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Abstract—The integration of large language model (LLM) and data management (DATA) is rapidly redefining both domains. In this
survey, we comprehensively review the bidirectional relationships. On the one hand, DATA4LLM, spanning large-scale data processing,
storage, and serving, feeds LLMs with diversity, redundant, high quality, and sanitized data (following the “IaaS” concept) required for
stages like pre-training, post-training, retrieval-augmented generation, and agentic workflows: (i) Data processing for LLMs includes
scalable acquisition, deduplication, filtering, selection, domain mixing, and synthetic augmentation; (ii) Data Storage for LLMs focuses
on efficient data and model formats, distributed and heterogeneous storage hierarchies, KV-cache management, and fault-tolerant
checkpointing; (iii) Data serving for LLMs tackles challenges in RAG (e.g., knowledge post-processing), LLM inference (e.g., prompt
compression, data provenance), and training strategies (e.g., data packing and shuffling). On the other hand, in LLM4DATA, LLMs are
emerging as general-purpose engines for data management. We review recent advances in (i) data manipulation, including automatic
data cleaning, integration, discovery; (ii) data analysis, covering reasoning over structured, semi-structured, and unstructured data, and
(iii) system optimization (e.g., configuration tuning, query rewriting, anomaly diagnosis), powered by LLM techniques like retrieval-
augmented prompting, task-specialized fine-tuning, and multi-agent collaboration.

Index Terms—Large Language Model, Data Management, DATA4LLM, LLM4DATA

✦

Data
Acquisition

Data
Deduplication

Data
Filtering

Data
Selection

Data	Storage Data	Serving

Data	JuicerHigh-Flyer Databricks

Distributed
Storage

Data	Processing
Offloading

model	data
Checkpointing

Offloading

RAG	data

KV	Cache

Data
Packing

RAG	data
Chunk

training	data

inference	data

Data	Manipulation Data	Analysis System	Optimization

LLM
4Da
ta

Document
Analysis

Semantic
Analysis

graph
data

NL2GQLData
Cleaning

Data
Integration

Data	Discovery
Program
Analysis

Configuration
Tuning

Query
Optimization

Anomaly	Diagnosis

Pre-Training

Continual
Pre-Training

SFT

Reinforcement	Learning

RAG

Agent

Example	Datasets	
across	LLM	stages

pro
mpt

RAG

train
age

nt

Pro
duc

t

Metho
d

Dat
a

Dat
a4L
LM

Object
Storage

Vector
Storage

Graph
Storage

Data
Sampling

Index

Dataverse

Insufficient	data

Noisy,	Redundant,
or	Sensitive	Data

Inadequate	Data
CompositionData	

Mixing

Data
Synthesis

pipelines

pipeline
orchestration

training	data

inference	data

vLLM Haystack

Langchain Llamalndex

3FS LanceDB

relation
data

un-
structured
data

origin
data

training
data

model
data

RAG
data

inference
data K-V

Trafilatura

Sanitization
Ethical,	De-identified
&	Harm-Free	data

Sufficient	&
Balanced
Volume	of
data

abundance
Logically	
Clear,

Instruction-
Guided	data

articulation
"IaaS"	
Concept	of	
LLM	Data

Rich,	Diverse,	Multi-
Dimension	Coverage

Inclusiveness

Snowflake

Data	Processing

NL2SQL
/	Code

Semantic
Analysis

Prompt
Compression

Data
Provenance

Knowledge
Rerank

Knowledge
Filtering

Fig. 1: Overview of LLM × DATA (with “IaaS” Concept).

1 INTRODUCTION

Large language models (LLMs1) have made remarkable
progress in both general domain applications (e.g., open-

domain question answering [332], cross-modal video summa-
rization [175], general-purpose code generation [191]) and

• ¶ Co-first authors with equal contributions.

1. We use LLMs to refer to billion-scale language models capable of
supporting general NLP tasks [472] or multimodal tasks [444], [322].

specific domain applications (e.g., biomedical literature anal-
ysis [394], legal document review [221], SQL generation for
business intelligence [250]). As shown in Figure 1, apart
from technical advances in LLMs [289], [64], [460], [301],
[241], [227], data management has emerged as a critical fac-
tor in unlocking LLMs’ full potential in these applications
(DATA4LLM). It includes efficient and scalable solutions
for data processing, storage, and serving across the LLM
lifecycle, as evidenced in recent academic studies [157], [285],
[254] and industry reports [327], [433], [69], [39]. Conversely,
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LLM-powered techniques are increasingly being adopted to
enhance data management tasks, such as data manipulation,
analysis, and system optimization (LLM4DATA).
DATA4LLM. Effective data management is fundamental to
the scalable development and deployment of LLMs. To illus-
trate this, we highlight representative scenarios where LLMs
depend on specialized techniques for data processing, storage,
and serving across various stages of the LLM lifecycle.
Example- 1⃝ Data Processing for LLMs. Processing a
large-scale training dataset (e.g., ∼4 TB multi-modal tokens
utilized in Qwen2.5-VL pretraining [70]) poses several chal-
lenges. First, acquiring diverse raw data (e.g., over 10,000
object categories for visual grounding) demands substantial
efforts in data collection (Section 2.3.1) and, in many cases,
data synthesis (Section 2.3.6). Second, preparing high-quality
training samples requires robust pre-processing, including rig-
orous data filtering (Section 2.3.3), along with dedicated eval-
uation approaches. Third, the overall performance of LLMs
depends heavily on an end-to-end pipeline that effectively
schedules and coordinates these processing tasks, especially
for the pretraining stage (Section 2.3.7).
Example- 2⃝ Data Storage for LLMs. Managing storage
for LLMs, spanning both training datasets (see Example- 1⃝)
and massive model parameters (e.g., DeepSeek-R1 with 671B
parameters [162]), poses significant challenges. First, large-
scale datasets must be partitioned and distributed across mul-
tiple storage nodes, introducing challenges in data placement
and consistency management (Section 2.4.2). Second, to sup-
port efficient LLM training and inference, these storage nodes
must deliver high I/O throughput for timely data transfer
to compute nodes (Section 2.4.4). Third, the massive size of
model parameters increases the risk of training interruptions,
necessitating robust fault tolerance mechanisms to recover
and resume training from intermediate states (Section 2.4.5).
Example– 3⃝ Data Serving for LLMs. Data serving plays
a critical role in selecting and preparing input data (e.g., the
task-specific prompts), directly affecting the quality of LLM’s
responses. Taking retrieval-augmented generation (RAG) as
an example, EyeLevel.ai [37] observed that when relying
solely on vector similarity, RAG accuracy declines notably
with 10,000-page documents, and the performance degrada-
tion can reach up to 12% with 100,000 pages (still fewer
than enterprise-scale datasets). Several challenges arise in this
context. First, the retrieved knowledge is typically noisy and
must be filtered and re-ranked to ensure relevance and factual
accuracy (Section 2.5.1). Second, the retrieved content is often
lengthy and exceeds the input capacity or comprehension
of LLMs, necessitating effective compression techniques to
preserve utility while improving performance (Section 2.5.2).

LLM4DATA. Conversely, various LLM-based techniques
can be leveraged to enhance core data management tasks,
including data manipulation, data analysis, and system-level
optimization. The following examples illustrate how LLMs
can be applied to improve these tasks in practice.

Example- 1⃝ LLM-based Data Manipulation. Data ma-
nipulation, including cleaning, integration, and discovery, is
critical for ensuring high-quality datasets. Traditional meth-
ods depend on rigid rules and domain-specific configurations,
requiring extensive manual efforts and struggling with com-

plex data samples [243], [78], [74]. For instance, standardizing
date formats (e.g., “Fri Jan 1st 10:36:28 2021” vs. “1996.07.10
AD at 15:08:56”) or resolving textual inconsistencies (e.g.,
“Monticello VA, Jasper” vs. “Monticello VAA”) typically
requires intricate programming scripts or handcrafted con-
straints [319], [432]. These approaches also struggle with
cross-row error detection, such as mismatched city-state-zip
entries. In contrast, LLMs can infer semantic similarities and
autonomously generate cleaning workflows to resolve such in-
consistencies without requiring explicit rule definitions [237],
[432], [454]. This semantic understanding enables LLMs to
adapt flexibly to diverse data issues and support more scalable
and context-aware data manipulation (Section 3.1).
Example- 2⃝ LLM-based Data Analysis. Data analysis
over heterogeneous sources, such as medical records and
transactional data, is essential in many real-world applica-
tions. Traditional deep learning models, while effective at per-
forming specific semantic-level analysis, struggle to generalize
across diverse data formats and task types. For instance, tasks
such as table extraction and table-based question answer-
ing across heterogeneous sources (e.g., relational tables and
knowledge graphs) often require the development of separate,
specialized models. This process is both resource-intensive
and difficult to scale. In contrast, LLMs offer a unified reason-
ing framework that leverages broad semantic understanding,
enabling them to support a wide range of analytical tasks
across various data modalities with greater flexibility and
reduced efforts for task-specific engineering (Section 3.2).
Example- 3⃝ LLM-based System Optimization. System
optimization entails configuring parameters (e.g., memory
settings) and monitoring runtime status (e.g., resource uti-
lization) to ensure optimal system performance. Traditional
approaches, such as manual tuning or deep learning-based
methods, are time-consuming and inefficient [474]. For in-
stance, methods of Bayesian Optimization (BO) or Reinforce-
ment Learning (RL) require numerous workload replays over
20 hours to identify promising configurations for a single
TPC-H workload [177]. Moreover, root cause analysis over
anomalies can be error-prone, particularly in multi-cause
scenarios where metrics are highly interdependent [490]. In
contrast, LLMs offer a new paradigm by integrating domain
knowledge (e.g., tuning manuals) and applying advanced
reasoning to instruct optimization. By leveraging retrieval-
augmented prompts, LLMs can efficiently identify root causes
or recommend precise configurations, enabling faster and
more accurate optimization in complex environments [489],
[248], [223] (Section 3.3).

1.1 Techniques of DATA4LLM

Characteristics of LLM Datasets (§ 2.2). As shown in
Figure 1, datasets (following the “IaaS” concept) play a criti-
cal role in enabling the desired capabilities at each LLM stage,
including (1) pre-training, (2) continual pre-training, (3) fine-
tuning, (4) reinforcement learning, (5) retrieval-augmented
generation (RAG), (6) LLM agents, and (7) evaluation. For
each stage, we separately analyze the characters of required
data (e.g., preferred formats and emphasized aspects within
IaaS) and the corresponding data techniques (see Table 1).
Data Processing for LLMs (§ 2.3). We introduce tech-
niques to prepare high-quality datasets for LLMs based on a
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series of processing steps.
• Data Acquisition. Data acquisition aims to (1) extract rele-
vant data (e.g., text and images) from noisy data sources with
certain structures (e.g., dynamically rendered web pages) [73],
[144], [76], [73], [6], [19], [30], [31], and (2) extract data from
complicated data sources (e.g., scanned or handwritten docu-
ments) with techniques such as complex layout analysis [202],
[18], [392], [180], [391], [407], [257], [326], [406].
• Data Deduplication. Data deduplication aims to identify du-
plicates in large-scale textual or multi-modal data, including
exact string matching [122], [299], hash identification [88],
[81], [122], [299], [347], [358], [207], [298], sample reweighing
[167] and embedding-based clustering [46], [385], [360].
• Data Filtering. We review data filtering methods at two
primary levels: (1) Sample-level filtering selects high-quality
and diverse samples using strategies like perplexity mea-
suring [383], [61], [288], influence assessment [254], [168],
clustering methods [45], [436], prompt-based scoring [411],
[264], [345], or mixes of these strategies [285], [84], [126]; (2)
Content-level filtering aims to remove undesirable or harmful
content from large-scale datasets, such as toxic language, per-
sonal identifiable information (PII), biased statements [268],
[275], and improper images and videos [437], [216], [390].
• Data Selection. Data selection aims to select sub-datasets
and evaluate their ability to accurately represent the target
distribution, especially when handling diverse datasets or
domains. There are methods like similarity-based data se-
lection [423], [421], [321], [80], optimization-based data selec-
tion [130], [417], [269], and model-based data selection [465].
• Data Mixing. Data mixing aims to effectively integrate
datasets from diverse domains without degrading quality or
destabilizing LLM performance. Key techniques include: (1)
Heuristic optimization, which empirically tunes data ratios
to enhance downstream performance. Examples include two-
stage mixing [139], source rebalancing [347], and entropy-
based weighting [152]; (2) Bilevel optimization, which for-
mulates data weighting as a nested optimization problem
to jointly balance training and validation objectives [302],
[135]; (3) Distributionally robust optimization, which enhances
resilience to worst-case domain shifts by emphasizing un-
derperforming or rare data domains [420], [278]; (4) Model-
based optimization, which builds predictive models to map
data mixing ratios to loss and task performance. Approaches
include linear predictive modeling (e.g., REGMIX [263]),
nonlinear function fitting [152], [439], [160], scaling law-based
estimation [323], and latent source attribution [251].
• Data Synthesis. We introduce data synthesis techniques de-
signed to address the following key challenges: (1) Mitigating
harmful characteristics such as toxicity or bias, which can be
inherited or amplified in synthetic data (e.g., program-aided
verification [496], semantic scoring [173], and multi-agent con-
sistency filtering [346]); (2) Balancing data utility and privacy,
through privacy-preserving synthetic rewriting and key-entity
obfuscation methods during the RAG stage [450]; (3) Gen-
erating diverse and logically consistent reasoning data using
approaches like formal proof-based validation [178], Chain-
of-Thought (CoT) branching and error correction [173], and
high-quality problem synthesis guided by structure and com-
plexity constraints [260], [442]; (4) Automating human-like
evaluation and feedback generation with LLM-based prefer-
ence modeling [71], judge models for response ranking [476],

and clustering-based diversity quantification [92].
•Data Pipelines. We first introduce frameworks that integrate
basic data processing operators and interfaces, serving as the
general foundation for building data pipelines [90], [305], [368].
Then we showcase typical pipelines with heuristic mechanisms
that properly arrange these operators (mainly for LLM pre-
training) [311], [236], [310]. Finally, we discuss strategies that
go beyond heuristic designs to further optimize these data
processing pipelines [91].
Data Storage for LLMs (§ 2.4). We review data storage
techniques for LLMs from the following main aspects.
• Data Formats. We review commonly-used dataset and
model data formats for LLMs. Dataset formats include
TFRecord [44], MindRecord [40] for multimodal data, and
tf.data.Dataset that can be directly fed into LLMs [43]. For
model data storage, there are formats like Pickle [13] and
ONNX [27].
• LLM Data Distribution. LLM data distribution aims to
store data across multiple storage nodes in a cluster, which
mainly serves for storing large-scale LLM training data.
Key approaches include (1) distributed storage systems like
JuiceFS [16] and 3FS [15]; and (2) heterogeneous storage
systems for model data (e.g., across GPUs and CPUs) [333],
[334], [337], [336], [435].
• LLM Data Organization. LLM data organization aims to
transform data into a format suitable for storage and retrieval
(mainly for the RAG stage) in heterogeneous forms. First,
for vector RAG, relevant techniques include content format-
ting [97], [172], [57], [89], chunking [480], embedding [94],
[24], [249], compression [50], [380], [381], [381]. Second, for
graph RAG, we discuss indexing techniques such as generating
textual summary for quick retrieval [127], [164], [136]. We
also introduce the systems that integrate these techniques,
including vector search engines [125], [26], [34], [25] and graph
storage platforms [292], [65], [1].
• LLM Data Movement. LLM data movement aims to improve
the speed of data movement across storage and compute
nodes. Relevant techniques include (1) caching data [219],
[161], [469]; (2) offloading data/operator to multiple devices
(e.g., across CPUs) [158], [67], [159], [468]; and (3) overlap-
ping of storage and computing in training stage [466], [479].
• LLM Model Data Fault Tolerance. LLM model data fault
tolerance aims to enhance the ability to recover from system
failures during model training. Relevant techniques include
(1) checkpointing [291], [194], [403], [389], which stores check-
points across a hierarchical storage system; and (2) redundant
computation, which leverages redundant states of LLM in
parallel training (e.g., pipeline parallelism [382], hybrid paral-
lelism [186], [147]) to support rapid fault recovery.
• KV Cache in LLMs. KV caching in LLMs is essential for
enabling fast and efficient inference by managing key-value
memory usage. Existing techniques include: (1) Memory lay-
out and allocation, which optimize the physical organization
of KV memory for high performance and scalability [220],
[428]; (2) Storage offloading, which places KV data on suitable
storage media to balance speed and capacity [197], [148]; (3)
KV compression, which reduces memory footprint through
techniques like encoding compression [265], [255], [150]; (4)
Efficient indexing, which accelerates KV access via specialized
retrieval structures [440], [478].
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Data Serving for LLMs (§ 2.5). We provide an overview of
data serving techniques tailored for LLMs from four aspects.
• LLM Data Shuffling. LLM data shuffling aims to deter-
mine the appropriate order of data application during stages
like LLM training and RAG. In the training stage, we
discuss data pruning techniques (e.g., sample-scoring-based
approaches [137], [66], model-state-based approaches [372],
[56], [416], [276]) and data-centric training strategies [123].
In the RAG stage, we discuss RAG knowledge filtering [280],
[114], [87] and re-ranking [128], [12], [318], [47].
• LLM Data Compression. LLM data compression aims to
compress the model’s input data to stay within the context
window limit or to facilitate model understanding. Relevant
techniques include: (1) RAG knowledge compression (e.g.,
rule-based [427], [348], [200] and model-based method [101],
[335]); and (2) prompt compression (e.g., metric-based [189],
[190] and model-based method [303], [293], [102]).
• LLM Training Data Packing. LLM training data packing
aims to ensure uniform sequence lengths in training in-
puts. Relevant techniques include: (1) short sequence inser-
tion [116], [259]; (2) optimizing sequence combination [218],
[316]; and (3) semantic-cased packing [364], [349]).
• LLM Inference Data Provenance. LLM inference data
provenance aims to ensure the factual consistency of LLM-
generated content. Relevant techniques include: (1) embed-
ding markers [482], [105], [256]; and (2) statistical prove-
nance [212]).

1.2 Techniques of LLM4DATA

LLM for Data Manipulation (§ 3.1). LLMs have been
increasingly applied to data manipulation tasks, with the goal
of preparing high-quality datasets for non-LLM applications
and enhancing data quality for downstream usage. Key areas
include data cleaning, data integration, and data discovery.
•Data Cleaning. This task involves standardizing and refining
datasets through a series of operations. We highlight three ma-
jor subtasks: (1) Data Standardization, which reformats data
samples using handcrafted standardization prompts [279], [63]
or agents that generate cleaning operations or pipelines [319],
[237]; (2) Data Error Processing, which identifies and corrects
noisy data via direct LLM prompting [103], [461], [432],
context-enrichment techniques [78], [74], or task-specific fine-
tuning for error handling [432]; (3) Data Imputation, which
fills in missing values using explicit imputation instructions
and retrieval-augmented generation (RAG) methods [129].
• Data Integration. This task focuses on identifying and rec-
onciling semantically related datasets across heterogeneous
sources. We review two core subtasks: (1) Entity Matching,
which aligns data entries referring to the same real-world
entity using structured prompts [308], [134], sometimes aug-
mented with predefined code-based reasoning strategies [430];
(2) Schema Matching, which establishes correspondences be-
tween schema elements using direct prompting [304], RAG
techniques incorporating multiple models [267], knowledge
graph-based methods [277], and agent-based workflow gen-
eration [320], [340].
• Data Discovery. This task aims to extract informative in-
sights from a dataset. We cover two key subtasks: (1) Data
Profiling, which generates descriptive metadata and sum-
maries using task-specific prompts [456], [58], and enhanced

with context via RAG techniques [72]; (2) Data Annota-
tion, which assigns semantic labels or types through various
prompting strategies [203], [204], [217], supported by classical
retrieval-based [408] and LLM-generated context [163].
LLM for Data Analysis (§ 3.2). LLMs significantly
improve the analytical capabilities across structured, semi-
structured, and unstructured data.
• Structured Data Analysis. For relational data analysis, nat-
ural language interfaces allow users to write high-level ques-
tions instead of SQL/Python code [452]. Multi-step QA
frameworks (e.g., TAPERA [475] and ReAcTable [464])
decompose complex queries, while some end-to-end solu-
tions fine-tune LLMs specifically for tabular tasks (e.g.,
TableGPT [240]), apply content retrieval (e.g., CABI-
NET [306]) or convert tables into images for analysis (e.g.,
Table-LLaVA [477]). For graph data, LLMs facilitate seman-
tic queries with GQL generation (e.g., R3-NL2GQL [493]) and
knowledge-aware QA by retrieving or reasoning over relevant
subgraphs [424].
• Semi-Structured Data Analysis. Meanwhile, handling semi-
structured data (e.g., JSON and spreadsheets) remains chal-
lenging. Recent benchmarks (e.g., TEMPTABQA [165] and
SPREADSHEETBENCH [281]) reveal substantial perfor-
mance gaps.
• Unstructured Data Analysis. Finally, unstructured data
analysis leverages LLMs to address document and program
analysis tasks. For document analysis, OCR-dependent ap-
proaches involve performing OCR on document images fol-
lowed by the integration of textual, layout, and visual features
for reasoning (e.g., UDOP [376] and DocFormerV2 [62]).
OCR-free methods directly generate the answer with
end-to-end multimodal LLMs (e.g., Pix2Struct [225] and
DUBLIN [49]). For program analysis, LLMs could serve as
vulnerability detection tools using program analysis based
training (e.g., PDBER [271]) or case-driven prompt engineer-
ing (e.g., VUL-GPT [270]). For program related analysis,
LLMs could summarize repositories (e.g., SCLA [284]) or
serve as a repository-level code completer (e.g., RepoFu-
sion [357]) using their powerful semantic reasoning abilities.
LLM for Data System Optimization (§ 3.3). LLMs
equipped with advanced reasoning and code generation ca-
pabilities have been increasingly adopted in core system
optimization tasks. These include: (1) configuration tuning
(identifying optimal system settings); (2) query optimization
(rewriting or refining input queries for performance gains);
and (3) anomaly diagnosis (analyzing system issues to ensure
performance reliability).
• Configuration Tuning. This task leverages LLMs to de-
termine effective configuration parameters for improved sys-
tem performance through: (1) Prompt engineering tailored
to tuning tasks, using both manually crafted [243], [132],
[156] and automatically generated prompts [491], [473]; (2)
Retrieval-augmented generation (RAG), which incorporates
prior tuning experiences during offline knowledge base prepa-
ration [223] and online knowledge retrieval [96]; (3) Objective-
aligned tuning, which is enhanced through targeted training
techniques [491], [177].
• Query Optimization. This task utilizes LLMs to rewrite
queries or improve execution plans by: (1) Designing
optimization-oriented prompts that include explicit guid-
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Fig. 2: Example Data Characteristics across LLM Stages - (a) Pretraining data [109], [224], (b) Continual
pre-training [111], (c) SFT [447], (d) Reinforcement learning [429], [162], [253], (e) RAG [415], (f) Agent [396], [351].

ance [363], [491], [438] and in-context examples [248]; (2)
Enriching optimization knowledge using RAG techniques, in-
cluding LLM-generated and hybrid retrieval strategies [369];
(3) Enhancing optimization performance through task-
specific training [53], [196], [438].
• Anomaly Diagnosis. This task involves identifying the root
causes of anomalies and suggesting effective solutions via:
(1) Direct LLM prompting based on detailed diagnosis con-
text [155]; (2) RAG-based enrichment using relevant historical
diagnosis experience [490], [425]; (3) Multi-agent collabora-
tion mechanisms for comprehensive diagnosis [490], [359].

1.3 Comparison with Existing Surveys
Different from existing LLM and data management sur-
veys [405], [55], [86], [398], [272], [274], [374], [488], our survey
offers a comprehensive and detailed overview of the key inter-
sections between LLMs and data management, highlighting
how they can mutually benefit from each other. We uniquely
position our work at the intersection of data for LLMs (e.g.,
how to acquire, process, store, and serve LLM data) and
LLMs for data (e.g., how LLMs can be leveraged to enhance
data management tasks).
• We propose the IaaS concept as a principled lens to as-
sess LLM dataset quality. The IaaS concept identifies four
essential dimensions, including inclusiveness, abundance, ar-
ticulation, and sanitization. This concept is promising to
offers an evaluative criteria for guiding data management
and understanding its impact across the LLM development
lifecycle (see Section 2.1).
• We investigate the unique characteristics of data across
different LLM development stages (Figure 2), and provide a

systematic overview of the associated challenges and tech-
niques in data processing, storage, and serving (Table 1). In
contrast, prior surveys [405], [55], [86] primarily center on the
pre-training stage without covering the full LLM lifecycle like
supervised fine-tuning (SFT), retrieval-augmented generation
(RAG), and agent-based applications.
• We provide a lifecycle-based taxonomy of DATA4LLM,
introducing key tasks in data processing, storage, and serving.
For each task, we summarize representative methodologies,
discuss their design principles, and analyze their strengths
and limitations. In comparison, [405] focuses on deduplication
and filtering, [55] emphasizes data selection, and [373] reviews
data annotation strategies, none of which offer a systematic
perspective across the data management pipeline.
•We introduce recent advances in LLM4DATA, outlining key
components of LLM-driven data optimization. While earlier
work [488] has investigated the application of classical ma-
chine learning in data management, it largely neglects the
distinctive strengths and limitations of LLMs, particularly
in manipulating data for non-LLM tasks, processing semi-
structured and unstructured data, and enabling system-level
optimizations.
• We highlight open challenges and future directions from
both ends: (1) improving data management techniques to
meet practical LLM training and deployment needs (e.g.,
efficient data evaluation, scalable multi-modal storage), and
(2) enhancing LLMs’ ability (e.g., private knowledge under-
standing, informative representation for non-sequential and
non-textual data) to perform complex data management tasks
across diverse real-world scenarios.
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2 Data Management for LLM (DATA4LLM)
2.1 “IaaS” Concept of LLM Data
Based on our investigation of over 400 papers 2, we introduce
the IaaS concept for evaluating the quality of LLM datasets.
(1) Inclusiveness: LLMs require data with broad and diverse
coverage across multiple dimensions, including domains (e.g.,
general knowledge, specialized fields like finance, medicine,
math [98], and physics [233]), task types (e.g., question an-
swering, summarization, code completion [401], [290], [353],
[45], [436]), data sources (e.g., GitHub, Wikipedia [149], [11],
[330], [347]), languages [93], [347], expression styles (e.g.,
academic, casual, formal [282], [470]), and data modalities
(e.g., text [149], [11], images [145], [185], videos [437], [216],
[390], tables [330]).
(2) abundance: LLMs require data with appropriate volume
and balanced composition to prevent overfitting on homo-
geneous data. Specifically, abundance of data involves: (i)
constructing well-balanced datasets during pre-training [139],
[302], [420], [263], (ii) adjusting data ratios to align with tar-
get applications during fine-tuning [278], [135], and (iii) con-
tinually enhancing domain-specific capabilities while main-
taining acceptable general performance degradation in contin-
ual pre-training [323], [160]. Notably, the strength of LLMs lies
not only in large-scale data [282], [481], [11], [330], [149], [347],
but also in constructing purposefully balanced datasets, which
can further accelerate training and reduce computational cost.
(3) articulation: LLMs require data that exhibit strong articu-
lation, including three key aspects: (i) the data should be well-
formatted (e.g., proper punctuation and capitalization [90]),
clean (free from duplicates, typos, and irrelevant content such
as spam or gibberish [90]), and self-contained, featuring clear,
fluent, and unambiguous language [282], [470], (ii) the data
should be instructive [178], [179], [98], i.e., offering sufficient
context, guidance, and intermediate explanations that help
the model connect questions to relevant background knowl-
edge and understand the reasoning process. (iii) the data
should involve step-by-step reasoning[230], [442], [346], [173],
[496], such that enhancing the LLMs’ reasoning capabilities
by decomposing complex tasks into smaller, interpretable
steps.
(4) Sanitization: LLMs require data to be sanitized, meaning
it is rigorously controlled and filtered to remove harmful ele-
ments while maintaining inclusiveness and neutrality. This in-
volves four critical dimensions: (i) Privacy compliance, which
requires the exclusion of personally identifiable information
(e.g., ID numbers, phone numbers), inferred social relation-
ships, and geolocation-related metadata [450], [268], [275]; (ii)
Toxicity-free content, ensuring the complete removal of hate
speech, incitement to violence, and psychologically harmful
language, as well as eliminating any discriminatory or aggres-
sive semantic constructs [296]; (iii) Ethical consistency, which
prohibits the presence of extremist ideologies, instructions for
illegal activities, and stereotype-reinforcing narratives that
may cause social harm [345], [360], [296]; and (iv) Risk
mitigation, filtering out unverified medical claims, politically
misleading information, and culturally insensitive expressions
to prevent misinformation and value misalignment. Sanitized
data must maintain a neutral tone and adopt an inclusive

2. https://github.com/weAIDB/awesome-data-llm

contextual framework, serving as a critical foundation for
building safe LLMs [345], [360].

2.2 Data Characters across LLM Stages
Next we specifically discuss the data characteristics across
different LLM stages, together with the distinct techniques
for data processing, storage, and serving (Table 1).
Data for Pretraining. In the pre-training stage, LLMs
rely on TB-scale, diverse datasets to acquire broad language
and even cross-modality understanding capabilities, while
reducing the risk of overfitting. These datasets are typically
sourced from a wide range of domains and formats, including
web crawls (e.g., HTML pages and WARC files [11]), open-
source code repositories (e.g., raw source code files with meta-
data [14]), books (e.g., plain text or EPUB formats [497]), aca-
demic papers (e.g., LaTeX source or PDF-converted text [2]),
and interleaved image-text corpora (e.g., aligned captioned
images in JSON or WebDataset format [224]).
Data for Continual Pre-training. Continual pre-training
(or continued pre-training) typically involves datasets con-
taining millions to billions of tokens, which are often over 100
times smaller than those used in the initial pre-training stage.
The primary objective is to fill knowledge gaps and adapt
the model to specific domains. Representative domain-specific
datasets are like: (1) Finance: BBT-FinCorpus [273], a large-
scale and diverse financial datasets comprising approximately
300 GB of text; and (2) Healthcare: Medical-pt [429], a
Chinese-English medical dataset containing 360,000 entries
curated from medical encyclopedias.
Data for Supervised Fine-Tuning (SFT). Unlike pre-
training, SFT relies on data presented in the form of
instruction-response pairs, where the response includes not
only the correct answer but also guidelines on tone, style, and
reasoning steps to ensure user-friendly output.

The SFT stage typically involves much smaller datasets
compared to pre-training. These datasets often consist of
thousands to millions of labeled examples, with each example
carefully crafted to guide the model in learning a specific,
narrower set of tasks. For instance, in Figure 2, (1) the summa-
rization task constructs prompts using problem descriptions
and summarization objects; (2) closed QA using questions and
corresponding knowledge texts; (3) open QA tasks using only
questions without knowledge text; and (4) captioning tasks
using task descriptions and images. These prompts are paired
with unique responses for model finetuning.

