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Abstract—In-database machine learning (In-DB ML) is appeal-
ing to database users with security and privacy concerns, as it
avoids copying data out of the database to a separate machine
learning system. The common way to implement in-DB ML is the
ML-as-UDF approach, which utilizes the User-Defined Functions
(UDFs) within SQL to implement the ML training and prediction.
However, UDFs may introduce security risks with vulnerable
code, and suffer from performance problems, as constrained by
data access and execution patterns of SQL query operators.

To address these limitations, we propose a new in-database
machine learning system, namely GaussML, which provides an
end-to-end machine-learning ability with native SQL interface.
To support ML training/inference within SQL query, GaussML
directly integrates typical ML operators into the query engine
without UDFs. GaussML also introduces an ML-aware car-
dinality and cost estimator to optimize the SQL+ML query
plan. Moreover, GaussML leverages Single Instruction Multiple
Data (SIMD) and data prefetching techniques to accelerate the
ML operators for training. We have implemented a series of
algorithms inside GaussML in openGauss database. Compared
to the state-of-the-art in-DB ML systems like Apache MADlib,
our GaussML achieves 2-6× speed-up in extensive experiments.

I. INTRODUCTION

Machine learning (ML) is now widely used for data analysis
tasks. Researchers and engineers invest substantial effort into
designing user-friendly machine learning interface [1], [2],
constructing end-to-end machine learning pipeline [3]–[6],
accelerating the model training [7]–[9], managing training
data effectively [10]–[12] and developing end-to-end machine
learning systems [13]–[17]. However, most of them provide
Python interface that requires the extraction of training data
from data storage systems, typically databases.

Nowadays, relational databases like openGauss [18] has
been widely used in many large commercial businesses, in-
cluding government cloud and financial services. For these
businesses, the data stored in databases is one of the most
valuable assets, and thus copying data out of databases for ML
training leads to high risk of data leakage. Even in the same
company/organization, the data infrastructure department and
the application department are separated, and the data visit is
strictly controlled for data security reasons. If the application
team (e.g., the AI team) wants to train models, what they get
is just a small sample of data from the far past. For training on
fresh full dataset, a promising solution is in-database machine
learning, where the database natively supports ML training
and inference. In this way, customers can also leverage SQL
interface for end-to-end ML tasks, which is easier for them

to query data and perform ML training than writing complex
Python programs.

In-database machine learning has been studied for many
years [19], [20]. The most common approach is ML-as-UDF
that utilizes User-Defined Functions (UDFs) within SQL to
implement the computation of model training and prediction.
For instance, the state-of-the-art in-DB ML tool, Apache
MADlib, leverages PostgreSQL’s UDFs to execute Stochastic
Gradient Descent (SGD), while utilizing additional Python
drivers for handling ML iterations. However, UDF-based ap-
proaches suffer from two problems. (1) Security risks: UDFs
can introduce vulnerable code on data read from database to
outsize. (2) Efficiency limitations: UDF-based solutions are
constrained by the data access patterns and execution patterns
of SQL query operators. As a result, they currently only
support standard SGD and lack support for more efficient
methods like mini-batch SGD because that it’s would be inef-
ficient by using naive data scan in SQL. Furthermore, UDF-
based solutions cannot achieve comprehensive optimization in
conjunction with query plan because it cannot touch the plan
generation process.

To address these problems, we propose GaussML, which
is a fully in-database machine learning system, and all the
components are seamlessly integrated with native database
kernel. It has three advantages. First, GaussML designs native
executors to avoid data transfer, which can reduce the risk
of data leakage and accelerate the data analysis, without
introducing vulnerable code like UDFs. Second, GaussML
can make co-optimization on traditional query execution path
and machine learning operators, which can also improve the
performance of end-to-end machine learning. Third, GaussML
contains specific optimizations for ML operators like SIMD
and data prefeching, further improving the performance.

