the positive class. Similarly, the beneficial char-
acteristics of B is summarized by r−1 = capital-gain < 5k,
r−2 = work-hours > 14 ∨ marital-status = never which
correspond to 6 training instances of the negative class.
Guide Data Collection. There are occasions when the train-
ing data fails to effectively cover the test scenarios. Such
situations are implied by misclassified test data whose rule
activation vectors cannot be matched to a sufficient number
of training data. Note this is different from the label-flipped
cases with sufficient misleading training data. To improve
on these test scenarios, we identify the common patterns of
these misclassified cases, so that we can guide participants to
collect targeted training samples that cover these scenarios.
We achieve this by computing the aggregated rule activation
times for misclassified test data and extracting useful patterns
from the most frequently activated rules.

V. A PRACTICAL RULE-BASED MODEL

Equipping a rule-based model as a task model in CTFL
raises three significant concerns that must be addressed.
(1) Generalizability. Classic rule-based models, e.g., decision
trees, lack sufficient generalizability to handle complicated
scenarios. This limitation can result in low performance, lead-
ing to inaccurate contribution estimation compared to widely
adopted task models in FL, such as deep neural networks.
(2) Precise Tracing Capability. Existing rule-based models
normally produce fuzzy rules (i.e., rules that are all partially
activated) to improve the model performance. However, these
fuzzy rules impede precise tracing of the related training data.
(3) Data Privacy. Rule-based models may need to inspect
training data to generate rules (e.g., by computing informa-
tion gain or Gini impurity [49]), particularly for discretizing



continuous features into intervals. This process violates the
data privacy constraints in FL.

To address the above challenges, we propose a practical
implementation of the rule-based model, which extends the
classical neural network architecture by integrating logical
layers. We will first introduce how to encode input features
privately while capturing their underlying classification pat-
terns. Then, we adopt logical neural networks to build rule-
based models with high generalization ability akin to neural
networks [25]. Last, to further produce non-fuzzy rules with
definite logical predicates for precise contribution tracing and
interpretation, we leverage gradient grafting techniques [27]
to binarize logical neural weights.

Encode Input Features. Discrete features are encoded into
one-hot embeddings, where the value choices of each discrete
feature can be fixed by the federation. For example, the number
of choices of a discrete feature can be all the unique choices
from the federation reserved test dataset plus an unknown flag
to denote all other unseen choices that appear in participants’
training datasets.

Continuous features need to be discretized to build com-
prehensible rules. However, we cannot inspect the private
training data to figure out reasonable discretization boundaries.
On the other hand, simply cutting distribution domain of a
continuous feature into uniform bins is not acceptable, because
the underlying distribution patterns with respect to the task
are overlooked. Thus, the discretization strategy should fully
consider the real data distribution of all participants without
inspecting the data.

To this end, we build a binarization neutral layer to
learn good discretization boundaries in an end-to-end manner.
Specifically, for each continuous feature variable c ∈ [cl, cu] to
be discretized, we randomly generate lower bounds l1:τd and
upper bounds u1:τd that can be combined to generate various
discretized intervals, where τd is the number of discretization
bounds. In this way, we transform c into a binary vector
cb = [1(c > l1), · · · ,1(c > lτd),1(u1 > c), · · · ,1(uτd > c)],
where 1(·) is an indicator function. As a consequence, continu-
ous features can be processed like discrete features by applying
an extra binarization layer. By learning and discretizing the
forward weights on these 2τd bounds, we choose appropriate
bounds to fit the data distribution of participants for the task
without inspecting the data, as there are enough candidate
bounds to generate various discretized intervals.

