
ACR-Tree: Constructing R-Trees Using
Deep Reinforcement Learning

Shuai Huang, Yong Wang, and Guoliang Li(B)

Tsinghua University, Beijing, China
{huang-s19,wangy18}@mails.tsinghua.edu.cn, liguoliang@tsinghua.edu.cn

Abstract. The performance of an R-tree mostly depends on how it is
built (how to pack tree nodes), which is an NP-hard problem. The exist-
ing R-tree building algorithms use either heuristic or greedy strategy to
perform node packing and mainly have 2 limitations: (1) They greedily
optimize the short-term but not the overall tree costs. (2) They enforce
full-packing of each node. These both limit the built tree structure. To
address these limitations, we propose ACR-tree, an R-tree building algo-
rithm based on deep reinforcement learning. To optimize the long-term
tree costs, we design a tree Markov decision process to model the R-tree
construction. To effectively explore the huge searching space of non-full
R-tree packing, we utilize the Actor-Critic algorithm and design a deep
neural network model to capture spatial data distribution for estimating
the long-term tree costs and making node packing decisions. We also
propose a bottom-up method to efficiently train the model. Extensive
experiments on real-world datasets show that the ACR-tree significantly
outperforms existing R-trees.

Keywords: R-tree · Reinforcement learning · Spatial index

1 Introduction

Querying spatial objects is fundamental in location-based applications such as
map services and social networking. For example, an urban resident may search
points of interest (POIs) such as restaurants in some region (range queries) spec-
ified on Google Maps or sometimes query the k-nearest POIs (kNN queries). R-
trees [5] are adopted to index these spatial objects and speed up spatial queries,
especially when there are hundreds of millions of objects or a huge number of
queries.

Given a set of spatial objects, an R-tree can be constructed by incrementally
inserting each object [2,3,5,16]. However, this approach is not efficient for build-
ing an R-tree from scratch and often leads to poor R-tree structure with bad
query performance. Therefore, there are approaches attempting to build more
efficient R-trees in a bulk-loading manner. There are two types of strategies:
(1) Bottom-up methods [1,6,8,12,14] pack objects into parent nodes recursively,
based on hand-crafted heuristics. (2) Top-down method [4] partitions a node into
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13943, pp. 80–96, 2023.
https://doi.org/10.1007/978-3-031-30637-2_6

ACR-Tree: Constructing R-Trees Using Deep Reinforcement Learning 81

Fig. 1. R-tree constructed under various settings (the MBR of nodes in the higher level
is represented by rectangles with dashed edges and lower level with solid edges). (a)
(b): under full-node-packing constraint, (c): allowing packing of non-full nodes, (d):
considering long-term tree costs.

child nodes recursively, greedily optimizing each tree construction step. These
approaches try to achieve evenly distributed objects in different subtrees and
full packing of entries of each subtree.

Limitations of the Existing Methods. (L1) They omit the long-term results
(the whole node partition or the overall tree construction) when making the
decision in each step. It may lead to a bad overall result. (L2) They impose an
unnecessary full-packing constraint, i.e., full-filling each tree node with entries
to its capacity, on the tree construction. It limits the resulting tree structure.

For example, Fig. 1 shows 3 cases when we build a 3-level R-tree on a set of
spatial object data, and we want to minimize the total area of minimum bounding
rectangle (MBR) of tree nodes which mainly affects the query performance. If
we build it by [4] under full-packing constraint, we will get the R-tree shown
in (a) (b). We can observe that data points which are far from each other are
packed together, resulting in nodes with big MBRs. As a comparison, if we allow
a variable number of entries in each node, we can build an R-tree as shown in (c),
where the MBR areas are significantly smaller. Furthermore, since (c) greedily
optimizes the areas in the current level, we can further improve it by considering
the areas in lower levels. In this way, we can build an R-tree in (d) of which
the upper-level nodes are a bit larger than (c) but nodes in the lower level are
significantly smaller thus the overall result is better.

Challenges and Our Proposed Solutions. To address these limitations and
build R-trees with better query performance, we need to search in a much larger
space, optimizing the long-term tree costs, and the traditional methods are
impractical, i.e., unable to enumerate all the possibilities. Therefore, we propose
to build R-trees using deep reinforcement learning (DRL), which has been proven
successful in applications of database systems such as configuration parameters
tuning [13] and join order selection [18]. RL can learn to optimize the over-
all benefits of a complex task through trial-and-error explorations. It typically
incorporates the generalization ability of deep learning (DRL), which allows us
to effectively learn a strategy from large search space with limited explorations.

However, there are several challenges in utilizing DRL in R-tree building:
(C1) How to model the R-tree building process and optimize the long-term
tree costs (L1)? We propose a tree Markov decision process (tree-MDP), which

82 S. Huang et al.

allows us to optimize the overall tree costs (i.e., considering the rest steps and
rest levels). (C2) The searching space to build an R-tree is huge, which becomes
much larger when we remove the full-packing constraint (L2). How to effec-
tively explore good solutions? We utilize Actor-Critic, a DRL algorithm using
neural networks to automatically learn the R-tree building strategy from limited
explored samples. We design a grid-based model to encode the spatial distri-
bution of data and use a hierarchical convolutional network to embed it into a
vector, for effectively estimating the long-term tree costs (Critic) and making
R-tree building decisions (Actor). (C3) It’s time-consuming to collect feedback
(i.e., R-tree building experiences) and train the multi-level Actor-Critic models.
We design a bottom-up model training framework where we use a training-
sharing method to reduce training rounds and a shortcut method to efficiently
access feedback in each round. Our main contributions are summarized as fol-
lows.

