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Abstract

Traditional Data+Al systems utilize data-driven techniques to optimize performance, but they rely
heavily on human experts to orchestrate system pipelines, enabling them to adapt to changes in data,
queries, tasks, and environments. For instance, while there are numerous data science tools available,
developing a pipeline planning system to coordinate these tools remains challenging. This difficulty
arises because existing Data+Al systems have limited capabilities in semantic understanding, reasoning,
and planning. Fortunately, we have witnessed the success of large language models (LLMs) in enhancing
semantic understanding, reasoning, and planning abilities. It is crucial to incorporate LLM techniques
to revolutionize data systems for orchestrating Data+Al applications effectively.

To achieve this, we propose the concept of a ‘Data Agent’ — a comprehensive architecture designed to
orchestrate Data+Al ecosystems, which focuses on tackling data-related tasks by integrating knowledge
comprehension, reasoning, and planning capabilities. We delve into the challenges involved in designing
data agents, such as understanding data/queries/environments/tools, orchestrating pipelines/workflows,
optimizing and executing pipelines, and fostering pipeline self-reflection. Furthermore, we present exam-
ples of data agent systems, including a data science agent, data analytics agents (such as unstructured
data analytics agent, semantic structured data analytics agent, data lake analytics agent, and multi-
modal data analytics agent), and a database administrator (DBA) agent. We also outline several open
challenges associated with designing data agent systems.

1 Introduction

In the past decade, the database community has made significant contributions to the Data+Al field [1]. On
one hand, for Al4Data, our community leverages Al techniques to tackle offline NP-hard problems (e.g., index
advisor [2, 3], view advisor [4], partition advisor [5], knob advisor [6], hint advisor [7]), online NP-hard prob-
lems (e.g., query rewrite [8], plan enumeration [9]), regression problems (e.g., cardinality estimation [10, 11],
cost estimation [12], latency estimation [13]), prediction challenges (e.g., workload prediction [14]), and data
structure design issues (e.g., learned indexes [15]). These efforts primarily focus on machine learning model
design and selection, as well as the design and selection of data/query/environment features. However, adapting
these techniques to changes in data, queries, tasks, and environments poses a significant challenge, as they rely
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Figure 1: Challenges of Data+Al Systems.

heavily on experts tuning to accommodate different scenarios. On the other hand, for Data4Al, our community
extends database optimization techniques to ease the deployment of Al, including in-database machine learning
(ML) training and inference [16], data preparation [17], data cleaning [18], data integration [19], feature man-
agement [20], and model management [21]. The main obstacle with these methods is achieving autonomous
orchestration of system pipelines without labor-intensive involvement.

The core obstacle preventing existing Data+Al techniques from adapting to varying scenarios is their limited
ability in semantic understanding, reasoning, and planning, as shown in Figure 1. Fortunately, large language
models (LLMs) possess these capabilities [22, 23], and we aim to leverage them to revolutionize Data+Al sys-
tems. To accomplish this, we propose the ‘Data Agent,” a comprehensive architecture designed to orchestrate
Data+Al ecosystems by focusing on data-related tasks through knowledge comprehension, reasoning, and plan-
ning abilities. We outline several challenges in designing data agents:

Challenge 1: How can we understand queries, data, agents, and tools?

Challenge 2: How can we orchestrate effective and efficient pipelines to bridge the gaps between user
requirements and the underlying heterogeneous data (e.g., data lakes)?

Challenge 3: How can we schedule and coordinate agents and tools to improve the effectiveness?

Challenge 4: How can we optimize and execute pipelines to improve the efficiency?

Challenge 5: How can we continuously improve pipeline quality with self-reflection?

We begin by proposing a holistic architecture to address these challenges. We present a robust architecture
for developing data agents, which includes components for data comprehension and exploration, understanding
and scheduling within the data engine, and orchestrating processes through pipeline management. Subsequently,
we demonstrate several data agent systems, such as a data science agent, data analytics agents (including un-
structured data analytics agents [19], semantic structured data agents, and data lake agents [41]), and a database
administrator (DBA) agent [42, 43]. Finally, we identify some open challenges associated with designing data
agent systems.

Our contributions can be summarized as follows:

(1) We introduce the data agent, which autonomously handles data-related tasks with capabilities for knowl-
edge comprehension, automatic planning, and self-reflection.

(2) We present a holistic architecture for orchestrating a data agent system.

(3) We showcase three types of data agent systems: the data science agent, the data analytics agents, and the
DBA agent.

(4) We provide several open research challenges related to data agents.
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Figure 2: Key Factors of Data Agents.

2 Data Agent

The Data Agent is designed to autonomously carry out data-related tasks with capabilities for knowledge com-
prehension, automatic planning, and self-reflection.
Data Agents require to consider six key factors as shown in Figure 2.