Build Logical Rules. Based on the above encoded features, we
are now ready to introduce logical (neural network) layers to
derive rules. A logical layer is composed of conjunction nodes
and disjunction nodes to produce conjunctive and disjunctive
predicates based on logical activation functions:

Conj(x,w) =
∏
i

Fc(xi, wi),where Fc(xi, wi) = 1− wi(1− xi)

Disj(x,w) = 1−
∏
i

(1− Fd(xi, wi)),where Fd(xi, wi) = xi · wi

(7)

where x is the layer input, i.e., an encoded feature vector
or the output rule vector from the preceding logical layer, and
w is the logical neural weight vector with wi ∈ [0, 1] con-
trolling the logical predicate xi’s involvement degree on the
conjunction or disjunction operation. We have Conj(x,w) =∧

wi=1 xi and Disj(x,w) =
∨

wi=1 xi when x and w are
both binary vectors. Therefore, we can build compound logical
rules via recursive conjunction and disjunction operations with
multiple logical layers, where skip connections between logi-
cal layers are applied to generate both simple and complicated
rules simultaneously. Last but not least, we append a linear
layer to accomplish the rule-weighted classification.

Learn Non-fuzzy Rules. So far, we have implemented a
rule-based model where the continuous logical weights can
be trained by using gradient descent methods. However, the
trained weights are fuzzy values in the range of [0, 1], i.e.,
input logical predicates (or conditions) are all partially acti-
vated, rather than desired binary weights which can produce
non-fuzzy rules of definite conjunctions and disjunctions. To
overcome this issue and produce non-fuzzy rules for precise
contribution tracing and interpretation, we now describe how
to build binarized logical weights as follows.

Evidently, binarized logical weights are non-differentiable
and thus are hard to train directly with gradient decent
methods. To solve this issue, we adopt the gradient grafting
technique to learn binarized logical weights by leveraging (or
grafting) the gradients from the trainable continuous model.
Intuitively, in stem grafting, the stems of some plant can be
grafted on another plant’s root. Similarly, in gradient grafting,
we want to graft the training loss of a discrete model M̄ with
non-fuzzy rules on the differentiable continuous model M.
Specifically, we denote the parameters of M as θ, and the
parameters in training step t as θt. We use indicator function
1(θ > 0.5) to binarize θ to get M̄ with minimum activation
threshold 0.5. Let Y = M(θt, X) and Ȳ = M̄(1(θt), X) be
the continuous and discrete model outputs in step t, respec-
tively. By gradient grafting we update the model parameters as
θt+1 = θt−η ∂L(Ȳ )

∂Ȳ
· ∂Y∂θt . where η is the learning rate and L(·)

is a loss function to learn M̄, e.g., cross entropy loss. Thus, we
learn the discrete model M̄ by combining the gradients of the
loss function L(·) on M̄ and the gradients of the differentiable
M. Note that the binarized neural weights of M̄ including the
neural weights between an encoding layer and a logical layer,
and between logical layers, but not between the last logical
layer and the linear layer for weighted classification.
Example V.1 (Rule-based Model). Figure 3 presents a rule-
based model using logical neural networks and binarization
techniques. Continuous features are firstly discretized via
a binarization layer with random lower and upper bounds.
Discrete features are encoded into one-hot embeddings and
concatenated with the binarization layer output. Two logical
layers are followed to learn compound logical rules with
conjunctions and disjunctions, e.g., ∧2 : c < u1 ∧ d = d1.
Finally, a linear layer outputs the final inference label by
aggregating the weighted scores of all activated rules.
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Fig. 3: Rule-based Model using Logical Neural Networks