– We propose to utilize DRL to address 2 limitations in the existing R-tree
batch-building algorithms, i.e., greedy strategy and full-packing constraint.

– To model the top-down R-tree construction, we propose tree-MDP which well
fits the recursive R-tree building process and models the long-term tree costs.

– We use Actor-Critic networks to effectively explore the huge searching space
of R-tree construction. We design a grid-based representation model and a
hierarchical network to embed the spatial distribution of data. Then we can
effectively estimate the long-term tree costs and make building decisions.

– We propose a bottom-up model training framework, where we use training-
sharing and shortcut methods to accelerate model learning.

– We have conducted extensive experiments on real-world datasets and the
results show that our method outperforms existing approaches by 20%–30%.

2 Related Work

2.1 Spatial Queries and R-Tree

We study spatial queries on multi-dimensional objects such as points, rectangles
and polygons. Given a set of n d-dimensional objects, we consider two common
types of spatial queries: range (or window) query and k-nearest neighbor (kNN)
query. A range query retrieves all the objects that are included by or intersect a
rectangular range. A kNN query retrieves k closest objects to a given coordinate
p in Euclidean space.

To avoid scanning all objects to answer a query, spatial indices especially
R-trees are proposed for efficient searching.

R-Tree. The R-tree [5] is a balanced tree structure for indexing spatial objects
and is widely used. In an R-tree, Each tree node N contains up to B entries,
where B is determined by the disk block size. Therefore, the height H of an
R-tree indexing n objects is lower bounded by O(logB n). Each entry in a node
contains a pointer to an child node (or object) and the minimum bounding
rectangle (MBR) that surrounds it.

ACR-Tree: Constructing R-Trees Using Deep Reinforcement Learning 83

An R-tree greatly speeds up spatial queries by traversing tree nodes in a
top-down manner, during which subtrees whose MBRs do not intersect a range
query rectangle or are not promising to be in results of a kNN query can be
safely pruned.

Extensive studies [2,3,5,7,16] design heuristics to optimize the query perfor-
mance during dynamic data insertion. For example, the R*-tree [2] minimizes the
areas, overlaps and perimeters of node MBRs when choosing the node to insert
a new object, so that less tree nodes are expected to be accessed in queries.

R-Tree Building. When building an R-tree from scratch, instead of one-by-one
insertion, batch building (packing) methods are designed for reducing construc-
tion costs and achieving better tree structure. Existing methods consider full
packing, i.e., filling each node to its capacity if possible, with a 100% space
utilization.

Most of these methods take a bottom-up manner, i.e., packing every B
objects into one parent node, recursively until reaching the root (less than B child
nodes). For example, [8] applies Z-order and Hilbert-order on multi-dimensional
spatial objects, then sequentially packs each B ones. [14] adds a further step,
i.e., mapping the spatial points into a rank space, before sorting and packing
them, which guarantees a theoretical worst case bound on the query perfor-
mance. STR [12] first divides the objects into

√
n/B groups by the order of

their x-coordinates, then packs each B objects in each group by y-coordinates.
PR-tree [1] provides a worst-case query cost, which is asymptotically optimal,
by a recursive 6-partitioning process. These heuristic-based methods rely on the
uniformity of data distribution and can not achieve good performance on many
real-world datasets with skewness [4].

There are also top-down methods, i.e., partitioning a parent node into up to
B child nodes, recursively until no more than B objects in each as the leaf nodes.
TGS [4] uses a greedy partitioning strategy: repeatedly splitting the objects into
2 subsets, by a cut orthogonal to one of the d axes. TGS optimizes the area
sum of the 2 MBRs of resulting subsets, by enumerating all the candidate cuts.
TGS has better performance than others on most datasets. However, the greedy
strategy omits the long-term tree costs and may have a bad overall result.

Moreover, all these methods are limited by the full-packing constraint which
reduces the problem space but limits the built R-tree structure. Different from
them, we remove this constraint and utilize deep reinforcement learning to effec-
tively optimize the overall R-tree costs.

2.2 Deep Reinforcement Learning

Reinforcement learning (RL) is a powerful algorithm that can learn to make deci-
sions in a complex task (e.g., chess [17]), maximizing specific benefits, through
trial-and-error exploration. It has also been successfully applied to problems in
databases such as knob tuning [13] and join order selection [18].

The task (e.g., building an R-tree) is usually divided into multiple steps (e.g.,
node packing). In each step, the decision maker, a.k.a.agent, based on the current
state (e.g., the spatial distribution of data) takes an action (e.g., packing a node),

84 S. Huang et al.

then gets a reward (e.g., cost of the node) and moves to the next step. This is the
Markov decision process (MDP) into which we need to formulate the task in RL.
The agent learns a policy, i.e., action selection strategy, that maximizes the long-
term rewards (e.g., the total R-tree cost), through the exploration experiences.
When the task has a large searching space, RL usually incorporates deep learning
(DRL) of which the generalization ability enables it to effectively learn the policy
from limited exploration.