Perception: This involves understanding the environment, data, tasks, agents, and tools. It requires aligning the
Data Agent through offline fine-tuning or by preparing offline prompt templates.

Reasoning and Planning: Planning focuses on creating multi-step pipeline orchestration, while reasoning in-
volves making single-step decisions or actions. Each action may require further exploration of reasoning/planning
or invoking a tool (to acquire domain data or knowledge).

Tool Invocation: The agent can call upon tools to perform calculations, access domain-specific data, or provide
instructions to environments. The Model Context Protocol (MCP) facilitates alignment between agents and
tools, ensuring that information and states are exchanged in a standard format to prevent information drift [24].
Intermediate inference results from different models can be understood and reused across the system.

Memory: This includes long-term memory, such as domain-specific and environmental knowledge, and short-
term memory, like user context. Typically, a vector database is used to store and query these memory data. Other
types of memory, such as reflective memory, will also be used to enhance planning abilities and performance.

Continuous Learning: Continuously improving the agent to make it smarter is vital. This relies on self-
reflection, reinforcement learning, and reward model techniques for self-improvement.

Multiple Agents: Individual agents may struggle to handle diverse tasks effectively, as each agent has its own
strengths but also limitations. Thus, integrating multiple agents to collaborate and coordinate is necessary for
complex tasks. This approach enhances system robustness and improves parallelism and efficiency.

We propose a comprehensive architecture for building data agents, encompassing data understanding and ex-
ploration, data engine understanding and scheduling, and pipeline orchestration, as shown in Figure 3. Figure 4
shows the detailed architecture.

Data Understanding and Exploration Agents aim to organize and understand data to facilitate discovery and
access by the agent. A unified semantic catalog offers a well-structured metadata system (e.g., schema and
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Figure 3: Data Agents Framework.

metadata index), enhancing data access performance. The data fabric provides a unified view of heterogeneous
data by linking and integrating diverse data, allowing easy data retrieval by the agent. Semantic data organization
and semantic indexes are also very improve to improve the data agent efficiency. Importantly, there are numerous
tools for data preparation, cleaning, and integration. This component will also devise effective strategies to
utilize these tools efficiently.

Data Engine Understanding and Scheduling Agents focus on comprehending and scheduling data processing
engines, such as Spark, DBMSs, Pandas, and PyData. Given that different agents and tools have varying skill
sets, it is essential to profile the specific capabilities of each engine and coordinate them to execute complex
tasks effectively.

Pipeline Orchestration Agents are responsible for generating pipelines based on user-input natural language
(NL) queries and the data catalog. They break down complex tasks into smaller, manageable sub-tasks that can
be executed sequentially or in parallel to achieve the overall goal. Given that both NL queries and the underlying
data exist in an open-world context, these agents must leverage the understanding, reasoning, and self-reflection
capabilities of large language models (LLMs) to create high-quality plans. Subsequently, the pipelines need
to be optimized to improve latency, cost, or accuracy, and engine agents are invoked to efficiently execute the
pipelines.

Memory encompasses long-term memory, such as domain and environmental knowledge, as well as short-term
memory, like user context and reflective context. Vector databases are typically used to manage this memory for
enhancing the performance.

Perception is tasked with comprehensively understanding the surrounding environments and the specific tasks
at hand.

Agent-Agent Interaction is designed to coordinate and collaborate multiple agents to tackle decomposed sub-
tasks. It comprises three key components: agent profiling and selection, agent interaction and coordination,
and agent execution. Agent Profiling and Selection involves building profiles for agents, enabling the system
to choose the most suitable agents for specific tasks. Agent Interaction and Coordination focuses on the co-
ordination and interaction of multiple agents to effectively address sub-tasks. Thanks to agent-to-agent (A2A)
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Figure 4: Data Agents Architecture.

protocols, we can facilitate communication between agents and synchronize their statuses via A2A [25]. Agent
Execution aims to execute multiple agents either in a pipeline or in parallel, enhancing the system’s fault toler-
ance and fast recovery.

Agent-Tool Invoking is utilized for calling upon appropriate tools. Given the multitude of data processing tools
available, such as Pandas and PyData, it is necessary to select the right tool for each task. The challenge lies
in profiling and scheduling these tools effectively. Fortunately, the Model Context Protocol (MCP) allows us to
easily integrate new tools into the data agent system.

3 iDataScience: A Multi-Agent System on Data Science

We first introduce the data agent architecture of iDataScience (see Figure 5), and then present the components
of iDataScience.

3.1 Overview of iDataScience

iDataScience is designed to adaptively handle data science tasks by flexibly composing the complementary capa-
bilities of diverse data agent, which is a challenging open research problem. As shown in Figure 5, iDataScience
comprises an offline stage and an online stage.