The composition of SFT datasets varies based on the
application scenarios:
(1) General Instruction Following: For LLMs as general-
purpose chatbots, SFT data include instructions for various
daily tasks. Databricks-dolly-15K [110] is a corpus containing
over 15,000 records. It encompasses seven types of tasks,
including creative writing, closed QA, open QA, summa-
rization, information extraction, classification, brainstorming.
This dataset is designed to enhance LLM to better adapt to
specialized outputs that align with human-style requirements
across diverse tasks. For example, in text summarization, it
provides concise summary statements; whereas in text organi-
zation tasks, it structures outputs in table-of-contents format.
(2) Specific Domain Usage: For models specialized in
fields such as law, finance, or medicine, the SFT data focuses
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TABLE 1: Technique Comparison - Data Processing, Storage, and Serving Techniques for Different LLM Stages. “N/A”
indicates that no relevant work has been reported yet, although the corresponding techniques could potentially be applied.

Stage Pre-training /
Incremental Pre-training

Supervised
Fine-Tuning

Reinforcement
Learning Inference RAG Evaluation

Acquisition ✓ ✓ ✓ N/A ✓ ✓
De-duplication ✓ ✓ N/A N/A N/A N/A

Filtering ✓ ✓ N/A N/A × N/A
Selection ✓ ✓ N/A N/A N/A N/A
Mixing ✓ ✓ × N/A × ×

Data
Processing

Synthesis ✓ ✓ ✓ N/A ✓ ✓

Distribution Distributed File System
Model Offload (GPUs, CPUs)

Model Offload
(GPUs, CPUs)

Model Offload
(GPUs, CPUs)

Model Offload
(GPUs, CPUs)

Model Offload
(GPUs, CPUs)

Model Offload
(GPUs, CPUs)

Transmission
Caching Data Placement

Parallelized Pipeline
Data/Operator Offloading (CPUs)

Parallelized Pipeline
Data/Operator Offloading (CPUs)

Parallelized Pipeline
Data/Operator Offloading (CPUs) × N/A N/A

Fault Tolerance ✓ ✓ ✓ × × ×Data
Storage

KV Cache N/A N/A N/A
Cache Space Management

KV Indexing
KV Placement
KV Shrinking

KV Placement
KV Shrinking N/A

Selection Sample-Scoring-Based
Model-State-Based

Model-State-Based
Experience-Based N/A ×

SLM-Based Filtering
LLM-Based Filtering

Metric-Based Re-ranking
LLM-Based Re-ranking

×

Compression N/A N/A N/A ✓ ✓ N/A
Packing ✓ ✓ ✓ × × ×

Data
Serving

Provenance × × × ✓ N/A ×
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Fig. 3: Example LLM Data Distributions - (a) General Domain (SFT)[110], (b) General Domain (Eval) [244], (c) Law
(SFT)[447], (d) Law (Eval)[115], (e) Code (SFT) [294], (f) Code (Eval)[208].

on tasks pertinent to these fields. For example, DISC-Law-
SFT [447] is a legal SFT dataset containing 295k data en-
tries from various legal scenarios, such as legal information
extraction (32k), legal judgment prediction (16k), legal event
detection (27k), and legal question-answering (93k). Similarly,
Medical-SFT [429] is a medical SFT dataset (totaling 2,060k
pieces), composed of medical inquikry data (790k), online
medical encyclopedia QA data (360k), English medical in-
quiry data (110k), medical knowledge graph QA data (79k).
For tasks such as legal question-answering and legal judgment
prediction, the data is structured as triplets, comprising the
prompt, response, and supporting reference information (e.g.,
legal provisions, case-based evidence, or regulatory docu-
ments). For the remaining tasks, they all take the form of
instruction pairs composed of prompt and response.

Data for Reinforcement Learning (RL). RL is generally
divided into two types: one is RLHF (Reinforcement Learning
with Human Feedback), and the other is Reasoning-oriented
Reinforcement Learning (RoRL).
(1) RLHF: RLHF data is typically smaller than SFT data
(e.g., thousands to dozens of millions of data samples), which

involve more complex data annotations. Specifically, anno-
tators compare multiple candidate responses to the same
instruction and rank them according to human preference
(e.g., levels from most helpful to least helpful). Collecting
these preference pairs or rankings is more time-consuming
than constructing instruction-response pairs in SFT.

In the general domain, UltraFeedback [113] consists of
64,000 samples. For each sample, different models are used
to generate 4 responses for each prompt (totaling 256,000
responses). GPT-4 is then employed to generate feedback
for these four responses, which is used to help LLMs to
generate outputs that are in line with human standards and
appropriateness.

In specific domains such as healthcare, Medical-
RLHF [429] has 4,000 random questions from a Chinese
medical dialogue dataset. Each question is paired with a well-
organized answer (i.e., the human doctor’s reply) and a weaker
answer from Llama-based model fine-tuned over synthesized
QA samples. These labeled data are used to train a reward
model. During the training of the LLM, the reward model
provides feedback based on the LLM’s answers, guiding the
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training process towards generating high-quality responses.
(2) RoRL: Compared to the complex annotated data in
RLHF, RoRL allows the model to discover the best reasoning
approach on its own through the correctness of the reward
model. Specifically, it focuses on tasks requiring long-term
reasoning, such as mathematical, coding, and logical designing
experiments [162]. Under the premise of providing feedback
on whether the answer is correct or not, algorithm such as the
Group Relative Policy Optimization (GRPO) [162] and long-
CoT RL [377] are adopted to train the model to independently
discover the optimal problem-solving steps and converge.
Data for Retrieval-Augmented Generation (RAG).
The RAG stage differs from above training stages, which
involves large-scale dataset (reference corpus) for LLMs to
retrieve from during inference. In this stage, data must be
strictly reviewed to ensure authenticity and validity, while
dynamic data requires real-time updates. The domain of
RAG datasets varies depending on the specific application
scenarios. For instance, (1) in the medicine-specific LLM
application (Medical-Graph-RAG), MIMIC-IV is used as the
RAG dataset [415]. This dataset contains data from over
65,000 ICU patients and more than 200,000 patients treated
in emergency departments; (2) in the legal field, the RAG
knowledge base used by DISC-LawLLM [447] contains more
than 800 national and local laws, regulations, and rules, as
well as 24,000 legal-related exam questions. Besides, RAG
data can include users’ historical conversation records or
personal information, in order to build a user-personalized
LLM [350], [451], [453].
Data for LLM Evaluation. Suitable evaluation datasets are
essential for evaluating the performance of LLMs. They pro-
vide representative data samples that reflect different aspects
of an LLM’s capabilities.

In the general domain, the MMMU benchmark is used
to assess the performance of LLMs across major multi-modal
tasks in six key disciplines, covering 30 subjects and 183 sub-
fields. It is built from 11,500 carefully curated questions and
effectively tests models’ perception, knowledge, and reasoning
abilities [448].

In specific domains, typical evaluation datasets include
those in coding, healthcare and law domains: (1) OpenAI’s
HumanEval dataset includes 164 programming problems,
complete with function signatures, docstrings, bodies, and
multiple unit tests. These problems are handcrafted to ensure
they are not part of the training sets used for code generation
models [95]; (2) MedQA [198] contains a large number of
medical exam questions from various regions, totaling 61,097
questions; (3) LexEval [232] constructs 23 evaluation tasks
based on a legal cognitive classification framework, covering
different aspects of legal knowledge, with at least 100 evalua-
tion samples for each task.
Data for LLM Agents. Beyond vanilla LLMs, agents strive
for more advanced capabilities such as planning, tool or-
chestration and multi-turn dialogue capability [262]. These
capabilities impose higher requirements on the training data
for LLMs. First, many studies [396] aim to enhance planning
abilities through interaction trajectory data, which refers to
a sequence of records generated during the interaction be-
tween the agent and the environment, typically represented as
(instruction i, action a1, observation o1, . . . , action an). Ul-

TABLE 2: Data Acquisition for LLMs.

Method Objective Solution Tools

Website
Crawling

HTML Textual
Content Extraction

Rule-based Trafilatura [73]
Rule-based BET [144]
ML-based Dragnet [313]

Automate Browser
Interactions

HTML parsing Beautiful Soup [6]
Control web driver Selenium [19]

Wrap high-level API Playwright [30]
DevTools protocol Puppeteer [31]

Layout-based
Content Extraction
from Handwritten
or Non-text Data

Model pipeline PaddleOCR
Model pipeline MinerU [392]

Multimodal LLM GOT2.0 [407]
Multimodal LLM Fox [257]

Entity
recognition
& linking

New Sample Derivation Bi-Transformer ReFinED [68]
Translation Consistency Seq2seq Framework

using References AACTRANS [215]
Text-Image Integration Multimodal LLM UMIE [367]

traInteract [446] takes the instruction as the root node, and
uses both the correct actions and their corresponding incor-
rect actions as nodes to construct a preference trajectory
tree, enabling the agent to learn the human preference of
different actions. Second, other studies focus on enhancing
the agent’s tool usage capabilities using tool usage data. For
instance, AutoTools [351] fine-tunes models on tool data that
is labeled with special tags, such as <python>code</python>,
thereby grounding language in concrete tool invocations.
Third, to enhance the agent’s multi-turn dialogue capability,
UltraChat [117] employs an additional LLM to simulate user
instructions and conversational content, thereby collecting
multi-turn dialogue data.

2.3 Data Processing for LLM
2.3.1 Data Acquisition
Unlike classic machine learning, which primarily relies on
collecting labeled data within a specific domain for supervised
training (e.g., data for sentiment analysis and sentence sim-
ilarity estimation), data acquisition for LLMs typically (1)
relies on large-scale web scraping to collect extensive data
across diverse domains for unsupervised pretraining and (2)
employs techniques such as layout analysis and entity linking
to extract additional data from the collected content.

Principles

Unlike classic ML data acquisition, LLMs rely heavily
on large-scale web scraping to ensure broad coverage
and robust generalization. The main challenge is ex-
tracting high-quality textual content, often aided by
layout-based and entity-linking methods. Managing
time and resource efficiency at scale remains vital.

Data Sources. The data is gathered from two primary
sources:
(1) Public Data, often freely available under open licenses,
include resources such as webpages [11], books [497], and
publicly accessible code repositories [214].
• Webpage sources provide extensive pre-processed website
content, such as 1.56T english text from crawled websites in
C4 [331], 6.6B multilingual pages in mC4 [431], 6.3 trillion
tokens of multilingual pages in CulturaX [297].
• Digitized books supply structured, high-quality text, such
as over 75,000 eBooks in Project Gutenberg [38], over two
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million free ebooks in Open Library [28], and film-aigned book
descriptions in BookCorpus [497]).
• Code repositories (e.g., GitHub [14], GitLab [20], Bit-
bucket [7]) offer abundant programming data that can fa-
cilitate code search and analysis tasks, such as CodeSearch-
Net [181] with 2M (comment, code) pairs.
(2) Private Data involve proprietary or confidential in-
formation not publicly available, such as internal company
documents, customer support logs, application event logs,
subscriber-only content (e.g., premium news articles, licensed
scientific databases). Collecting this data requires careful
attention to ethical and legal constraints (e.g., GDPR,
CCPA) and mandates removing sensitive details (e.g., em-
ploying anonymization or pseudonymization) and using secure
pipelines (e.g., CI/CD systems) with encryption and role-
based access controls. For instance, proprietary codebases and
user-generated content (chat logs, Q&A sessions) must be
gathered under secure processes to maintain confidentiality.
Data Acquisition Methods. As shown in Table 2, there are
three main techniques for data acquisition, including website
crawling, layout analysis, and entity recognition and linking.
(1) Website Crawling. Most data are obtained through
website crawling, which aims to extract textual content from
crawled HTML files or multimodal image-text pairs using
various extraction tools and browser automation assistants.

Generally, we first parse the raw HTML to separate

meaningful textual content from boilerplate elements. Second,
since typical extraneous components (e.g., headers, footers,
advertisements, sidebars) often contribute little to the data
value (e.g., for LLM training), we execute scripts (using CSS
selectors or XPath queries) to identify and extract critical
elements like article text, headlines, dates, and author bylines.
Third, once the relevant text has been scraped, we store it in
structured format such as JSON, CSV, database (see data
storage in Section 2.4) for further processing. Specifically, for
image elements encountered in HTML files, the image source
URL is recorded, and the content of the alt attribute within
the <img> tag is extracted and utilized as the corresponding
image’s textual caption.
• Rule-based Crawling. Most existing tools use heuristic rule-
based matching algorithm. Trafilatura [73] is a heuristic
algorithm based on hand-crafted rules (e.g., match HTML
DOM nodes with the class equal to “navbar” to filter the
navigation bar). BET [144] employs the cumulative HTML
tag distribution to find the largest region of fewest tags per
text and extracts the corresponding text as the main content.
• ML-based Crawling. Since many website regions cannot be
easily classified by rules, some works [76], [73] design a HTML
tag classifier to judge whether a DOM node contains textual
content, where they adopt L2 regularized logistic regression
that inputs text density features and word frequencies in ”id“
and ”class“ attributes and outputs the probability that a given
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node contains textual useful content.
• Auxiliary Tools. Moreover, some auxiliary tools integrate
user-friendly APIs for operating and interacting with HTML
DOM trees. Beautiful Soup [6] is widely used to parse the
raw HTML in Python. Selenium [19] automates browser
actions and handles dynamic pages by controlling a web
driver that communicates with the browser. Playwright [30]
provides a high-level API to automate browser tasks while
Puppeteer [31] communicates directly with the browser using
the DevTools Protocol, allowing for headless browser interac-
tions (e.g., in JavaScript-heavy websites).
(2) Layout Analysis. Layout analysis focuses on extracting
textual content from handwritten or non-textual data (e.g.,
from the crawled ones), which can contain valuable infor-
mation and require advanced layout analysis techniques for
effective extraction. Existing methods include pipeline-based
and end-to-end approaches.
• Layout Analysis Pipelines. Intuitively, many works adopt
OCR technology (e.g., Tesseract [202]) to convert raw data
(e.g., scanned books) into machine-readable formats [18], [392]
in a pipeline manner, which consist of multiple small models.
PaddleOCR [18] passes an image through a Layout Analysis
model, which divides the image into different regions such as
text, tables, and formulas for separate processing. The table
area is sent to the Form Recognition module for structured
recognition, and the text areas and formulas are input to
the OCR engine for text recognition. Finally, the Layout
Restoration module reconstructs all the regions in textual
format using heuristic rules based on the relative location
information of different extracted regions.

Similarly, MinerU [392] works in a pipeline manner.
It fine-tunes LayoutLMv3 [180] for layout detection and
YOLOv8 [391] for formula detection to improve the system’s
generalization (handling a wider range of document types).
The detected data are kept in markdown or JSON format.
• End-to-End Models. End-to-End layout analysis refers to
adopt multi-modal LLMs to conduct end-to-end text ac-
quisition. For instance, GOT2.0 [407] is a acquisition model
composed of (i) a high-compression encoder that transforms
the image to tokens, (ii) a long-context decoder that outputs
the corresponding OCR results, and (iii) a linear layer acting
as the connector to map the channel dimension between the
vision encoder and the language decoder. Another exam-
ple is Fox [257], which employs the natural content-aware
CLIP-ViT [326] and the artificial content-aware Vary [406]
as two vision encoders, enabling the model to perform fine-
grained interactions and multi-page document understand-
ing. The end-to-end architecture reduces maintenance costs
and enhances versatility, enabling the recognition of more
complex elements (e.g., charts, sheet music) and supporting
improved readability formats for formulas and tables (e.g.,
LATEX, Markdown). However, due to the use of LLMs with
larger parameter size (e.g, <20M for PaddleOCR vs. 580M
for GOT2.0 and 1.8B for Fox), the inference efficiency of these
methods still needs improvement.
(3) Entity Recognition & Linking. Additionally, we can
derive more valuable LLM samples by identifying and link-
ing entities from the above extracted data. WEBIE [412]
introduces a large-scale, entity-linked information extraction
dataset with 1.6M sentences from Common Crawl. It links
entities using ReFinED [68], and applies distant supervision

TABLE 3: Data Deduplication for LLMs.

Method Objective Modality Work
Exact

substring
matching

Deduplicate
samples with

identical substrings
Text MD5 [122]

Suffix Array [299]

Hashing
identification

Deduplicate
samples with

similar substrings
Text

SimHash [88]
MinHash [81], [122], [299]
MinHashLSH [347], [358]

MinHash +
Bloom Filter [207]

DotHash [298]
Frequency
analysis

Down-weighing
samples with

higher commonness
Text SoftDeDup [167]

Embedding-
based

clustering

Deduplicate
samples with

identical topics but
different formats

Text +
Image

SemDeDup [46]
SemDeDup +

SSL Prototypes[385]
FairDeDup [360]

(DS) to extract 4.8M triples, where each triple consists of a
subject, a relationship, and an object.

Furthermore, to ensure the consistency of derived and
origin samples (e.g., translation across English and other
languages), Alignment-Augmented Consistent Translation
(AACTRANS) model [215] uses a Seq2Seq framework that
incorporates reference text in the target language to guide
translations, ensuring consistency across related pieces of
text. During training, aligned text pairs are augmented with
reference-based word alignments to bias the model toward
consistent translations. At inference, a common reference
translation of the original sentence is used to align and trans-
late related extractions using the AACTRANS model.

However, AACTRANS fails to leverage shared knowledge
across tasks, limiting the alignment performance. Instead,
UMIE [367] integrates text and visual inputs and produces
structured outputs to learn linking knowledge from multiple
tasks. The UMIE model is composed of four modules: (1)
a text encoder for task instruction comprehension, (2) a
visual encoder for image understanding, (3) a gated attention
mechanism for cross-modal integration, and (4) a text decoder
for structured output generation. Following different task
instructors, UMIE is capable of performing various MIE tasks
and generating corresponding structured outputs, thereby
facilitating knowledge sharing.

Notably, recent LLMs could automatically learn the rela-
tionships among samples from randomly provided data, ren-
dering the explicit entity linking an optional procedure in the
data acquisition process [119].

2.3.2 Data Deduplication
The collected raw data often contains significant redundancy,
which can negatively impact LLM performance either by
reducing its generalization ability to new or rarely-seen tasks
[299] or by memorizing and overfitting to the repeated sub-
sets [169], [422]. Various deduplication methods have been
proposed to detect and mitigate duplication, either by (1)
completely removing duplicate samples [122], [299], [347],
[358], [207], [46], [385], [360] or by (2) down-weighing duplicate
samples for data resampling [167]. We classify these methods
into four main categories.
Exact Substring Matching. Exact substring matching
methods identify and remove exactly identical samples across
datasets, which can happen if (1) a sample references another
sample (e.g., a report related to another), or (2) two individual
datasets accidentally include the same sample (e.g., a webpage
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of a popular website). It is commonly used as a preliminary
step to remove duplications. Relevant methods leverage tech-
niques like hashing [122] and suffix array [299] at the sample
or sentence level.

Principles

Compared to structured classic ML data, LLM data
is unstructured and requires careful identification and
removal of duplicate or near-duplicate content from
training datasets to improve efficiency, prevent over-
fitting, and mitigate bias using statistical metrics like
perplexity or model evaluation. Challenges include (1)
how to encode semantic texts into representations that
could be precisely and efficiently compared and (2) the
scalability of the deduplication methods.

• Sample-Level. [122] conducts sample-level deduplication
by calculating the MD5 hashing value of each sample and
deduplicate samples with identical MD5 values.
• Sentence-Level. [299] performs sentence-level deduplication
by using Suffix Array, which combines all the samples into
one sentence, computes the sentence Suffix Array, and dedu-
plicates samples with common prefixes in the Suffix Array.
Suffix Array [283] is a data structure that stores the starting
indices of string suffixes in lexicographical order. For instance,
given the string “patata”, its suffixes in lexicographical order
are [“a” (index 5), “ata” (index 3), “atata” (index 1), “patata”
(index 0), “ta” (index 4), “tata” (index 2)], so its suffix array
is (5, 3, 1, 0, 4, 2). As identically duplicate samples have the
same prefix, they will become adjacent in the suffix array,
making it easier to find the duplicates across the samples. In
practice, they construct a suffix array on the sequence with
a threshold of 50 tokens (empirically determined for signif-
icantly reducing the false positives), and find the duplicate
samples with common prefixes in linear time.
Approximate Hashing-based Deduplication. Hashing-
based methods hash each sample into a fixed-length vector
and deduplicate samples with significant vector overlap. Com-
pared with the exact matching-based approach, it can identify
near-duplicate samples with only a few words of difference
(e.g., advertisements generated using the same template).
Unlike normal hashing algorithms like MD5, hashes generated
in this approach do not change significantly with even a bit of
modification, making it possible to detect near-duplicate sam-
ples. There are various hashing algorithms, including SimHash
[88], MinHash [81], DotHash [298], and their variants [347],
[358].
• MinHash [81] hashes samples into vectors using a series of
hashing functions, where only the minimum value is retained
for each function, and estimates similarity for each pair of
vectors through Jaccard Index Jaccard(X,Y ) = X∩Y

X∪Y , where
X and Y represent sets of elements (For example, if X = a,
b, c, d and Y = b, c, d, e, f, the Jaccard Index over X and
Y would be 1

2 ). [356] demonstrates that MinHash generally
outperforms SimHash. In practice, [122] employed MinHash
to the code data on both the sample and the repository levels
for diversity and integrity, and [299] employed MinHash on
the sample level.

Moreover, MinHash has various variants for acceleration.
MinHashLSH [347], [358] improves MinHash by involving
locality-sensitive hashing (LSH), which divides a vector into
multiple bands and only compares the samples with partially
identical vector bands instead of the whole vector, mitigat-
ing the computational overhead in sample comparison. LSH-
Bloom [207] further improves MinHashLSH by using Bloom
Filter, which hashes each band into a single integer value and
inserting it into each corresponding Bloom Filter, and the
sample will be flagged as a duplicate if any band’s hashed
value collides with an entry in the Bloom filter, accelerating
duplicate samples searching while reducing memory usage
with negligible false positive rate (e.g., 1e-5 in experiments).

However, MinHash-based methods require building mas-
sive vector sets. When the number of samples and their
lengths grow large, constructing vector sets becomes exceed-
ingly expensive in terms of both time and space. Moreover,
as the feature vector computation for each sample depends on
this shared vocabulary, it is difficult to fully parallelize the
process.
• SimHash [88]. To address MinHash’s issues, SimHash [88]
generates a sample’s feature vector solely from the words
it contains, converts each sample into a fixed-dimensional
binary vector for similarity comparison. Specifically, it first
hashes each token in the sample (e.g., by BPE tokenizer [75])
into a fixed-dimension vector of {0, 1}d (e.g., [1, 0, 0, 1] and
[1, 1, 0, 0] ) weighted by the pre-defined weight w (e.g., w1
and w2), where the weight is positive for 1 and negative
for 0 (e.g., [w1,−w1,−w1, w1], [w2, w2,−w2,−w2]). Then it
added up these weighted vectors to a new vector of the same
dimension d (e.g., [w1 + w2,−w1 + w2,−w1 − w2, w1 − w2]).
Finally, the values of the new vector are mapped to another
vector of {0, 1}d, where the positive values are mapped to 1
and 0 otherwise. The final vector is the fingerprint of each
sample, and the similarity of the two samples is estimated by
calculating the Hamming distance between their vectors.

Compared with MinHash, SimHash stores and compares
only one hash signature for each sample, greatly reducing the
storage and computing overhead. However, keeping only one
signature makes it harder to distinguish between two samples,
especially those with low Hamming distances, requiring care-
ful curation of data features.
• DotHash [298]. Moreover, to further improve the deduplica-
tion accuracy and efficiency, DotHash [298] assumes that uni-
formly sampled vectors in high-dimensional space are quasi-
orthogonal. It encodes each sample into a combination of sam-
ple elements represented as fixed-length basis vectors, and the
dot product of these vectors is an unbiased estimate of their
intersection. For example, given two samples with their ele-
ment basis vectors a =

∑
a∈A ψ(a) and b =

∑
b∈B ψ(b),

the intersection is calculated by E[a · b] = |A ∩B|.
However, [121] found that DotHash performs badly if the

length of the basis vector is lower than the number of basis
vectors, where quasi-orthogonal no longer holds.
Approximate Frequency-based Down-Weighting. To
prevent the loss of potentially valuable information by retain-
ing only one sample and removing the rest, SoftDeDup [167]
deduplicates by reweighting samples, where samples with
higher commonness are assigned lower sampling weights.
Specifically, SoftDeDup computes the frequency of each n-
gram across all the samples and calculates the commonness
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of each sample by multiplying the frequencies of all the n-
grams that appear in the document. Samples with higher
commonness are more likely to be duplicates and thus be
down-weighted.
Embedding-Based Clustering. Except for samples with
the same or similar substrings, some samples with similar
semantics but different formats (i.e, expressed differently)
may also negatively affect LLM training performance. For
instance, for the following two sentences: (i) “Unleash your
potential with our lightweight, high-performance sports shoes –
designed for comfort, speed, and style”; (ii) “Step into great-
ness with durable, breathable sports shoes perfect for running,
training, and everyday adventures”. Both of the sentences are
sports shoe advertisements but expressed differently, and such
duplicates could degenerate model performance by making
data imbalanced and introducing bias to the model. To ad-
dress this issue, another approach leverages language models’
embeddings (representing similar items as vectors close to
each other in the vector space) for deduplication.

SemDeDup [46] identifies semantic duplicates by cluster-
ing embeddings and deduplicating those with high cosine
similarities. It first encodes each sample into an embedding
by leveraging the OPT [462] text encoder and the CLIP [325],
[182] image encoder, and clusters the embeddings with K-
means, so one can save time by finding duplicates within the
cluster rather than the whole vector space. Then, within each
cluster, it searches for semantic duplicates with cosine similar-
ity above the pre-defined threshold. Finally, within each group
of duplicates, it retains only the sample closest to the cluster
centroid. As a multi-modal method, it can be applied to both
text and image data, making it possible to deduplicate image
data. In practice, [45] leverages SemDeDup to deduplicate the
image-text pair dataset LAION-400M [341].

Like MinHash, SemDeDup also has many variants for
performance improvement. [385] combines SemDeDup with
the Self-Supervised Learning (SSL) Prototypes metric, which
clusters the samples and retains the samples in each clus-
ter based on their distance to their corresponding cluster
centroid, where the samples closer to the centroid are more
likely to be removed. FairDeDup [360] modifies the logic of
SemDeDup to improve the representation of underrepresented
sensitive groups by prioritizing the retention of samples that
align with sensitive concepts defined through user-provided
prototypes, such as demographic subgroups. Within each
cluster, instead of selecting the farthest sample from the
centroid, it selects the sample that maximizes similarity to
the least-represented group in the cluster to prevent samples
with sensitive concepts from being pruned.
Non-Text Data Deduplication. As LLMs are increasingly
applied to multimodal tasks (e.g., image-text retrieval, visual
question answering), non-text data types such as images
are becoming integral to LLM training datasets, necessi-
tating dedicated deduplication techniques. Similar to texts,
images can also be encoded into embeddings through neural
networks designed for image-like data such as CNN, after
which embedding-based deduplication methods can be ap-
plied. SemDedup [46] adopts a semantic-based method by
computing cosine similarity between image embeddings; two
images are considered duplicates if their similarity exceeds
a predefined threshold, which is tuned to balance detection

TABLE 4: Data Filtering Methods for LLMs.

Category Objective Methods

Sample-
level

Filtering

Remove
low-quality

samples

Perplexity Measuring [383], [61], [288], [239], [238]
Influence Assessment [254], [168]

Clustering [45], [436]
Model Scoring [411], [264], [345]
Mixed Methods [285], [84], [126]

Content-
level

Filtering

Remove
partial-noising

samples
Privacy Anonymization [275], [268]

Image & Video Filtering [437], [216], [390]

IFD >
Threshold? Yes

Enhance

Score

Scorer

Enhance the samples

A

EstimateEstimate
IFD ScoreIFD Score

Perplexity-based Data FilteringPerplexity-based Data Filtering

PerplexityPerplexity

B Clustering-based Data FilteringClustering-based Data Filtering

Encode toEncode to
EmbeddingEmbedding
ClustersClusters

C Prompting-based Data FilteringPrompting-based Data Filtering

Prune byPrune by
ClusterCluster
ComplexityComplexity

ComplexityComplexity

IFD =
0.8
IFD =
0.4
IFD =
0.7

No

Previous tokensPrevious tokensNext tokenNext token

IFD ScoreIFD Score

Average Inter-Average Inter-
cluster Distancecluster Distance

Average Intra-Average Intra-
cluster Distancecluster Distance

Original
Dataset

Filtered
Dataset

Score the (enhanced) samples

TrainHigh

Low

Original Dataset Filtered Dataset

Removed Dataset

Original Dataset

Removed Dataset

Filtered Dataset

Original Sample Enhanced Samples

Scores

Score
Score

Fig. 5: Example Data Filtering Workflows [238], [45], [264].

precision and recall. In contrast, MINT-1T employs a hash-
based approach, using SHA256 checksums to identify and
remove exact duplicates efficiently. Meanwhile, the DataComp
pipeline [146] leverages the CNN-based near-duplicate detec-
tor [445] to eliminate subtle duplicates and prevent evaluation
set leakage. Models trained on these deduplicated image
sets exhibit improved performance over baselines such as
CLIP [325] for higher precision and recall.

2.3.3 Data Filtering

Data filtering removes low-quality or sensitive samples from
the dataset to reduce computational overhead and protect
privacy, while the model trained on the subset exhibits sim-
ilar or even better performance than the one trained on
the original dataset. To achieve this, one has to (i) remove
samples with low quality (Sample-level filtering) or partial
noisy information (Content-level filtering), and (ii) keep the
selected samples diverse enough to cover various domains.

Sample-level Filtering refers to evaluating samples using
metrics or models and removing the samples that fail to meet
the threshold (e.g., quality and diversity). There are multiple
metrics in this category:
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Principles

Compared to classic ML data filtering, LLM data
filtering emphasizes turning unstructured text into
measurable metrics, with the main challenge being the
effectiveness of evaluation methods, the standards of
low-quality samples, and the computational complex-
ity of these methods across massive datasets.