Actor-Critic is a class of DRL methods which is wildly used. It uses a deep
neural network (DNN) model to represent the policy (Actor) which can make
decisions (action). It uses another DNN model to estimate the long-term rewards
(Critic) which can help improving the Actor. PPO [15] is a popular policy gra-
dient method, which is a default choice at OpenAI1, that updates the policy
(i.e., Actor) through a “surrogate” objective function. Our method utilizes the
Actor-Critic framework and uses PPO to learn the Actor model.

3 Framework

We build an R-tree in a top-down manner because tree nodes closer to the root
have larger impact on query performance, which are better to be considered
first [4]. Specifically, first, we divide the n objects into x ≤ B groups, and each
group corresponds to a child node of the root node, i.e., partitioning the root
node. Next, it recursively partitions these child nodes until every node has no
more than B objects which become the leaf nodes. The key point is how to
partition each tree node. We first split the object set into 2 subsets by a cut
orthogonal to an axis, then recursively split the resulting subsets and finally get
x child nodes.

The main challenge in this R-tree building process is that the search space
of node partition (by multiple splitting operations) is huge. To make it practical
and efficient to implement, the traditional top-down method TGS [4] takes 2
settings:

Full-Packing Constraint. TGS enforces packing full-filled child nodes, i.e., a
node of abundant objects will be partitioned into the least possible nodes, with
each node except the last one filled up to its capacity. Under this constraint, the
possible choices of each split are limited to O(B), instead of O(n) when without
this constraint.

Greedy Split. TGS only considers how to optimize the current split operation,
i.e., from the O(B) candidates choosing the “best” split that minimizes the area
sum of the MBRs of 2 resulting subsets, which may be further split.

However, these 2 settings limit the R-tree building results as Sect. 1 and Fig. 1
show. To overcome these 2 limitations and search a better R-tree structure from
the larger space, we utilize Actor-Critic [9], a DRL algorithm and propose ACR-
tree (Actor-Critic R-tree), of which the framework is shown in Fig. 2. We use
tree-MDP (M1, Sect. 4.1, 4.2) to model the top-down R-tree building process,
which provides a framework to optimize the long-term tree costs. We design the
1 https://openai.com/.

ACR-Tree: Constructing R-Trees Using Deep Reinforcement Learning 85

Fig. 2. ACR-tree building framework

Actor-Critic networks as the agent (M2, Sect. 4.3) to make decisions in each
building step in the tree-MDP framework.

Now we introduce the workflow of building an ACR-tree. Given a set of spatial
objects, we build an R-tree through top-down node partitioning, beginning at
the root node containing all the objects. Each node partitioning is achieved by
a recursive object set splitting process consisting of multiple steps. In each step,
to split an object set, the spatial distribution of the objects is passed as the state
to the Actor-Critic agent. The agent first uses a grid-based model to encode the
spatial state, then uses a neural network model to embed the spatial features
and generates an action. The action can be a splitting operation, i.e., using a cut
orthogonal to an axis to split the objects into 2 subsets. It can also be a packing
operation, i.e., stopping splitting the current set which can fit in one child node
and packing it, and then getting a reward (e.g., area of the node MBR). When
all the nodes need no more partition, we built an R-tree.

To train the agent model, we repeatedly perform the above R-tree construc-
tion process and store the rewards into a memory pool, and use them as the feed-
back to update the parameters of both Actor and Critic models. We need to train
several Actor-Critic pairs, one for each level. The training is time-consuming and
we propose a bottom-up framework (M3, Sect. 5) for efficient model training.

4 Actor-Critic R-Tree

In this section, we first specifically show the R-tree building process without full-
packing constraint, which consists of multiple splitting operations (Sect. 4.1).
We then introduce the tree-MDP to model it (Sect. 4.2). Finally, we introduce
the Actor-Critic networks, which make the splitting decisions in the process
(Sect. 4.3).

4.1 Top-Down R-Tree Building Process

Algorithm 1 shows the top-down R-tree building framework, which is similar to
TGS [4]. Partitioning the objects O contained in a node into at most B subsets
(i.e., child nodes) (line 5) is the key point in this framework, which decides the

86 S. Huang et al.

Algorithm 1: CreateTree (Top-down R-tree Building)
Input: O: n objects data, B: node capacity

1 if n ≤ B then
2 entries = {〈MBR({o}), o〉|o ∈ O}
3 else
4 entries = {}
5 objectSubsets = NodePartition(O, B)
6 foreach Och ∈ objectSubsets do
7 Nch = CreateTree (Och, B)
8 Add 〈MBR(Och), Nch〉 into entries

9 return A pointer to entries

Algorithm 2: NodePartition
Input: O: n objects, P : max nodes, H: node height (%logB n& by default)
Output: Object subsets contained by each child nodes

1 if n ≤ BH−1 and (P = 1 or Pack(O, P,H)) then
2 return {O}
3 dim, pos,α = Cut(O, P,H)
4 sort O by the upper coordinates on dim, nl of which are below pos