Offline Data Agent Benchmarking. This stage aims to construct a comprehensive data agent benchmark that
can cover diverse data science scenarios by composing basic data skills. First, given a large corpus of data
science examples, we employ LLM for quality filtering and data skill discovery. Next, to organize the skills,
we build a hierarchical structure via recursive clustering. Each skill is also assigned an importance score based
on its overall frequency or user-defined priorities. Then, to reflect the capability requirements of specific data
science scenario, we sample important skills probabilistically according to their scores and use LLM to generate
corresponding test cases.
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Figure 5: Overview of iDataScience.

Besides, to ensure unbiased agent evaluation for an online task, benchmark test cases should be adaptively
aggregated based on their similarity to the task. We thus construct an efficient index to enhance the performance
of similarity search over the test cases. We will discuss the detailed techniques in Section 3.2.

Online Multi-Agent Pipeline Orchestration. Given an online data science task, this stage autonomously de-
composes the task into a pipeline of sub-tasks aligned with data agent capabilities, selects an appropriate agent
for each sub-task, and dynamically refines the pipeline to ensure both efficiency and robustness.

(1) Data Agent Selection. To effectively utilize benchmark results, we design a task embedding method to
measure the similarity between benchmark test cases and the online task. To this end, we fine-tune a task em-
bedding model to align task embeddings with the pre-trained text embeddings of corresponding task solutions,
which capture the capability requirements and reasoning complexity inherent in the tasks. We then build an
embedding index over the benchmark test cases. For an online task, we utilize the index to efficiently retrieve
top-k relevant test cases, and evaluation scores of test cases are adaptively aggregated based on their similarity
to guide agent selection. The data agent with the highest aggregated score is selected as optimal.

Besides, for special cases where benchmark is unsuitable, we can also evaluate the agents through structured
document analysis or via sample task experiments. We will discuss the technical details in Section 3.3.

(2) Multi-Agent Pipeline Orchestration. Given an online task, we first use LLMS to decompose the task
into a pipeline of interdependent sub-tasks using specialized agent profiles. Each sub-task is assigned to an



appropriate data agent selected as previously described. We also iteratively refine the plan with additional
adjustments such as sub-task merging or decomposition.

Then, we execute the pipeline in a parallel bottom-up manner based on its topological order. To ensure
robustness, we dynamically refine the pipeline based on intermediate results, including (7) sub-task modification
at agent level, and (i) global-level re-planning, where complete intermediate results are stored as datasets in
our data catalog to prevent redundant computation. Once all sub-tasks are executed, iDataScience outputs the
final task result to the user. We will discuss the technical details in Section 3.4.

Integration of New Data Agent. iDataScience is designed to be extensible, allowing integration of new data
agents through agent profile construction based on agent document analysis. Additionally, when sufficient time
and resources are available, iDataScience can further enhance the agent profile by executing the benchmark,
thereby improving the accuracy of agent selection and pipeline orchestration. Once integrated, the new agent
can seamlessly collaborate with existing agents within our multi-agent pipeline orchestration framework.

3.2 Data Agent Benchmarking

Given the wide range of data science tasks across diverse application domains, existing benchmarks are typically
constrained to a limited set of pre-defined task types [26, 27], and thus poorly evaluate data agents in more
flexible use cases. To address this limitation, we introduce a data skill-based benchmark, which can adaptively
create test cases to cover different data science scenarios (see Figure 5). Specifically, we first use LLMS to
extract data skills from a large corpus, whose compositions can represent the capability requirements of diverse
tasks. Next, we construct a hierarchical structure that captures the semantic relationships among these skills,
with each skill assigned an importance score based on its overall frequency or user-defined priorities. Then,
during data agent evaluation, we can compose random sets of relevant skills tailored to the target scenario, and
prompt LLMS to generate corresponding test cases for adaptive and comprehensive assessment.

3.2.1 Hierarchical Data Skill Discovery

Automatic Data Skill Discovery. To better understand the coverage of data science tasks, we first collect data
science examples from diverse sources, including online websites (e.g., StackOverflow), professional competi-
tions (e.g., Kaggle), and existing data science benchmarks. Each data science example typically contains three
components: () “task”: a natural language task description, as well as multi-modal datasets involved (e.g., ta-
bles, texts, images); (i¢) “solution”: a detailed sequence of steps outlining the procedure of completing the task;
(7i7) “associated data skills”: the fundamental data science capabilities utilized in the solution, whose extraction
procedure is described in the following paragraph.