(1) Statistical Evaluation uses various statistical methods
to evaluate samples by directly applying statistical metrics to
the samples (e.g., clustering results) or indirectly capturing
characteristics from the models trained on the dataset (e.g.,
loss or perplexity from a surrogate model). Applicable statis-
tical metrics include perplexity (and its variants), influence on
model parameters, and clustering.
• Perplexity Measuring. Perplexity measures the difficulty of
a model generating the responses, represented as aggregated
probabilities of the j-th response token given the question
tokens and previous j − 1 response tokens PPL(y|x) =
exp

(
− 1

N

∑N
j=1 log p(yj |x, y1, ..., yj−1)

)
. The higher the per-

plexity value is, the harder the model generates the response.
It is commonly used in selecting high-quality subsets in pre-
training and fine-tuning phases. Based on the original perplex-
ity, there have been several studies for improving the metric,
including computing perplexities using a smaller-sized model
for training a larger-sized model to reduce computational
overhead, or employing advanced techniques such as Learning
Percentage (LP) and Instruction-Following Difficulty (IFD)
to identify and select challenging samples.

Specifically, [383] uses an existing model to compute
perplexity scores for multiple domains and selects pre-
training samples from the domains with high correlation
between the downstream benchmark error and the perplexity
scores on the domain samples. The correlation is measured
through a rank-based correlation coefficient γj =

∑
sign(yk−

yl)(rankj(xk,j) − rankj(xl,j)), where the rank difference re-
flects the model performance difference on the same sample,
helpful in estimating θ∗. They then rank the domains based on
γj and select samples from the top-ranked domains. To scale
the process, a fastText classifier [199] is trained to distinguish
selected documents, enabling page-level data selection.

To enhance efficiency, [61] leverages a smaller-sized surro-
gate model to select high-quality pre-training subsets via per-
plexity score for training larger-sized models, greatly reducing
the computational overhead in model training while still
achieving the same performance as with the full dataset. They
first train a surrogate model, a smaller-sized MosaicML [378]
model with 125 million parameters, on a random subset of the
pre-training dataset to compute the perplexity scores for the
remaining samples. Based on the perplexity scores, they find
the optimal subset through a combination of selection criteria:
(i) the part of samples to keep (e.g., samples with low/medi-
um/high perplexity scores), and (ii) the fraction of samples
to keep (e.g., 25%, 50%, 75%). The subset is evaluated by
training a larger-sized MosaicML model on it and analyzing
the model’s performance on downstream benchmarks. While
the result shows that the smaller-sized model can effectively
and efficiently filter data for the larger-sized model, they also

find that the effectiveness highly depends on the dataset.
For example, keeping the high perplexity samples exhibits
better performance on the Pile dataset [149], while keeping
the medium perplexity samples exhibits better performance
on the Dolma dataset [361].

Furthermore, there are some variants of perplexity-based
evaluation. First, [288] proposes a perplexity-based met-
ric, Learning Percentage (LP), to select samples that are
more challenging for models to learn. Learning Percentage
LP(i) = Pi−1−Pi

P0−Pn
measures the perplexity drop ratio of a

sample between the specific epoch i and the whole training
procedure. The key idea is that models tend to learn easier
samples first and harder samples later, so one can find harder
samples that are not thoroughly learned during early epochs.
The authors use LP(1) (the learning percentage after the first
epoch) to rank the training samples from the hardest to the
easiest and split them into three equal-sized parts. It shows
that the smaller-sized variant of the model can effectively
select samples for the larger-sized variant, and models of all
sizes trained on the harder part outperform the ones trained
on all the samples.

Also based on perplexity, [239] proposes the Instruction-
Following Difficulty (IFD) metric to select samples that are
more difficult for models to follow. IFD (IFDθ(Q,A) =
P P L(A|Q)

P P L(A) ) measures the influence of the questions (instruc-
tions and inputs combined) on generating corresponding re-
sponses by comparing the perplexity of the response with
or without the question strings PPL(A|Q) and PPL(A). A
higher IFD score suggests higher model following difficulty.
The authors first build a pre-experienced subset by clustering
and resampling the samples from the WizardLM [426] and
Alpaca-GPT4 [312] datasets, on which they train the model
for one epoch to obtain initial knowledge. The model is then
used to calculate the IFD score on all the samples, and the
ones with high IFD scores are prioritized.

Superfiltering [238] further enhances [239] by employing
the surrogate model from [61]. Instead of training a smaller-
sized model, the authors directly use GPT-2 [327] as the
surrogate model to calculate IFD scores on the same datasets.
Compared to their previous work [239], the adoption of sur-
rogate model simplifies the procedure and accelerates the
filtering process.
• Influence Assessment. Another data filtering approach is to
assess the influence of a sample on LLM model performance
or learning process by measuring how the metrics change
when the sample is upweighted or removed. The samples with
substantial impact on the model parameters are regarded as
influential and thus are selected.

DEALRec [254] identifies influential and challenging fine-
tuning samples through two metrics: (i) Influence Score for
assessing the influence of a specific sample on the model
performance. It starts by measuring the influence on pa-
rameter change, where a surrogate model is trained on the
full dataset to estimate how the model parameters would
change when certain sample is removed or upweighted, ex-
pressed by θ̂−s − θ̂ ≈ 1

nH
−1
θ̂
∇θL(s, θ̂), where Hθ̂ is the

Hessian matrix and ∇θL(s, θ̂) is the loss gradient of sample
s. The formula is then evolved to measure the influence
on empirical risk change, expressed by Iremove, loss(s,D) =
1
n

∑
i

1
n∇θL(si, θ̂)TH−1

θ̂
∇θL(s, θ̂); (ii) Effort Score for as-
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sessing the difficulty for the surrogate model to learn a
specific sample for generalization to new samples, defined
as δs = ∥∇ϕLLLM(s)∥2, where Φ is the model parame-
ter. A higher effort score suggests greater difficulty. The
final score combines the above two scores, written as Is =
Influence Score + λ · Effort Score.

Besides, SHED [168] utilizes the Shapley value [339], which
estimates the contribution of a member to the group, to
calculate the influence of a sample on the model performance
and select representative samples with high influence. The
method first clusters the samples and selects the ones clos-
est to each cluster centroid as the representative samples
to reduce computational overhead. It then calculates the
Shapley value for each representative sample i by iteratively
removing n samples from the dataset until all the samples
have been removed and calculating the contribution of the
removed n samples in each iteration a to the model per-
formance compared with the previous iteration, written as:
c(an+1..(a+1)n)∈Dp

= v(Dp \ {1..an})− v(Dp \ {1..(a+ 1)n}).
The process will be repeated for k times for higher accuracy,
after which the Shapley value for each representative sample
i is defined as Si ≈ 1

k

∑
k

ci(k)
n . Finally, the subsets can

be selected either by selecting from the top-rank samples
or weighted sampling the samples through Pr(i) = efSi∑

i
efSi

,
where f controls the trade-off between quality and diversity.
• Clustering. A common approach to select high-quality and
diverse subsets is to encode the samples into embeddings
in the latest space and cluster them using cosine similarity,
where similar samples are usually clustered into the same
group. Selecting within the clusters reduces redundancy, while
selecting across the clusters increases diversity.

Density-Based Pruning (DBP) [45] selects high-quality
and diverse subsets by clustering samples into clusters and
resampling the samples based on the cluster complexity. They
encode the samples into embeddings using a pre-trained vi-
sion model DINOV2-L/14 [300] and cluster them using K-
means. For each cluster, they calculate the average intra-
cluster cosine-distance to the internal centroid dintra and
inter-cluster cosine distance to the other centroids dinter,
and the cluster complexity as a product of the two distances
C = dintra × dinter. The cluster complexity is later converted
to probability using softmax to resample the samples across
clusters, where clusters with higher complexity have higher
weights.

Rather than the sample embedding itself, SmallTo-
Large [436] selects a diverse subset by clustering the samples
based on their loss trajectories. It first trains a smaller-sized
surrogate LLM model on the whole dataset to obtain the loss
trajectories of each training sample, defined as Li(ϕ(t)) =
− log pϕ(t)(yi|xi), where ϕ(t) is the model parameters at time
t. These samples are then clustered based on loss trajectories
and randomly resampled to form a diverse subset.
(2) Model Scoring uses LLMs for evaluating sample qual-
ity. The quality criteria can either be specified (i) explicitly
via LLM prompt engineering or (ii) implicitly learned from
human-labeled data.

QuRating [411] selects high-quality pre-training samples
by prompting LLM to compare pairs of samples along the
four quality criteria (writing style, fact & trivia amount,
educational value, and the expertise required to understand),

training a rater on the scalar quality ratings, and filtering
samples using the rater. Initially, GPT-3.5-turbo is prompted
on each pair of samples to judge which one is better on each
quality criterion, where the binary confidence pB≻A ∈ [0, 1]
that the sample B is preferred over the sample A is recorded.
The pairwise binary confidence is then translated into sample
quality ratings pB≻A = σ(sB − sA) through the Bradley-
Terry model. A QuRater model is later trained on these
quality ratings to predict quality ratings for new samples
on each criterion. The new samples are resampled with the
probability p(di) ∝ exp

(
si

τ

)
, where τ adjusts the trade-off

between quality and diversity.
Rather than prompting the models to compare samples,

Data-Efficient Instruction Tuning for Alignment (DEITA)
[264] prompts LLM models to evolve and score the samples
for building sample scorers. The authors first prompt Chat-
GPT to evolve the samples along instruction complexity and
response quality, and again prompt ChatGPT to score these
evolved samples. They then train scorers on the evolved sam-
ples with their corresponding scores to enable their scoring
abilities. Finally, they use these scorers to score new samples
and multiply the scores to form the final score, where the new
samples are resampled based on the final scores for diversity.

Model scoring methods also help mitigate bias and tox-
icity. LLM often exhibit harmful biases due to the massive
and unchecked datasets they are trained on, which can have
various biases, ranging from gender and racial stereotypes to
cultural and socioeconomic prejudices [296]. Safety-enhanced
Aligned LLM Fine-tuning (SEAL) [345] selects high-quality
and safe fine-tuning samples through a safety-aligned selec-
tor. The selector is trained based on a safety-aligned model,
Merlinite-7b [366], using bi-level optimization, which mini-
mizes the safety loss on the safe dataset while minimizing
the fine-tuning loss on the filtered dataset during training to
ensure the selector always prioritizes safe and high-quality
samples during selection. After the selection, the top-p%
samples will be selected.
(3) Hybrid Methods. Instead of relying on a single method,
some methods mix various kinds of data filtering methods and
evaluate each permutation of these methods or parameters
to find the best combination of methods or parameters that
further boosts model performance.

[285] selects high-quality pre-training data based on three
metrics: (i) Perplexity, (ii) EL2N χ(xi, yi) = E∥f(xi) − yi∥2
for measuring the prediction probability discrepancy between
the reference model and the ground truth, and (iii) Mem-
orization factor score(M,N) = 1

N

∑N
i 1(zM+i = ẑM+i) for

measuring the fraction of N tokens correctly generated after
prompting the model with the first M tokens [77]. For each
metric, they retain samples based on two criteria: (i) the
fraction of samples to keep (10%, 30%, 50%, and 70%) and (ii)
the part of samples to keep, e.g., the bottom (for Perplexity
and L2-Norm Error) and top (for Memorization). They train
LLM for each case and select the best-performing one, and the
result shows that Perplexity effectively removes the “easiest”
samples, improving model performance and outperforming
other metrics.

Instead of comparing metrics and choosing the best of
them, InstructionMining [84] combines various metrics (e.g.,
including input/output length, reward score, perplexity, etc.)
into one linear function with each metric as indicator, written
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as logLloss ∝ L0 + β0 + β1I1 + β2I2 + · · · + βnIn + ϵ. The β
parameters are estimated using least squares. In practice, it
evaluates fine-tuning samples on a fine-tuned model LLaMA-
2-7B [386] and selects samples by finding the optimal set of
samples to keep using the hyperparameter optimizer Blend-
Search [395].

MoDS [126] considers diversity into selection and iter-
atively selects high-quality, diverse, and necessary subsets
and adds the samples the LLM model performs poorly on
during fine-tuning using a reward model and the K-Center
greedy algorithm [342]. The method is conducted mainly in
three steps: (i) Use a reward model to score the quality of
each (instruction, input, output) triplet in the dataset, where
the low-quality ones are filtered out, forming a high-quality
dataset. (ii) Use the K-Center greedy algorithm [342] to select
the samples in the high-quality dataset that are farthest apart
from each other in the BERT [206] embedding space, forming
a diverse seed dataset. (iii) Fine-tune a pre-trained LLM
model on the seed dataset to enable its instruction-following
ability and generate responses for the high-quality dataset.
The generated responses are evaluated using the same reward
model, and those with low quality scores, which means the
model is weak at generating such responses, will be collected.
The collected samples with their original responses will be
selected again using the K-Center greedy algorithm and then
added to the seed dataset, forming the final dataset.
Content-level Filtering. To avoid removing too many crit-
ical samples from the dataset and weakening the model per-
formance, some works only filter out noise or sensitive content
within the samples. For noise removal, common methodologies
include removing or replacing specific characters (e.g., remove
invisible or invalid characters, unescape HTML characters and
detect punctuation misuse), removing unnecessary texts (e.g.,
the texts that appear as decorating elements on the web pages
such as “print”, “likes” and “loading” ), and cleaning harmful
information (e.g., spam, gambling, pornographic content and
site links) [433].

For privacy anonymization, LLMs can memorize pri-
vate and sensitive information (e.g, user identity details
or clinical health data) from datasets during pre-training
and fine-tuning, which can be leaked through specially
crafted prompts, thereby posing significant privacy risks. [275]
demonstrates that it is possible to extract, reconstruct, and in-
fer personally identifiable information (PII) from LLM mod-
els by identifying the most frequent PII appearing in model
responses or by prompting models with partial information
about a specific individual. From a data management perspec-
tive, these privacy threats can be mitigated by identifying and
filtering out potential sensitive information in the datasets.

DeID-GPT [268] utilizes existing LLMs to identify and
remove PII from unstructured medical text without changing
its meaning. In their case, the LLMs are prompted to de-
identify information from clinical notes in accordance with
HIPAA privacy regulations. An example prompt is: “Please
de-identify the following clinical notes by replacing any terms
that could be a name, an address, a date, or an ID with the
term ‘[redacted]’.”

Instead of using general LLMs, [275] uses Named Entity
Recognition (NER) models such as spaCy [33] and Flair [52]
to tag PII in the samples and removes or replaces them with

TABLE 5: Comparison of Different Data Selection Methods.

Method Stage Evaluation Metric

Similarity Pre-training,
Fine-tuning

Cosine Similarity [423]
Bag-of-Words Similarity [421]

Lexicon Set Overlap [321]
Bayes-based Selection [80]

Optimization Fine-tuning
Linear Search [130]

Gradient-Influence Search [417]
Kernel-Density Regularization [269]

Model Pre-training Logits-based LM-Score [465]

hashed tags, entity tags like “[NAME]” or “[LOCATION]”,
or a simple tag like “[MASK]”. The last tag was adopted to
maximize privacy, as the other ones are still vulnerable to
membership inference by linking the samples.

The rise of multi-modal LLMs, particularly large video
generation models, drives the need for robust video data filter-
ing. CogVideoX [437] employs a pipeline focusing on coherent
motion, removing videos with poor dynamics. It defines neg-
ative labels for artificial edits, low motion connectivity, visual
flaws, and excessive text. A manually annotated subset trains
six Video-LLaMA[455]-based filters, while optical flow and
aesthetic scores ensure motion coherence and visual appeal,
refining the dataset to approximately 35M high-quality 6-
second clips.

HunyuanVideo [216] uses a multi-step pipeline: splitting
videos into clips, encoding embeddings, deduplication, and
resampling. Filters include motion (OpenCV-based optical
flow), OCR (text removal), clarity (visual blur detection), aes-
thetic (Dover[414]-based scoring), and source (YOLOX[153]-
like watermark/border removal). This process generates five
progressive training sets with increasing thresholds.

Wan [390] applies pre- and post-processing pipelines. Pre-
processing filters unsuitable data using OCR, aesthetic eval-
uation (LAION-5B [341]), NSFW scoring, watermark de-
tection, and resolution thresholds, removing approximately
50% of low-quality data. Samples are clustered for diversity,
manually scored, and an expert model selects high-quality,
naturally distributed data. Videos are classified into six tiers,
prioritizing smooth motion. Post-processing refines images by
selecting top 20% via an expert model and manually curating
gaps. For videos, top candidates are filtered by visual quality
and motion complexity, ensuring balance and diversity across
12 themes.

2.3.4 Data Selection

Different from previous reviews [55], [398], we define data
selection as the process of choosing subsets of already well-
cleaned data samples in order to adapt LLMs to specific
domains (e.g., medical or legal LLMs).

Principles

Unlike traditional ML data selection, LLM data selec-
tion focuses on aligning the topics of the text samples,
requiring encoding semantic topics into measurable
distributions. However, managing computational effi-
ciency and ensuring robust generalization across di-
verse tasks remain critical unresolved issues.

15



Similarity-based Data Selection. One class of methods
aims to select subsets similar to the specified target data.
• Cosine Similarity: Domain-Adaptive Continual Pre-training
(DACP) [423] adapts a general-purpose LLM to a target task
by selecting domain-specific unlabeled data based on simi-
larity (cosine similarity), novelty (perplexity), and diversity
(entropy). For the similarity part, it identifies data most
similar to the task-specific labeled data by encoding both into
embeddings (using [33]) and choosing domain samples that
align with the task’s embedding distribution.
• Bag-of-Words Similarity: DSIR [421] selects a subset of
unlabeled pre-training data matching the target distribution
by computing feature distributions (p̂feat, q̂feat) for raw and
target data represented as bag-of-words, estimating impor-
tance weights wi = p̂feat(zi)

q̂feat(zi) , and resampling raw data with
probability wi∑N

i=1
wi

.

• Lexicon Set Overlap: [321] selects the subset with the most
shared lexicons using the Domain Specific Score (DSS), which
quantifies the relevance of a dialogue set T to specific domains
by measuring the overlap between T and domain lexicons L =
{l1, l2, . . . , lm}, calculated as DSS(T, L) = 1

m

∑m
i=1

|T ∩li|
n ,

where n is the number of tokens in T .
• Bayes-based Selection: CoLoR-filter [80] formulates pre-
training subset selection as a Bayesian optimization problem,
which selects a subset S by maximizing downstream likelihood
Pr(Ddown|S). It uses two auxiliary models: A “prior” model
(θprior) trained on a large general dataset Ddown and a “condi-
tional” model (θprior) fine-tuned on the union of the large gen-
eral dataset and a small downstream dataset Dprior+down. The
selection criterion for a data point xi is the conditional loss
reduction (CoLoR): CoLoR(xi) = − log Pr(xi|θprior+down) −
(− log Pr(xi|θprior)). The key idea is to score samples based on
the likelihood difference between these two models and select
the ones that exhibit higher likelihood under the conditional
model and larger conditional loss reduction.
Optimization-based Data Selection. Optimization-based
data selection methods select subsets towards reducing model
loss and improving model performance on the target tasks.
• Linear Search. Model-Aware Dataset Selection with Data-
models (DsDm) [130] selects the optimal subset of training
data that minimizes the model’s loss on target tasks by
employing linear datamodel [184], a parameterized function
that maps a subset of training data to the model outputs
for the specified target, to estimate how the inclusion of
each training sample would affect the model’s loss on the
target, reducing computational overhead. In practice, a linear
datamodel τθx(1S) = θ⊤

x 1S with parameters θx and a charac-
teristic vector 1S (a binary vector indicating which samples
are in S) is adopted to map the subset S to the model loss on
a sample x through Lx(S) = E[ℓ(x;A(S))]. For each target,
the characteristic vector 1S is adjusted to reflect the subset,
and the parameters θx are estimated using a regression loss
function like mean squared error over the training subset.
After training, the datamodel selects the subset S of the size
k that minimizes the loss L̂Dtarg(S) = 1

n

∑n
i=1 τθxi

(1S) for the
target task.
• Gradient-Influence Search. Low-rank Gradient Similarity
Search (LESS) [417] identifies the most impactful subset
of data for fine-tuning LLMs by analyzing gradient simi-
larities. It first fine-tunes the model on a random subset

(e.g., 5% of data) for a few epochs using LoRA to reduce
trainable parameters and accelerate gradient computation,
and saves the checkpoints after each epoch. Next, LESS
computes Adam LoRA gradients for each training sample,
projects them into lower-dimensional gradient features via
random projection, and stores them in a gradient datastore.
For downstream tasks, it calculates gradient features of few-
shot validation samples and estimates the influence of each
training sample z on a validation sample z′ using cosine
similarity: InfAdam(z,z′) ≜

∑N
i=1 η̄i cos(∇ℓ(z′;θi),Γ(z,θi)),

where Γ(z,θ) is the Adam update. The training samples with
the highest influence scores are selected for fine-tuning.
• Kernel-Density Regularization. Task-Specific Data Selec-
tion (TSDS) [269] identifies high-quality pre-training or fine-
tuning data for particular tasks by balancing two objec-
tives: (i) distribution alignment with the target task data
and (ii) diversity to avoid near-duplicates, accomplished
via kernel density estimation (KDE) regularization. Con-
cretely, one begins with a small set of target task sam-
ples Q = {qi}M

i=1 and a large candidate pool D =
{xj}N

j=1, both of which are embedded into a shared met-
ric space (e.g., using gradient-based or semantic embed-
dings). The optimization for distribution alignment is con-
ducted by solving for probability mass γij (transported
from qi to xj): minγ∈RM×N

≥0

α
C

∑M
i=1

∑N
j=1 γijdij + (1 −

α)GKDE(γ) s.t.
∑N

j=1 γij = 1
M ,∀i ∈ [M ], where dij

is the distance between qi and xj in the metric space,
and GKDE(γ) is the regularization term that adds diver-
sity and penalizes over-density using KDE: GKDE(γ) =
M maxi,j ρj

∣∣∣∣γij − 1/ρj

M
∑

j′ 1/ρj′

∣∣∣∣, where ρj =
∑

x′∈D(1 −

f(xj , x
′)2/h2 is the density estimate for candidate xj (higher

for near-duplicates). Afterwards, it samples xj with probabil-
ity pj =

∑
i γ

∗
ij .

Model-based Data Selection. These methods aim to de-
termine subsets guided by prompting the LLM itself.

Autonomous Data Selection (AutoDS) [465] prompts
the LLM to assess and select mathematical and educa-
tional samples from a larger dataset. For each sample,
the LLM is asked two questions: (i) Is it mathemati-
cally relevant, and (ii) It it educationally valuable. The
LLM responds to each question with “Yes” or “No”, and
the logit of each response is extracted to compute the
LM-Score: LM-Score(·) = exp(logit(‘YES’))

exp(logit(‘YES’))+exp(logit(‘NO’)) , and
the composite score: LM-Score(Q1, Q2) = LM-Score(Q1) ·
LM-Score(Q2). The composite score ranks and selects high-
quality math samples.

2.3.5 Data Mixing
Since LLMs rely on massive and diverse datasets, the com-
position of these datasets significantly impacts model per-
formance [295]. For instance, as shown in Figure 3, we can
see LLMs require different ratios of domain data to achieve
capabilities such as medical diagnosis, coding, and solving
math problems. To this end, data mixing refers to the strategy
of (1) combining datasets from different domains, sources or
structures in specific proportions to train LLMs or (2) making
LLMs give different proportions of attention on different
domains (e.g., by changing the sampling probabilities) in the
training session. Effective data mixing ensures that the model
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TABLE 6: Comparison of Data Mixing Methods for LLMs.

Taxonomy Stage Methods Traits

Before Training
(Human Experience) Pre-training

Multi-Source Data Adjusting Intuitive and easy to implement, suitable for rapid experimentation.[139], [347]
Entropy-Based Mixing [152] Low computation cost with quality quantification by entropy.

Before Training
(Model-Based Optimization)

Pre-training Linear Regression Model [263] Only 10% of DoReMi’s [420] computational resources are required.
Simultaneously train hundreds of small models to accelerate optimization.

Pre-training Bivariate Data Mixing Law [152] Avoid iterative training of proxy models (low computational costs).
Show relation between loss and training steps.

Continual Pre-training Chinchilla Scaling Law [323] Support knowledge transferring to new domains (↓ over 95% training costs).

Pre-training Exponential Functions [439] Support datasets without explicit domain division.

Continual Pre-training Power-law Function [160]
Compared to single-objective optimization like [323]
[160] ensures that domain performance improvement

does not compromise general capabilities.

Pre-training Classification Model [251] Reverse engineering for finding the suitable data recipe of LLMs.

During Training
(Bilevel Optimization)

Pre-training Calculate domain contribution by Requires a proxy model, performances well in OOD datasets.gradient inner products[135]

Fine-tuning Dynamically adjust weights by Multiple applications like multilingual training,
gradient alignment values [302] instruction following, large-scale data reweighting

During Training
(Distributionally Robust Optimization)

Pre-training Group DRO [420] For pre-training, smooth adjusting to prevent abrupt weight changes

Fine-tuning Task-level DRO [278] For fine tuning, quick response to task difficulty changes

captures broad generalization capabilities while balancing
performance across tasks and domains [140]. Existing data
mixing methods can be classified into two main categories:

Principles

Unlike traditional ML models like BERT (trained
on smaller, domain-specific data with homogeneous
distributions), LLMs require massive multilingual or
multi-domain corpora, raising the critical challenge
of optimizing dataset mixing ratios for performance.
Current methods use heuristic experimentation or for-
mulate ratio-performance relationships (e.g., valida-
tion loss), but cost-effective determination of optimal
ratios, beyond heuristics, remains unresolved due to
high cost demands for functional approximations.

Before-Training Mixing (Human Experience). This
method provides empirical data mixing strategies such as
setting different ratios of datasets based on various factors
(e.g., complexity and diversity of the datasets) that likely
improve LLMs’ abilities.

First, to study the effect of data mixture, there are works
that experiment heuristically on different data ratios for pre-
training of LLMs. [139] suspects training sequence from
simple to complex data would improve LLMs’ performance,
thus introduces a two-stage data mixing strategy for LLM
pre-training: (1) It first blends web-crawled data with minimal
high-quality content (1.9% math, 15% code), testing ratios
(<35% high-quality) and selecting optimal mixtures via eval-
uations on CommonsenseQA [371] and HumanEval [95]. (2)
It then filters low-quality data, boosting math (24%→29%),
code (20%→29%), and instructional alignment data. Ratios
are similarly optimized through empirical validation. The
method iteratively refines proportions using down-sampled
Megatron-8B [355] for efficiency, then scales findings to a
25B model, balancing diversity-quality tradeoffs with reduced
experimental overhead. Similarly, Slimpajama [347] explores
the impact of data source diversity and weight distribution
on model performance by adjusting the proportions of data

from multiple sources, such as Commoncrawl [11], C4 [330],
Github [14] .

Second, we can utilize metrics to judge different datasets
and mix them. To calculate the best result rather than
just try different combinations, Bimix [152] adopts en-
tropy metrics (e.g., Shannon entropy [343], conditional en-
tropy [343]) as the quality scores which are then nor-
malized to compute the proportions of each domain (e.g.,
conditional entropy, written as as Hi

(
X

(t+1)
i | X(t)

i

)
=

−
∑

x∈X
(t)
i

∑
x′∈X

(t+1)
i

P (x, x′) logP (x′ | x), where X
(t+1)
i

X
(t)
i are sets of tokens at positions t + 1 and t separately,

x and x′ are tokens belonging to them, P (x, x′) is the joint
probability, P (x′ | x) is the conditional probability.
Before-Training Mixing (Model-Based Optimization).
This category of methods design linear or non-linear models
that depict (i) the relation between the distribution of each
domain, (ii) validation loss, and (iii) some other variables like
training steps, based on which they find the optimal settings
through various model-based techniques.
(1) Linear Regression Model: Some methods utilize pairs
like data mixtures and corresponding model performance to
fit a linear regressing model, such that finding the best data
mixture ratios.

Typically, REGMIX [263] defines the domains by source
(like ArXiv, FreeLaw, etc.), which uses Dirichlet distribution
(which controls the distribution of probabilities across multi-
ple categories with a parameter) to generate all kinds of data
distribution of several domains to train a small-scale proxy
model to collect performance data, which is then used to fit
a linear regression model (LightGBM [205]) to predict the
optimal data mixing distribution. Then REGMIX uses both
the best distribution and the average of top-100 distributions
to verify on variations of TinyLlama [459] with additional
layers with versions of 1B and 7B.
(2) Non-linear Regression Model: There are also many
methods that design non-linear regression models for data
mixing by considering more complex training characters.
• Bivariate Data Mixing Law. Based on observations of
validation loss changes due to variables like domain pro-
portion (where the data come from different sources like
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Pile-CC) and training steps, BiMix [152] proposes Bivariate
Data Mixing Law that depicts the relation among domain’s
proportion, training steps and validation loss, which can be
written as Li (ri, s) = Ai

r
αi
i

(
Bi

sβi
+ Ci

)
, where Ai,Bi,Ci are

domain-dependent scaling coefficients, αi and βi are power-
law exponents that control the influence of domain proportion
and training steps respectively, s represents the training step
count. It utilizes the law to fit the actual data curves by fixing
the domain’s proportion or training steps and varies the other
one to get validation loss by training a small model (decoder-
only transformers based on the DoReMi [420] architecture
with 280M parameters). After depicting the relation, we
model the task as an optimization problem (resolvable by La-
grange multipliers) and then verify on larger LLM (decoder-
only transformers based on the DoReMi [420] architecture
with 1B parameters).
• Chinchilla Scaling Law. D-CPT [323] establishes a math-
ematical relationship which could be used to find the best
mixture of general and domain-specific data between valida-
tion loss, model size, data size, and domain data mixing ratios
based on Chinchilla Scaling Law [170] to optimize domain-
specific continual pre-training as L(N,D, r) = E + A

Nα +
B·rη

Dβ + C
(r+ϵ)γ (N is model parameter count, D is training

data volume (number of tokens), r is domain corpus ratio,
E,A,B,C, α, β, γ, η, ϵ are fitting parameters), with a variation
which introduces K which describes the difficulty to learn the
domain’s knowledge as L(N,D, r) = E+ A

Nα + B·rη

Dβ + C
(r+ϵ)γ +

F
Kµ (F is a fitting parameter). It fits formula parameters
through small-scale experiments to predict performance under
different training configurations and find the suitable ratio
to minimize the domain validation loss while ensuring the
generalization loss does not exceed the specified threshold.
• Exponential Functions. Data Mixing Law [439] establishes
an exponential relationship between validation loss and data
mixing ratios of several domains (e.g., public datasets like
Pile-CC, Books3), L(r) = c + k exp

(∑
i tiri

)
, where L(r) is

the validation loss, r represents the mixing ratios of different
domains, and c, k, and ti are learnable parameters. That
is, it experiments on a small model with the exponential
relationships to predict the best data domain mixing ratios on
LLM performance with scaling laws, which combines training
step scaling laws (L(S) = c + kSα, where S is the number of
training steps, and α is a fitting parameter.), which is used to
infer the validation loss at target training steps from results at
smaller steps, and model size scaling laws (L(N) = c + kNβ ,
where N is the number of model parameters, and β is a fitting
parameter), which is used to infer the validation loss for large
model sizes from smaller model sizes.
• Classification Model. [251] aims to find the data proportion
of closed-source model by data proportion detection, which
first generating large-scale data from the LLM, then using a
classification model to categorize the generated data and com-
pute perplexity, deriving the proportions of pre-training data
based on the Data Mixing Law [439] (which is a mathematical
formula describing the relationship between the proportion of
pre-training data and the model’s loss in different domains.).
• Power-law Function. CMR [160] aims to optimize the con-
tinual pre-training by finding the best ratio of generic dataset
and domain-specific dataset. Based on the research before and
the data observed on different sizes of models with different

ratios of data, the relationships between loss and mixture
ratio, and training volume fit in power-law forms, which are
described as L(R) = α · Rs + β and L(T ) = α1 · T s1 + β1,
where α, β, s, α1, β1 and s1 are fitting parameters. Based the
relationships, they propose a metric Critical Mixture Ratio,
which is the maximum data mixing ratio that balances be-
tween (1) significantly reducing domain loss while (2) keeping
the increase in general loss within a pre-defined tolerance
range. Based on the two aspects, the ratio is defined as
R∗ = max{R | R ∈ F}, where R is the ratio of generic dataset
and domain-specific dataset, F is feasible mixture ratios which
comprises all mixing proportions that satisfy the constraints
of the general loss function.
During-Training Mixing (Bilevel Optimization). This
method adopts a closed-loop optimization technique that
ensures model parameters are well optimized [108]. Gener-
ally, Bilevel optimization involves two nested optimization
problems: (1) the inner-level problem ensures model param-
eters are optimized under given weights (e.g., minimizing
weighted training loss), while (2) the outer-level updates
weights through backpropagation of validation loss, forming
a closed-loop optimization.