5 Adjust nl to satisfy 0 < nl < n and % nl
BH−1 & + % n−nl

BH−1 & ≤ P

6 Take the first nl ones from O as Ol, the rest as Or

7 Pmin
l = % |Ol|

BH−1 &, Pmin
r = % |Or|

BH−1 &, Pextra = P − Pmin
l − Pmin

r

8 Pl = Pmin
l + (αPextra), Pr = P − Pl

9 return NodePartition(Ol, Pl, H) ∪ NodePartition(Or, Pr, H)

final tree structure. Different from TGS, in our ACR-tree, NodePartition allows
the child nodes to be not full packed, i.e., for any Och ∈ objectSubsets, |Och|
can be arbitrary but not exceeding BH−1 where H = #logB |O|$.

Algorithm 2 show the recursive NodePartition based on set splitting. P is
the maximum number of nodes to be finally packed (P = B at the beginning).
We do not enumerate all possible splits but choose a cut orthogonal to 1 of the
d dimensions to divide the object set (line 3). e.g., When choose the X-dim, it’s
a vertical line x = pos. We also specify a ratio α to divide the available nodes
P into Pl, Pr (line 7, 8) for the 2 resulting subsets Ol and Or respectively. Then
we call NodePartition on Ol and Or recursively to further split them, and merge
the results as the final set of child nodes (line 9). When the objects can fit in
one child node (n ≤ BH−1), we are forced to stop splitting and pack them if the
maximum node number P = 1, else we can choose whether to pack (line 1).

Example 1. Figure 3 shows the construction of a 3-level R-tree when B = 3. We
first partition the objects {o1−o11} inside the root node. We first use a cut x = c0
(yellow dash line) to split the objects into 2 subsets {o6−o11}, {o1−o5}, and use
ratio α = 0.5 to divide the maximum node number P0 = 3 into P1 = 1, P2 = 2.
Then we are forced to pack {o6−o11} as N1 since P1 = 1. We also choose to pack
{o1 − o5} as N2. Similarly, we can partition N1, N2 in level 2 and get N3 − N7,
all of which contain no more than 3 objects, and we finally get an R-tree.

ACR-Tree: Constructing R-Trees Using Deep Reinforcement Learning 87

Fig. 3. An example of top-down R-tree construction when B = 3

The selection of Cut and Pack in each step will influence the future splitting
and the final partitioning result. We utilize DRL to learn to make these splitting
decisions that minimize the long-term R-tree costs. We first need to model the
R-tree building process as an MDP.

4.2 Tree MDP Model

An MDP is usually sequential and chain-like, where we move from one state to
another each time we make a decision. For example, a state can be the current
board in a chess game [17]. However, the construction process of an R-tree is
tree-like and the general MDP is hard to model it. Therefore, we propose tree-
MDP, where a state (i.e., an object set to be split) can have several succeeding
states (i.e., the resulting 2 subsets), and the long-term rewards of a state also
depend on the succeeding actions and states only. Next, we specifically define
the tree-MDP model (also use Fig. 3 for explanation).

State. A state st is a set O of rectangles, with a maximum node number P and
a node height H. e.g., the construction begins at s0 = 〈{o1 − o11}, 3, 3〉.

Action. There are 2 types of action:

– Pack : Packing the current objects into a new child node, then (a) if H = 2
(leaf node), move to the terminal state ST , (b) else move to a new state
st′ of a non-leaf node with P ′ = B,H ′ = H − 1, which need to be further
partitioned.

– Cut : Using a cut (dim, pos,α) to split O and P into 2 succeeding states
stl , str .

88 S. Huang et al.

Fig. 4. Grid-based representation model Fig. 5. Hierarchical Actor-Critic network

For example, the action a0 on s0 specifies a cut (x = c0, the yellow dash line) to
divide O into {o6 − o11} and {o1 − o5}, and a ratio α0 = 0.5 to divide P0 = 3
into P1 = 1, P2 = 2, into 2 succeeding states s1, s2 respectively. The action a1
on s1 packs the current object set where |{o6 − o11}| ≤ 32 as a child node N1.

A policy π is a mapping from states to the action distribution, i.e., at ∼ π(st).

Reward. To optimize the overall R-tree cost (i.e., node areas), we define the
reward rt = r(st, at) as: (1) If at is Cut , then rt = 0; (2) If at is Pack yielding a
new child node N , then rt = area(N). e.g., r0 = 0, r1 = −area(N1).

We use a value function Vπ(st) to evaluate the long-term reward, i.e.,
rewards of all the successors (subtree) of state st, under specific policy π. For
terminal state Vπ(ST) = 0, else the value can be recursively defined as:

Vπ(st) = Eat∼π(st)

{
r(st, at) + γ1

[
Vπ(stl) + Vπ(str)

]
, at is Cut

r(st, at) + γ2Vπ(st′) , at is Pack
(1)

where γ1, γ2 are 2 discounting factors (e.g., 0.99) for better convergence.
We can observe that Vπ(st) is the discounted sum of node areas in the subtree

from st. Therefore, we need to choose an action maximizing Vπ(st). However, in
this tree construction process without full-packing constraint, the search space is
huge and we can only explore a small part. Therefore a traditional search-based
method (e.g., Monte Carlo tree search) may yield a bad result. Therefore, we
utilize the Actor-Critic algorithm, which uses neural network models to learn
from limited samples and generalizes to the unexplored space, thus is effective
for large searching space.