We use LLMS to automatically filter out high-quality examples and discover associated data skills in three
steps. First, since the data science example can contain noisy content and intricate code snippets, we provide
the task description and solution to LLMS, and instruct it to summarize the procedure as a sequence of steps in
concise natural language. Second, we utilize LLMS to evaluate the quality of example summaries, and exclude
low-quality examples that either lack implementation details or provide only partial task solution. Third, given
the summarized steps of data science examples, we further use LLMS to extract associated data skills [28]. For
instance, given the example ‘Do lower-income students perform worse on a math test than higher-income stu-
dents?’, its solution reveals the data skills: ‘new column derivation’, “filter by column’, and ‘linear regression’.

Data Skill Hierarchy Construction. The mess of extracted data skills can be systematically organized into a hi-
erarchical structure through recursively clustering semantically similar skills within the same group. Specifically,
we first use pre-trained text embeddings to represent the semantics of the data skills. Then, these embeddings are
clustered using Gaussian Mixture Models [29], where Uniform Manifold Approximation and Projection method
is used to reduce dimensionality by approximating the local data manifold [30]. Next, for each skill cluster, we
instruct LLM to generate a summary that captures the common skill theme of these grouped skills. The cluster
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summaries serve as higher-level nodes in the hierarchy. If the skill number within some cluster falls below a
pre-defined threshold, such clusters are designated as leaf nodes. Conversely, if some cluster still contains skills
exceeding the threshold, the same clustering procedure is recursively applied to construct a more fine-grained
hierarchical structure under the same parent cluster node.

Data Skill Weighting. To distinguish the relative importance of data skills, we initially use their occurrence
frequencies across data science examples as a general proxy score. Specifically, for each leaf node in the skill
hierarchy, we compile the skills within the corresponding cluster, and count the number of examples in which
any of these skills are associated. The score of the leaf node is calculated as the ratio of its associated example
count to the total number of examples. Then, the scores of higher-level nodes can be recursively computed by
aggregating the scores of their corresponding children nodes.

Besides, we also support users to adaptively adjust the scores of critical data skills for practical needs. For
instance, if users identify ‘missing value handling’ as a more critical data cleaning skill, the score of corre-
sponding node can be manually increased. To maintain a constant total score among sibling nodes, the scores
of the remaining sibling nodes are proportionally decreased. The scores of descendant nodes are also adjusted
accordingly, preserving their relative proportions within their respective sub-trees.

3.2.2 Data Skill-based Benchmark Construction

The test case in the benchmark consists of two components: (i) “task”: a task description along with associated
datasets; (i7) “evaluation function”: an executable function that outputs a scalar value within the range [0, 10],
quantifying the correctness and performance of data agents. However, directly using LLLMS to generate test
cases leads to low-quality benchmarks for two reasons. First, the generated test cases cannot fully capture
the data science capabilities required for specific scenario. Second, the test case may not adequately reflect
conditions in real-world applications.

To address these challenges, we propose a data skill-based benchmark construction method (see Figure 6).
First, we sample a random set of k data skills from the leaf nodes of the hierarchy, with probabilities proportional
to their importance scores. Second, to enhance the realism of the generated test case, we retrieve data examples
from the corpus that are pertinent to the selected skills, and incorporate them into LL.M’s input context for in-
context learning. Specifically, we assign a relevance score to each data science example based on its associated
data skills. The score of an example is computed as the sum of the importance scores of the k selected skills
present in its associated skill set. We select the examples with top scores as representative.

Then, we provide LLM with the selected data skills and data science examples, instructing it to synthesize
test cases by leveraging both its pre-trained knowledge and in-context examples. The synthesis process adheres
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to the following criteria: (7) the datasets must be drawn from those provided in the examples; (i7) the synthe-
sized task and evaluation function should both involve the application of all the specified data skills; and (i) the
evaluation function should be composed of a set of sub-functions, each of which returns a boolean value indicat-
ing whether a specific evaluation criterion is satisfied by the task results. The final scalar score is then computed
based on the aggregate results of these sub-functions, a design choice that promotes greater consistency across
different test cases [31].

Two special cases also require consideration. First, if the dataset size of some selected example exceeds the
context window that LLMS can effectively process [32], a subset of the dataset can be randomly sampled, sup-
plemented with its metadata (e.g., column descriptions of the table) to preserve essential information. Second,
if certain evaluation standards are too ambiguous to be directly implemented as executable code, LLMS can be
invoked within the evaluation function to assess the task results guided by a set of generated rules.

Note that the complexity of test cases grows rapidly with the number of data skills £ [33], which users can
specify to tailor the benchmark to practical applications.

3.3 Data Agent Selection

Since many data agents have been proposed to address similar data science tasks [26, 27], a straightforward
approach to agent selection is to leverage their benchmark results. Specifically, we can assess agent performance
by aggregating the evaluation scores of test cases and selecting the agent with the highest overall score. However,
this method overlooks the degree of relevance between benchmark test cases and the target task, and thus we
should re-weight the test cases to ensure an unbiased assessment.