Data Privacy Analysis. We ensure the fulfillment of the data
privacy constraints of FL by maintaining data privacy through-
out the entire model training, evaluation, and interpretation
process using rule-based models. This implies that we avoid
exchanging or inspecting any private data from each partic-
ipant and do not introduce additional privacy risks. Firstly,
during the encoding of input features, the federation itself
produces the one-hot encodings of discrete features, while
the continuous features are cut into appropriate ranges in an
end-to-end model training manner using only value domains
and model gradients. Secondly, during the model training
phase, the procedure is similar to the original FL global
training, except that a rule-based model is used as the task
model. Thirdly, during the contribution tracing phase, only the
discretized activated rules of the training data are used to align
with the test data and compute contribution scores. To ensure
privacy, we let participants to generate rule activation vectors
of its training data and upload to the federation, which are
then used to compute the relevant training data for the test data.
This approach is reasonable since the activation vectors encode
only task-specific patterns that are useful for model inference,
and can be further perturbed to guarantee differential privacy
[50]. Lastly, during the interpretation phase, we summarize the
aggregated high frequent characteristics based on the recorded
rule activation frequency during the preceding contribution
tracing phase. Besides, security protection techniques such as
secret sharing [51] can also be applied like in regular FL to
reduce security risks. Overall, CTFL ensures that data privacy
constraints in FL are fulfilled.

VI. EXPERIMENTS

A. Setup

Datasets. The experiments are conducted on four public
classification datasets that meet three crucial requirements:
(a) Utilization of common benchmarking datasets from the
UCI repository [52] and Kaggle [53]; (b) Inclusion of diverse
task performance levels from 50% to 100% test accuracy; (c)
Incorporation of multiple social scenarios, such as predicting

TABLE IV: Datasets

Dataset #-Instances #-Features Feature Type

tic-tac-toe [55] 958 9 discrete
adult [56] 32, 561 14 mixed
bank [57] 45, 211 16 mixed
dota2 [58] 102, 944 116 discrete

individual’s income level (adult), predicting bank term de-
posits (bank), and predicting game winners (tic-tac-toe and
dota2). Table IV shows the primary characteristics of these
datasets. To evaluate the performance of CTFL under different
FL scenarios, we design the following data distribution cases.
• Skew sample. Participants have varying amounts of data
from the same distribution. The training data is randomly
partitioned and distributed to all participants. To control the
skewness of data ratios, we randomly sample participants’ data
ratios from the Dirichlet distribution, which generates ratios
that sum up to 1.0. The degree of the skewness of data ratios
is controlled by a hyper-parameter α.
• Skew label. Participants have varying amounts of data with
different label distributions. The data in each class label is
randomly partitioned and distributed to participants, where
the data ratios of each label are separately sampled from the
Dirichlet distribution.
• Data replication [54]. We randomly select some participants
from the above skew-label data, and replicate their data by a
random data ratio.
• Low-quality data. We randomly select some participants
from the above skew-label data, sample their training data by
a random data ratio, and modify the class labels randomly
according to the participant’s label distribution.
• Label-flipped data. We randomly select some participants
from the above skew-label data, sample their training data by
a random data ratio, and flip the class labels of these data.

Baselines. We compare CTFL with the following four kinds
of contribution evaluation schemes.
• Individual: ϕv(i) = v(Di), i ∈ N . We consider a
typical individual scheme that regards a participant’s learned
model inference accuracy as its contribution [21].
• LeaveOneOut: ϕv(i) = v(DN ) − v(DN\{i}),∀i ∈ N .
LeaveOneOut regard the performance loss of removing a
participant as its contribution [22].
• ShapleyValue: ϕv(i) = ES⊆N\i[v(DS∪{i}) − v(DS)]
,∀i ∈ N . ShapleyValue regards the expected marginal per-
formance gain brought by a participant as the contribution [9].
Notably, Θ(n2 log n) participant combinations are sampled to
speed up the computation and guided sampling and early stop
during training are also applied, according to [9].
• LeastCore: ϕv(i), that fulfills Equation (2). Least core
aims to minimize the score deficit of each potential coali-
tion [23]. We sample and compute Θ(n2 log n) linear con-
straints to speed up the constraints and linear programming
computation, according to [23].

Remark. Methods aimed at offering model interpretation,
such as perturbation-based techniques [59], simulate perturbed



samples in the local neighbourhood of a data point (sample)
to interpret how a black-box model is affected by this data
point rather than to predict the contribution score of data
records held by a client. Therefore, these approaches are not
directly applicable to contribution estimation and individual
contribution tracing in the context of federated learning.