Typically, ScaleBiO [302] reconstructs the data sampling
weight optimization problem into a bilevel optimization prob-
lem, where outer-level problem is adjusting data weights
to minimize validation loss; and the inner-level problem is
adjusting model parameters to minimize weighted training
loss and it could be applied to tasks like multilingual training
(mixture of languages) and instruction following (mixture of
quality). ScaleBio first experiments on small models. Then it
extends to larger models like LLaMA-3. ScaleBiO initialize
the weights equably for all data sources. In each iteration,
it randomly selects a subset of data sources to update their
weights: for the selected data sources, it adjusts the weights
by optimizing the gradient of the validation loss, prioritizing
the increase of weights for data that contribute significantly to
model performance, while decreasing the weights for data that
have less impact on performance. After updating the weights,
retrain the model parameters and repeat the process until
convergence.

To enhance the efficiency of BiO-based data mixing,
DoGE [135] defines (i) inner-level problem as that under
the condition of fixed data mixing ratios, optimize the proxy
model parameters to minimize the weighted sum of domain
losses; and (ii) outer-level problem as adjusting the data
mixing ratios such that the model parameters obtained through
inner-level problem optimization achieve optimal performance
on the target loss. The method is executed on a small-scale
proxy by following steps: Initially, it sets the domain weights
as a uniform distribution. In each iteration, it dynamically
adjusts the weight of each domain based on the gradient align-
ment value (calculated as the inner product of the gradient
of current data domain and the sum of gradients from all
data domains), which measures the contribution of the data
from the current domain to the gradient direction of all other
domains’ data. Using the updated weights, it resamples the
data and updates the model parameters. Repeat the process
for multiple iterations until the weights stabilize, then apply
to actual LLM pre-training.
During-Training Mixing (Distributionally Robust Op-
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timization). To search for a robust data mixing strategy
(which can be sub-optimal but with low uncertainty), some
methods adopt Distributionally Robust Optimization (DRO)
for data mixing. DRO achieves robustness against distribu-
tional uncertainty by optimizing for the worst-case scenario
within a set of distributions (referred to as the uncertainty set
or ambiguity set).
• For LLM pre-training, DoReMi [420] defines the worst case
as domains where the proxy model underperforms compared
to the reference model, which initially sets the domain weights
as a uniform distribution and each domains contains several
sample sets, and uses it to train Transformer decoder-only LM
with 280M parameters and computes loss in each example set,
which provides a reference point to measure the improvement
potential (the loss difference) of the proxy model in each
domain. Next, DoReMi trains a small-scale proxy model
(also Transformer decoder-only LM with 280M parameters)
by adjusting the domain data weights through DRO, which
dynamically adjusts the domain weights and tilt the weights
toward domains with larger losses (compared to the reference
model). Finally, validate performance of weighted domain
data on large models (Transformer decoder-only LM with 8B
parameters).
• For LLM fine-tuning, tDRO [278] defines the worst case
the same as DoReMi, which computes the relative loss for
each domain with a proxy model (e.g. Qwen1.5-0.5B [69]);
and they compare the training loss of domain data with
the reference model (e.g., Qwen1.5-0.5B), and evaluate each
domain’s potential for model improvement, and update the
domain weights accordingly, giving more attention to high-
loss domains. Finally, the updated weights are normalized to
form a new sampling distribution and repeat the process to
get final data distribution.

2.3.6 Data Distillation and Synthesis
Synthetic data, which mimics real-world scenarios, is par-
ticularly valuable for resolving problems such as (i) data
scarcity (e.g., augmenting data for a small dataset) [426], (ii)
privacy concerns (e.g., replacing sensitive data with synthesis
data) [419], (iii) the need for diverse and high-quality datasets
(e.g., generating examples for underrepresented cases) [260],
(iv) lack of reasoning data (e.g., for code, chain of thought),
(v) human alignment (e.g., label better LLM’s response by
human beings or LLMs).

Principles

Traditional ML methods use rule-based templates,
basic augmentation (lexical substitution, back-
translation), or statistical models to create limited
synthetic data, addressing data scarcity/class imbal-
ance. While LLM-driven synthesis employs LLMs
to produce diverse, high-quality data, tackling data
scarcity, privacy concerns, and diverse training needs.
Key paradigms include: (i) sample-driven generation,
(ii) domain-aligned synthesis, and (iii) reasoning-
centric formatting. Challenges involve ensuring rig-
orous reasoning chain synthesis and optimizing cost-
quality balance in data production.

Despite the advantages, synthetic data can negatively
impact LLM training, such as when characteristics like tox-
icity are inherited from the source model or even ampli-
fied [352]. Thus, it is vital to design data synthesis methods for
LLMs [495]. As shown in Figure 4, we discuss methods dealing
these problem through the diverse LLM stages, including pre-
Training, SFT, Reinforcement Learning and RAG.
Knowledge Distillation. Due to LLMs’ massive parameter
scale and high resource demands which make practical deploy-
ment challenging, so we utilize knowledge distillation (such
as designing paradigms to prompt LLM to generate high-
quality data) to training a student LLM with less parameters
to mimic the target model’s generation ability.
• Task-Specific Prompt Distillation. To significantly reduce
inference costs and latency while maintaining performance,
[353] employs task-specific prompts: (1) Chain-of-Density
(CoD): Iteratively adds entities to summarize for enhanced
density. (2) Chain-of-Thought (CoT): Guides reasoning tasks
(e.g., math) through stepwise logic. Using GSM8K [106] data
and Llama-3.1-405B-Instruct, synthetic data is generated
for fine-tuning smaller models (Llama-3.1-8B/70B-Instruct)
paired with simplified prompts, balancing efficiency and task
specialization.
• Code Verification and Error Correction Distillation. Exist-
ing knowledge distillation methods (e.g., Chain-of-Thought
Fine-tuning) rely on synthetic data generated by LLMs, but
such data often contains incorrect intermediate reasoning
steps which can mislead small models during learning, hin-
dering the improvement of their reasoning capabilities.

Pad [496] proposes Program-aided Distillation (PaD) to
address error-prone synthetic data in knowledge distillation
with (i) Programmatic Reasoning: LLMs generate executable
code (e.g., math problems as Python calculations) instead of
natural language CoT, with Python compilers auto-filtering
logic errors. (ii) Error-Injection Training: Models learn error
correction by fixing synthetically injected AST-based errors
(e.g., NameError). (iii) Semantic Validation: Decoding selects
steps via semantic alignment scoring (e.g., cosine similarity)
to prevent error propagation. PaD replaces flawed CoT steps
with verifiable program logic, enhancing small models’ rea-
soning robustness through code-based distillation and self-
correction mechanisms.
•Multi-stage Collaboration Distillation Between Student mod-
els. In domains with high annotation costs (e.g., biomedi-
cal parsing) or complex task structures (e.g., syntactic/se-
mantic parsing), labeled data is extremely scarce, making
traditional supervised fine-tuning ineffective. MCKD [467]
introduces Multi-stage Collaborative KD (MCKD) for low-
resource generation as 3 steps. (i) Initialization: GPT-3.5
generates pseudo-labels for unlabeled data. (ii) Collaborative
Distillation: Splits data into two subsets for cross-labeling via
paired T5-Base models, reducing noise overfitting. Iteratively
refines labels over 3 iterations. (iii) Final Training: Trains a
single model on refined labels. Achieves near-supervised per-
formance with 50 labeled examples (vs. 500 required tradition-
ally) through multi-stage noise reduction and collaborative
pseudo-label optimization.
Pre-training Data Augmentation. The pre-training stage
of LLM requires a vast amount of data and it can be costly
to synthesize such data with powerful models like GPT-
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4. Therefore, there are techniques like distillation [481], or
simply mixing synthetic data into the whole corpus.
• Distilled LLM for Mathematical Data Synthesis. Ji-
uZhang3.0 [481] proposes an LLM-based synthesis method for
high-quality math problems: (i) Model Distillation, fine-tunes
DeepSeekMath-7B on GPT-4-generated QA pairs (with cu-
rated prompts and math texts) to mimic GPT-4’s generation.
(ii) Uses gradient similarity to prioritize task-relevant data.
(iii) Refines the model with filtered data to produce aligned
outputs. The final math synthetic corpus are generated by
the refined model based on the multi-source corpus (e.g.,
Wikipedia) and prompt sets.
• Fintuned LLM for Instruction-Response Pair Synthesis.
In order to study the effect of supervised pre-training,
Instruction PT [99] introduces an Instruction Synthesizer
(Mistral-7B finetuned on 40+ task categories) to augment raw
text with few-shot multi-task instructions (e.g., ”Summarize
school activities” → QA/reasoning pairs). Unlike GPT-style
pre-training, it integrates structured task execution (QA, clas-
sification) alongside language modeling. This hybrid approach
boosts data efficiency (500M model ≈ 1B baseline) and multi-
task adaptability from pre-training.
• LLM Prompting for Mathematical Data Synthesis. Current
math-specialized LLMs rely on SFT with problem-solving
data (e.g., step-by-step solutions). However, since CPT im-
provements in math are far less significant than SFT gains.

To study the impact of problem-solving data in continual
pre-training, [98] proposes enhancing models’ mathematical
reasoning capabilities by augmenting problem-solving data
(e.g., step-by-step solutions for common math problems)
during pre-training, rather than relying solely on traditional
math corpora (e.g., theorem texts). First, a student model
(Llama2 [386]) is utilized to generate answers from the
collected math problems. Then, it uses a teacher model
(Llama2 [386] with more parameters) detects errors in a stu-
dent model’s solutions and generates corrective steps guided
by prompts. This teaches the target LLM self-checking and
error-correction skills. Experiments indicate continual pre-
training excels at learning complex reasoning (e.g., multi-
step equation solving) than SFT, where MathGPT-8B using
only 100B well-generated math-related tokens can exhibit
capabilities comparable to Qwen2-Math-72B [434].
• LLM Prompting for Rephrasing Synthesis. To introduce
more diversity to the data, some methods rephrase the
data to different styles of texts like Q&A or concise defini-
tion. WRAP [282] leverages instruction-tuned models (e.g.,
Mistral-7B) to rephrase web text (C4) into four formats: (i)
simple vocabulary and sentence structures that are under-
standable to young children. (ii) Standardized encyclopedia-
style expression. (iii) Complex terminology and concise aca-
demic sentence structures. (iv) multi-turn dialogue. Mixing
rephrased and original data trains LLMs to adapt to diverse
formats (e.g., zero-shot QA), achieving 3× faster training and
50% lower perplexity on Pile benchmark [149] via hybrid real-
synthetic data synergy.
• LLM Prompting for Cross-language Synthesis. LLMs like
Llama-3 exhibit deficiencies in cross-language tasks and
multidisciplinary scientific reasoning, while continual pre-
training often triggers catastrophic forgetting (e.g., perfor-
mance degradation in original capabilities like English tasks).
[93] proposes to synthesize data so as to enhance Llama-

3’s Chinese proficiency and scientific reasoning capabilities
while mitigating catastrophic forgetting. They utilize Mistral-
7B [188] to generate multidisciplinary scientific question-
answer pairs (e.g., Q&A on “explaining the electrostatic re-
pulsion principle of ion double layers in electrolyte solutions”)
from seed data collected and classified into multiple disci-
plines by TinyBERT [195] and BERT-Tiny-Chinese [23] from
Dolma’s CC [361] and C4 [120]. And generate coding problems
with LeetCode algorithm tasks as seeds by Magicoder-S-
DS-6.7B [409] .These are mixed with Chinese, English, and
synthetic data in a 1:7:2 ratio, significantly boosting scientific
reasoning.

Additionally, through substitution experiments (validat-
ing data strategies using TinyLlama-1.1B [459] as a proxy
model), they find that (1) a 20% synthetic data ratio with an
error rate below 30% yields optimal results; and (2) a curricu-
lum progressing from simple to complex topics outperforms
random training.
• Code Interpreter + LLM Prompting for Code Synthesis.
Current code generation models rely heavily on large teacher
models (e.g., GPT-4) to generate synthetic training data,
leading to poor scalability, high costs. And most datasets
focus on direct code completion or text-to-code translation,
but lack Input-Output (I/O) case-based reasoning tasks (e.g.,
inferring code from example mappings like “hello”→ “olleh”).
This gap results in weak generalization for inductive program-
ming challenges.

To bridge this gap, Case2Code [344] generates train-
ing data through four steps: (i) Extract executable Python
functions (with input/output parameters) from open-source
repositories; (ii) Use lightweight LLMs (e.g., InternLM2-7B)
to analyze function logic and generate diverse input samples;
(iii) Execute functions to obtain real outputs and filter invalid
results; (iv) Convert I/O pairs into natural language prompts
with diversified templates for improved generalization. This
method leverages ”code interpreter + lightweight LLM” to
cost-effectively produce 1.3M training samples, eliminating
reliance on expensive teacher models.
• LLM-based Clustering for Synthetic Data Evaluation. In
order to study the impact of diversity of large-scale synthetic
data, [92] introduces an LLM-based clustering method to
quantify synthetic data diversity and analyze its impact on
model performance. (i) Builds hierarchical topic trees from
web-crawled data via GPT-4 (e.g., Quantum Computing
→ Qubit Types → Superposition); (ii) Generates diverse
datasets by varying topics, prompts (styles, target audiences,
etc.) and LLMs (GPT-4o, Llama-3, etc.). Experiments across
different diversity combinations show synthetic data diversity
positively correlates with model performance on benchmarks
like HellaSwag [449] and ARC-Challenge [142].
• LLM Prompting for Multimodal Image-Text Synthesis. Cur-
rent approaches for synthesizing multimodal pre-training data
typically employ two main approaches: (1) the generation
of images conditioned on textual input using text-to-image
models, and (2) the augmentation of uncaptioned or simple-
captioned source images via multimodal models. In the do-
main of text-to-image synthesis, current methods use diffu-
sion models [145] for image generation. Examples include
DiffuseMix [185], which enhances datasets by augmenting
image samples through the blending of original and diffusion-
generated images, and EDA [387], which applies diffusion
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models to produce variations of real images that retain seman-
tic consistency while augmenting the dataset. Concerning im-
age captioning, several studies focus on improving the quality
of image-text pairs. LaCLIP [133] uses ChatGPT to rewrite
existing captions, thereby introducing greater diversity in
linguistic expression while maintain the core semantic content.
A limitation of this method is the potential for visual semantic
loss due to the language model’s lack of direct access to the im-
age. To mitigate this, VeCLIP [222] incorporates a multimodal
LLM (LLaVA) to provide a detailed visual description of the
image contents (e.g., color and shape attributes, objects, and
relations among objects). This description is then fused with
the original caption by a LLM to yield a more comprehensive
final caption. To simultaneously synthesize both image and
text samples, CtrlSynth [83] proposes a system comprising
three modules: the Florence-large [418] vision tagging model
to extract basic visual elements of an image (e.g., color and
shape attributes, objects, and relations among objects), the
Qwen2-7B-Instruct [434] language model to generate syn-
thetic text which meets the requirements in the instruction,
and the stable-diffusion-x1-base-1.0 [314] text-to-image model
to generate novel and diverse image samples based on text
prompts.
SFT Data Augmentation. The SFT stage of LLM training
mainly focus on improvement of specific domains (math,
medicine, etc.), aligning LLM’s knowledge to instructions, en-
hancing reasoning ability, etc. Current methods take LLMs as
the main method to generate data with some designed frame-
works. Many works [179], [260], [290] take existed datasets as
seeds to synthesize mimic datasets.
• LLM-based Knowledge and Q&A Pairs Synthesis. To enrich
or enhance the diversity of data for better model performance,
there are various prompt frameworks such as building topic
taxonomy [233] and iterative synthesis [179].

For example, to cover various domains of human knowl-
edge, GLAN [233] introduces a knowledge-classification
framework for synthetic text generation by GPT-4. (i) Or-
ganize knowledge domains (natural sciences/humanities) into
disciplines (math/programming) by; (ii) Develop course out-
lines with units (e.g., ”Intro to Calculus”) and core concepts
(e.g., ”Limits”); (iii) Use GPT-4 to create diverse questions by
combining concepts, then generate answers with faster GPT-
3.5. This structured approach ensures systematic coverage
of knowledge areas while balancing generation quality and
efficiency.

Though this could enhance understanding of LLM about
many domains, but to get better enhancement still needs
to focus on one aspect, like math, KPDDS [179] identifies
mathematical problem themes (e.g., algebra, geometry) and
core skills (e.g., factoring) using GPT-4, then constructs a
matrix mapping theme co-occurrence probabilities to guide
logical problem generation. GPT-4 synthesizes new questions
based on these themes and solutions, which are evaluated for
quality (clarity, coherence) and refined via GPT-4 voting. The
method further diversifies questions through variations and
applies iterative voting to optimize output. This structured
approach ensures contextually coherent, avoiding random
combinations.

Instead of combining elements like KPDDS (e.g., com-
bining algebra and geometry to synthesize problems),

TABLE 7: Data Synthesis for LLM.

Stage Category Methods

Distillation Reasoning Augmentation Cot [353]
Prompt with Tools [496]

Data Augmentation Prompt with Multi-Agent [467]
Pre-Training Data Augmentation Distillation + Fine Tuning + Prompt [481]

Prompt [99], [98], [282], [93],[344], [92]

SFT

Data Augmentation Prompt [233], [179], [260], [290]

Reasoning Augmentation
Prompt [178], [173], [346]

Human Label [253]
Automated Label [399]

High Quality Reasoning Data [442], [230]

RL
Prompts Optimization Prompt [401]

Human Feedback RLHF [71]
RLHF By LLM [476]

RAG Privacy Protection Prompt [450]

MMIQC [260] enhances mathematical reasoning by iteratively
generating complex, diverse problems from existing ones for
fine-tuning. Using a seed dataset, GPT-4 creates problems via
added constraints, variables, or extended reasoning. A filter-
ing mechanism ensures logical consistency, problem-solution
alignment, and correctness, with validated data expanding the
dataset iteratively.
• LLM-based Alignment Data Augmentation. Domain knowl-
edge is one thing, and lead LLM’s knowledge align with
instruction is another thing that could be done to get better
performance through techniques like few-shot prompting.

AgentInstruct [290] uses LLMs to create scalable, di-
verse Q&A data. GPT-4 converts raw input (text/code) into
structured formats (argument passages, API lists) to enable
diverse instruction creation. Multiple GPT-4 agents generate
varied task instructions and answers following a detailed
taxonomy (e.g., reading comprehension, coding tasks). GPT-
4 and Claude-3 then refine tasks by adding complexity (e.g.,
integrating dense context or escalating difficulty), ensuring
high-quality, adaptable outputs.

Similarly, SELF-INSTRUCT [401] aligns LLM’s knowl-
edge to prompts by generating task instructions and exam-
ples: Starting with a small set of manually written seed tasks,
a LLM (e.g., GPT-3) is prompted to generate new task
instructions covering various task types, such as classification,
question-answering, and generation. Next, different strategies
are employed to generate inputs and outputs based on the task
type. For instance, for classification tasks, possible class labels
(e.g., ”positive” and ”negative”) are generated first, followed
by inputs corresponding to each label. For open-ended tasks, a
question description is generated first, followed by an answer.
The generated data undergoes multiple rounds of filtering,
including removing duplicates or invalid data and ensuring
input-output alignment.
SFT Reasoning Data Augmentation. Synthesize reason-
ing data (e.g., code, chain of thought) through techniques like
Chain-of-thought(CoT), or utilizing verification tools for more
rigorous reasoning.
• Prompting LLM To Math Reasoning With Verify Tool. Also
for math, MUSTARD [178] utilizes mathematical proof tools
to get reasoning enhancement. First, fundamental concepts
from the field of mathematics are selected as seeds, and GPT-
4 generates corresponding problems through two types of
solutions: (1) One is a natural language explanation of the
reasoning process, and (2) the other is a formal language
solution that can be verified (e.g., code compatible with
mathematical proof tools). Next, formal solutions are verified
using mathematical proof tools to ensure the correctness of
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the reasoning and answers. For content that fails verification,
the model adjusts based on feedback and re-verifies until a
correct result is generated.
• CoT Data Synthesis By LLM Exploring. Works mentioned
above highly rely GPT-4 for its advanced ability for math
to generate problems and solutions to fine-tune for higher
reasoning ability. While more recent research try to enhance
LLMs’ reasoning ability by technique like Chain-of-Thought
(CoT, which let LLMs use tokens to output their reasoning
steps) and synthesis or label finer reasoning data for training.

By generating CoT data that covers a wide range of rea-
soning paths through a trial-and-error self-verification loop,
[173] breaks the traditional limitation of relying solely on
correct reasoning paths. Specifically, multiple LLMs (e.g.,
Qwen-7B, Llama-3-8B) are utilized to generate diverse so-
lutions for the same mathematical problem (20-50 responses
per problem) to encourage models to explore incorrect paths
(e.g., wrong formulas, logical leaps) while retaining complete
error analysis. Then a verifier LLM (e.g., GPT-4) performs
critical analysis on each response: (a) For incorrect paths,
annotate the error steps and generate correction suggestions
(e.g., “Step 3 misapplies the cosine theorem, which should
be replaced with the Pythagorean theorem”). (b) For correct
paths, extract key reasoning steps to form a concise CoT.
Merge corrected incorrect attempts with correct paths to
construct multi-branch CoT.

Similarly, Satori [346] introduces Chain-of-Action-
Thought (COAT), a reasoning framework with meta-action
tokens (Continue / Reflect / Explore) enabling dynamic
pauses, logic verification, and strategy shifts with a two-stage
pipeline: (i) Multiple LLM agents generate COAT-formatted
reasoning chains to fine-tune a base model for COAT-
formatted syntax mastery. (ii) Partial rollbacks (≤5 steps)
from historical reasoning (correct/incorrect paths) append
<reflect> to trigger revised reasoning with reinforcement
learning (RL) combined with rewards for answer correctness,
error correction, and penalties for failures. The RL-enhanced
model is distilled into base models (e.g., Llama8B) for
iterative refinement.

These works propose framework by letting LLM reason by
themselves, and we also have works that label reasoning data
for fine tuning to get reasoning ability.
• Reasoning Data Labeling. [253] compares the effects of
outcome supervision (provides feedback based solely on the
correctness of the final answer) and process supervision (pro-
vides feedback for each step in the reasoning process) on
mathematical reasoning tasks by comparing manually label-
ing the reasoning steps generated by GPT-4 with outcome
supervision. The results showed that process supervision
model achieved significantly higher problem-solving accuracy
(78.2%) compared to outcome supervision model (72.4%)

But this would cost too much manual effort, so MATH-
SHEPHERD [399] proposes a method to automatically gen-
erate process-annotated data for training Process Reward
Models (PRM, which evaluate the quality of each reasoning
step). First, complete the remaining reasoning and answers
multiple times for the initially generated reasoning steps with
LLM, then each step is scored based on two metrics: (1) Hard
Estimation (whether the correct answer is generated, with
values of 0 or 1). (2) Soft Estimation (the proportion of correct
answers generated through this step). These scores assess the

step’s ability to derive the correct answer.
• High Quality and Well Format Data Are The Keys To Better
Reasoning. Moreover, LIMO [442] and [230] state that high
quality and well-formatted reasoning data are keys to high
performance. [442] emphasizes stimulating complex reasoning
capabilities in LLMs through a small number of high-quality
training examples with questions and reasoning chains. Pow-
erful models (such as R1, DeepSeek-R1-Distill-Qwen32B) are
used for evaluation and synthesis, retaining problems that
remain challenging. Each problem is accompanied by detailed
solutions and reasoning chains (from official solutions, expert
solutions, and LLMs-generated Cot, etc.) and filtered by
rules-based and LLM-assisted methods.

[230] finds that the overall structure of the reasoning steps
is more important than the specific content. With problems
from Numina-Math [235] etc. and long CoT generated by
DeepSeek-R1 [162] and QwQ-32B-Preview [379] as data to
fine-tune. With modification of the fine-tune data, reveals that
training the model with incorrect answer samples results in an
accuracy drop of only 3.2% compared to training with correct
samples. However, shuffling 67% of the reasoning steps in the
training samples leads to a 13.3% drop in accuracy on AIME
2024 problems relative to training with correct samples.
Reinforcement Learning The RL stage of LLMs find
the most human-preferential responses within the multiple
responses generated by LLM of one instruction. Works like
[71], [476] manually label the responses or let LLMs do the
job.

Label better LLM’s response by human or LLMs. To align
the model’s responses with human expectations, [71] gathers
helpful and harmless data through open-ended conversations.
Then, a preference model is trained to score the responses
in the data, providing a basis for reward optimization in
reinforcement learning. The preference scores guide the op-
timization of the language model’s responses. Next, the latest
model generates new data, continuously updating the pref-
erence model to improve performance on high-quality data.
To improve efficiency, [476] proposes a new chatbot evalua-
tion method using language models as ”judges” to compare
and score chatbot responses, with the goal of automating
the evaluation process and reducing human involvement. It
introduces two benchmarks: one focusing on multi-turn con-
versation performance and another collecting user preferences
via crowdsourcing. The method also addresses potential bi-
ases, such as preferences for answer order or length, through
strategies like swapping answers, using few-shot examples or
Chain-of-Thought. The approach demonstrates that language
models can achieve high consistency with human evaluators,
providing a scalable and interpretable framework for efficient
chatbot assessment.
Retrieval-Augmentation Generation. The RAG stage
mainly offers knowledge and documents from outside to avoid
additional training cost. Main works in this stage of data
synthesis focus on privacy issues.

Replace sensitive data with synthesis data. In order to mit-
igate the privacy issue, [450] proposes a two-stage synthetic
data generation and privacy-enhancing method for the RAG
stage of LLM.

In the first stage, key information is extracted from the
original data (such as “symptom description” and “treatment
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plan” in medical dialogues), and LLM is used to generate
synthetic data based on key information but does not contain
sensitive details.

In the second stage, LLMs are applied to the synthetic
data, and rewriting strategies are employed to eliminate
potential privacy leaks (such as removing specific names or
obfuscating descriptions).

This process of evaluation and rewriting is repeated to
ensure that the generated data retains its key utility while
completely avoiding privacy concerns.

2.3.7 End-to-End Data Processing Pipelines
With above data processing methods, we separately introduce
existing frameworks that support common processing opera-
tions; practices of integrating some of these methods within
pipelines in real-world LLM data preparation; together with
some preliminary pipeline orchestration methods.

Principles

When designing data processing pipelines, several
critical factors must be considered: (1) the trade-off
between data quality and quantity; (2) dependencies
across the processing operations (e.g., text extraction
necessarily preceding operations like deduplication
and filtering); (3) efficiency optimization (e.g., con-
ducting computationally intensive steps like model-
based filtering after lightweight processing steps like
URL filtering).

2.2.7.1 Typical data processing frameworks
Data processing frameworks provide built-in libraries, oper-
ators, and intuitive interfaces that can benefit the design
of data processing pipelines for different LLMs. Here we
showcase three typical data processing frameworks.

(1) Data-juicer [90] is an open-source framework designed
for customizable, high-quality, and efficient data processing.
It offers a diverse range of pre-built data processing opera-
tors such as data formatting, mapping, filtering, and dedu-
plication. Additionally, the framework features visualization
and automatic evaluation, enabling users to receive immedi-
ate feedback on their data pipeline. To manage large-scale
datasets effectively, Data-juicer is optimized for distributed
computing, ensuring robust performance and scalability.

(2) Dataverse [305] is an open-source framework designed
to simplify custom ETL (Extract-Transform-Load) pipeline
development through an easy-to-use block-based interface
that enables users to easily customize by adding, removing,
or rearranging blocks. The platform offers a diverse range of
pre-built data processing operators, including deduplication,
decontamination, bias mitigation, and toxicity reduction,
while also supporting the integration of data from multiple
sources. Similar to Data-juicer, Dataverse integrates with
Apache Spark for distributed processing and supports AWS
integration for cloud scalability.

(3) [368] introduces a data processing framework that
allows users to customize data processing pipelines using a
comprehensive suite of operators categorized in two main
modules: (1) The processing module consisting of data refor-
matting (read and import strctured data), cleaning (removed

undesired data such as HTML tags and translate text), filter-
ing, and deduplication (using MinHashLSH in Section 2.3.2)
operators; (2) The analyzing module featuring refined data
probing and automatic evaluation.

2.2.7.2 Typical data pipelines
Data processing pipelines aim to orchestrate a subset of data
processing operations (in a specific order) that transform raw
data into high-quality LLM training data (mostly for the
pre-training stage). Here we showcase three representative
pipelines.
• The MacroData Refinement (MDR) pipeline is designed to
construct the RefinedWeb Dataset, which has been used for
pre-training Falcon LLMs [311]. MDR refines web-scale data
from Common Crawl [11] through three main operations.
(i) Data acquisition: MDR first applies a lightweight URL
filter to exclude irrelevant links before any computationally
intensive steps. It then extracts text from WARC files using
warcio and Trafilatura [73], followed by language identifica-
tion (i.e., removing content with limited natural language)
using fastText [199] as implemented in CCNet [410].
(ii) Data filtering: To eliminate low-quality content, MDR
employs both (1) document-level filtering [328] and (2) line-
level filtering, which removes noisy content such as social
media counters or navigation links.
(iii) Data deduplication: Despite prior filtering, substantial
content duplication remains, which can degrade model per-
formance. MDR performs both fuzzy deduplication using Min-
Hash and exact deduplication with suffix arrays to minimize
redundancy. To address computational limits, the Common
Crawl corpus is partitioned into 100 segments, with deduplica-
tion performed per segment. Additionally, to avoid cross-part
redundancy, URL-level deduplication is applied by excluding
URLs already retained in earlier segments.