To address this issue, we first train an embedding model for data science tasks, where tasks with similar
embeddings require similar data science competencies and reasoning process. The unbiased evaluation score of
an agent is then computed using these embeddings, as a weighted aggregation of the test case evaluation scores,
where the weights reflect the similarity of each test case to the target task. The agent achieving the highest score
is regarded as the optimal choice.

Besides, we also propose alternative evaluation methods for the special cases where the benchmark is un-
suitable. For time-constrained settings, the agent is evaluated through structured document analysis using LLM,
without actually executing the benchmark. For tasks with extremely high execution time or resource demands
(e.g., model training on large datasets), we generate samples from the target task and utilize them to further
refine agent selection.



Table 1: Comparison of Data Agent Selection Methods.

Method Accuracy | Online Overhead | Offline Overhead
Adaptive Benchmark Aggregation Mid Low High
Agent Document Analysis Low Mid Low
Task Sample Experiment High High Low

3.3.1 Data Science Task Embedding.

Since the data science task typically contains multi-modal datasets and textual descriptions, we can use multi-
modal large language models (MLLMS) to obtain its semantic embedding [34], where both text and images
are natively supported and tables can be represented as serialized text in CSV format. Large datasets can be
substituted with data samples and metadata to fit the context window of MLLM, as discussed in Section 3.2.2.
However, such embedding method is sensitive to irrelevant information like (i) domain of the task and (i7)
representation format of datasets, despite these factors minimally affect actual complexity of solving the task.

To overcome this limitation, we introduce a fine-tuning process that aligns data science task embedding with
the pre-trained text embedding of its correct solution (see Figure 7). We again use the corpus of high-quality data
science examples annotated with associated data skills, as discussed in Section 3.2.1. We employ a contrastive
learning framework: correct solutions to the task are treated as a positive example, while solutions to tasks
involving mutually exclusive data skills serve as negative examples. Using these training pairs, we compute the
Multiple Negatives Ranking Loss [35], which minimizes embedding distances for positive pairs and maximizes
embedding distances for negative pairs. Once training converges, the embeddings exhibit meaningful alignment,
allowing similarity metrics to reliably identify data science tasks with analogous solution procedures, which in
turn reflect comparable performance of a data agent.

3.3.2 Heterogeneous Data Agent Selection

We propose three methods for selecting the most suitable data agent for a given task, i.e., adaptive benchmark
aggregation, agent document analysis, and task sample experiment, each offering distinct advantages and disad-
vantages (see Table 1).

Adaptive Benchmark Aggregation. In the offline stage, we run the benchmark using the candidate data agents,
resulting in each agent associated with evaluation scores corresponding to each test case. We also build an
embedding index over the test cases using fine-tuned task embedding model to support efficient similarity search.
Then, for an online task, we similarly generate its embedding and identify the most relevant test cases with top-k
embedding similarities. The weights assigned to these k selected test cases are their normalized similarities such
that their sum is equal to one. We thus obtain an unbiased evaluation score for each agent, which is computed
by the weighted sum of its evaluation scores across these selected test cases. The agents are then ranked by the
aggregated scores, and the top one with the highest score is identified as the most suitable choice.

Agent Document Analysis. Sometimes, it is impractical to evaluate the data agent by executing time-intensive
benchmark. For instance, when integrating a new agent into iDataScience, a temporary evaluation method is re-
quired to enable its inclusion in the agent selection framework prior to completing its full benchmark evaluation.
Thus, given an online task, we can assess the data agent by using LLM to directly analyze agent documents
(e.g., research paper, repository Readme files).

Specifically, we instruct LLMS to focus on three structured artifacts of the document, which are critical for
agent evaluation: (i) Design Principle. It describes the intended usage scenarios and technical contributions of
the agent, which are often extracted from the introductory sections of the documents. We can use LLMS to
compare the given task with these design specifications, determining whether the agent is appropriately targeted
for the task. (7i) Representative Example. It can be treated analogously to test cases in the benchmark, where
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higher embedding similarity to the given task indicates greater suitability of the agent. (iii) Experiment Result.
It describes the experimental results of the agent on various datasets in comparison with baselines. First, if details
regarding the datasets or baselines are missing, we can prompt LLMS to use search engine as tools to retrieve
and complete the missing information. Then, we use LLMS to compare the target task with the experimental
datasets, and predict the agent’s performance based on reported experimental results.

Finally, guided by the analysis of aforementioned three key artifacts, we employ LLMS to generate an
evaluation score in the range [0, 10], which is comparable to benchmark scores.