4.3 Actor-Critic Model

In order to make good decisions in the tree-MDP, the agent learns 2 models,
i.e., Actor to generate partitioning actions and Critic to estimate the long-term
R-tree costs. Note that only Actor is not enough and we need Critic to assist in
improving it. Moreover, a trained Critic model can also be utilized to accelerate
the training process, which will be introduced in Sect. 5.2.

Since the policies and value functions in various tree levels are different, we
learnH−1models (h = 2, ...,H) for partitioning nodes of various object set sizes,
i.e., model h for partitioning n ∈ (Bh−1, Bh] objects. Both of Actor and Critic

ACR-Tree: Constructing R-Trees Using Deep Reinforcement Learning 89

in level h take a state st = 〈Ot, Pt,Ht〉 (where Ht = h is constant) as input,
then Actor generates at ∼ π(st) and Critic estimates Vπ(st). The performance
strongly depends on the effectiveness of embedding the spatial distribution of
the rectangle set Ot. First, we use a grid-based model to represent Ot, which
can be better captured by a neural network model. Then, we use a hierarchical
convolutional network to aggregate the information into a hidden vector. Finally,
we use the vector to generate the outputs of Actor and Critic.

Grid-Based Representation Model. It’s hard for a model to learn the fea-
tures of spatial distribution from raw input Ot, i.e., coordinates of rectangle
data of variable O(n) size. Therefore, we propose to use a grid-based model for
representing each state, of which the spatial object distribution is importance for
partitioning decisions. Specifically, we divide the universal region of an object
set into W × W equal-size grids and use the statics of rectangles intersecting
each grid to represent a state.

If each object is a point, which is either contained by a grid or not, we can
simply use 1 integer for each grid to represent the number of points contained
by it. However, the possible cases of a rectangle intersecting a grid is not only 2.
Therefore we need to use more channels to represent the intersection of a grid
with the rectangle data. Specifically, the intersection of 2 rectangles is equivalent
to the intersection of their coordinate ranges on each dimension. As Fig. 4a shows,
the possible situations in how 2 coordinate ranges intersect is 4, thus there are 4d
cases for a rectangle data to intersect a grid in a d-dimensional space. Therefore,
when d = 2, we use a 16-dimensional vector for each grid, concatenating 1 extra
dimension representing Pt. As a result, as Fig. 4b shows, we can represent st by
a W ×W ×17 tensor st, which is similar to an image (H×W ×3 with 3 channels
of RGB).

Hierarchical Convolutional Network. Next, we aggregate the information
from all the grids of st into a hidden vector. We leverage the convolutional
neural network (CNN [11]) from the image processing field, which utilizes local
perception to effectively capture the spatial features and is usually a basic unit
to construct deep network structures such as AlexNet [10].

The network structure is shown in Fig. 5. We use L = log2 W layers of CNN
and Pooling modules to progressively reduce the W × W × C input feature
matrix into a 1×1×dh hidden embedding Z, aggregating the spatial information
from each location. Specifically, in each step i from L down to 1, we use a CNN
Conv3,3i with 3× 3 receptive field to extract spatially local correlation from the
feature map, followed by a Rectified Linear Unit (ReLU(x) = max(x, 0)) and a
MaxPooling layer (reducing each 2 × 2 grids into 1 of the maximum value).

Zi−1 = MaxPool2,2(ReLU(Conv3,3i (Zi))), i = L, ..., 1 (2)

where ZL = st,Zi ∈ R2i×2i×di and di increases as the matrix size shrinks since
it needs to embed more information. Note that Z = Z0 ∈ Rdh

embeds the global
information, extracted by the local perception level by level, which can be used

90 S. Huang et al.

to generate outputs of Actor and Critic. Also note that the size of the parameter
set is small since it does not depend on the number of grids W × W .

Critic Output. The Critic needs to predict the state value (a.k.a. return) as
V̂ π(st) ∈ R+

0 . We pass the embedding Z through a fully connected layer (FC)
followed by a ReLU to generate V̂ π(st).

V̂ π(st) = ReLU(FC1(Z)) ∈ R+
0 (3)

Actor Output. The Actor network needs to generate an action at. We first
generate the probability ppack of whether to Pack , by an FC layer and the
Sigmoid function σ, where σ(x) = 1

1+e−x ∈ (0, 1).

zpack = FC2(Z) ∈ R1, ppack = σ(zpack/τ) ∈ R (4)

where τ is a temperature parameter controlling the trade-off between exploration
and exploitation.