Overall, MDR follows three core design principles: (i) scale
first, by maximizing data volume from Common Crawl to
support large model training; (ii) strict deduplication, as rig-
orous redundancy elimination is critical for training efficiency
and generalization; and (iii) heuristic filtering, favoring rule-
based filters over ML-based ones to reduce bias and maintain
transparency.
• The DCLM-Baseline pipeline also processes data from the
Common Crawl dataset. Different from MDR, in addition
to text extraction and language identification, it applies ef-
ficient heuristic filtering [311] to exclude irregular content
(e.g., toxic words or webpages from illegal sources). Next,
DCLM-Baseline adopts a Bloom filter for data deduplication,
ensuring its scalability with large datasets. Finally, over the
processed data with much smaller size, it conducts model-
based quality filtering (most computationally intensive) to
remove low-quality content. Specifically, a fastText classi-
fier trained on instruction-formatted data, including OH-2.5
(OpenHermes 2.5) and ELI5 (ExplainLikeImFive), is used to
retain the top 10% of documents.
• The FineWeb pipeline (for preparing a 15T-token pretrain-
ing dataset) starts with text extraction from WARC files
using Trafilatura [73], which is more custom than directly
using WET format data and language filtering with fastText.
Different from the above pipelines, it conducts MassiveText
filtering, i.e., heuristic quality filters and repetition filters
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Fig. 6: Typical data processing pipelines for LLMs.

on paragraph, line, and gram level [328]. Besides, it con-
ducts fuzzy deduplication using individual MinHash dedu-
plication for each CommonCrawl snapshot, as this approach
matches RefinedWeb’s performance, whereas global dedupli-
cation yields little improvement over non-deduplicated data.
After deduplication, given the observation that the C4 dataset
yields superior performance on some benchmarks despite its
smaller size, a selection of C4 [330]’s heuristic filters is applied
to drop low-quality content such as unpunctuated lines and
policy statements. Finally, to further enhance data quality,
additional custom heuristic filters are developed through a
systematic process. Moreover, personal identifiable informa-
tion (PII) such as email addresses is anonymized using regex
patterns in the public release of the dataset.

Compared to MDR and DCLM-Baseline, the FineWeb
pipeline is considerably more complex due to its integration
of multiple layers of filtering, each inspired by empirical
evaluations and comparisons with other datasets such as C4
and RefinedWeb. Its design reflects a trade-off that prioritizes
performance over simplicity.

2.2.7.3 Orchestration of data pipelines
The above data pipelines are mostly designed by experi-
ence. Instead, Data-Juicer Sandbox [91] proposes a “Probe-
Analyze-Refine” workflow, which involves systematically ex-
ploring the impact of various data processing operations
and their orders on model performance, combining effective
operations into data recipes, and optimizing data utilization
through duplication analysis and diversity analysis. The or-
chestrated pipelines are validated through applications on
state-of-the-art models like Mini-Gemini (for image-to-text
generation) and EasyAnimate (for text-to-video generation).

2.4 Data Storage for LLM
In this section, we introduce storage techniques for LLMs,
which we categorize accroding to the tasks they address,
including (1) data formats, (2) data distribution, (3) data
organization, (4) data movement, (5) data fault tolerance, and
(6) KV cache.

2.4.1 Data Formats
Data formats are file formats for training data and models.
For LLMs, appropriate file formats for data and models can

enhance storage efficiency, accommodate multimodal data,
be suitable for model training, ensure security, and influence
compatibility across different frameworks.

Principles

Compared to traditional machine learning, LLMs
place greater demands on data being multi-modal and
in a unified format. The main challenge is how to
achieve high data reading efficiency in multi-modal
scenarios. Current methods address this using tech-
niques like sequential storage.

Training Data Format. For training data, file for-
mats are required to have good storage efficiency (e.g.,
TFRecord [44]), be adaptable to large amounts of data (e.g.,
MindRecord [40]), and sometimes be suitable for model train-
ing (e.g., tf.data.Dataset [43]).
(1) Pure-Text Formats. Common formats such as CSV,
JSON, TSV, and TXT are often used to store pure-text
LLM data (though they are not limited to such content).
However, for large-scale training datasets (at the PB scale),
these formats incur significant storage overhead due to the
lack of compression (e.g., not supporting binary encoding),
leading to storage waste and slow data loading during LLM
training.

To address these issues, TFRecord [44] is based on Proto-
buf (a highly efficient binary serialization protocol) and stores
data in a row-based format. As a binary format, its size is
significantly smaller than JSON or CSV. Besides, data can be
written and read in a streaming manner, making it especially
suitable for scenarios like training where data is consumed
sample by sample.
(2) Multimodal Formats. Pure-text formats are not well-
suited for multimodal datasets containing images, videos, and
text. To address this, file formats such as TFRecord [44] in
TensorFlow and MindRecord [40] in MindSpore have been de-
veloped to natively support efficient multimodal data storage.
• Unlike traditional formats (e.g., COCO JSON [10], which
store image metadata in separate JSON files), TFRecord [44]
allows users to encapsulate images, labels, and metadata
within a single tf.train.Example, eliminating the need for
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separate label files. Moreover, as multimodal datasets sub-
stantially increase data volume, TFRecord supports data
sharding, enabling the creation of distributed files that can be
assigned across multiple servers to facilitate parallel training.
• MindRecord organizes data into two types of files: (i) the
data file, which contains a file header, scalar data pages
(e.g., image labels and filenames), and block data pages (e.g.,
image and text) to store training data; and (ii) the index file,
which maintains indexing information based on scalar data to
support efficient retrieval and dataset analysis.
(4) Tensor Data Formats. Compared to the storage for-
mats mentioned above, tensor formats represent data as
multi-dimensional arrays. On GPUs or TPUs, such multi-
dimensional structures can be partitioned and processed in
parallel, making them highly suitable for large-scale computa-
tion. For example, tf.data.Dataset [43] can organize various
raw data types (e.g., images, text) into a unified tensor format,
ready for direct use by models. However, tensor formats, due
to their dense multi-dimensional storage, incur large storage
overhead and offer poor readability, and are typically adopted
only in model training.

Model Data Format. Model storage formats need to pay
attention to security (e.g., Safetensors [85]) and are usually
closely tied to their respective model training frameworks [32],
[42], [22].
• Pickle (.pkl [13]) is a Python-specific format supported
by almost all Python frameworks and can store any Python
object, not limited to model parameters, making it convenient
for saving model states and other custom information.
• Safetensors [85] was introduced by Huggingface to address
the security concerns inherent in Python’s Pickle-based seri-
alization. While Pickle serializes both the data and behavior
of Python objects—enabling arbitrary code execution dur-
ing deserialization—safetensors avoids this risk by focusing
exclusively on tensors and their associated metadata. This
design ensures safe deserialization without the possibility of
executing malicious code. Additionally, safetensors supports
memory mapping (mmap), which significantly enhances the
efficiency of model loading.
• PyTorch-specific formats (e.g., .pt, .pth [32]) are optimized
for model storage. Typically, .pth files are used to save
training checkpoints, including model parameters, optimizer
states, and epoch information, while .pt files are used to store
only the model parameters.
• TensorFlow offers two common saving formats [42]: (1)
SavedModel format for saving the entire model, including
computation graph, weights, optimizer; (2) .ckpt for storing
model weights, optimizer states, and training metadata, and
is used to save and restore progress during training.
• ONNX [27] is a cross-framework deep learning model for-
mat that supports interoperability across frameworks like
PyTorch, TensorFlow, and Caffe2. It offers cross-platform and
cross-framework advantages, but does not store training state
information.
• The Hugging Face Transformers library [22] adopts a mod-
ular storage design, i.e., model weights are stored in binary
.bin files, model configurations are stored in .json or .txt
files.
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Fig. 7: The storage architecture of 3FS [15].

2.4.2 Data Distribution
With the development of LLMs, the scale of LLM training
datasets and the number of parameters of LLMs themselves
are growing rapidly (e.g., 9.5 PB data form Common Crawl
[183], DeepSeek-R1 [162] has 617B parameters). A single node
cannot store such large-scale data, and the data needs to
be distributed across multiple nodes. The key technologies
involved mainly include (1) distributed storage systems and
(2) heterogeneous storage systems.

Principles

Compared to traditional machine learning, the data
(e.g., training data and model data) used in LLMs
including both is growing exponentially. The main
challenge lies in how to efficiently store and manage
such large-scale data. Current approaches address this
through distributed and heterogeneous storage sys-
tems.

Distributed Storage Systems. Distributed storage sys-
tems refer to storing a large-scale datasets across multiple
nodes (e.g., JuiceFS [16], 3FS [15]). Traditional distributed
file systems (such as HDFS [79]) often come with high costs.
Moreover, most distributed file systems still use the POSIX
protocol when loading the training data for LLMs, which
bring about significant software overhead.

JuiceFS [16], a typical distributed file system based on
object storage, uses object storage (e.g., S3 [4]) as the backend
to store data. Compared to traditional distributed file sys-
tems (file or block storage), distributed file systems based on
object storage enables simpler horizontal scaling. It does not
need complex directory hierarchy (File Storage) and does not
involve complex management logic (Block Storage), thereby
significantly reducing storage costs (approximately 20% of the
cost of traditional file systems).

As shown in Figure 7, 3FS [15] employs a large number
of SSDs for distributed data storage and uses the CRAQ
algorithm to ensure data consistency. Specifically, a piece of
data is saved as multiple same chunks, which together form
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a Chain. For read requests, they can be sent to any chunk
in the Chain, and the chunk will return the data. For write
requests, the writing operation is carried out sequentially on
each chunk. When a certain chunk malfunctions, instead of
using the incremental data generated during the abnormal
period to overwrite the data as in traditional methods, it
first moves the chunk to the end of the chain. Only when
the chunk returns to normal will the entire content of other
samples be copied to the abnormal chunk. These operations,
while ensuring data consistency, will cause a certain delay in
write operations. However, they have almost no impact on
read operations, which are more important for LLM training.

Meanwhile, 3FS [15] discovers that in the context of LLM
training, the File Cache significantly consumes system mem-
ory, thereby degrading overall I/O performance. To address
this, 3FS adopts an asynchronous data loading approach, dis-
ables file caching and exclusively utilizes Direct I/O for data
access, significantly reducing memory pressure. Moreover, it
performs system-level alignment of buffer pointers, offsets,
and lengths to satisfy Direct I/O requirements, thereby avoid-
ing additional memory copies caused by user-side alignment
operations.
Heterogeneous Storage Systems. Heterogeneous stor-
age systems refers to deploying the model state across di-
verse storage media (e.g., GPUs, CPUs, NVMes Memory).
When deploying the model, The Zero Redundancy Optimizer
(ZeRO) [333] deploys model states across multiple GPUs.
However, simply distributing the model across multiple GPUs
often significantly increases computational costs.

Some methods [334], [337], [336], [435] alleviate GPU
memory pressure by storing data in host memory or NVMe
SSD. vDNN [337] utilizes a per-layer memory management
approach based on a sliding window that dynamically allo-
cates memory at runtime based on the computational de-
mands of the current layer. Its memory transfer mechanism
includes both static and dynamic policies: the static policy
offloads feature maps of all layers or only convolutional layers,
while the dynamic policy determines which layers and con-
volutional algorithms to offload at runtime, balancing train-
ability and performance based on network characteristics.
vDNN fully utilizes CPU memory by offloading intermediate
feature maps that are not immediately needed and prefetching
them prior to backpropagation. ZeRO-Infinity [334] offloads
model states to CPU (e.g. activations) and NVMe memory,
effectively alleviating the GPU memory bottleneck. To fur-
ther reduce memory pressure, it introduces a memory-centric
tiling technique that lowers the working memory requirements
for LLM training, enabling the execution of large operators
without relying on model parallelism.

However, both vDNN and ZeRO-Infinity only utilize
CPU’s memory without leveraging its computational capa-
bilities. In contrast, ZeRO-Offload [336] retains the parame-
ters and forward/backward computations on the GPU while
offloading the remaining computations (such as optimizer
calculations) to the CPU, thereby harnessing the CPU’s com-
putational power.

Unlike the aforementioned methods that often rely on
manual parameter tuning (e.g., specifying offloading targets
like CPU or NVMe), ProTrain [435] introduces a model-
and hardware-aware automated framework. It incorporates

a Memory-Aware Runtime Profiler for monitoring real-time
memory and compute loads, partitions parameters into persis-
tent (resident on GPU) and non-persistent (offloaded/loaded
on demand) chunks based on their usage patterns, and reduces
redundant data copying via pre-allocated chunk buffers.

2.4.3 Data Organization
Data organization refers to data operations (e.g., content
organization in vector-based organization) during the storage
stage that are designed to optimize retrieval accuracy and
efficiency in RAG systems. When LLM answers questions,
issues like hallucination [187] and lack of timeliness often
arise. To address these limitations, RAG [228] (e.g., vector-
based retrieval and graph-based retrieval) have been intro-
duced. They provide models with real-time, reliable context
during inference. And both retrieval methods are based on
the relevant data organization operations (e.g., vector-based
organization and graph-based organization).

Principles

Compared to traditional machine learning, LLMs re-
quire RAG knowledge to access real-time information.
The main challenge is how to ensure both the efficiency
and accuracy of retrieval. Current methods address
this through vector-based and graph-based data orga-
nization techniques. However, existing RAG systems
still fall short of meeting the high-quality retrieval
demands at the enterprise level, where the document
scale can reach millions of pages.

Vector-Based Organization Vector-based organization
refers to converting data into vector form for efficient retrieval.
It processes the original data through multiple stages (e.g.,
Content Organization, Chunking, Embedding, Compression
and Storage).
(1) Content Organization. For the source data, organizing the
content can enhance its logical structure, thereby facilitating
improved efficiency and accuracy in retrieval. Works like
Dense x retrieval [97], APS [172] refine text into independent
semantic units, which could be described as the minimal
sentence that include all the necessary context information
from the original text to express its meanings, and Thread [57]
reorganizes documents into logical units, with each unit con-
taining prerequisites, headers, body content, linkers (describ-
ing possible paths for next step), and metadata, enabling
a logical and structured representation of the document’s
content, which significantly enhances the system’s logical co-
herence and processing efficiency especially in complex tasks
(e.g., troubleshooting and dynamic operational workflows).

Similarly, [89] organizes the content of scientific papers
into a hierarchical tree structure, where the root node of
the tree is the paper’s title and child nodes are different
sections, such as the introduction and methods. The relation-
ship between parent and child nodes represents the global-
local content relationships, such as the connection between
the abstract and introduction. Then it traverses the paths
from the root node to the leaf nodes to extract important
contextual information.
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(2) Chunking. In vector-based retrieval, embedding long texts
may reduce retrieval efficiency. Thus, an effective chunking
strategy is required to divide the text into appropriately
sized segments for encoding. The optimal chunk length needs
to balance retaining fine-grained semantics and maintaining
sufficient context, since a too long text might suffer from
significant semantic compression during embedding, while too
short a text would increase processing costs.

Allowing overlap between consecutive chunks ensures that
important information at the boundaries is not lost and the
continuity of context is maintained. Different from traditional
chunking, MoG [480] adopts a dynamic chunking strategy,
which chunks data when building the knowledge base, where
MoG dynamically determines the optimal granularity (e.g.,
sentence-level, paragraph-level, or section-level) of the knowl-
edge source based on the input query through a trained router.
The router, implemented as an MLP, assigns weights to
different granularities to guide snippet selection. MoGG [480]
extends MPG by converting reference documents into graphs
and redefining granularity as hopping ranges, enabling effec-
tive retrieval of dispersed information for complex queries.
(3) Embedding. In vector-based retrieval, the original input
(text, images, audio, or other domains) is transformed into
dense vector representations using models specifically ad-
justed for each data type. These representations encapsulate
the underlying semantic meaning of the original content, and
are then stored in a vector database for storage and retrieval.
Various embedding models are used to correctly encode se-
mantic information:
• BGE uses a bilingual joint training framework that com-
bines language-specific subword tokenization and specialized
adaptation layers. This design aligns semantic representa-
tions across languages, improving cross-lingual retrieval ac-
curacy [94].
• STELLA features a cross-instance attention aggregation
mechanism that explicitly captures inter-sentence dependen-
cies during pretraining. Besides the general embedding model,
STELLA offers an extra dialogue model in incomplete query
situations where the user input has problems such as semantic
omission and reference digestion. This reduces the embedding
dimensions and inference latency, making it especially effec-
tive for large-scale tasks [24].
• GTE introduces a dual-negative sampling strategy within
its contrastive learning paradigm. Though introducing nega-
tive samples usually works in series of embedding models, this
strategy incorporates more reverse contrastive terms within a
fixed batch, strengthening the model’s ability to distinguish
subtle semantic differences. [249].
(4) Compression. Vector retrieval in LLMs differs from regu-
lar vector retrieval in that semantically similar vectors are of-
ten high-dimensional, so dimensionality reduction techniques
are needed to reduce storage pressure.
• Linear Dimensionality Reduction. Locally-adaptive
Vector Quantization (LVQ) [50] centralizes the data and
scales each vector individually, calculating the quantization
bounds adaptively in a localized manner, fully utilizing the
quantization range to compress the vectors. This method is
typically suitable for compressing vectors with around 100
dimensions, but it performs poorly when the vector dimension
is very large, such as tens of thousands.

LeanVec [380] combines linear dimensionality reduction
with LVQ for vector compression. In ID(In-distribution) sce-
narios, LeanVec uses PCA, while in OOD(Out-of-distribution)
scenarios, it introduces the LeanVec-OOD optimization
method, which minimizes the square of the inner product
between the query vector and the representation error to find
the optimal projection subspace for both the dataset and the
query set, thereby reducing the vector dimension. However,
LeanVec is a simple linear dimensionality reduction method,
and its performance may be affected in terms of accuracy
when reducing the dimensionality drastically.

LeanVec-Sphering [381] modifies the loss function, trans-
forming the problem of finding the projection matrix into an
optimization problem under the Mahalanobis distance, which
allows for more effective discovery of the optimal projection
matrix, thereby better preserving the similarity structure
between vectors when processing high-dimensional vectors.
• Non-linear Dimensionality Reduction. GleanVec [381]
uses spherical k-means clustering in the data partitioning
stage to group vectors based on direction, capturing the
data’s structural features. By associating cluster labels with
vectors, it narrows the search range and reduces unnecessary
calculations during inner product computation. In the local
linear dimensionality reduction stage, GleanVec applies the
LeanVec-Sphering method to reduce dimensionality within
each cluster, preserving the inner-product relationship, which
simplifies calculations while maintaining accuracy.
(5) Storage. After the above steps, the data will be stored in
vector form in a vector database. During LLM inference, the
model vectorizes the input and uses similarity metrics such as
cosine similarity or dot product to retrieve the most relevant
data from the database.

Faiss [125], when storing vectors, relies on the chosen
index type. The Flat Index stores all vectors directly, such
as IndexFlatCodes, which stores vectors in a flat array and
supports sequential IDs. It is ideal for small datasets with
high-precision requirements. The IVF Index clusters vectors
with a coarse quantizer and stores them in inverted lists, sup-
porting user ID operations and optionally using a DirectMap
for efficient access. This reduces the search range and speeds
up retrieval, making it suitable for large datasets. The PQ
Index compresses vectors by splitting them into sub-vectors
and quantizing them with a k-means quantizer (e.g., PQ6x10),
trading accuracy for reduced storage space, making it suitable
for high storage demands and lower precision needs.

In the Milvus [26], vector storage differs based on the
number of vectors per entity. For single-vector entities, vectors
are stored continuously without row IDs. Since vectors are
sorted by row ID and have the same length, a vector can be
directly accessed using its row ID, reducing storage overhead
and improving query access efficiency. For multi-vector enti-
ties, vectors are stored in a columnar format. For example, for
entities A and B, each with two vectors, the storage format
is (A.v1, B.v1, A.v2, B.v2). This columnar storage enables
more efficient data processing by vector dimension, facilitating
batch operations and improving processing performance.

Weaviate [34] utilizes a graph data model to manage
data entities, storing vectors as node attributes linked to
these entities. For example, in the case of text data, vectors
generated by a text embedding model are associated with
their corresponding text entity nodes, enabling efficient graph
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traversal and multi-hop queries based on vector similarity.
Additionally, Weaviate can store vectors alongside structured
attributes. For instance, the vectors of e-commerce products,
along with structured attributes such as price and category,
are stored in the corresponding entity nodes. This allows for
hybrid queries that combine vector similarity and structured
attribute conditions, enhancing query flexibility and practi-
cality.

LanceDB [25] uses a columnar storage format called Lance
to store data. Compared to traditional Parquet formats,
Lance introduces the concept of a table schema. A single
row in LanceDB can store images, text, audio, video, and
any number of vectors corresponding to different parts of the
original data, and it can be dynamically updated. This makes
LanceDB particularly suitable for storing multi-modal data.
Currently, LanceDB is used for handling various RAG tasks.
Graph-Based Organization. Unlike vector-based organi-
zation, which helps LLM find knowledge related to a user’s
query through fuzzy searching, graph-based data explicitly
represents entities and their relationships, enabling the iden-
tification of precise matching information in the database.
We will introduce graph-based organization from two aspects:
indexing and storage.
(1) Indexing. In the indexing phase, it is necessary to establish
an efficient indexing architecture to address the issue that
directly retrieving raw triples is inefficient for complex queries
such as multi-hop reasoning or path search, because the inher-
ent sparsity in the graph structure often leads to significant
query latency.

GraphRAG [127] adopts community clustering and hierar-
chical summarization strategies. It uses the Leiden algorithm
to detect tightly connected subgraphs, called communities,
in the knowledge graph. Then, it generates hierarchical sum-
maries for each community. Once a certain element in a triple
is retrieved, the index collects relevant community summaries
and sends them for inference. For example, it can condense
hundreds of triples related to ”quantum mechanics” into a
semantic summary: ”Quantum mechanics is the fundamental
theory describing the behavior of matter and energy at micro-
scopic scales”.

Furthermore, LightRAG [164] integrates deduplication
functionality to identify and merge identical entities and
relations from different paragraphs. In real-time update sce-
narios, LightRAG introduces the Delta Index mechanism,
which builds local indexes only for newly inserted edges and
entities, using background merging threads without the need
for community reconstruction, significantly reducing overhead
related to community detection compared to GraphRAG.

MiniRAG [136] proposes a semantic-aware heterogeneous
graph indexing mechanism, integrating text chunks and
named entities into a unified structure, reducing the reliance
on large language models for complex semantic understand-
ing. The low semantic calculating requirement while deploying
grants MiniRAG a more excellent performance on resource-
constrained devices compared to other methods.
(2) Storage. Graph data is usually stored in graph databases
in three models: property graph models [292], RDF (Resource
Description Framework) models [65], and multi-model [1].

Neo4j, JanusGraph, and TigerGraph use property graph
models [292] to store graph-based data. A property graph
model consists of ”nodes” and ”edges,” where both can

contain attributes (key-value pairs). This model uses query
languages like Cypher and GSQL, designed for relationship
modeling and querying, making them highly suitable for
complex relationship queries during RAG in LLMs.

Amazon Neptune [65] supports both property graph mod-
els and RDF models for graph-based data storage. The RDF
model, based on triples (subject, predicate, object), represents
entities, attributes, and relationships in a way that enhances
knowledge reasoning. By combining these two models, Nep-
tune can meet diverse knowledge storage needs, such as rapid
queries and deep reasoning.

ArangoDB [1] uses a multi-model approach to store graph-
based data. It supports multiple data models (e.g., document,
key-value pair, graph), allowing the selection of appropriate
storage and query methods depending on the requirements.
This allows ArangoDB to store graph data (relationship in-
formation), document data (context or factual information),
and key-value pairs (configuration or metadata) in the same
database, facilitating LLMs to extract relationships from
knowledge graphs while also retrieving document-type data
(e.g., specific context information).

2.4.4 Data Movement
Data movement refers to the process of moving data from
storage nodes to computing nodes. This process can achieve
high data movement performance by caching data. Mean-
while, offloading data and operators to multiple nodes for
computation can improve the speed of data preprocessing.
Additionally, the highest overall performance can be achieved
by overlapping data storage and computation operations to
jointly schedule storage and computing resources.

Principles

Compared to traditional machine learning, LLMs in-
volve massive data transfers from storage nodes to
compute nodes. The main challenge is how to accel-
erate the data moving rate. Current methods address
this through data caching, compute-storage overlap,
and data/operator offloading.

Caching Data in advance can increase the data moving rate.
However, if a fixed cache policy is used, in order to meet the
IO requirements of training, the configured storage capacity
often far exceeds that required for storing the dataset [469].
Therefore, a dynamically adjustable cache policy is needed.
Some methods [219], [161], [469] dynamically adjust the cache
mechanism by analyzing the characteristics and requirements
of LLM jobs in real time.

Quiver [219] optimizes cache sharing strategies based on
the following IO characters during model training: (1) data
shareability (due to significant overlap in data access within
and across jobs), (2) substitutability (the I/O order does
not affect job correctness, enabling small caches to improve
performance by substituting data and reducing thrashing),
and (3) predictability (using mini-batch processing times to
estimate job sensitivity to I/O performance for informed cache
allocation).

Fluid [161] dynamically adjusts cache capacity according
to I/O conditions, optimizing the online training speed for
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each individual LLM job. Specifically, Fluid uses a coordina-
tor to monitor the processes of LLM jobs. It calculates the
number of samples within a specific time window based on
the batch sizes fed back by the jobs, and thus obtains the real-
time training speed. Subsequently, based on the concept of
the TCP congestion control algorithm [315], it adopts a trial-
and-error approach to dynamically adjust the cache capacity.
When the training speed increases, the cache capacity is
increased according to the preset scaling-up factor and scaling
step. Conversely, when the training speed decreases, the cache
capacity is decreased according to the preset scaling-down
factor and scaling step.

Meta proposes Tectonic-Shift [469], a hybrid storage ar-
chitecture that integrates flash memory with the traditional
HDD-based distributed file system Tectonic. Tectonic-Shift
organizes data segments into buckets for storage in flash
memory and determines segment admission and reinsertion by
comparing bucket priorities (computed from both historical
and predicted future access patterns) against dynamically
adjusted thresholds. It also optimizes the segment size (e.g.,
256 KB) of CacheLib [9] to improve flash memory utilization.
Data/Operator Offloading refers to offloading data pre-
processing operations such as shuffling, sampling, and aug-
mentation, to multiple devices in order to improve processing
speed. Currently, data preprocessing pipelines (e.g., tf.data)
are typically performed on the CPU, whose efficiency is often
lower than the training speed achieved by Machine Learn-
ing (ML) accelerators like GPUs and TPUs. So enhancing
the efficiency of data preprocessing to match the high-speed
processing capabilities of ML accelerators has become a chal-
lenge [159].

Some research [158], [67] offload data preprocessing tasks
to remote CPU servers. Cachew [158] divides the input dataset
of each job into independent subsets for processing by re-
mote CPU nodes. Additionally, users can specify locations for
caching and reusing data in the input pipeline. The scheduler
makes decisions during runtime based on specific metrics and
algorithms through automatic scaling and caching strategies.
The automatic scaling strategy adjusts the number of worker
nodes according to client-reported metrics. The automatic
caching strategy compares the processing times of different
cache locations and selects the optimal caching scheme. The
tf.data service [67] addresses input data bottlenecks by hori-
zontally scaling CPU nodes and leveraging a coordinated read
mechanism to mitigate straggler issues caused by input size
variability in distributed training. Specifically, it is comprised
of four key components: a dispatcher, a pool of workers,
clients, and an orchestrator. The dispatcher manages dataset
assignment to workers using various sharding strategies, for
example, the OFF strategy performs no sharding, the DY-
NAMIC strategy applies disjoint first-come-first-served shard-
ing, and several static sharding strategies are also supported.
Workers are responsible for actual data processing. Clients
issue data processing requests to the workers. Orchestrator
deploys the aforementioned three components as containers
within the same Borg [384] unit.

Although the above method of offloading to remote CPU
servers can alleviate data stalls, the cost of remote CPUs is
high, and the resources of ML accelerator nodes are not fully
utilized. Pecan [159] introduces two strategies, AutoPlacement

and AutoOrder, to alleviate input data preprocessing bottle-
necks and reduce training costs. The AutoPlacement strategy
dynamically schedules data preprocessing workers across ML
accelerator hosts and remote CPU servers. It first estab-
lishes a baseline batch processing time for model training,
incrementally adds local workers, and then prunes redundant
remote workers to determine the optimal combination of local
and remote resources. The AutoOrder strategy analyzes the
transformation operations within the input data pipeline,
reordering them to place data-reducing transformations (such
as sampling, filtering, or image cropping) earlier and data-
expanding ones (such as image padding and one-hot encoding)
later. While adhering to user-specified ordering constraints,
this reorganization improves the preprocessing throughput of
individual workers.

Different from the works that are only compatible with a
single training framework as mentioned above (e.g., Cachew
and tf.data service can only work with TensorFlow). Powered
by native composable operators (e.g., data loading, trans-
formation, and filtering functions), Cedar [468] can flexibly
support different ML frameworks and libraries, enabling users
to effortlessly build data pipelines.
Overlapping of storage and computing means that the
data loading and computation processes in LLM training
alternate. In LLM training, which proceeds in data batches,
ideally the data loading unit can prepare the next batch while
the computing unit processes the current one, reducing overall
training time. However, if a data isn’t cached locally, its need
to load the data through remote I/O bandwidth. When this
bandwidth is insufficient, computation pauses to wait for data
loading, creating an IO bottleneck. Some researches optimize
the pipeline at different training stages (e.g., the pre-training
and SFT stage [466], the RL stage [479]).

SiloD [466] leverages the characteristics of the pipelined
execution of data loading and computation at the pre-training
and SFT stage to build an enhanced performance evaluator.
When data loading becomes the bottleneck, it uses a learned
model (IOPerf) to quantify the cache and remote I/O de-
mands of different training jobs,providing support for resource
allocation in the pipelined of data loading and computation.

Compared with the pre-training and SFT stages, the RL
stage requires an additional training of the reward model
to evaluate the output of the original model. This leads
to a greater amount of computational resources remaining
idle (pipeline bubbles) during the RL stage. RLHFuse [479]
takes advantage of the independence between the original and
reward models during the training stage to break the training
task into sub-tasks of micro-batches. In the case of differences
in the sizes and parallel strategies of the two models, it first
transforms the problem to ensure that each stage of the two
models uses the same number of GPU resources, and then
uses the simulated annealing algorithm [213] to generate a
fused pipeline schedule.