Task Sample Experiment. If the given task involves large datasets or demands large resources, agent selection
can be further refined through sample experiments. Specifically, we randomly sample the task dataset to con-
struct a task sample. Next, we select the agents with the top scores based on the evaluation and execute the task
sample using these candidates. Finally, we compare their execution results and use LLMS to determine which
agent most effectively solves the task sample.

3.4 Multi-Agent Pipeline Orchestration

For complex data science tasks that exceed the capabilities of any single data agent [36, 37, 38], it is essential to
compensate for their limitations through a unified collaborative framework. However, most existing work define
a deterministic pipeline with a fixed set of data agents based on human expertise, limiting their ability to leverage
the broader range of available agents through extensible integration [39]. To this end, we propose a flexible and
adaptive pipeline orchestration algorithm that accommodates diverse tasks and agents, and effectively manages
the intricate reasoning process through agent collaboration. Specifically, we first introduce an agent-oriented
task planning approach that decomposes the given task into a pipeline of sub-tasks by leveraging specialized
agent profiles, heterogeneous agent selection for each sub-task, and LLLM-based plan adjustment to ensure both
effectiveness and efficiency. Next, we execute the pipeline interactively, with dynamic pipeline refinement to
adapt to intermediate results through either agent-level modifications or holistic re-planning.

3.4.1 Agent-Oriented Task Planning

Following existing studies [40], we feed the given task and a set of agent profiles to LLMS, and instruct LLMS
to generate a task plan comprising sub-tasks, each associated with a relevant subset of datasets and aligned
with capabilities of some agents. We further prompt LLMS to evaluate the task plan for completeness and
non-redundancy, ensuring that the sub-tasks collectively address the given task in its entirety while avoiding
unnecessary or duplicate sub-tasks. Our approach is distinguished by three key aspects: (i) design of specialized
data agent profiles, (i7) heterogeneous agent selection for each sub-task, and (7i7) adaptive task plan adjustment.

Data Agent Profile Construction. To fully describe the capabilities of the data agent, we construct the agent
profile comprising three components: (i) “design principle”, (i7) “representative example”, and (iii) “experi-
ment result”, paralleling the key artifacts extracted from agent document as discussed in Section 3.3.2. We can
enhance the agent profile by including its benchmark results in addition to document information. Specifically,
for the “representative example” component of an agent, we incorporate benchmark test cases by quantifying its
performance deviation on each test case t; as %ﬁfﬁl, where s; denotes the evaluation score of the given agent
on t;, and mean; represents the average score of ¢; across all data agents. Test cases exhibiting the highest and
lowest deviation scores are selected as positive and negative examples respectively. For the “experiment result”
component, we further incorporate overall benchmark metrics (e.g., accuracy, recall), using the seed data skills
associated with the benchmark as descriptive metadata. Note that our agent profile design is also compatible

with the “Agent Card” interface defined by the Agent-to-Agent (A2A) protocol [25].

Heterogeneous Data Agent Selection. To construct the context for each sub-task during agent selection, we
first employ LLMS to analyze the dependency relationship among sub-tasks in the task plan, representing them
as a directed graph with sub-tasks as nodes and dependencies as edges. Next, for a given sub-task, we treat
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the intermediate results of its dependent sub-tasks as auxiliary datasets, and prompt LLMS to synthesize mock
dataset descriptions to serve as the sub-task input. Then, we apply the agent selection method described in
Section 3.3 to identify the most suitable agent for the sub-task.

Task Plan Adjustment. After sub-task decomposition and agent assignment, we further refine the task plan
by applying adjustments such as additional decomposition and merging. First, if no suitable data agent can be
selected for a given sub-task (e.g., all agents with evaluation scores below a pre-defined threshold), we instruct
LLM to revise the task plan by further decomposing the sub-task into simpler sub-tasks.

Besides, to enhance efficiency of task plan, we attempt to merge correlated sub-tasks, thereby reducing the
complexity of execution pipeline. Specifically, we first provide the dependency graph of sub-tasks to LLMS
and instruct LLMS to identify sub-graphs where the nodes (i) involve interrelated datasets, and (i) can be
coherently aggregated into a larger, logically consistent sub-task. Next, for each identified sub-graph, we prompt
LLMS to generate a consolidated sub-task that summarizes the constituent sub-tasks within the sub-graph.
Then, we apply the heterogeneous data agent selection method to identify a suitable agent for the new sub-task.
If a suitable agent is successfully selected, the original sub-graph is replaced with the new sub-task and its
corresponding agent assignment.

3.4.2 Pipeline Execution

Unlike traditional approaches that depend on fixed data agents and rigid workflows, iDataScience is designed to
dynamically adapt to the diversity and unpredictability of both data agents and data science tasks. As illustrated
in Figure 5, iDataScience can execute its pipeline interactively, dynamically refining its pipeline at both the
agent level and the global level based on intermediate results and execution states.