Metrics. We evaluate the accuracy, efficiency, robustness and
interpretability of contribution estimation.
• Remove High-contribution Participants. We eliminate par-
ticipants with the top five contribution scores one by one in
descending order (without replacement), train the model on the
remaining data after each elimination, and compute the model
test performance. When a method’s contribution estimation is
more accurate, removing participants with top contributions
affects the learned model performance more significantly,
leading to a faster drop in accuracy, i.e.,the smaller the area
under the model accuracy curve, the better.
• Execution Time. We evaluate the execution time of each
method for producing the final contribution scores.
• Robustness. We evaluate the relative contribution score
changes of the corresponding participants after data replica-
tion, injecting low-quality samples and label-flipped samples,
i.e., ϕv(i

′)−ϕv(i)
ϕv(i)

, where i′ represents i after modifying the data.
We expect a robust method to report near-to-zero contribution
fluctuation after data replication, and report contribution loss
that is proportional to the amount of injected low-quality or
label-flipped data.
• Interpretability. We conduct a case study on datasets
tic-tac-toe and adult, and analyze whether the generated
participants’ characteristics are comprehensible and insightful.

Default Parameters. The number of FL participants is set
to 8, as it’s impossible to execute ShapleyValue and
LeastCore in a reasonable time (i.e., 24 hours) with more
participants (e.g., already more than 10 hours to run ac-
celerated ShapleyValue in current settings). Furthermore,
the number of updated participants in robustness scenarios
is set to 2. The activation threshold for rule tracing is in
the range of [0.8, 1]. The dimension of binarization layer is
set to 10. The number of logic layers is set to 1 with the
number of dimensions in the range of [64, 512]. α for Dirichlet
distribution is set in [0.6, 1]. The sampled data ratios for robust
data scenarios vary uniformly in [0.1, 0.5]. All experiments are
repeated 10 times to compute the average results.

Environment. All methods are implemented in Python 3.10
and evaluated on a Linux server with Intel 3.10GHz CPU
and 256GB memory, and RTX 3090 GPU with 24GB mem-
ory and CUDA 11.4. Please also refer to our code at
https://github.com/knifelee/ctfl.

B. Quantitative Evaluation

We evaluate the performance of CTFL compared to base-
lines and specifically answer the following research questions.

RQ1. Is CTFL capable of estimating the contribution of
participants accurately? The most important goal in contri-

bution estimation is contribution ranking accuracy. Thus, we
first evaluate whether CTFL can perform accurately as the the-
oretically optimal ShapleyValue scheme and outperform
other methods. Figure 4 shows the results. ShapleyValue
and LeastCore do not appear in the largest dataset dota2,
because they cannot finish in a reasonable running time. We
make the following observations.
1) CTFL achieves state-of-the-art contribution estimation ac-
curacy, and even performs better than the approximated
ShapleyValue. CTFL occupies the bottom of all sub-
figures, outperforms all existing methods in tic-tac-toe and
adult datasets with skew-label data distributions, and performs
similarly to the best baseline in other cases. This is because
the rule-based contribution tracing of CTFL is effective on
estimating participants’ contributions.
2) Skew-label cases, where participants have different data
label distributions, are harder to estimate than skew-sample
cases. Our CTFL performs stably on both types of cases. In
skew-label cases, the contributions are more skewed among
participants compared to skew-sample cases. The contribution
allocation of CTFL is precisely associated with individual data
records and is not influenced.
3) CTFLmicro and CTFLmacro performs similar in datasets
with high task performance, and CTFLmicro performs better
otherwise. They performs similar on tic-tac-toe, adult and
bank with relatively higher performance, while CTFLmicro
performs much better than CTFLmacro on dota2 with lower
performance. This is because the high-quality training data in
low-performance dota2 is still insufficient, where the contri-
bution is still proportional to the number of scarce high-quality
training samples (which can be confirmed by Individual’s
good performance on dota2).
4) Baselines except ShapleyValue perform badly on esti-
mating participants’ contributions. This is because although
LeastCore achieves equilibrium from a coalition perspec-
tive, it weakens individual’s benefits and thus performs worse.
And Individual neglects the value of cooperation, while
LeaveOneOut neglects the contribution of participants with
homogenous data, and can only accurately estimate the one
whose leaving causes the maximum deficit.