2.4.5 Data Fault Tolerance

Data fault tolerance refers to the ability to quickly resume
from the point of interruption during model training by
storing checkpoints or performing redundant computations in
the event of training interruptions.
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Principles

Compared to traditional machine learning, LLMs
place greater emphasis on fault tolerance during train-
ing due to their large model sizes and the high cost
of retraining. The main challenge is how to quickly
resume normal training in the event of an interruption.
Current methods address this by saving checkpoints or
using redundant computation.

Checkpoints. Some methods store the model state as check-
points to handle training interruptions. However, restoring
model states across multiple platforms or frameworks may
encounter compatibility issues. At the same time, frequently
saving model checkpoints can consume a large amount of
storage space, especially during large-scale model training.

For compatibility issues, PaddleNLP [29] has developed
a unified model storage technology. It stores model weights,
optimizer weights, and other data in a unified safetensors for-
mat, eliminating the need to differentiate distributed strate-
gies during checkpoint storage. Specifically, when the dis-
tributed training strategy changes (e.g., switching between
data parallelism and model parallelism) or the number of
machines is adjusted, Unified Checkpoint enables training
to resume using only a single complete checkpoint, without
requiring separate checkpoints for each configuration.
(1) Asynchronous Storage. Apart from standardized check-
point storage, for frequently saving model, some re-
searches [291], [194] aim to accelerate checkpoint saving
through asynchronous storage without affecting the model’s
training speed.

CheckFreq [291] employs a two-stage checkpointing tech-
nique designed to capture model state copies in memory
for asynchronous storage while ensuring model parameter
consistency through pipelining with subsequent iteration com-
putations. Specifically, when idle GPU memory is available, it
prioritizes snapshotting on the GPU to reduce costs; other-
wise, it stores checkpoints in CPU memory and adjusts the
checkpoint frequency accordingly.

In the training of LLMs on the MegaScale system [194],
HDFS is used to store the model state. When storing model
states, there are problems of balancing the checkpoint fre-
quency and dealing with the HDFS bandwidth bottleneck dur-
ing model recovery in the training process. To address this,
MegaScale adopts a two-phase storage approach: (1) GPU
worker nodes quickly write the on-chip state to the host
memory and continue training; (2) a background process asyn-
chronously transfers the state to HDFS to reduce interference
with training. When resuming training, a worker node in the
specified data parallel group reads the shared state partition
and broadcasts it to other nodes, reducing the HDFS load and
alleviating bandwidth pressure.
(2) Hierarchical Management refers to storing model check-
points across a multi-level storage system, storing the check-
points that may be needed in the closer storage nodes, aiming
to improve recovery speed. Gemini [403] stores checkpoints
in a hierarchical storage system composed of local CPU
memory, remote CPU memory, and remote persistent storage.
It introduces a near-optimal checkpoint placement strategy
for CPU memory. By analyzing the relationship between

the number of machines and checkpoint replicas, it flexibly
adopts group placement or ring placement to maximize the
likelihood of recovery from CPU memory in the event of
failures. ByteCheckpoint [389] manages checkpoint files using
an architecture combining SSD and HDD storage servers.
New checkpoint files are stored as ”hot” data on SSDs for
quick access due to evaluation task downloads after creation.
Once the evaluation is completed and there are no training
anomalies, their access frequency drops, and they become
”cold” data, being migrated to HDDs to free up SSD space
and ensure the hot storage can efficiently store currently
frequently accessed checkpoint files.
Redundant Computations Unlike checkpoint, some meth-
ods [382], [186], [147] are based on parallel computing and
redundantly compute the state data of the model, enabling
quick recovery of the training state from non-failed nodes in
case of failures.

Inspired by the RAID disk redundancy technology [307],
Bamboo [382] enables each computing node to perform com-
putations not only on the neural network layers it is respon-
sible for, but also on some layers of its neighboring nodes
as redundant computations. When a node is preempted, its
predecessor node has all the information required for training,
allowing the training to continue without wasting previous
computational results.

Unlike Bamboo’s node-based redundant computation,
Oobleck [186] uses pipeline templates to define training
pipeline execution, specifying node allocation, stage num-
bers, and model layer-GPU mappings. During training, at
least f + 1 logically-equivalent yet physically-heterogeneous
pipelines are instantiated from these templates, considering
the fault tolerance threshold f and batch size. When a pipeline
node fails, Oobleck leverages other pipelines’ model state
redundancy and reinstantiates the pipeline to resume training.

Unlike Bamboo and Oobleck, which use pre-set redundant
computations in standby, ReCycle [147] leverages the compu-
tational redundancy inherent in parallel training to reassign
the tasks of failed nodes to nodes with the same processing
in other data-parallel groups. This unique approach enables
quick resumption of training without the need for spare
servers.

2.4.6 KV Cache
LLMs use auto-regressive generation, where each token de-
pends on prior ones. KV Cache avoids redundant computation
by reusing stored key-value pairs, improving efficiency. How-
ever, its memory grows with sequence length, making efficient
cache management crucial.

Principles

Compared to traditional machine learning, LLMs re-
quire KV cache to accelerate inference. The main
challenge lies in efficiently managing the cache as the
KV size grows rapidly. Current methods address this
by indexing KV, shrinking KV, and managing KV
placement or cache space.

Cache Space Management refers to separating the logical
structure of the KV cache from its physical storage imple-
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mentation, which facilitates memory allocation and improves
memory utilization. vLLM [220] and vTensor [428] divide
the KV cache into fixed-size blocks and store them in a
non-contiguous manner. vLLM manages these blocks through
a mapping mechanism, while vTensor stores the fixed-size
KV cache blocks non-contiguously in physical memory. This
decouples the logical and physical KV blocks, utilizing a block
table to manage dynamic memory allocation by tracking the
mapping relationships and fill states.
KV Placement refers to using a perception strategy to store
frequently used KV in faster storage media (such as GPU
memory), while storing less frequently used KV in slower
storage media (such as SSD), or releasing them directly.
RAGCache [197] provides a prefix-aware PGDSF replacement
policy that prioritizes cache nodes based on access frequency,
size, and recomputation cost. And stores frequently accessed
data in fast GPU memory and less frequent data in slower host
memory, maximizing cache efficiency. CachedAttention [148]
leverages the inference job scheduler to observe the jobs
waiting for execution. To improve cache efficiency, the KV
cache of a pending job is prefetched into the host memory
from disk before execution. Meanwhile, KV caches that are
no longer required are evicted, based on the jobs waiting to be
executed.
KV Shrinking KV Cache Shrinking refers to trimming or
reducing the KV Cache in order to lower memory usage
and improve inference efficiency. CacheGen [265] uses a cus-
tomized tensor encoder to encode the KV cache into a more
efficient bitstream, thereby reducing bandwidth usage. It also
compresses the KV cache using techniques such as block-based
encoding, hierarchical quantization, and arithmetic encoding,
while dynamically adjusting the compression level and trans-
mission method based on network conditions to ensure low
latency and high generation quality.

Unlike CacheGen, which only considers intra-layer redun-
dancy, MiniCache [255] is based on the similarity of KV cache
states in adjacent layers. It decomposes the state vectors into
magnitude and direction components, calculates the direction
vectors using SLERP [354], and merges the KV caches of adja-
cent layers to form a merged cache that contains information
such as direction vectors, magnitudes, and angles.

Compared with the traditional method of storing the com-
plete KV data, HCache [150] only stores the hidden states (the
size of the hidden states is only half that of the KV cache, and
recomputing the KV cache from the hidden states can reduce
the computational load). When restoring the state, a bubble-
free restoration scheduler is used to concurrently execute the
transmission of hidden states and the recomputation from
hidden states, maximizing the overall resource utilization.
KV Indexing refers to the process of constructing an in-
dexing architecture for the KV Cache to accelerate the query
process of the KV Cache. ChunkAttention [440] organizes the
KV cache into a prefix tree using a prefix-aware KV cache
(PAKV), sharing key-value tensors of common prefixes to ac-
celerate the corresponding KV query process. [478] proposes
Prefix Sharing Maximization (PSM): By dynamically reorder-
ing data columns and rows, it maximizes prefix sharing among
requests to improve cache hit rates. Column Reordering sorts
columns based on value frequency and size, prioritizing those
with more shared prefixes. Row Sorting groups requests with

identical prefixes together, further enhancing cache reuse.

2.5 Data Serving for LLM
Data service encompasses data preprocessing operations car-
ried out after data is transferred from storage to computing
nodes and before its actual utilization by the LLM, aiming
to facilitate more effective data consumption by the LLM.
These data preprocessing operations include: data shuffling,
data compression, data packing, and data provenance.

2.5.1 Data Shuffling
Data shuffling in data serving means that different data needs
to be selected and provided to LLMs at various stages (e.g., in
different epochs for pretraining). For example, corresponding
training data needs to be supplied according to the training
requirements during the training stage; during the RAG stage,
corresponding knowledge needs to be supplied based on the
degree of relevance to the questions.

Principles

Compared to traditional machine learning, LLM ap-
plications are divided into multiple stages, each requir-
ing different types of data to be fed into the model.
The main challenge is how to select data that meets
the specific requirements of LLMs. In the training
stage, current methods provide training data by scor-
ing based on data samples or model states, or by using
empirical training strategies. In the RAG stage, data
is selected through metrics, rules, or models to supply
relevant knowledge to the LLM.

Data Shuffling for Training. As LLMs continuously
trained over new tasks, it may begin to lose its ability to retain
early task knowledge, a phenomenon known as catastrophic
forgetting [287], [286]. To address this, some data supply
methods are employed to manage datasets during the train-
ing process and provide high-quality data. Meanwhile, some
methods, instead of altering the dataset, propose reasonable
learning strategies.
(1) Data Pruning. Data pruning refers that during the train-
ing process, partial shuffling is carried out on the training
dataset, and high-quality data is retained, so that the model
is trained on the data that has not been fully learned and is of
high quality.
Sample Scoring. Some methods [137], [66] prune datasets by
scoring samples, selecting high-scoring samples for subsequent
training. [137] applies the EL2N metric to identify important
examples in a dataset, written as χ(xi, yi) = E∥f(xi) − yi∥2,
where f(xi) is the model’s prediction and yi is the true
sample. Based on the computed EL2N values, it period-
ically prunes irrelevant data during training. [66] extends
the EL2N metric to evaluate sample importance, written as
χ̂ema(x, y) ← α · χ̂nlu(x, y) + (1 − α) · χ̂ema(x, y), where α is
a smoothing parameter. Based on extended EL2N values, it
periodically selects data subsets for training.
Model State Scoring. Unlike the aforementioned approach
of scoring samples and prune the dataset, some methods [372],
[56], [416], [276] prune the distribution of dataset by scoring
the model’s state (such as training loss and learning status).
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Moving-one-Sample-out (MoSo) [372] identifies and selects
the most informative LLM pre-training samples by assessing
the influence of a specific sample on the training loss. The
MoSo score measures how the training loss over the dataset
S excluding z (i.e., S \ z) would change when the sample
z is removed. This approximation measures the agreement
between z and S \z, where the sample is considered important
and receives a higher score if the gradient of z is consistently
aligned with the average gradient.

Similarly, Velocitune [276] is a dynamic domain weight
adjustment method based on learning velocity, which is de-
fined as Vt[i] = ℓt[i]−ℓtarget[i]

ℓinit[i]−ℓtarget[i]
, where Vt[i] denotes the learning

velocity for domain i at step t, ℓt[i] is the current loss for
domain i, ℓtarget[i] is the target loss for domain i, predicted
by the scaling law [201], ℓinit[i] is the initial loss for domain
i, calculated before training starts. The method calculates
the learning velocity of each domain and dynamically adjusts
the sampling weights, giving more attention to domains with
slower learning progress, thereby achieving a balanced learn-
ing effect.

Some methods [56], [416] combine reinforcement learning
based on scoring the model to adjust the dataset. ODM [56]
is based on the multi-armed bandit algorithm. It regards
each data domain as an arm and uses classical reinforcement
learning methods. By taking the training loss as the reward
function, it optimizes the data mixing ratio online to adapt to
training dynamics. That is, it dynamically adjusts the sam-
pling weights of each data domain and preferentially selects
data with high information gain and large losses.

MOS [416] proposes a scoring network that dynamically
adjusts the sampling probabilities of different datasets based
on the model’s current learning state, combined with re-
inforcement learning, to alter the distribution of training
data. This adjustment is guided by three reward functions:
(i) Transferability for measuring the similarity (e.g, cosine
distance) between datasets as the reward. (ii) Learning dif-
ficulty for measuring the perplexity changes. (iii) Learning
trajectory for smoothing the reward values using Exponential
Moving Average (EMA) to more stably optimize the sampling
distribution.
(2) Training Strategy. In addition to directly prune the
dataset during training, appropriate learning strategies can
also alleviate catastrophic forgetting. [123] found that dif-
ferent abilities vary with data volume, with mixed data
improving abilities at low resources and causing conflicts at
high resources. Thus, DMT [210] is proposed, which first fine-
tunes on a specific dataset and then fine-tunes on mixed data
to effectively balance general and specialized abilities and
mitigate conflicts and forgetting. It proposes a strategy where
training data are sorted based on criteria like input length,
attention weights and training loss, allowing the model to
gradually learn from simple tasks to more complex ones.
Data Selection for RAG. In the RAG stage, it is neces-
sary to retrieve the stored knowledge (see details in 2.4.3)
and provided the retrieved results to the LLM. During this
process, it needs to ensure the effectiveness of the retrieved
results in order to obtain better answers from the LLM [280].
Currently, the retrieval quality is mainly guaranteed through
RAG knowledge filtering and RAG knowledge re-ranking.
(1) RAG Knowledge Filtering. RAG knowledge filtering refers

to filtering out documents with poor relevance after retrieval.
Some methods [280], [114], [87] use a model as a judge to
filter documents. [280] uses small language models (SLMs)
as filters, performing preliminary predictions and evaluating
difficulty. For easy samples, the SLM’s predictions are used
as the final decision; for difficult samples, the top N most
likely labels are selected from the SLM’s predictions for sub-
sequent re-ranking. In Chatlaw [114], after retrieving relevant
information, the LLM evaluates the retrieved content. Only
content that is deemed highly relevant after evaluation is used
to generate the final response, effectively reducing interference
from irrelevant or incorrect information. MAIN-RAG [87]
collaboratively filters and scores retrieved documents by lever-
aging multiple LLM agents to enhance relevance and reduce
noise. The framework adopts a dynamic filtering mechanism
that uses score distributions to adjust relevance thresholds,
ensuring high recall of relevant documents while minimizing
computational overhead.
(2) RAG Knowledge Re-ranking. After filtering, multiple doc-
uments may remain, requiring re-ranking of the retrieval
results to place the most relevant ones at the top for more
accurate model output. Research on [128] shows that using
a large model for re-ranking performs better than methods
like Maximum Marginal Relevance (MMR) and Cohere re-
ranking. For large model re-ranking, general-purpose large
language models (e.g., GPT) can be used directly, or special-
ized zero-shot re-ranking models such as Cohere rerank [12] or
RankVicuna [318] can be employed. The latest ASRank [47]
leverages pre-trained LLM to compute the matching prob-
ability between document answers and answer cues, scoring
and re-ranking the retrieved documents.

2.5.2 Data Compression

Data compression refers to compressing the input data for the
model. Previous studies have shown that prompts are crucial
for triggering LLM domain-specific knowledge, and prompts
are typically designed based on specific tasks (including chain-
of-thought, context learning, and historical dialogues). As
the complexity of chain-of-thought, context learning, and
RAG increase, longer prompts are required [189]. However,
overly long prompts may lead to higher response latency,
increased costs, and even exceeding the maximum token limit.
Existing methods mainly compress the model inputs in two
aspects. Some methods [427], [101], [348], [200], [335] compress
the retrieved results in the RAG stage and then put them
into the prompt, while other methods compress the entire
prompt [189], [190], [303], [293], [102].

Principles

Compared to traditional machine learning, LLMs of-
ten require longer inputs, and in some cases, the input
must be compressed to fit into the model. The main
challenge is how to compress the input without los-
ing important information. Current methods mainly
achieve this through compression based on informa-
tion entropy, rule-based templates, or model-driven
approaches.
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RAG Knowledge Compression The retrieved RAG knowl-
edge can be compressed by a model to make small texts
carry more information. Techniques like RECOMP [427],
CompAct [348], and FAVICOMP [200] adopt rule-based RAG
context compression schemes, where predefined rules or tem-
plates explicitly guide the model to extract key information
and remove redundant content. Alternatively, methods like
xRAG [101] and COCOM [335] use soft prompt-based RAG
context compression schemes, where learnable parameters
(such as the modality projector W in xRAG or the overall
model training in COCOM) enable implicit vector learning.
These implicit vectors dynamically adjust attention weights
when the model processes input, allowing the model to adap-
tively optimize context representations under context com-
pression.

Prompt Compression. Prompt compression means that
after the retrieved knowledge is put into the Prompt, the
entire Prompt will be compressed.

(1) Metric-Based Compression. Some studies [189], [190],
based on the hypothesis that a vast amount of knowledge is
stored in the model parameters, have proposed methods to
compress prompts while minimizing information loss. LLM-
Lingua [189] uses a perplexity criterion to remove redundant
tokens from the original prompt. By quantifying the negative
logarithmic probability (perplexity) of each token through
a small model, LLMLingua identifies and removes tokens
that can be predicted from the model’s inherent knowledge,
thereby shortening the prompt while retaining essential con-
text.

LLMLingua’s extended version, LongLLMLingua [190],
uses a dual-granularity compression strategy: (i) Coarse-
grained compression initially filters key information at the
document level to provide more focused content for fine-
grained compression; (ii) Fine-grained compression further
optimizes at the token level to precisely retain key informa-
tion. These two strategies work together to improve the qual-
ity of the prompt and model performance. LongLLMLingua
also assigns different “compression budgets” to documents
based on their importance, aiming to achieve the best global
compression effect.

(2) Finetuned-Model-Based Compression. Unlike the afore-
mentioned methods that use a small model’s perplexity for
compression, some methods [303], [293], [102] directly perform
the compression task end-to-end by fine-tuning a model.
LLMLingua-2 [303] defines prompt compression as a problem
of classifying tokens and trains a dedicated model for compres-
sion. It uses a Transformer encoder to capture bidirectional
contextual information, ensuring that the compressed prompt
is faithful to the original. [293] proposes a technique called
’gisting’, where a language model is trained to condense the
prompt into a compact ’gist token’. These tokens encapsulate
the core semantic content of the prompt and can be cached for
later use. This method achieves a compression rate of up to 26
times. [102] suggests a method to transform pre-trained lan-
guage models into AutoCompressors. The AutoCompressor
compresses long contexts into summary vectors, and training
is performed on the model parameters using these summary
vectors.

2.5.3 Data Packing
Data Packing aims to address the requirement for uniform
sequence lengths in LLMs’ training inputs, which combines
short texts in an appropriate way to enhance text coherence
and reduce the number of padding tokens. In this way, we
can avoid the excessive truncation caused by the drawbacks of
simple concatenation and splitting methods [116].
Short Sequence Insertion. Some methods [116], [259] in-
volve inserting short sequences into long sequences to min-
imize padding. The Best-fit Packing [116] first splits long
documents according to the model’s context length, then sorts
all document blocks in descending order of length. For each
document block, it selects the training sequence set with the
smallest remaining capacity that can accommodate it. [259]
prioritizes long documents and uses a greedy algorithm to fill
remaining space with short document segments (sequences),
reducing padding and minimizing document concatenation to
lower contextual noise.

Principles

Compared to traditional machine learning, LLMs
place higher demands on the semantic quality of train-
ing data. Additionally, due to the requirement for uni-
form input lengths, a key challenge is maintaining se-
mantic integrity without excessive truncation. Exist-
ing techniques tackle this through short-sequence in-
sertion, sequence concatenation, and semantic-aware
composition. However, it remains crucial to account
for the impact of these data packaging operations on
overall training efficiency.

Sequence Combination Optimization. Some meth-
ods [218], [316] optimize sequence combinations for efficient
packing. [218] proposes two efficient sequence packing al-
gorithms: (1) The Shortest Pack First Histogram Packing
(SPFHP) uses a sequence length histogram, sorts sequences
from long to short, and applies a worst-fit algorithm to
prioritize placing the histogram intervals into the remaining
largest “packs”, while limiting packing depth to avoid creating
excessive small packs, thus improving space utilization. (2)
The Non-Negative Least Squares Histogram Packing (NNL-
SHP) converts the packing problem into a non-negative least
squares problem, using dynamic programming to enumerate
reasonable sequence combination strategies, constructing a
packing matrix to determine the strategy’s repetition count.
It also assigns small weights to short sequences’ residuals to
reduce long sequence leftovers, achieving efficient packing.
[316] splits documents into multiple fixed-length “buckets”
based on their length, ensuring that each sequence comes from
the same document to avoid cross-document attention issues.
Additionally, by combining Variable Sequence Length Cur-
riculum (VSL), different lengths of sequences are dynamically
sampled during training to maintain a consistent total token
count.
Semantic-Based Packing. Some methods [364], [349] im-
prove data coherence through semantic-based data packing.
[349] reorders pretraining data by combining semantically
related documents into coherent input contexts, allowing the
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LLM to read and reason across document boundaries. Simi-
larly, SPLICE [364] randomly selects a document as the root
document, and in a breadth-first manner, uses retrieval meth-
ods like BM25 and Contriever (trained from a mix of Wiki and
CCNet data) to retrieve k similar documents, adding them
to the training sample until the maximum length is reached.
Finally, the tree structure is flattened using a specific tree
traversal strategy to generate the training example.

2.5.4 Data Provenance
Data Provenance is the process of tracking the sources,
transformations, and lineage of data, which is increasingly
recognized critical in ensuring the reliability, transparency,
and accountability of LLM data [54].

Principles

Compared with traditional machine-learning models,
LLMs demand heightened safeguards for output se-
curity owing to their powerful generative capabilities.
The central challenge is to preserve output integrity
without degrading quality. Current solutions embed
watermarks or deploy statistical-detection techniques
to reveal any tampering.

Embedding Markers. Current data provenance meth-
ods [482], [105], [256], [212] generally modify the generation
logic to embed covert markers into the text. This is done in a
way that does not disrupt the text itself, thereby providing a
medium for tracing the origin of the data.

Bileve [482] enhances the traceability and integrity of text
by embedding two distinct levels of signals: (1) Statistical
signal embedded globally to detect whether the text origi-
nates from a specific model. (2) Content-related signature
embedded within each generation unit to verify if the text
has been tampered with. During detection, the validity of the
signature is first verified; if the signature is invalid, a statistical
test is then used to determine whether the text comes from the
target model.

Unlike Bileve that emphasizes strict traceability after text
tampering, [105] focuses on embedding watermarks in a way
that preserves the quality of the generated output. It embeds
hidden markers that can only be detected by individuals
possessing a specific key, while remaining imperceptible to
others that the text has been altered. Specifically, the method
employs a pseudo-random function (PRF, used to generate
seemingly random numbers) to determine the shuffling of each
output word, ensuring that the generated text is statistically
indistinguishable from the original model’s output. During
detection, the presence of hidden markers is ascertained by
calculating a score for each word in the text (based on the
numbers generated by the pseudo-random function).

Unlike previous approaches, UPV [256] introduces a wa-
termarking method that enables detection without requiring
access to the key used during generation, thereby eliminating
the risk of key leakage. It employs two independent neural net-
works for watermarking. During text generation, the water-
mark generation network utilizes an embedding module and a
fully connected classifier to predict watermark signals based

on token information within a sliding window, and accord-
ingly adjusts the language model’s output distribution. For
detection, an LSTM-based network takes the text sequence as
input and identifies the watermark, leveraging shared token
embedding parameters with the generation network.

Compared to methods that require specific keys for detec-
tion, [131] embeds a special type of watermark into text gen-
erated by language models, which can be detected by anyone
without the need for any secret information. It selects specific
lexical combinations (rejection sampling, ensuring that the
embedding of the marker does not affect the naturalness of
the text) during text generation, in conjunction with an error
correction mechanism (error-correcting codes, allowing the
marker to be recovered even after partial modification of the
text), to embed an encrypted signature (public key signature,
ensuring the non-forgeability of the marker) into the text.
During detection, one only needs to extract these specific
lexical combinations from the text and verify the validity of the
signature to determine whether the text contains the marker.
Statistical Provenance. Unlike the aforementioned meth-
ods that rely on detecting special markers for tracing the
origin, [212] achieve data provenance through the statistical
information of the vocabulary. Specifically, before generating
each word, the model randomly divides the vocabulary into
two parts (green-listed and red-listed tokens) and tends to
favor the shuffling of green-listed tokens during the generation
process (green-listed tokens are a randomly selected subset of
the vocabulary). By employing statistical tests (a mathemati-
cal method used to determine whether text adheres to specific
rules), it is possible to detect whether the proportion of green-
listed tokens in the text is abnormal, thereby ascertaining if
the text is machine-generated.

3 LLM for Data Management
After preparing the LLMs with carefully processed / stored /
served data, we next introduce the LLM techniques that can
be utilized to enhance data management tasks, including data
manipulation, data analysis, and data system optimization.

3.1 LLM for Data Manipulation
LLM can be employed to explore and prepare appropri-
ate data for non-LLM-oriented tasks, such as data cleaning
for classification tasks, data integration for extracting well-
structured tables from unstructured sources, and data discov-
ery for identifying relevant datasets. Unlike data preparation
pipelines designed specifically for LLM applications, these
methods focus on enhancing the quality and utility of data
for downstream analytical or machine learning tasks.

3.1.1 LLM for Data Cleaning
Data cleaning focuses on transforming corrupted or low-
quality data into a reliable form suitable for downstream
applications (e.g., statistical analysis or training machine
learning models). It encompasses a range of tasks such as han-
dling missing values, correcting typos, resolving formatting
inconsistencies, and addressing dependency violations. These
tasks are typically categorized into data standardization, error
detection and correction, and data imputation.
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Fig. 8: Overview of LLM4DATA Techniques.

Traditional data cleaning methods depend on rigid rules
and constraints (e.g., zip code validation), demanding sub-
stantial manual effort and domain expertise (e.g., schema
knowledge in financial data) [237], [432]. Additionally, they
often require domain-specific training, which restricts their
generalizability [63]. Recent studies show that large language
models (LLMs) can address these limitations by offering nat-
ural language interfaces that reduce manual and programming
effort, eliminate the need for complex runtime environments,
and support seamless integration of domain knowledge. These
methods primarily target the following tasks.
Data Standardization. Data standardization involves con-
verting diverse, inconsistent, or non-conforming values into
a consistent format to ensure reliable analysis and effective
downstream processing. Existing methods use either struc-
tured LLM prompting for specific cleaning operations or
LLM agents for automated pipeline generation.
(1) Prompt Based End-to-End Standardization. The
first approach constructs well-structured prompts with ex-
plicit standardization instructions and employs advanced
prompting techniques (e.g., Chain-of-Thought) to improve
the effectiveness of LLM-based standardization methods.
For example, LLM-GDO [279] utilizes user-defined prompts
(UDPs), including in-context learning examples, to implement
LLM-based operators that replace traditional user-defined
functions (UDFs) across various standardization tasks (e.g.,
normalizing numerical values). This method simplifies logic
implementation and facilitates the seamless integration of do-

main knowledge. Evaporate [63] employs LLMs to transform
semi-structured documents into structured views through
two main strategies: (i) Evaporate-Direct, which prompts the
LLM to extract values directly, and (ii) Evaporate-Code,
which guides the LLM to synthesize extraction code and en-
sembles multiple candidate functions using weak supervision
to improve output quality while maintaining low cost.
(2) Agent Based Operation and Pipeline Genera-
tion. To address the inefficiencies of LLM-based solu-
tions, such as the reliance on multi-turn prompts and
expert-level prompt engineering, the second method employs
LLM agents to automatically generate cleaning operations
and orchestrate end-to-end pipelines. For instance, CleanA-
gent [319] integrates domain-specific APIs with autonomous
agents to execute a standardization pipeline that includes
API call generation (e.g., clean date(df, ‘‘Admission
Date’’, ‘‘MM/DD/YYYY’’)) and iterative code execution.
Similarly, AutoDCWorkflow [237] adopts LLM agents to con-
struct pipelines for resolving duplicates and inconsistent for-
mats. The agent performs step-by-step reasoning to identify
relevant columns, evaluate data quality, and generate appro-
priate operations (e.g., upper() and trim()), while leveraging
tools such as OpenRefine for execution and feedback.
Data Error Processing. Given a data entry, error pro-
cessing typically involves two steps: detecting erroneous val-
ues and correcting these values. Typical errors include ty-
pos, invalid formats, type mismatches, numeric outliers, and
dependency violations. Existing methods generally fall into
two categories: employing LLMs for direct end-to-end error
processing, or enhancing context models to better guide the
detection and correction process.
(1) Prompt Based End-to-End Error Processing. To
support end-to-end data error processing, the first approach
employs prompting techniques to either directly handle data
errors or generate the corresponding processing functions.
For instance, Multi-News+ [103] employs Chain-of-Thought
(CoT) prompting, majority voting inspired by human anno-
tation practices, and self-consistency checks to enhance clas-
sification accuracy and transparency when processing noisy
documents. Similarly, Cocoon [461] constructs semantic de-
tection prompts and divides datasets into batches, allowing
the LLM to analyze sampled values (e.g., 1,000 entries per
column) and identify typos or inconsistencies (e.g., “mapping
English”→ “eng”), thereby supporting batch-wise data clean-
ing. GIDCL [432] adopts a creator-critic framework in which
the LLM iteratively refines lightweight error detection models
and generates pseudo-labeled data using handcrafted prompts
and in-context examples to produce both detection and cor-
rection functions, further enhanced by structural correlation
learning with Graph Neural Networks (GNNs).
(2) LLM Based Cleaning Context Enrichment. To ad-
dress the inefficiencies and limited scalability of manual clean-
ing context model construction in dynamic environments,
the second approach leverages LLMs to enrich data cleaning
context models and more effectively capture semantic rela-
tionships within the data. For example, LLMClean [78] pro-
poses an automated LLM-based method for generating con-
text models by extracting ontological functional dependencies
(OFDs) using both prompt ensembling and fine-tuned LLMs
(e.g., Llama-2). The extracted OFDs are then used to identify
data errors (e.g., value inconsistencies) and guide LLM-based

35



repairs through iterative feedback from integrated correction
tools such as Baran. LLMErrorBench [74] employs LLM
agents equipped with Python (via IPython) and prompted
with task-specific instructions and contextual hints (e.g., error
locations) to explore, modify, and repair datasets iteratively.
Corrections (e.g., value replacement, missing data handling)
are guided by performance feedback from pre-defined code
execution and evaluation pipelines.
(3) Fine-tuning Based End-to-End Error Processing.
To improve error correction accuracy while preserving compu-
tational efficiency and model adaptability, the third approach
fine-tunes LLMs to capture dataset-specific patterns and
dependencies that are typically difficult to model through
prompting alone. For example, GIDCL [432] fine-tunes a local
LLM (e.g., Mistral-7B) using Low-Rank Adaptation (LoRA)
to optimize error correction, constructing training data from
labeled tuples and pseudo-labeled tuples generated via LLM-
based augmentation, with each training instance formatted as
a context-enriched prompt comprising: (i) an instruction (e.g.,
“Correct the ProviderID to a valid numeric format”), (ii) a
serialized erroneous cell with row and column context (e.g.,
“<COL>ProviderID<VAL>1x1303...”), (iii) in-context learn-
ing demonstrations (e.g., “bxrmxngham → birmingham”),
and (iv) retrieval-augmented examples from the same cluster
(e.g., clean tuples via k-means).
Data Imputation. Given a data entry with missing attribute
values (e.g., NULL), data imputation aims to infer the miss-
ing values using available contextual information accurately.
Existing methods either (i) use structured prompts to convey
contextual hints to LLM, or (ii) apply retrieval-augmented
generation (RAG) to integrate relevant external data.
(1) Prompt Based End-to-End Imputation. To incorpo-
rate contextual information for imputing missing values, the
first approach constructs structured prompts. For example,
RetClean [129] enhances LLM effectiveness by serializing each
tuple into a formatted representation (e.g., “[Name: John;
Age: 25; Gender: NULL]”) and pairing it with a targeted
question such as “What is the correct value for Gender?”.
This prompt design enables the LLM to generate accurate,
context-aware missing values.
(2) RAG Assisted Localized Imputation. To enable on-
line LLMs in handling unseen, domain-specific, or private
datasets, the second approach adopts the retrieval-augmented
generation (RAG) paradigm. For example, RetClean [129]
introduces a retrieval-based data cleaning framework that
indexes a data lake using both syntactic (Elasticsearch) and
semantic (Faiss/Qdrant) methods. It retrieves the top-k rel-
evant tuples, reranks them (e.g., using ColBERT), and then
leverages an LLM to infer missing values, while maintaining
lineage tracking for transparency and traceability.