Similarly, we use another FC and the Softmax function (a high dimensional
extension of Sigmoid, also denoted as σ) to generate the probabilities pdim of
each of the d dimensions to be chosen as the cutting dimension (Fig. 5 shows a
2-dimensional case that pdim = {px, py}).

zdim = FC3(Z) ∈ Rd,pdim = σ(zdim/τ) ∈ Rd (5)

Finally, we generate the cut position pos and the ratio α of each dimension for
when it is chosen as the cut dimension. Since pos and α are both continuous val-
ues, we use Gaussian distribution N (µ,σ2) to model them. In the 2-dimensional
case (i.e., X and Y), µpos

x ,σpos
x are generated by:

zposx = FCpos
x (Z) ∈ R2, µpos

x ,σpos
x = Sigmoid(zposx) (6)

Similarly, we can use another 3 FC layers to generate the parameters of Gaussian
distributions for Y-axis and for α.

For each step t in the R-tree construction process (Algorithm 2), if the object
set can fit in one child node (line 1), we first generate ppack from st and sample
from the Bernoulli distribution Bern(ppack) the decision whether to pack. If not
(line 3), we choose a cut dimension from a categorical distribution of pdim, with
the cut position pos and the node assigning ratio α sampled from the associating
Gaussian distributions of that dimension.

5 Model Training

For building R-trees of H levels, we need to train H − 1 models. A naive way
is repeatedly building R-trees by these models, using the experiences (states,
actions, and rewards) to update the Critic model by minimizing Mean squared
error (MSE) loss and update the Actor model through PPO [15], a policy gra-
dient method. However, each time we build an R-tree, the experiences provide

ACR-Tree: Constructing R-Trees Using Deep Reinforcement Learning 91

unbalanced training samples (one for each decision step) for models of differ-
ent levels. For example, the model in level H uses O(B) (e.g., several dozens)
steps to partition the root node, while the model in level 2 takes O(BH−1) (e.g.,
dozens of thousands) steps to pack all the leaf nodes. Thus it’s time-consuming
to collect enough training samples for upper levels.

To accelerate this process, we propose to train the models level by level from
bottom to up, during which: (1) We can reuse the parameters of lower-level
models as a relatively good initialization of an upper-level model, and then fine-
tune it with fewer training rounds (Sect. 5.1). (2) In each level, we do not build
a whole subtree to get all the rewards. Instead, we only partition the current
node and use a short-cut method to access the rest rewards, i.e., not actually
partitioning the child nodes but estimating their rewards by the trained Critic
models (Sect. 5.2).

5.1 Bottom-Up Training Sharing

Intuitively, the tasks, i.e., partitioning objects into x ≤ B subsets, for Actor-
Critic models in various levels are related but different in some details (e.g., child
node capacity Bh−1 and long-term subtree costs). Thus we can reuse a trained
model in lower levels as a relatively good initialization of one in the next level.

As shown in Algorithm 3, we train the leaf-level (i.e., h = 2) model at first.
The training includes repeated exploration and updating rounds (line 3). In
each round, we first randomly take an object set O with |O| ∈ (B1, B2] and
perform NodePartition on it, on the policy represented by the current Actor θ2
(line 4). During this process we collect experiences of all these steps. Then we
calculate the long-term costs Vπ(st) (line 5), as a label of the Critic model and an
evaluation of the action generated by the Actor model. We use the experiences
and all the Vπ(st) to update these models by PPO [15] (line 6). After we finish
training the model in level 2, we use its parameters as an initialization of the
model in level 3 (line 7), which can be fine-tuned in fewer rounds to converge.
Proceeding upwards until the root level, we can have all H − 1 models trained.

The calculation of long-term rewards costs most of the time in this process.

5.2 Shortcut Long-Term Reward Calculation

According to Eq. 1, the long-term reward Vπ(st) of a state st can be calculated
as following: (1) In leaf level, we can simply cumulate the rewards of all the
succeeding steps from the collected experiences. e.g., in Level 1 of Fig. 3, Vπ(s4) =
r4 + γ1(r5 + r6). (2) In non-leaf levels, we need to further partition the child
nodes to calculate Vπ(st′). e.g., in Level 2 of Fig. 3, to calculate Vπ(s1) = r1 +
γ2{r3 + γ1[r4 + γ1(r5 + r6) + r7]}, we need to build the whole subtree from s3.
This process is slow, especially for levels near to root, and we propose a short-
cut method to avoid further partitions and directly approximate the long-term
rewards.

Intuitively, since we have trained the Critic models of lower levels, we can use
them to approximate the long-term reward by Vθ(st′) for each child node Ot′ in

92 S. Huang et al.

Algorithm 3: Bottom-Up Model Training
1 Random initialize Actor-Critic parameters θ2
2 for h = 2, ..., H do
3 for k = 0, 1, ... do
4 Choose an objects set O where |O| ∈ (Bh−1, Bh], perform NodePartition

on policy π(θh), get experiences {st, rt, at,π(at|st)}
5 Calculate Vt = Vπ(st) for each t according to Equation 1
6 UpdatePPO(θh,

{
st, Vt, at,π(at|st)

}
)

7 Copy parameters θh+1 = θh

O(1) time. We use these estimation results as a shortcut for calculating Vπ(st).
For example, in Level 2 of Fig. 3, to calculate Vπ(s1) = r1+γ2Vπ(s3), we use the
trained Critic model θ2 to approximate a Vθ2(s3), instead of further partitioning
O3. In this way, we can significantly accelerate the process of collecting training
samples while the training quality does not decay too much, since the estimated
long-term costs are relatively accurate.