RQ2. Is CTFL more efficient than existing approaches? We
evaluate whether CTFL with only a single pass of model train-
ing and contribution tracing is more efficient than baselines
with multiple times of model training and inference. Based on
the results in Figure 5, we make the following observations.
1) CTFL is a very efficient method compared to existing
approaches. In particular, CTFL is 2-3 orders of magnitude
faster than widely adopted methods ShapleyValue and
LeastCore. This is because CTFL only train and evaluate
a single task model, while other approaches need to train and
evaluate multiple models to compute participant contributions.
Besides, we speed up computation by finding frequent rule
activation sets to reduce computation.
2) The execution time of CTFL is similar to Individual.
This is because both methods compute backward gradients for

https://github.com/knifelee/ctfl
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Fig. 5: Execution Time.

the same number of data records, and Individual takes
extra time to update model parameters for n models, while
CTFL traces the contribution credits for all participants.
3) ShapleyValue and LeastCore are too slow to be
applied in real-world scenarios, and take almost one day to
estimate participants’ contributions on datasets with tens of
thousands of records, which is dozens even hundreds times of
the original FL model training time. Thus, it is hard to apply
them due to high time and computation resource costs. The
implementations of these two methods in this paper are based
on accelerated techniques such as sampling and early stop.
4) Upon comparing outcomes across various datasets, it was
noted that there is a direct relationship between execution time
and the feature dimensionality. This correlation arises from
the fact that the computation of gradients during global model
training is dependent on the quantity of features.

RQ3. Is CTFL more robust to common adverse behaviors?
We evaluate whether the contribution scores of CTFL can
react appropriately to the adverse behaviors including data
replication, low-quality records and label-flipped data, and
Figure 6 shows the results respectively in three rows. The

relative change values are clipped to be in [−1, 1]. We make
the following observations.
1) CTFLmacro and Individual are robust to data replica-
tion. The contribution scores of CTFLmacro and Individual
do not increase after participants’ replicating their data, i.e.,
the score changes are near to zero. For CTFLmacro, this is
because the contribution volume does not depend on the
number of matched training data after fulfilling a threshold.
For Individual, this is because participants’ contributions
are evaluated separately.
2) CTFLmicro and Individual are robust to low-quality
and label-flipped data. The contribution scores of CTFLmicro
and Individual show proportional and stable reduction
after participants injecting low-quality or label-flipped data.
This is because the contribution computation of CTFLmicro
is precisely according to the number of beneficial training
data provided by each participant. And for Individual, the
adverse behaviors severely affects model performance as each
participant’s training data are evaluated separately.
3) LeaveOneOut, LeastCore and ShapleyValue do
not react appropriately or stably to all three types of adverse
behaviors due to duplicated model training on different coali-
tions of clients.

C. Case Study on Contribution Interpretation

We conduct a case study on datasets tic-tac-toe and adult
with the skew-label scenario including three participants to
show that CTFL can interpret participants’ characteristics.

Interpret for tic-tac-toe. The tic-tac-toe dataset is about a
two-player game whose play rules is demonstrated in Fig-
ure 7 (a), where we denote the winning of player x by +
and o win by −. We collect the frequently activated rules of
three participants that are beneficial to classifying test data
(shown in Figure 7-(b)), where superscript + of rules means
supporting x to win and − for supporting o. We extract the
following characteristics from these rules.