Parallel Pipeline Execution. To enhance execution efficiency, following the dependency graph of sub-tasks,
we execute the sub-tasks in parallel bottom-up along their topological order in the graph. Once their dependent
sub-tasks are completed, each sub-task is executed using the corresponding intermediate results, proceeding
iteratively until all sub-tasks are completed and the final result is obtained. During execution, each sub-task is
carried out by its assigned agent, after which we use LLMS to verify whether the generated intermediate results
adequately fulfill the sub-task. If discrepancies are identified, they trigger dynamic refinement of the pipeline to
ensure robustness, as described next.

Agent-Level Pipeline Refinement. When a sub-task fails to be resolved by the assigned data agent, we first use
LLMs to reflect potential failure causes based on the sub-task input, including: (¢) sub-task description, (%)
dataset, and (ii7) intermediate results. For example, if a failure stems from an ambiguous sub-task description
that the agent misinterprets, we use LLMS to rephrase it, drawing on insights from the failure logs. Next, if
required datasets or intermediate results are missing, we use LLMS to further examine the available datasets and
sub-tasks to identify supplementary information. Then, if intermediate results are improperly formatted, LLMS
are employed to refine it by further analyzing the solution process of the corresponding sub-task.

Besides, if a failure cannot be attributed to unexpected sub-task inputs, it may result from an incorrect agent
selection. In such cases, we review the ranking of data agents based on their evaluation scores for the given
sub-task, and select the next-best agent with a slightly lower score than the previously chosen one.

Lastly, we re-execute the sub-task using refined input information or a newly assigned data agent.

Global-Level Pipeline Refinement. If a sub-task failure cannot be resolved via agent-level refinement, a holis-
tic re-planning of the entire pipeline is required. First, during pipeline execution, we systematically store the
intermediate results of sub-tasks in a data catalog (see Figure 5), which ensures preservation of previously com-
puted results and avoids redundant computations. Specifically, the output generated by each sub-task is treated
as a new dataset. For this dataset, metadata is created by LLMS based on the sub-task’s input and the process
used to solve it. These newly formed datasets are then incorporated into the data catalog. Then, during task
re-planning, we apply the agent-oriented task planning algorithm in Section 3.4.1, treating all elements in the
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data catalog as available datasets.

4 Data Analytics Agents

We first summarize the overview of data analytics agents [19, 41]. We then introduce four data analytics
agents, including unstructured data analytics agents, semantic structured data analytics agents, data lake ana-
lytics agents, and multi-modal data analytics agents.

Overview of Data Analytics Agent. In the offline phase, the data analytics agent generates a semantic catalog
and builds semantic indexes for a variety of data types. It also defines semantic operators, such as semantic filter,
semantic group-by, semantic sorting, semantic projection, semantic join, and others. Each semantic operator is
represented logically (e.g., as an entity that satisfies certain conditions) to facilitate matching natural language
segments with these semantic operators. Each semantic operator is also associate with multiple physical oper-
ators, e.g., execution by LLMS, pre-programmed functions, LLM coding, etc. When processing an NL query,
the data analytics agent decomposes the query into sub-tasks and orchestrates them into a pipeline. The agent
then optimizes this pipeline by selecting the optimal sequence of semantic operators and executes the pipeline
efficiently by calling the semantic operators.

Unstructured Data Analytics Agent. It supports semantic analytics on unstructured data using natural lan-
guage queries [19]. The challenges include orchestrating a natural language query into a pipeline, self-reflecting
on the pipeline, optimizing the pipeline for low cost and high accuracy, and executing the pipeline efficiently.
We propose a logical plan generation algorithm that constructs logical plans capable of solving complex queries
through correct logical reasoning. Additionally, we introduce physical plan optimization techniques that trans-
form logical plans into efficient physical plans, based on a novel cost model and semantic cardinality estimation.
Finally, we design an adaptive execution algorithm that dynamically adjusts the plan during execution to ensure
robustness and efficiency. In addition, we can extract a semantic catalog for unstructured data and use it to guide
pipeline orchestration.

Semantic Structured Data Analytics Agent. Existing database systems operate under a closed-world model,
which limits their ability to support open-world queries. To overcome these limitations, we integrate databases
with LLMs to enhance the capabilities of database systems. By using LLMs as semantic operators, we can
support open-world data processing functions such as semantic acquisition, extraction, filtering, and projection.
This approach allows us to extend SQL to incorporate these LLM-powered semantic operators, creating what we
call semantic SQL. Additionally, NL queries can be transformed into semantic SQL using specialized NL2SQL
agents. To execute semantic SQL effectively, we propose three techniques. First, we replace some semantic
operators with traditional operators. For instance, instead of using “semantic acquire the capital of China,” we
can use ‘city = Beijing.” Second, we design a multi-step filtering process to accelerate the processing of semantic
operators, including embedding-based filtering and small LLM-based filtering. Third, we estimate the cost of
semantic operators to determine the most efficient order for executing multiple semantic operations.