6 Experiments

In this section, we conduct extensive experiments on real-world datasets to eval-
uate our method ACR and compare with the state-of-the-arts including R* [2],
HR [8], H4R [6], STR [12], TGS [4] and PR [1].

6.1 Experiment Setup

Implementation Details. We use the codes2 in [1] including the implementa-
tions of R*, HR, H4R, TGS, PR and we also implement STR. The proposed
R-tree building models are trained on NVIDIA GeForce RTX 3090 GPU, with
PyTorch 1.8. The query tests of the R-tree indices are implemented in C++, on
3.10 GHz Intel(R) Xeon(R) Gold 6242R CPU, with 256 GB RAM.

Fig. 6. Datasets Fig. 7. Range query performance on various
datasets

2 https://www.cse.ust.hk/~yike/prtree/.

ACR-Tree: Constructing R-Trees Using Deep Reinforcement Learning 93

Datasets. We use several real-world datasets from OSM3 including the build-
ings, represented by rectangles with 2-dimensional coordinates (i.e., longitudes
and latitudes), in various regions, as Fig. 6 shows.

R-Tree Parameters. In all the R-trees, we use 40 bytes for each entry in a
node, i.e., 32 B for 4 coordinates of an MBR and 8 B for a pointer referencing the
corresponding child node (or the ID of an object data in a leaf node). The block
size is 4 KB, thus the maximum entry number B of a node is 102. For the grid-
based representation (Sect. 4.3), we observe W = 64 has the best performance,
so we take it as the configuration through all the experiments.

Evaluation. We mainly focus on the number of node access, which is strongly
correlated to the I/O costs and processing time, for answering queries. For win-
dow query, we generate rectangular windows at random locations, with the height
and width randomly sampled from uniform distribution U(0, 2L) with various
scale L, and report the objects that intersect each query window. For kNN query,
we generate the query points at random locations.

6.2 Results

Window Query Processing. We generate window queries on various datasets
where L = 0.04◦ (around 400m in ground-distance). The number of queries on
each dataset is the region area dividing the query window area. In this setting,
the expected sum of the query result (i.e., accessed object data) sizes is equal to
the size of each dataset. Figure 7 shows the node access numbers of R-tree built
by different methods on various datasets. We make the following observations:

(1) TGS and STR perform better than the other traditional methods. This is
because (a) Sort-based methods HR and H4R can not well preserve the
spatial proximity into 1-dimensional order; (b) R* builds an R-tree through
one-by-one (i.e., online) insertion, which omits the global structure, thus
performs worse than the batch (i.e., offline) building algorithms; (c) PR
optimizes the worst-case performance and thus may not be the best on most
datasets. The node accesses of TGS are less than STR on all the datasets,
because TGS greedily optimizes the areas of nodes that are closer to the
root, which has a larger impact on query performance.

(2) ACR has the best performance on all the datasets, whose node accesses are
around 20% to 30% less than those of TGS. This is because the DRL-based
method (a) considers the long-term tree costs and thus performs better than
the greedy strategy, and (b) removes the full-packing constraint that limits
the R-tree structure and uses Actor-Critic model to effectively explore a
good result.

Varying Window Size and k. We evaluate the performance for range and
kNN queries on dataset AZ. The range queries are generated in the same way
3 http://download.geofabrik.de/.

94 S. Huang et al.

Fig. 8. Window que-
ries of various scales

Fig. 9. kNN queries
of various k

Fig. 10. Performance
under various settings

Fig. 11. Effect of
bottom-up training

as above, with the window size L varying from 100m to 1.6 km. The k of kNN
queries varies from 1 to 16.

The results are shown in Fig. 8 and 9 and we make the following observations:
(1) On all the query sets, the performance of ACR is significantly better than
all other methods. (2) The node accesses of all the methods decrease as the query
window size increases, because the number of queries decreases while the total
number of reported objects fixes, thus the total node accesses becomes fewer.
(3) For kNN queries, the node accesses increase when k increases, because we
need to traverse more nodes to find more nearby objects.

Index Size and Building Time. As Table 1 shows, the index size of ACR is
slightly larger than other methods. This is because the index size is proportional
to the node number. Traditional full-packing methods use the fewest nodes to
index all the objects while ACR allows nodes to not be full-filled and thus use
more nodes. ACR also spends more time to build an R-tree because (a) it is
implemented in Python which is much slower than C and (b) it passes the state
into a neural network to make the decision in each step. However, the time cost
is acceptable even for the largest dataset (i.e., CAL of over 6M objects) and the
space overhead is small thus ACR is practical for usage.

6.3 Self Studies

Effect of Removing Full-Packing Constraint and Long-Term Optimiza-
tion. To evaluate the effect of overcoming the 2 limitations of TGS as introduced
in Sect. 3, we train another model ACR-Greedy that builds R-trees without
the full-packing constraint but only optimizes the area sum of the child nodes
but not all the descendants (i.e., the whole subtree), by setting the level discount
factor γ2 = 0 (in Eq. 1). And we show the numbers of access of nodes relative to
TGS in various tree levels which depends on the node areas.