TABLE V: Selected Frequently Activated Rules of Three Participants (A/B/C) on Adult, +/- Refers to Positive/Negative Class

# A B C

1 capital-gain < 5k− capital-gain < 5262− marital-status = never ∧ hours-per-week > 14−

2 capital-gain < 5k ∧ capital-loss < 1k− capital-gain < 5k ∧ capital-loss < 1k ∧ age < 33− work-class = private or state-gov ∨ age > 55+

3 fnlwgt>43800 ∧ capital-gain<5k− fnlwgt > 44k ∧ capital-loss<1k+ capital-gain > 21k ∨ education-num > 15+
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Fig. 6: Contribution Estimation Robustness Evaluation

Fig. 7: Tic-tac-toe: (a) The player o wins with 3o ∧ 50 ∧ 7o;
(b) Selected frequently activated rules on three participants.

• Participant A and B mainly hold data records on x’s
winning cases, and they share one typical case 1x ∧ 2x ∧ 3x.
• Participant C mainly holds data records on o’s winning
cases, and also holds some winning records on x, i.e.,
4x ∧ 5x ∧ 6x.
• A short rule can also be useful, e.g., o is more likely to win
when we have 1o ∧ 6o.

Interpret for Adult. The adult dataset predicts adult’s income
levels as low (income≤ 50k$, denoted by −) or high (income
> 50k$, denoted by +). The selected frequently activated rules
of three participants are shown in Figure V, based on which
we make the following observations.

• Low-income data are dominant in all three players. The
frequent rules of all players mainly support the negative class,
i.e., low income, as low income is the dominant label in the
adult dataset.
• The data of participants A and B are homogeneous. A and B
share similar negative activated rules with the same predicates,
e.g., capital-gain < 5k and capital-loss < 1k.
• Participant C holds high-income data records. C has more

frequently activated rules associated with the high-income
label, e.g., age > 55 and education-num > 15.

Summary. We summarize the following important findings.

1) CTFL estimates participants’ contributions accurately as
the theoretically optimal ShapleyValue, while the com-
putation time of CTFL is 2-3 orders of magnitude less than
ShapleyValue.
2) CTFL is robust to common adverse behaviors includ-
ing data replication, low-quality data and label-flipping at-
tacks. Contribution credits by CTFL remain consistent and
stable in response to these adverse behaviors. In contrast,
LeaveOneOut, LeastCore and ShapleyValue are
not robust to these adverse behaviors and their contribution
credits fluctuate sharply. Besides, although Individual is
robust to these adverse behaviors, it cannot effectively estimate
each participant’s cooperative contribution.
3) CTFL is able to interpret each participant’s contribution
credits and provide contribution allocation evidence and in-
sightful characteristics into each participant, which help the
federation and participants to understand their roles.

VII. CONCLUSION

In this paper, we introduce CTFL, an innovative framework
for estimating participants’ contributions in FL. Our approach
efficiently and accurately assesses participants’ contributions
by tracking the test performance gain through rule-based
models. Furthermore, we establish that CTFL ensures rational
estimations by satisfying essential theoretical properties. The
incorporation of carefully designed contribution allocation
schemes enhances the robustness of CTFL. We also provide
interpretability to participants’ contribution scores, offering
insightful properties for each participant. Besides, we present
a practical rule-based model utilizing logical neural networks
and binarization techniques. Experimental results demonstrate
that CTFL outperforms baselines significantly across accuracy,
efficiency, robustness, and interpretability. The promising per-
formance exhibited by CTFL underscores its potential as a
versatile framework for contribution estimation in FL settings.
Future research directions involve extending CTFL to support
vertical federated learning and devising a systematic incentive
mechanism leveraging the capabilities of CTFL. Furthermore,
extending CTFL to facilitate interpretable contribution estima-
tion for federated learning in image and text classification is
a promising future direction, while extra efforts from domain
experts in rule extraction or pattern design should be taken
into consideration in such contexts.
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