3.1.2 LLM for Data Integration
Data integration aims to align elements across heterogeneous
datasets to enable unified access, analysis, and knowledge ex-
traction. For instance, it includes identifying tables or records
that correspond to the same real-world entity. Moreover, it
facilitates downstream tasks such as data augmentation by
establishing semantic relationships across sources.

Traditional integration methods often struggle with se-
mantic ambiguities and conflicts, particularly in complex in-
tegration scenarios without domain-specific knowledge [277].

Furthermore, classical models (e.g., pretrained models) gen-
erally require large amounts of task-specific training data and
tend to degrade in performance when encountering out-of-
distribution entities [308]. In contrast, recent studies have
shown that LLMs possess strong semantic understanding,
enabling them to uncover correlations across datasets and in-
corporate domain-specific knowledge, thereby offering robust
generalization across diverse integration tasks.
Entity Matching. The goal of entity matching is to deter-
mine whether two entries refer to the same real-world entity.
Existing methods leverage LLMs through well-structured
prompts and advanced reasoning mechanisms, incorporate
multiple models for collaborative matching, and apply multi-
task fine-tuning to further enhance performance.
(1) Prompt Based End-to-End Matching. To improve
LLM’s effectiveness on matching tasks, the first approach
crafts well-structured prompts and integrates auxiliary mech-
anisms to strengthen the robustness of the reasoning process.
• Manually-Crafted Prompt. This method incorporates de-
tailed instructions and illustrative examples into the prompts
to guide LLM in performing entity matching more effectively.
For example, MatchGPT [308] evaluates the performance of
both open-source and closed-source LLMs (e.g., Llama 3.1
and GPT-4o mini) with (i) different prompt designs, (ii)
the selection of in-context demonstrations, (iii) automatic
generation of matching rules, and (iv) fine-tuning LLMs using
a shared pool of training data. To reduce inference costs,
BATCHER [134] introduces a batch prompting method that
allows multiple entity pairs to be processed simultaneously.
It optimizes in-context learning by (i) grouping entity pairs
into a single prompt and (ii) applying a greedy cover-based
strategy to select demonstrations such that each query in the
batch is semantically close to at least one example.
• Pseudo-Code Guided Reasoning. To mitigate hallucinations
arising from over-reliance on an LLM’s internal knowledge,
this method integrates external formalized representations
to enhance the robustness and reliability of the reasoning
process. For example, KcMF [430] guides LLMs using expert-
designed pseudo-code instructions structured as a sequence of
if-then-else logical conditions, combined with external domain
knowledge (e.g., datasets and examples). It further adopts an
ensemble strategy by generating outputs from different knowl-
edge sources (e.g., Wikidata and domain-specific datasets)
and applies a voting mechanism to aggregate results, improv-
ing consistency and accuracy.
(2) End-to-End Matching with Multi-Model Collab-
oration. To leverage the strengths of different models
across tasks, the second approach employs collaborative en-
tity matching using models of varying sizes. For example,
COMEM [400] introduces a compound entity matching frame-
work that combines multiple strategies with LLM collabo-
ration to address global consistency, which is often ignored
in binary matching. It employs (i) a local strategy using a
medium-sized LLM (3B-11B) as a matcher or comparator
to rank top-k candidates via bubble sort, reducing position
bias and context length dependency; and (ii) a global selection
strategy using a stronger LLM (e.g., GPT-4o) to refine top-k
candidates by modeling inter-record interactions.
(3) Localized LLM Fine-tuning of Multi-Task Learn-
ing. To enhance the generalization capability of local LLMs,
the last approach integrates multiple task-specific datasets
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within a unified multi-task instruction tuning framework. For
example, Jellyfish [454] applies parameter-efficient instruction
tuning to locally deployed LLMs (7B-13B) across diverse
data processing tasks. It employs techniques such as chain-
of-thought prompting over task-specific serialized data and
reasoning data distillation, using explanation traces generated
by a larger mixture-of-experts model (Mixtral-8x7B-Instruct)
to guide the learning process.
Schema Matching. The objective of schema matching is
to identify correspondences between elements of different
database schemas (e.g., matching attribute names “employee
ID” and “staff number”). Existing approaches directly apply
prompting techniques to enable LLMs to perform end-to-end
matching, utilize retrieval-augmented generation (RAG) to
enhance contextual understanding, and employ LLM agents
to orchestrate the overall matching workflow.
(1) Prompt Based End-to-End Matching. To facilitate
schema matching without requiring rigid code implementa-
tions, the first method employs various prompting techniques
to guide LLM in identifying the desired mappings. For exam-
ple, LLMSchemaBench [304] applies prompt engineering tech-
niques to interact with LLMs, defining four task scopes that
differ in the level of contextual information included in the
prompts. The prompts are constructed using established de-
sign patterns: the persona pattern (e.g., instructing the LLM
to act as a schema matcher), meta language creation (e.g.,
explicitly defining valid match criteria), Chain-of-Thought
reasoning, and the output automater (e.g., generating struc-
tured JSON outputs for downstream automation).
(2) End-to-End Matching via Context-Enriched RAG.
To enrich the matching context and improve accuracy, the sec-
ond method integrates retrieval-augmented generation (RAG)
with various strategies. For example, Magneto [267] employs
a retrieve-rerank framework that combines small pre-trained
language models (SLMs) with LLMs to deliver cost-effective
and generalizable schema matching. SLMs serve as candi-
date retrievers, generating an initial ranked list of potential
matches from the target table for each input column, which
is then refined by LLMs acting as rerankers to improve
accuracy. KG-RAG4SM [277] incorporates multiple retrieval
strategies, including vector-based, graph traversal-based, and
query-based, to extract relevant subgraphs from knowledge
graphs (KGs). These subgraphs are further refined through
ranking mechanisms and used to augment LLM prompts,
thereby improving schema matching performance through
enriched contextual input.
(3) Agent-Based Matching Workflow Orchestration.
To address complex matching patterns, the final approach
leverages LLM-based agents to orchestrate the end-to-end
matching workflow. For example, Agent-OM [320] employs
two LLM agents (i.e., Retrieval Agent and Matching Agent)
to control the workflow by decomposing tasks via Chain-of-
Thought (CoT) prompting, invoking specialized tools (e.g.,
syntactic/lexical/semantic retrievers and matchers), and ac-
cessing a hybrid database (relational + vector) for memory
storage and retrieval. Harmonia [340] leverages LLM-based
agents to orchestrate data harmonization tasks, combining
predefined data integration primitives (e.g., schema matching,
value matching) with on-demand code generation when the
primitives are insufficient. In addition, it employs techniques
like ReAct for reasoning and action planning, interactive

user feedback for error correction, and declarative pipeline
specifications for reproducibility.

3.1.3 LLM for Data Discovery
Data discovery focuses on identifying relationships within
datasets through tasks like data annotation (e.g., column type
classification) and profiling (e.g., metadata generation). Un-
like data analysis, which emphasizes statistical computations
or factual answer generation, data discovery enables deeper
semantic understanding critical for downstream applications
such as integration, search, and recommendation.

Existing data discovery methods face two limitations.
First, they typically consider limited interaction between
queries and tables [163]. Second, many of these approaches
rely heavily on large training datasets, struggle with distri-
bution shifts, and fail to generalize to rare or domain-specific
data [143], [217]. Recent studies have shown that LLMs can
effectively address these challenges by generating high-quality
metadata, enriching dataset context, and supporting natural
language interfaces for data discovery tasks.
Data Profiling. Data profiling typically involves character-
izing a given dataset by generating additional information
(e.g., dataset descriptions). Recent methods often employ
prompting techniques to guide LLM in generating such meta-
data by leveraging their pretrained knowledge and contextual
understanding.
(1) Manually Crafted Profiling Prompt Engineering.
To profile different aspects of a dataset without extensive
manual effort or code implementation, the first approach relies
on a set of manually crafted profiling prompts. For example,
AutoDDG [456] utilizes LLM with carefully designed prompts
to generate two types of descriptions (i.e., User-Focused De-
scriptions (UFDs) for readability and Search-Focused De-
scriptions (SFDs) for search optimization) tailored to the
dataset’s content and intended usage. LEDD [58] employs
carefully crafted prompts to support core data discovery tasks
in data lakes. For hierarchical cataloging, prompts instruct
LLM to summarize data clusters into semantically meaningful
categories. For semantic search, prompts refine natural lan-
guage queries before embedding and retrieval. For real-time
relation analysis, prompts guide LLM in comparing expanded
graph nodes and describing inter-table relationships.
(2) RAG Assisted Context Enrichment. To enhance
retrieval effectiveness across diverse query types, the second
method adopts a hybrid approach that integrates diverse
retrieval techniques. For example, Pneuma [72] adopts a RAG
framework to retrieve relevant tables from databases, data
lakes, or repositories based on natural language queries. It
combines LLMs with traditional retrieval techniques, such
as full-text and vector search, using LLMs for both schema
narration (i.e., generating meaningful column descriptions)
and as judges to refine and rerank retrieved results.
Data Annotation. Data annotation involves assigning se-
mantic or structural labels to data elements, such as iden-
tifying column types (e.g., Manufacturer or birthDate from
the DBPedia ontology). Recent methods leveraging LLM
typically design prompts with task-specific annotation in-
structions. Additionally, some approaches employ retrieval-
augmented generation (RAG) techniques and the contextual
reasoning capabilities of LLMs to further enrich the annota-
tion context and improve performance.
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(1) Task-Specific Annotation Prompt Engineering.
To flexibly support diverse annotation tasks, the first ap-
proach encodes task-specific instructions and requirements
within carefully crafted prompt templates. For example,
CHORUS [203] integrates LLMs into the annotation pipeline
using task-specific prompts that incorporate instructions,
demonstrations, data samples, metadata, domain knowledge,
and output formatting guidance. Goby [204] explores the
use of LLMs for semantic column type annotation in a
domain-specific enterprise setting by crafting a set of tailored
prompts. It proposes several techniques to improve perfor-
mance, including tree serialization (providing the full ontology
as prompt context), grammar-constrained decoding (enforc-
ing hierarchical structure during generation), and step-by-
step prompting (Chain-of-Thought strategy to guide ontology
navigation). LLMCTA [217] evaluates diverse LLMs for gen-
erating and refining label definitions by employing methods
like knowledge generation prompting (e.g., producing initial
demonstrations), self-refinement (error-based definition im-
provement), and self-correction (two-step pipeline featuring
a reviewer model).
(2) RAG Assisted Annotation Context Enrichment.
To supply LLM with relevant annotation context, the second
approach utilizes diverse retrieval strategies within retrieval-
augmented generation (RAG) frameworks to enrich the input.
• Classical Retrieval Technique. To mitigate the shortcom-
ings of vanilla LLM-based annotation, such as outdated
knowledge, this method augments the context with retrieved
external knowledge. For example, RACOON [408] performs
semantic type annotation by leveraging a Knowledge Graph
(KG) to retrieve entity-related information (e.g., labels and
triples) associated with column cells. This information is then
processed into concise contextual representations and incor-
porated into LLM prompts to improve annotation accuracy.
• LLM Based Generation. To fully leverage LLM’s internal
knowledge, this method relies on the model itself to generate
relevant contextual information. For example, Birdie [163]
leverages LLMs to automatically generate natural language
queries for training a differentiable search index (DSI), which
facilitates linking relational tables to queryable knowledge
by enriching them with contextual semantics. It supports
scalable structured data annotation, using prompts composed
of structured markdown tables comprising captions, headers,
and sample rows alongside explicit task instructions.

3.2 LLM for Data Analysis

Apart from data manipulation, LLMs hold the potential
to revolutionize traditional data analysis paradigms by sup-
porting natural language interfaces and enabling advanced,
semantic-aware analysis tasks that typically require human
involvement. In this section, we discuss the challenges and
techniques of LLM-based data analysis, including structured
data analysis, semi-structured data analysis, and unstruc-
tured data analysis.

3.2.1 LLM for Structured Data Analysis

Structured data refers to data with well-defined schemas like
relational (tabular) data [107] and graph data [60].
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Fig. 9: Overview of LLM for Data Analysis.

3.2.1.1 Relational Data Analysis

LLM for Natural Language Interfaces. Basic analysis
jobs for relational data are typically characterized by well-
defined operations. These include basic calculations (e.g.,
summation, averaging, counting, ranking), statistical analysis
(e.g., regression, K-means clustering), and data quality assur-
ance processes (e.g., constraint validation, outlier detection).
Such tasks can generally be supported by tools like SQL or
Python libraries (e.g., Pandas).
(1) NL2SQL. With the help of LLM, users can directly per-
form operations using natural language. NL2SQL focuses on
translating natural language queries into SQL commands by
leveraging techniques such as (i) schema linking, which aligns
user intents with database schema to resolve ambiguities [452],
[247], (ii) content retrieval, which dynamically extracts rele-
vant information from the database to refine query genera-
tion [370], [234], and (iii) SQL generation strategies such as
multi-step generation, intermediate SQL representation, and
different decoding strategies [229], [317], [234], [483], [484].
(2) NL2Code. Different from NL2SQL, NL2Code approaches
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emphasize enhancing relational data analysis through gener-
ating Python code (e.g., Pandas, NumPy), which includes a
vast number of library APIs characterized by high variability
and complexity, and often requiring the handling of complex
chain operations. Recent advancements address these issues
to some extent.
• Model Finetuning: PACHINCO [443] fine-tunes a 62B pa-
rameter PALM [104] model in two stages (i.e., separately
using a Python source code corpus with 64B tokens and a
Jupyter notebook corpus with 9.6B tokens) so as to improve
model performance on analysis-related tasks (e.g., calculate
the amount of games added in each year for each month).
DataCoder [176] utilizes different types of contexts (e.g., code,
text, and data) by employing dual encoders (e.g., data encoder
and code + text encoder) and one general decoder to generate
code in notebooks.
• LLM Based Analysis Agent: Data Interpreter [171], on
the other hand, leverages LLMs through APIs to generate
task and action graphs. Specifically, they utilize LLM’s se-
mantic reasoning ability to accurately decompose complex
user queries into subproblems (e.g., correlation analysis, data
exploration, and anomaly detection), and refine and verify
each subproblem to improve code generation results for data
science tasks.
LLM for Semantic Analysis. Moreover, some jobs require
LLM-based analysis, such as those that involve semantic
understanding or demand outputs in natural language for-
mat (e.g., table summarization). These challenges call for
methodologies like (1) multi-step question answering (QA)
with diverse decomposition strategies and (2) end-to-end QA
leveraging specifically optimized LLMs.
•Multi-Step QA. Multi-step question answering (QA) refers
to decomposing complex queries into a sequence of sub-
questions to facilitate step-by-step reasoning. According to
the question decomposition mechanisms, existing methods
can be categorized into two types: (1) static decomposition,
which follows predefined and fixed processing steps (e.g.,
retrieve-select-reason), and (2) LLM-driven iterative decom-
position, in which the LLM dynamically determines the next
operation based on the contextual history of the reasoning
process.
(1) Static Decomposition. The static decomposition includes
Retriever-Selector-Reasoner frameworks and the variants,
which partition tasks into modular components for bet-
ter multi-step inference and enhanced interpretability. The
Extractor-Reasoner-Executor paradigm [494] extracts the rel-
evant segments from the context, generates the logic rules or

equations, and performs the rules or executes the equations to
get the final answer through LLM prompting. S3HQA [226]
trains a retriever which aims to perform initial filtering of
heterogeneous resources, utilizes a selector to select the most
relevant factual knowledge, and a generation-based reasoner
to obtain final answers.
(2) Iterative Decomposition. However, static decomposition
paradigm performs poorly on multi-hop queries, while LLM-
driven iterative decomposition, which dynamically refines
subtasks through recursive reasoning, could effectively ad-
dress the issue.

TAPERA [475] introduces the query decomposition step
into the question answering process by adopting the LLM-
driven approach. The Planner decomposes the query into sub-
queries, forming an initial plan. The Reasoner then generates
executable programs for each sub-query, while the Answer
Generator derives answers based on the program outputs to
fulfill the plan. Finally, the Planner updates or finalizes the
plan as needed.

Similarly, ReAcTable [464] and CHAIN-OF-TABLE [404]
iteratively generate operations and update the table to
present a reasoning chain as a proxy for intermediate thoughts
through prompting LLMs and in-context learning.
• End-to-End QA. End-to-End Question Answering (QA)
refers to approaches in which the answer-generating LLM di-
rectly produces the final response without intermediate steps
or iterative refinement. Based on the data representation and
processing mechanisms, the relevant methods can be classified
into table-specific LLM fine-tuning, table content retrieval,
and table-as-image analysis.
(1) Table-Specific LLM Fine-Tuning. Fine-tuning LLMs on
task-specific table datasets enables them to internal-
ize analytical knowledge directly within their parameters.
TableGPT [240] fine-tunes LLMs like GPT-3.5 using a diverse
set of table tasks synthesized from real-world tables. Building
on Qwen2.5 [324], TableGPT2 [365] introduces a table encoder
to generate a hybrid table representation, an adapter to gen-
erate query representations, and a LLM decoder generates an
agent workflow (i.e., the tool execution pipeline) to derive the
final answer. The TableGPT2 model is pre-trained on 593.8K
tables and fine-tuned 2.36M question-answer pairs.
(2) Table Content Retrieval. Instead of embedding the whole
table, table content retrieval enhances model performance
by eliminating noisy parts of the table while retaining in-
formation relevant to question answering. CABINET [306]
employs a weakly supervised component to produce a parsing
statement that defines the criteria for selecting relevant rows
and columns, emphasizing the corresponding table cell con-
tent. TableMaster [82] constructs a refined subtable through
row and column lookup. By leveraging carefully designed
LLM prompts (e.g., provide objective, table definition, table
information, question, instructions, and response format), it
ranks all candidate columns, selects a relevant subset based
on the query, and then instructs the LLM to generate an SQL
query for extracting the most relevant rows.
(3) Table-As-Image Analysis. Due to the limitations of (text-
only) LLMs in understanding table structures, the Table-as-
Image approach has been proposed, converting tables into im-
ages for analysis using multimodal LLMs. Table-LLaVA [477]
applies incremental pretraining to LLaVA-7B [258] on 150K
table recognition samples (e.g., input a table image and out-
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put table representations in HTML, Markdown, or LaTeX),
enabling the model to align table structures and elements
with textual modality. It is further fine-tuned on 232K sam-
ples on question answering, text generation, fact verification,
and structure understanding tasks to enhance its instruction-
following ability. To enable a single model to perform vari-
ous analytical tasks, TabPedia [471] introduces the concept
synergy mechanism, abstracting all table analysis tasks into
concepts. Built on Vicuna-7B [476], it appends meditative
tokens to the input of the LLM decoder, which adaptively
activates different regions of visual tokens and helps the model
interpret the intent behind specific task questions. However,
such methods face limitations when processing twisted or
distorted tables, and their performance degrades significantly
when directly handling document images.

3.2.1.2 Graph Data Analysis
Different from relational data, graph data represents enti-
ties (vertices) and their inter-dependencies (relationships) to
explicit model of complex network semantics (e.g., social
networks and knowledge graphs) beyond rigid tabular schema,
which presents unique challenges due to the vast search
space and complex path reasoning in multi-hop queries [59].
Compared with relational data analysis, graph data analysis
involves more complex jobs like summarization based on the
multi-hop relations across the graph vertices and reasoning
over text-attributed graphs whose nodes and edges are as-
sociated with text [252], [493]. Graph data can not only be
stored in relational databases, but also be stored and queried
in knowledge graphs and accessed through SPARQL in RDF
databases (e.g., Blazegraph [8] and GraphDB [21]) or Cypher
in Neo4j [17].

Traditional graph analysis (e.g., statistical methods, graph
neural network (GNN) based methods) encompasses a spec-
trum of tasks, including node classification (e.g., categorizing
academic papers into research domains), graph classification
(e.g., predicting node properties over molecular graphs), link
prediction (i.e., inferring latent relationships between graph
nodes), community detection (i.e., identifying densely con-
nected subgraphs), anomaly detection (i.e., identifying de-
viations from expected patterns), graph clustering, and etc.
However, these methods have their own limitations. Statistics-
based methods fail to handle complex semantic information
(e.g., query can be extremely complex and requires human ex-
pertise), while graph neural networks (GNNs) exhibit limited
generalization capabilities, necessitating task-specific retrain-
ing on different tasks.

In contrast, the advent of LLMs offers transformative po-
tential by leveraging their advanced reasoning capacities and
cross-domain generalization abilities, which can (1) simplify
the query writing costs (e.g., NL interfaces) and (2) achieve
semantic-aware analysis unsupported in traditional ones.
Natural Language To Graph Analysis Query. Different
from NL2SQL, the syntax of graph query language generation
is more complex (i.e., MATCH, LOOKUP, GET and other
operations unique to graph data manipulation) and there exist
two operation objects (i.e., vertex and edge) [493]. By inte-
grating natural language interfaces with graph data, LLMs
facilitate flexible and efficient query generation without the
need for specialized model architectures.

To enhance LLMs’ comprehension of the complex syn-
tax of Graph Query Language (GQL), R3-NL2GQL [493]
proposes a hybrid approach leveraging relatively small LLM
(e.g., LLaMA3-7B) as a selector and GQL rewriter, while em-
ploying a larger LLM (e.g., GPT-4) as a reasoner. The selector
identifies the necessary CRUD functions, clauses, and schema,
while the rewriter refines the query by aligning it with the
relevant graph data retrieved by minimum edit distance and
semantic similarity calculation. The LLM then synthesizes the
aligned question, selected operations, and schema to generate
the final GQL query.

To address the limitations of LLMs in planning and col-
laborating with other LLMs, NAT-NL2GQL [252] introduces
a three-agent framework. The Preprocessor agent constructs
context information, including query rewriting, path linking,
and the extraction of query-relevant schemas. The Generator
agent, an LLM fine-tuned with NL-GQL data, generates
GQL statements based on the rewritten queries and extracted
schemas. The Refiner agent iteratively enhances the GQL
or contextual information by leveraging error feedback from
GQL execution results.

Note that, within the context of AI for Science
(AI4Science), the integration of LLMs with graph data anal-
ysis has also shown significant potential and wide-ranging
applications (e.g., treat polymers as graphs and predict their
properties [242], [309]), which is not the primary focus of this
survey.
LLM-based Semantic Analysis. Furthermore, certain jobs
necessitate semantic-aware analysis, such as summarizing tex-
tual paragraphs embedded within graph nodes. Based on
the adopted LLM strategies, we classify the relevant meth-
ods into retrieval-then-reasoning methods, execution-then-
reasoning methods, graph task based fine-tuning methods,
and agent based methods.
• Retrieval-Then-Reasoning. Retrieval-then-reasoning
first extracts a question-specific subgraph from the graph
to identify the most relevant entities and then generates
answers using LLMs. To address the challenge of a vast search
space, [458] introduces a two-stage approach. First, a trainable
and decoupled subgraph retriever selects a relevant subgraph
based on the query. Then, reasoning is performed over the
retrieved subgraph to derive the final answer. UniKGQA [193]
integrates retrieval and reasoning within a unified model ar-
chitecture. It comprises a semantic matching module, leverag-
ing a pre-trained RoBERTa [266] for the semantic alignment
between questions and relations in graphs, and a matching
information propagation module that propagates matching
signals along directed edges in graphs.
• Execution-Then-Reasoning. Execution-then-reasoning
refers to the process of parsing natural language queries into
executable logical forms (e.g., SPARQL) that align with the
graph data, followed by reasoning based on the output of the
executed program. Interactive-KBQA [424] introduces an in-
teractive LLM QA framework with a unified SPARQL-based
toolset (e.g., entity search, graph pattern search, SPARQL ex-
ecution, etc.) designed to address complex queries. FlexKBQA
[246] addresses the challenge of lacking high-quality annotated
data in real-world scenarios. By prompting LLMs as pro-
gram translators, it samples program-answer pairs from the
knowledge base and generates corresponding natural language
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questions. The synthetic question-program-answer dataset is
used to train lightweight models through execution-guided
self-training, which are subsequently employed to annotate
real user queries. This approach addresses the distribution
shifts between synthetic and actual data, leading to significant
improvements in few-shot learning scenarios.
• Graph Task Based Fine-tuning Methods. Instruct-
GLM [441] enables generative graph learning by fine-tuning
an LLM and leveraging natural language descriptions of
graph structures (e.g., offer the first node and the 1-/2-/3-
hop neighbors’ information). InstructGraph [397] introduces
a stricter code-like graph representation format which con-
structs entities and triples in the form of list, whose back-
bone LLM (LLaMA2-7B) is fine-tuned on a graph-centric
corpus comprising 1.6 million instances. To mitigate the is-
sue of hallucination, it incorporates Direct Preference Op-
timization (DPO) algorithm [329] for preference alignment.
GraphGPT [375] enhances model performance in zero-shot
scenarios by incorporating a structural information encoding
module based on Graph-SAGE [166] and GCN [211]. It fine-
tunes the projector bridging the graph encoder and the LLM
decoder to align the language capabilities of the foundation
LLM (Vicuna-7B) with the graph learning tasks.
• Agent Based Methods. Agent-based methods involve
leveraging LLM-based agents with predefined tools (e.g.,
human-written interfaces or graph processing library APIs)
that iteratively interact with the graph data to retrieve, re-
fine, and operate information. StructGPT [192] introduces an
iterative reading-then-reasoning framework, leveraging spe-
cialized interfaces to operate on graph data. It repeatedly
applies an invoke-linearize-generate procedure to derive query
results. Another approach is to generate an entire reasoning
path based on the query and refine it only when necessary.
Readi [100] initially constructs a reasoning path and instanti-
ates it on the graph. When execution errors occur, it collects
error messages and invokes an LLM to revise the path. The
final answer is inferred from the instantiated graphs.

3.2.2 LLM for Semi-Structured Data Analysis
Semi-structured data refers to data that are neither with
strictly predefined schema like relational models nor raw data
(e.g., plain text or images) [48]. Meanwhile, they still maintain
part of organizational properties (e.g., tags, headers) and have
hierarchical or nested representation (e.g., County - Province
- City in a nested JSON).

3.2.2.1 Markup Language
Markup languages (e.g., XML, JSON, and HTML) are widely
used for structuring and exchanging data across systems.
Traditional approaches for processing these formats typically
involve transforming them into structured tables or repre-
senting them as hierarchical tree structures. Leveraging the
reasoning capabilities of LLMs, it becomes possible to directly
extract and interpret hierarchical relationships, attributes,
and nested structures from data without the need for inter-
mediate transformations.

3.2.2.2 Semi-Structured Tables
Compared to structured relational data, semi-structured ta-
bles exhibit a more complex structural organization charac-
terized by merged cells. This inherent complexity presents a

significant challenge in aligning queries with the table content
and structure in query answering tasks. The lack of efficient
tools (usually using the openpyxl library) and representation
methods (usually stored in Excel or HTML files) for handling
semi-structured tables makes it more difficult to process such
data.

Although research on semi-structured table analysis is
limited, several studies have compiled various semi-structured
table reasoning datasets, providing valuable data support.
TEMPTABQA [165] consists of 11,454 question-answer
pairs focused on temporal queries, while SPREADSHEET-
BENCH [281] presents a challenging benchmark for spread-
sheet manipulation, with 912 questions derived from real-
world scenarios. MiMoTable [245] incorporates reasoning
across multiple sheets and files, containing 1,719 queries
within 428 spreadsheets. Evaluation results on these bench-
marks highlight a significant performance gap (ranging from
20% to 50%) between state-of-the-art models and human
performance, calling for further exploration in this area.

3.2.3 LLM for Unstructured Data Analysis
Unstructured data refers to data that lacks explicit structure,
as it does not adhere to a predefined schema. Additionally,
it exhibits high variability in format, length, and modality,
which further complicates its processing and analysis.