We can observe from Fig. 10 that: (1) ACR-Greedy has the better perfor-
mance than TGS. This shows the effect of removing the full-packing constraint,
which provides much more space for finding a better tree structure. (2) The node
access in the top level (Level 3) has ACR more than ACR-Greedy because
ACR-Greedy greedily optimizes the node partitioning of the current level.

ACR-Tree: Constructing R-Trees Using Deep Reinforcement Learning 95

Table 1. Index size and building time

Dataset Index size (MB) Building time (s)
Others ACR R* HR H4R STR TGS PR ACR

SD 2 3 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 21
WY 4 5 0.2 <0.1 <0.1 <0.1 0.1 0.1 85
UT 13 13 0.6 0.3 0.4 0.4 0.6 0.7 102
AZ 57 60 3 1 1 1 3 4 447
TX 158 168 7 3 3 3 11 13 1,075
CAL 244 254 12 5 5 5 18 21 1,601

However, ACR has much less node access in the rest 2 levels and the total
performance is better than ACR-Greedy. This is because ACR optimizes the
long-term tree costs, which can build an overall better R-tree.

Effect of Bottom-Up Training. To evaluate the effect of the bottom-up train-
ing framework along with the training sharing and the short-cut strategies, we
train models of 2 levels on WY in different ways and report the query perfor-
mance relative to TGS in Fig. 11. If we directly build the whole tree to train
the 2 models (Full), the time cost is high. If we first train the model of level 1,
of which the time cost is low, in the meanwhile sharing its parameters with the
level 2 model (Sharing), it achieves good performance in much less time. Then
we partition the tree nodes in level 2 and train the associating model. If we get
the long-term rewards Vπ(st) by further partitioning the child nodes (Full), the
speed is slow, while using the short-cut method to estimate Vπ(st) (Short-cut)
costs much less time.

7 Conclusion

In this paper, we propose ACR-tree a DRL-based R-tree building algorithm,
which overcomes 2 limitations of the existing methods. First, we propose tree-
MDP to model the long-term tree costs, which is omitted by the traditional meth-
ods. Second, we remove the full-packing constraint and use Actor-Critic models
to effectively explore the resulting huge search space, with a hierarchical CNN
structure for embedding the spatial distribution of objects to effectively estimate
the long-term costs and make the node partitioning decisions. We also propose
a bottom-up framework with 2 strategies, i.e., training-sharing and shortcut, to
efficiently train the models. Extensive experiments on real-world datasets show
that the ACR-tree significantly outperforms existing R-trees.

Acknowledgement. This paper was supported by National Natural Science Foun-
dation of China (61925205, 62232009), Huawei, TAL education, and Beijing National
Research Center for Information Science and Technology.

96 S. Huang et al.

References

1. Arge, L., Berg, M.D., Haverkort, H., Yi, K.: The priority R-tree: a practically
efficient and worst-case optimal R-tree. ACM Trans. Algorithms (TALG) 4(1),
1–30 (2008)

2. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient
and robust access method for points and rectangles. In: Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data, pp. 322–331
(1990)

3. Beckmann, N., Seeger, B.: A revised R*-tree in comparison with related index
structures. In: Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data, pp. 799–812 (2009)

4. García R, Y.J., López, M.A., Leutenegger, S.T.: A greedy algorithm for bulk load-
ing R-trees. In: Proceedings of the 6th ACM International Symposium on Advances
in geoGraphic Information Systems, pp. 163–164 (1998)

5. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of
Data, pp. 47–57 (1984)

6. Haverkort, H., Walderveen, F.V.: Four-dimensional Hilbert curves for R-trees. J.
Exp. Algorithmics (JEA) 16, 3-1 (2008)

7. Kamel, I., Faloutsos, C.: Hilbert R-tree: an improved R-tree using fractals. Tech-
nical report (1993)

8. Kamel, I., Faloutsos, C.: On packing R-trees. In: Proceedings of the Second Inter-
national Conference on Information and Knowledge Management, pp. 490–499
(1993)

9. Konda, V., Tsitsiklis, J.: Actor-critic algorithms. Adv. Neural Inf. Process. Syst.
12 (1999)

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

12. Leutenegger, S.T., Lopez, M.A., Edgington, J.: STR: a simple and efficient algo-
rithm for R-tree packing. In: Proceedings 13th International Conference on Data
Engineering, pp. 497–506. IEEE (1997)

13. Li, G., Zhou, X., Li, S., Gao, B.: QTune: a query-aware database tuning system
with deep reinforcement learning. Proc. VLDB Endow. 12(12), 2118–2130 (2019)

14. Qi, J., Tao, Y., Chang, Y., Zhang, R.: Theoretically optimal and empirically effi-
cient R-trees with strong parallelizability. Proc. VLDB Endow. 11(5), 621–634
(2018)

15. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

16. Sellis, T., Roussopoulos, N., Faloutsos, C.: The R+-tree: a dynamic index for multi-
dimensional objects. Technical report (1987)

17. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

18. Yu, X., Li, G., Chai, C., Tang, N.: Reinforcement learning with tree-LSTM for join
order selection. In: 2020 IEEE 36th International Conference on Data Engineering
(ICDE), pp. 1297–1308. IEEE (2020)