Data Lake Analytics Agent. Its aim is to perform data analytics on semi-structured and unstructured datasets [41].
However, integrating LLMS into data analytics workflows for data lakes remains an open research problem due
to the following challenges: heterogeneous data modeling and linking, semantic data processing, automatic
pipeline orchestration, and efficient pipeline execution. To address these challenges, we propose a data lake
agent designed to handle data analytics queries over data lakes. We introduce a unified embedding approach to
efficiently link heterogeneous data types within a data lake. Additionally, we present a set of semantic opera-
tors tailored for data analytics over data lakes. Our iterative two-stage algorithm facilitates automatic pipeline
orchestration, incorporating dynamic pipeline adjustment during query execution to adapt to intermediate re-
sults. Overall, the data lake agent represents a significant advancement in enabling high-accuracy, practical data
analytics on data lakes. Unlike previous approaches that rely on lossy data extraction or are constrained by
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SQL’s rigid schema, the data lake agent effectively employs the semantic understanding capabilities of LLMs to
provide a more comprehensive and efficient solution.

Multi-modal Data Analytics Agent. We also design data agents to support multi-modal data, e.g., audio,
video. First, the integration and management of heterogeneous data types, such as text, images, audio, and
video, are critical yet challenging tasks that require robust frameworks for seamless merging into cohesive
datasets. Representing the multi-modal data in a unified format demands advanced embedding techniques to
maintain unique characteristics while enabling analysis. Semantic understanding across different modalities
is essential for extracting meaningful insights, necessitating sophisticated NLP, computer vision, and audio
processing algorithms. Additionally, designing a flexible query system capable of interpreting and executing
complex multi-modal queries is crucial. Aligning and fusing the data from various modalities ensures a coherent
data view, while scalable methods are necessary for handling increasing data volumes efficiently.

5 DBA Agent

Database administrators (DBAs) often face challenges managing multiple databases while providing prompt re-
sponses, as delays of even a few hours can be unacceptable in many online scenarios. Current empirical methods
offer limited support for database diagnosing issues, further complicating this task. To address these challenges,
we propose a DBA agent, which is a database diagnosis system powered by LLMs [42, 43]. This system au-
tonomously acquires knowledge from diagnostic documents and generates well-founded reports to identify root
causes of database anomalies accurately. The DBA agent includes several key components. The first is to extract
knowledge from documentation automatically. The second is to generate prompts based on knowledge matching
and tool retrieval. The third conducts root cause analysis using a tree search algorithm. The fourth optimizes
execution pipelines for high efficiency. Our results demonstrate that the DBA agent significantly outperforms
traditional methods and standard models like GPT-4 [22] in analyzing previously unseen database anomalies.

6 Opportunities and Challenges

Theoretical Guarantee. A Data Agent may not always deliver 100% accurate results due to potential halluci-
nations from LLMS and semantic operators [44]. Therefore, it is crucial to provide a theoretical guarantee for
the reliability of data agent systems.

Self-Reflection and Reward Model. A Data Agent needs to continuously enhance its accuracy and efficiency.
Providing feedback to the Data Agent is essential for its self-improvement, and designing effective self-reflection
techniques and reward models are viable strategies to tackle these challenges.

Data Agent Benchmark. It is crucial to develop benchmarks for Data Agents to evaluate these systems effec-
tively, particularly in areas like data science, data analytics, and database administration.

Security and Privacy. Ensuring security and privacy in data agents involves protecting sensitive information
from unauthorized access while maintaining compliance with privacy regulations.

Scalability and Performance. Scalability and performance challenges for data agents involve efficiently man-
aging large and complex datasets while maintaining high processing speed and accuracy. As data volume and
complexity grow, agents must be designed to scale seamlessly without degradation in performance.

7 Conclusion

In this paper, we propose the concept of a Data Agent for autonomously supporting Data+Al applications. We
design a comprehensive architecture for developing a Data Agent, which includes components for data un-

14



derstanding and exploration, data engine comprehension and scheduling, and pipeline orchestration. We also
present examples such as the data science agent, data analytics agents, and a DBA agent. The introduction of the
Data Agent will present numerous challenges that require attention from the data community to address effec-
tively. Moreover, there are numerous opportunities to develop data agents in various areas, including database
development, database design, data transformation, data flywheel, and data fabric, etc.
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