3.2.3.1 Documents
Documents exhibit complex layouts and styles with diverse
elements, including a hybrid of images, tables, charts, plain
text, and formulas.
• OCR-Dependent Methods. OCR-based methods refer to
approaches that involve performing Optical Character Recog-
nition on document images, followed by the integration of
textual, layout, and visual features for reasoning. UDOP [376]
integrates text and layout modalities within a unified encoder,
dynamically fusing image patch tokens and text tokens based
on their spatial information. Specifically, when the center of
a text token’s bounding box falls within an image patch, the
corresponding image patch embedding is added to the text
token embedding, enabling a more cohesive representation
of document structure. DocFormerV2 [62] preserves the in-
tegrity of layout information by employing a visual encoder.
Image patches and text bounding box positions are embedded
through a linear layer and added to the corresponding token
embeddings as input to the T5 [331] encoder. To achieve local
feature semantic alignment, the model undergoes pretraining
on token-to-line (i.e., predict whether a key-value pair is
on the same line or adjacent lines) and token-to-grid (i.e.,
predict each token located in which image grid) tasks. The
T5 decoder is then incorporated to fine-tune the whole model
on downstream tasks.
• OCR Free Methods. However, the OCR step often intro-
duces semantic errors, resulting in suboptimal performance.
To fill this gap, OCR-free methods have emerged, directly
generating the target token sequences with end-to-end mul-
timodal LLMs [257], [407]. Based on different approaches to
enhancing model understanding of textual semantics, related
works can be categorized into text masked learning and visual
embedded learning.
(1) Text Masked Learning. Text Masked Learning involves
masking textual content within a document and training
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the model to predict the missing text. Pix2Struct [225] is a
typical vision-encoder-text-decoder pre-trained image-to-text
model designed for visual language understanding based on
ViT [124]. It is pretrained to parse masked web pages into
simplified HTML. The model introduces a variable-resolution
input representation, rescaling input images to maximize the
number of patches that can fit within the given sequence
length, to prevent aspect ratio distortion. DUBLIN [49] de-
signed multiple fine-tuning tasks (i.e., bounding box pre-
diction based on given text, text prediction based on given
bounding box, masked text generation, and query answering)
to improve the generalization ability.
(2) Visual Embedded Learning. In Visual Embedded Learn-
ing, there are no specially designed training objectives. In-
stead, the model is directly fine-tuned on downstream tasks to
enhance its understanding of textual content within images.
mPLUG-DocOwl1.5 [174] introduces a spatial-aware vision-
to-text module designed for representing high-resolution,
text-rich images. This module preserves structural informa-
tion while reducing the length of visual features. It consists
of a convolution layer to shorten the sequence length and a
fully connected layer that projects visual features into the
language embedding space. Unlike most methods that crop
or resize the initial image before feeding it into a vision
encoder, DocPedia [138] directly processes visual input in the
frequency domain. It utilizes JPEG DCT [388] extraction to
obtain DCT coefficients, which are then processed using a
frequency adapter before being input into the vision encoder.
This approach allows the model to capture more visual and
textual information while using a limited number of tokens.
The performance improvement observed in the experiment
suggests that this method offers a novel approach for process-
ing high-resolution images.

3.2.3.2 Program Language Analysis
Programming language analysis involves multiple levels of
abstraction, including lexical analysis, parsing, and semantic
analysis, each requiring distinct techniques to process source
code effectively. Additionally, it must handle both local and
global information, such as variable scopes, function call
chains, and complex dependencies, which pose significant
challenges for accurate program understanding.
LLM as Program Vulnerability Detection Tools. Re-
cent advancements in LLMs have opened new avenues for
improving vulnerability detection tools. Training LLMs based
on program analysis techniques enhances their ability to un-
derstand programs at both the lexical and syntactic levels.
Leveraging in-context learning through case-driven prompt
engineering enhances the model’s accuracy by providing rele-
vant examples.
• Program Analysis based Training. Static and dy-
namic program analysis are commonly used methods for
detecting vulnerabilities in programs. By assisting these pro-
cesses, LLMs improve the accuracy of vulnerability detection.
PDBER [271] is a model fine-tuned on CodeBERT [141]
through three tasks (i.e., Predicting Masked Tokens, Predict-
ing Statement-Level Control Dependencies, and Predicting
Token-Level Data Dependencies). This enables more fine-
grained vulnerability analysis at the statement level. To re-
duce the impact of irrelevant information, [457] decomposes
the control flow graph (CFG) into multiple execution paths

from the entry node to the exit node. CodeBERT and a CNN
are employed to capture intra-path and inter-path represen-
tations, respectively. The extracted feature vectors are then
combined as a unified program representation, which serves
as input to a MLP classifier for vulnerability detection.
• Case-driven Prompt Engineering. Leveraging the in-
context learning and few-shot learning capabilities of LLMs
can significantly improve their accuracy in vulnerability detec-
tion. VUL-GPT [270] uses GPT-3.5 to generate analysis con-
tent (i.e., the program interpretation) for the input code and
retrieves similar code snippets and corresponding vulnerabil-
ity information through BM25 [338] or TF-IDF. The retrieved
information, along with the original code and analysis, is then
input into GPT to detect vulnerabilities. [492] designs various
prompts, such as random code samples and retrieve-based
code samples, and demonstrates that GPT-4 outperforms
state-of-the-art models in vulnerability detection.
LLM-based Semantic-aware Analysis. Traditional
semantic-aware tasks convert programs into ASTs [362] or
graph structures [151] and train Seq2Seq models to learn
program syntax, dependencies, and semantics. However,
these approaches lack general knowledge, leading to limited
generalization ability. By leveraging the world knowledge and
few-shot learning capabilities of LLMs, the performance of
tasks such as code summarization and code completion has
been significantly improved.
• LLM as Code Summarizer. Recent advancements in
LLM-powered code summarization focus on retrieving similar
code snippets and leverage LLMs’ few-shot learning capability
to enhance performance. [154] retrieves similar code examples
by measuring token overlap and the cosine distance between
embedding vectors of code snippets. In contrast, [51] employs
the BM25 algorithm and incorporates repository information,
data flow information, and variable information to construct
three-shot prompts. SCLA [284] further enhances code seman-
tics in LLM prompts by preprocessing the code sample pool to
extract semantic information. By simultaneously leveraging
few-shot learning, it achieves state-of-the-art performance
based on Gemini-1.5-Pro.
• LLM as Repository-Level Code Completer. Repository
context (e.g., imports, related classes, etc.) plays a crucial role
in code completion. Given the strong semantic understanding
and generative capabilities of LLMs, how to integrate contex-
tual information into code completion has become a key re-
search focus. RepoFusion [357] appends the surrounding text
of the target code to the repository context retrieved based
on BM25, encoding and concatenating them as input to the
decoder for code generation. This approach enables the model
to produce context-aware code completions by leveraging
both local and repository-level information. CoCoMIC [118]
proposes a more robust retrieval method based on program
dependency graphs. Given an incomplete program, it retrieves
the most relevant context by analyzing file imports within
the constructed graph. By defining the relevant context as
files within a two-hop neighborhood, this approach mitigates
the risk of excluding vital dependencies while avoiding the
inclusion of irrelevant information. However, some researchers
have found that simple retrieval methods fail to improve
performance in up to 80% of cases and may even degrade per-
formance due to the inclusion of irrelevant information [413].
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As a result, Repoformer introduces a self-supervised learning
approach to enable the model to accurately judge whether
retrieval can improve its output quality. A new <eof> token
is introduced to guide the model in determining whether
context retrieval is necessary. Based on the output after<eof>
token, it decides whether to generate the output directly or to
perform retrieval first.

3.3 LLM for Data System Optimization
This section presents the application of LLM to optimize
the performance of different data systems across three key
tasks: (1) Configuration Tuning: selecting effective system
configurations, such as database knobs and indexes; (2) Query
Optimization: accelerating input SQL queries through logical
rewrites and physical plan selection; (3) Anomaly Diagnosis:
addressing system anomalies, such as spikes in the usage of
specific system resources.

3.3.1 LLM for Configuration Tuning
Configuration tuning aims to identify effective configurations,
such as database knobs [231], [474] and indexes [485], [487],
[486], to optimize the system performance. Traditional tuning
approaches, including rule-based methods and learning-based
techniques with classical machine learning models, often re-
quire extensive explorations without a promising starting
point [231]. Furthermore, they might result in sub-optimal
configurations, despite using advanced techniques such as
transfer learning [463], [402].

A key limitation of these methods is the failure to incor-
porate extensive domain knowledge (e.g., information from
system manuals and public forum discussions) into the tuning
process, relying solely on runtime feedback from benchmark
evaluations to guide optimization. To address this issue, recent
approaches utilize LLM with large-scale domain knowledge to
enhance the tuning process via the following methods.
Tuning Task-Aware Prompt Engineering. The first
method manually designs prompts with informative details
(e.g., system status) to assist LLM in configuration tuning
(e.g., database knobs and indexes). Some approaches further
enhance this by introducing automatic prompt generation
techniques or by formulating it as an optimization problem.
(1) Manually-Crafted Tuning Prompt. Existing methods
design prompts that incorporate essential details (e.g., system
status) tailored to the characteristics of specific tasks. In
particular, the constructed prompts typically consist of the
following components.
• Configuration Task Instruction. To convey the overall
tuning objective, existing methods specify task instructions
in the prompts using chain-of-thought (CoT) and role-play-
based guidance. For instance, LLMBench [243] explicitly
defines the goals of three key subtasks in knob tuning: (i)
knob pruning to retain the most influential knobs, (ii) model
initialization to select promising knobs for warm-starting
bayesian optimization, and (iii) knob recommendation to
return optimal configurations for specific workloads. Similarly,
LATuner [132] instructs LLM to identify critical knobs for
warm-starting the tuning process and select promising knobs
as training samples for boosting the sampling procedure.
• Input Tuning Context. To enable LLM to effectively
support the tuning process for specific workloads, existing

methods enrich the tuning context with detailed informa-
tion. Specifically, prompts are carefully structured to include:
(i) Configuration Specifications: list of tunable knobs (e.g.,
names and allowable value ranges) and usage descriptions,
including fixed-task demonstrations (e.g., LLMBench [243],
LATuner [132]); (ii) Environment Information: covering work-
load and database characteristics (e.g., compressed SQL snip-
pets with join conditions in λ-Tune [156]), as well as hardware
settings (e.g., memory size and CPU core count).
• Output Tuning Requirement. To ensure accurate pars-
ing and interpretation of configurations generated by LLM,
output formats are explicitly specified in the prompt. For
instance, LLMBench [243] requires that recommended knob
values be returned in JSON format, while LATuner [132]
enforces constraints such as excluding the use of the “None”
value in the configuration output.
(2) Automatic Tuning Prompt Generation. To improve
the efficiency of prompt generation for different workloads, ex-
isting methods propose the following techniques to automate
the process of identifying effective prompts.
• Input Specific Prompt Generation. To identify the most
suitable prompts for varying tasks, existing methods automat-
ically tailor prompt generation based on specific inputs. For
example, DB-GPT [491] introduces an automatic prompt gen-
eration framework that leverages LLM to produce multiple
instruction candidates, selecting the optimal ones using scor-
ing functions associated with the performance improvement.
Additionally, DB-GPT [491] and LLMIdxAdvis [473] select
demonstration examples in the prompts based on semantic
similarity between candidate examples and input queries, as
computed by a model-based encoder.
• Optimization Problem Formulation. To reduce token
usage and convey the most relevant context to the LLM,
some methods formulate prompt generation as a cost-based
optimization problem. For instance, λ-Tune [156] compresses
workload representations by modeling the selection of join
conditions as an integer linear programming problem, intro-
ducing binary decision variables to capture the positional
relationships of different columns.
RAG Based Tuning Experience Enrichment. The sec-
ond method builds an offline knowledge base from diverse
external sources and performs online retrieval to provide LLM
with context-specific knowledge (e.g., similar historical tun-
ing cases). This approach addresses the limitations of direct
prompting, which often yields overly generic responses lacking
concrete commands and effective configurations [96].
(1) LLM Based Tuning Experience Preparation. Given
that existing tuning knowledge is distributed across heteroge-
neous formats, LLMs are employed to construct a knowledge
base by processing and integrating multi-source external ex-
perience in an offline manner. For example, GPTuner [223]
prompts LLM to extract implicit knowledge, remove noisy
content, and summarize relevant information from multiple
sources. Additionally, it introduces a prompt ensemble algo-
rithm that generates multiple prompts by varying the demon-
stration examples, aiming to mitigate hallucination issues.
(2) Semantic Based Tuning Experience Retrieval. To
improve the accuracy of relevant experience retrieval, existing
methods employ model-based encoders to capture semantic
relationships (e.g., documents conveying similar meanings
with different expressions). For instance, Andromeda [96]
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utilizes a Sentence-BERT encoder trained with contrastive
learning to generate embeddings, which are then used to
perform similarity searches across various sources, including
historical queries and troubleshooting manuals.
Training Enhanced Tuning Goal Alignment. The third
method introduces additional training to further refine LLMs,
improving their alignment with tuning objectives. For exam-
ple, DB-GPT [491] proposes techniques to facilitate effective
fine-tuning, including: (i) heuristic statistical data embedding,
(ii) LLM-assisted annotation of high-quality samples, (iii)
contrastive learning of supplementary training data gener-
ation, and (iv) delta tuning to minimize trainable parame-
ters while maintaining performance. Similarly, E2ETune [177]
fine-tunes LLMs (e.g., Mistral-7B) using training data com-
prising “(workload) → (configuration)” pairs, where diverse
workloads are generated via GPT-4 prompting and optimal
configurations are identified using the HEBO algorithm [112].

3.3.2 LLM for Query Optimization
Query optimization aims to accelerate SQL execution through
logical (e.g., query rewriting) and physical (e.g., join order
and plan selection) enhancements. Traditional logical opti-
mization relies on predefined rewrite rules or learning-based
approaches to determine rule application order, while physi-
cal optimization employs heuristic algorithms using statisti-
cal data or learning-based techniques leveraging query plan
features. However, these approaches often overlook external
SQL optimization knowledge, limiting their effectiveness and
generalizability across diverse SQL patterns.

To address these limitations, recent studies investigate
the use of LLM to directly rewrite input SQL queries or
determine optimal rule application sequences for logical opti-
mization. They also explore leveraging LLM to select optimal
query execution plans for physical optimization, drawing on
the extensive SQL optimization knowledge encoded within the
model. These methods can be broadly categorized as follows.
Optimization-Aware Prompt Engineering. The first
method directly employs LLMs to perform query optimiza-
tion using well-structured prompts composed of two key com-
ponents: (i) manually crafted templates enriched with task-
specific details (e.g., explicit task instructions), and (ii) rel-
evant optimization examples automatically selected to more
effectively guide the optimization process.
(1) Manually-Crafted Optimization Prompt. Existing
methods construct prompts with the following components to
facilitate the query optimization task.
• Optimization Task Instruction. To clarify the opti-
mization objective and guide LLMs to produce specific op-
timization actions, detailed task instructions are included
in the prompts. For logical query optimization, some meth-
ods instruct LLMs to directly generate equivalent rewritten
queries with improved performance (e.g., DB-GPT [491], Gen-
Rewrite [261], and LITHE [363]), while others ask them to
determine the optimal sequence of rewrite rule applications
for a given query (e.g., LLM-R2[248] and R-Bot[369]). For
physical query optimization, some approaches prompt LLMs
to generate complete query plans with specified operators and
join orders (e.g., LLM-QO [196]), while others instruct LLMs
to generate optimization hints or select the most effective plan
from a set of candidates (e.g., LLMOpt [438]).

• Input Optimization Context. To enable effective query
optimization for specific workloads, existing methods aug-
ment prompts with additional contextual information to
better inform LLMs. This includes: (i) Database Statistics:
column selectivity [363], histograms, distinct value counts,
and estimated cardinalities [196]; (ii) Rule Specifications: a list
of applicable rewrite rules accompanied by usage descriptions
(e.g., GenRewrite [261] presents natural language hints as the
rules) and illustrative examples [248].
• Output Optimization Requirement. To ensure that
the optimizations produced by LLMs are valid and easily
processed for downstream use, some methods explicitly de-
fine output formatting requirements within the prompts. For
example, LLM-R2 enforces that selected rewrite rules be
returned in the format “rules selected: [rule names]” [248],
while LLM-QO specifies that the generated query plan should
follow the “join operator(table1, table2)” format [196].
(2) In-Context Learning with Optimization Example.
Rather than relying on fixed examples to illustrate how LLM
should perform optimization, some methods automatically
retrieve examples that are semantically similar to the in-
put query to provide more effective guidance. For instance,
LLM-R2 [248] introduces a contrastive representation model
to encode query plans based on features such as operators,
cardinalities, and costs, and retrieves a set of high-quality
demonstrations, i.e., successfully optimized rewritten queries.
RAG Based Optimization Experience Enrichment.
The second method adopts the retrieval-augmented genera-
tion (RAG) paradigm to equip LLM with relevant contextual
information for targeted optimization of specific queries. It
constructs and retrieves optimization knowledge from multi-
ple sources that are semantically related to the input query.
(1) LLM Based Optimization Experience Preparation.
To consolidate optimization experience from multiple sources,
existing methods introduce an offline preparation pipeline
that leverages LLM to process and integrate data into a uni-
fied format. For example, R-Bot [369] employs LLM to gen-
erate rewrite rule specifications by (i) summarizing rule code
within a hierarchical structure and (ii) extracting information
from structured documentation blocks. It further uses LLM
to standardize the resulting specifications, explicitly outlining
application conditions and detailed rewrite transformations.
(2) Hybrid Optimization Experience Retrieval. To more
accurately identify relevant optimization experiences, both
structural and semantic characteristics of the input queries are
considered during similarity search. For instance, R-Bot [369]
introduces a hybrid retrieval approach that computes sim-
ilarity using concatenated embeddings capturing structural
features (e.g., rewrite rule explanations) and semantic repre-
sentations (e.g., query template structures). Based on the re-
trieved experience, R-Bot employs a step-by-step LLM-driven
rewrite process, further enhanced through a self-reflection
mechanism to improve rewrite quality.
Training Enhanced Optimization Improvement. The
third method either uses LLM outputs to train smaller models
or fine-tunes LLMs on task-specific data to support various
query optimization tasks (e.g., query plan generation). For
instance, LLMSteer [53] uses LLM-generated embeddings to
train a classifier for selecting optimal hints of the input SQL.
LLM-QO [196] fine-tunes LLMs to generate execution plans
directly through a two-stage pipeline: (i) Query Instruction
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Tuning (QIT) for producing valid plans; (ii) Query Direct
Preference Optimization (QDPO) for distinguishing high-
quality plans. The fine-tuning data is structured as “(query,
task instruction, auxiliary information such as schema and
statistics, demonstration)” paired with the corresponding effi-
cient execution plan. LLMOpt [438] fine-tunes two models:
(i) LLMOpt(G), which generates candidate hints, and (ii)
LLMOpt(S), which selects the optimal hint as a list-wise cost
model. The fine-tuning data is structured as “(query, statistics
such as histograms) → (optimal hint)” for LLMOpt(G) and
“(query, statistics such as histograms, candidate hints) →
(index of optimal hint)” for LLMOpt(S).

3.3.3 LLM for Anomaly Diagnosis
Anomaly diagnosis focuses on analyzing root causes and iden-
tifying recovery solutions for anomalies (e.g., spikes in system
resource usage) during the system runtime, such as databases.
Traditional rule-based methods often fail to accurately iden-
tify root causes across diverse scenarios, while classical ma-
chine learning models (e.g., random forests) cannot generate
comprehensive reports with detailed recovery solutions.

Recent studies demonstrate that LLMs, with their ad-
vanced textual understanding and reasoning capabilities, can
effectively pinpoint root causes and generate detailed diagno-
sis reports with recovery solutions in various formats. These
LLM-based approaches can be categorized as follows.
Manually Crafted Prompts for Anomaly Diagnosis.
The first method emulates the reasoning process of a human
DBA, which involves referencing essential statistical informa-
tion and conducting an in-depth analysis during diagnosis.
The information is incorporated into well-structured prompts
to enhance diagnosis accuracy. For example, DBG-PT [155]
utilizes LLM to detect query execution slowdowns caused
by changes in query plans, using prompts that include: (i)
a summary of plan differences, (ii) a request for feasible
configuration recommendations, and (iii) a specification of the
reasoning process with output formatted in JSON format.
RAG Based Diagnosis Experience Enrichment. The
second method adopts retrieval-augmented generation (RAG)
paradigm to provide LLM with relevant diagnosis knowledge,
leveraging two key components: a knowledge base and a
retriever. For instance, D-Bot [490], [489] enhances database
anomaly diagnosis by preparing a corpus of documents and
tools considering the hierarchical document structure, then
using a fine-tuned Sentence-BERT encoder to retrieve rel-
evant materials and guide LLM via prompts enriched with
the retrieved content. ByteHTAP [425] supports LLM-based
diagnosis of query performance regressions in HTAP systems
by first constructing a knowledge base of historical queries and
their associated performance explanations. It then employs an
enhanced tree-CNN classifier to encode and retrieve relevant
plan pairs. The retrieved information is incorporated into
prompts that include: (i) background information (e.g., key
differences among HTAP system engines), (ii) a task descrip-
tion (e.g., retrieved diagnosis knowledge with explicit input-
output specifications), and (iii) additional user-provided con-
text (e.g., recent index changes).
Multi-Agent Mechanism for Collaborative Diagnosis.
The third method adopts an agent-based diagnosis frame-
work, where specialized agents with distinct responsibilities
collaborate to improve diagnosis accuracy and efficiency. For

example, D-Bot [490], [489] orchestrates multiple domain-
specific LLM agents, each aligned with a cluster of pre-
processed diagnosis knowledge, to support precise anomaly
diagnosis in databases. These agents, coordinated by a chief
agent, conduct multi-step root cause analysis via a tree-
search algorithm. Similarly, Panda [359] emulates experienced
database engineers by leveraging LLM agents across five
functional components: (i) question verification to eliminate
irrelevant queries, (ii) grounding to provide necessary input
query context, (iii) verification to ensure diagnosis accuracy
and source attribution, (iv) feedback integration to incorpo-
rate user input, and (v) affordance assessment to estimate the
performance impact of generated solutions.
Localized LLM Enhancement via Specialized Fine-
Tuning. The last method employs specialized fine-tuning
strategies for localized LLMs of modest scale (e.g., 6B-14B),
leveraging distilled knowledge to approximate the outputs
of larger models while achieving comparable performance.
For instance, D-Bot [490] applies multi-task fine-tuning to
improve the diagnosis capabilities of localized LLMs. Specif-
ically, three models (i.e., Llama2-13B, CodeLlama-13B, and
Baichuan2-13B) are fine-tuned to replicate the diagnosis re-
sults generated by the GPT-4-powered D-Bot. The fine-tuning
dataset consists of samples covering D-Bot diagnosis work-
flows across five sub-tasks (e.g., tool invocation), along with
associated prompts and historical dialogue messages.

Practices of LLMs for Data Management

Alibaba Cloud [5] has integrated Text-to-SQL fea-
tures into its BI platform, facilitating NL queries
over structured datasets. Amazon Nova [3] employs
automated document processing to extract structured
information from diverse unstructured sources. In
terms of data systems, PawSQL [41], an advanced
query optimization platform, offers both SQL rewrit-
ing and index recommendation capabilities, adopted
by over 10,000 professionals. Database diagnosis also
thrives on a robust ecosystem. For instance, DB-
Doctor [35], compatible with mainstream databases,
delivers kernel-level performance diagnostics for com-
prehensive system analysis and optimization.

4 Challenges and Future Directions
4.1 Data Management for LLM
4.1.1 Task-Specific Data Selection for Efficient Pretraining
In LLM pre-training, vast amounts of general data are typ-
ically used, but much of this data may not be relevant to
the target task. The inclusion of irrelevant data not only
increases training time but also impedes the model’s adapt-
ability to specific tasks. For instance, when training a model
for the medical domain, unrelated data sources such as news
articles and social media posts may hinder the learning of
domain-specific knowledge. Consequently, the challenge lies
in automatically selecting task-relevant data while discarding
irrelevant information during pretraining. Currently, most
approaches rely on hand-crafted filtering rules or fixed labeled
datasets for data selection, lacking dynamic strategies that
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adapt to the model’s evolving task-specific needs. Exploring
methods to automatically select relevant data and discard
irrelevant data during pre-training represents a promising
avenue for improving task adaptability and training efficiency.

4.1.2 Optimizing Data Processing Pipelines
Currently, the construction of data processing pipelines for
LLMs relies heavily on experience and experimentation. For
instance, in building the FineWeb dataset, decisions such
as whether to use the WET or WARC format for text ex-
traction from CommonCrawl, or whether to apply a global
MinHash approach for deduplication or perform it separately
for each snapshot, are made only after training models and
benchmarking their performance. However, this experimental
methodology is resource-intensive. In the case of FineWeb,
over 70 models with 1 billion parameters were trained, con-
suming a total of 80,000 H100 GPU hours. To improve the
efficiency of these pipelines, future research should focus on
developing data-driven methods that can predict optimal pre-
processing configurations. in advance, reducing the reliance on
costly trial-and-error approaches. This would not only mini-
mize computational costs but also accelerate the development
of high-quality datasets for LLMs.

4.1.3 LLM Knowledge Update and Version Control
In fast-evolving domains (e.g., healthcare, finance, law),
knowledge is constantly updated. To ensure the reliability
of LLMs, the data used for training and fine-tuning must
be up-to-date. Delays in incorporating the latest knowledge
can result in outdated or harmful outputs, particularly in
fields like medicine where guidelines frequently change. While
there have been various approaches to data synthesis and
augmentation, little attention has been given to efficiently
managing rapid knowledge updates or resolving contradic-
tions when new information conflicts with older data. Existing
systems often rely on static datasets, which are problematic
in dynamic sectors. Although platforms like ChatGPT and
Deepseek allow LLMs to search the web, this approach may
not always guarantee accuracy or relevance, leading to subop-
timal results. A more effective solution would involve a plat-
form that facilitates the creation, sharing, and version control
of datasets with real-time knowledge updates. By leveraging
community-driven contributions, this platform could enable
users to synthesize and share datasets using customizable
methods, such as LLM-generated prompts from documents
or websites, offering continuous, high-quality updates and
improving the overall accuracy and reliability of LLMs.

4.1.4 Comprehensive Dataset Evaluation
The performance enhancement of models is closely tied to the
use of ’high-quality’ datasets. However, determining what con-
stitutes a high-quality dataset remains a challenge. Typically,
the quality of a dataset can only be inferred after training
and evaluating a model, which makes the process indirect
and resource-intensive. When a dataset’s quality is subpar,
it can lead to significant computational overhead and ineffi-
ciencies. While existing research [393] has proposed a model-
agnostic method for evaluating datasets across three aspects:
reliability, difficulty, and validity. These dimensions alone do

not fully capture a dataset’s quality. The current framework
falls short of providing a comprehensive evaluation that aligns
with the model’s capabilities and performance improvements.
Therefore, a promising direction for future research is the de-
velopment of a robust dataset evaluation system that does not
rely on model training. This system should provide consistent
quality scores that directly correlate with model performance
enhancements, enabling more efficient dataset selection and
use without the need for exhaustive training cycles.

4.1.5 Hybrid RAG Indexing and Retrieval
Currently, there lacks a single database that integrates full-
text, vector, knowledge graph, and structured search in-
terfaces into a cohesive indexing and retrieval engine for
Retrieval-Augmented Generation (RAG) training. While sys-
tems like Elasticsearch [36] excel in full-text and vector search,
and LightRAG [164] has introduced advanced vector and
graph processing, these solutions remain siloed. They lack a
unified platform designed specifically for hybrid RAG, where
multiple indexing and search mechanisms coexist to support
efficient downstream applications. Although emerging plat-
forms like AutoRAG [209] provide frameworks for construct-
ing RAG pipelines, they focus on workflow management,
model integration, and automation rather than offering a
fully integrated database with indexing and retrieval engines.
A promising direction for future RAG data serving is the
development of an integrated platform that provides seamless
indexing and retrieval for diverse data types, while also inte-
grating data serving features such as knowledge filtering and
re-ranking [47], thereby improving the efficiency and flexibility
of RAG applications.

4.2 LLM for Data Management
4.2.1 Unified Data Analysis System
One of the major challenges in LLM for Data Analysis is
the absence of a unified system capable of handling diverse
data types. Currently, analyzing different data formats often
requires designing task-specific models separately. The most
straightforward approach to enabling a system to process
all types of data is to integrate these models into a single
framework. However, this leads to prohibitively high deploy-
ment and maintenance costs due to the need to manage
multiple models simultaneously. A more promising direction
is to develop a model that can flexibly accommodate various
data inputs and user requirements while supporting the anal-
ysis of structured, semi-structured, and unstructured data.
Such a system would establish a paradigm for LLM for Data
Analysis at the system level and offer a generalized capability
for analyzing data across different structural types, thereby
facilitating data automation.

4.2.2 Data Analysis with Private Domain Knowledge
Another challenge in leveraging LLMs for data analysis is
the effective utilization of private domain knowledge. Current
approaches primarily rely on RAG to retrieve relevant knowl-
edge or fine-tune models on domain-specific datasets. How-
ever, these methods struggle when dealing with novel or highly
complex domain knowledge. For example, in Text-to-SQL
tasks involving large-scale databases with 10,000 columns and
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1,000,000 rows, where each column is associated with specific
domain knowledge, existing techniques often fail to generalize
effectively. The lack of datasets that explicitly incorporate
domain knowledge further exacerbates this issue, making it
difficult to meet the demands of real-world industrial applica-
tions. Consequently, developing more advanced mechanisms
for integrating domain knowledge into LLMs remains a critical
open research problem.

4.2.3 Representing Non-Sequential and Non-Textual Data
Current LLM-based approaches typically transform non-
sequential and non-textual data into serialized textual formats
to align with the input requirements of LLMs [129], [196],
[438]. While this enables basic compatibility, it overlooks
the original structural semantics of the data and can lead
to significant information loss in downstream tasks. For in-
stance, in data manipulation and analysis, relational tables
(originally structured as two-dimensional matrices) are typ-
ically flattened into multiple serialized sequences, obscuring
inherent row-column relationships [78], [74], [319]. Similarly,
in system optimization tasks, crucial statistical signals such
as column selectivities and histograms are either omitted or
naively encoded as plain texts, limiting their utility in guiding
optimization decisions [156], [132]. Consequently, a promising
future direction is to develop more expressive and task-aware
representations that preserve the structural and statistical
integrity of such data. This includes leveraging multi-modal
LLMs or designing tailored encoding strategies that maintain
the uniqueness of these data types, thereby enabling more
effective and semantically informed LLM applications.

4.2.4 Efficient LLM Utilization Under Budget Constraints
While LLMs have shown strong potential across data manip-
ulation, analysis, and system optimization tasks, their high
computational cost and latency pose challenges for real-time
or large-scale applications [196], [53]. For example, relying
solely on LLMs is impractical for processing tens of millions
of rows in relational table analysis due to prohibitive resource
demands [432], [304]. Similarly, current LLM-based query
optimizers often require minutes per query, far exceeding
the millisecond-level efficiency of traditional statistical meth-
ods [369], [248]. Therefore, a promising direction is to develop
hybrid strategies that integrate LLMs with traditional tech-
niques or to devise scheduling mechanisms that allocate tasks
across multiple LLMs based on cost-performance trade-offs.
Such approaches can enhance the practicality and scalability
of LLM-based systems under real-world budget constraints.

5 Conclusion
In this paper, we summarize the recent techniques on
DATA4LLM and LLM4DATA. The former focuses on uti-
lizing data processing, storage, serving techniques to address
the data problems in different LLM stages. The latter fo-
cuses on using LLM capabilities to reduce the complexity
of conducting data management, e.g., data manipulation,
data analysis, and data system optimization. We also provide
some research challenges and open problems in DATA4LLM,
LLM4DATA, and hybrid data and LLM optimization.
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