In summary, we make the following contributions.
(1) We propose a new in-database machine learning system
GaussML, which supports efficient end-to-end machine learn-
ing using SQL queries. We seamlessly integrate GaussML into
an open-source database openGauss 1.
(2) We design an ML-aware cardinality and cost estimator in
GaussML, which extends the ability of database optimizer
to support complex SQL queries with machine learning (see
Section III).

1https://gitee.com/opengauss-db4ai/openGauss-server
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(3) We summarize the common computation patterns of
widely-used ML algorithms, and then we develop native
operators to accelerate model training, which can be organized
as a node in the native query plan tree in database. Operations
are accelerated by SIMD and data prefetching techniques, and
they support distributed computing (see Section IV).
(4) We conduct extensive experiments to compare with state-
of-the-art machine learning systems including MADlib and
ML-A (an ML engine implemented with popular Python
library), and the results show that our system outperforms
existing methods by 2-6 times (see Section V).

II. SYSTEM OVERVIEW

We first define the end-to-end machine learning (ML) pro-
cess in Section II-A, and then introduce the architecture of
GaussML from a perspective of database to show how ML
is seamlessly integrated in relational database in Section II-B.
Finally we introduce the native MLSQL grammar for using
GaussML in Section II-C.

A. End-to-end Machine Learning

Given a relational database D with tables
{t1, t2, t3, · · · , tn} and a complicated data analytic problem
with both database operators and ML algorithms P . The steps
of an end-to-end ML pipeline for solving the problem is as
follows. (i) Feature engineering: creating a training view V
from D including transformed features related to the problem
P ; (ii) Model training: training a model from view V for
the target on problem P ; (iii) Model inference: searching
the proper model and predicting the labels (categories or
numeric) by using it for given tuples; (iv) Data analysis:
fetching and analysing tuples satisfying some constraints
on model prediction results. We next show three typical
scenarios for better understanding the benefits of conducting
end-to-end machine learning within database.
Scenario 1: Data analytic makes a lot of efforts on prepro-
cessing the dataset for easier training and better representation
(i.e. feature engineering). In this process, data manipulation
operations (e.g. join, projection, aggregation) and data pre-
processing operations (e.g. normalization) are often used. The
former operations can be optimized by optimizer in database,
and the later operations can utilize the native data statistics in
database. On the contrary, these operations would spend a large
amount of time (even more than model training itself) in other
ML systems. Moreover, as the whole process is conducted
inside the database, data access is controlled by permission
subsystem in database, GaussML is more secure and trusted
when training on sensitive data in core business.

Similarly, in the inference phase, users can directly obtain
the predicted targets from database without touching the model
or the original data. This avoids the data transition overhead
and guarantees the security of original data.
Scenario 2: It’s very common for real users to do the data
clustering and the features are splitted on different relations,
and they must get the result containing all features before
training. For example, users are training K-means on data, they

can write a SQL of creating model from subquery which joins
all tables. In GaussML, if the distance is L1 and L2, we can
also factorize the distance calculates on different tables, and
push down to the scan node. For 1:n or n:n joins, GaussML
will significantly reduce the training overhead with ML-DB
co-optimization methods.
Scenario 3: In this scenario, the model predicts result are
taken as the constraints for selecting desired tuples above the
scan node. For example, if we want to select patients with
anxiety, we should filter scanned tuples by using a well-trained
anxiety models. Moreover, if we merge data from different
data sources with constraints, the database will push down
the predicates for better performance. As figure 1 shows,
we train three models on individual tables t1, t2 and t3,
and then we predict the labels on new tables t′1, t′2 and t′3.
In traditional relational database, tables are often joined on
primary-foreign keys and take the larger side as outer table.
However, GaussML should also consider the predicting cost
because the cost differences of models cannot be neglected.
During the process, GaussML can offer the optimal execution
path by using advanced model-aware cost estimator and plan
selector. Moreover, GaussML computes ML-based constraints
on the fly to avoid schema change and storage overhead, and
reduce the risk of information leakage.

B. GaussML Architecture

As Figure 2 shows, GaussML is composed of five major
components, and they offer full-fledged machine learning
ability inside relational database (openGauss in this paper).
MLSQL Parser. In this layer, GaussML extends SQL to
support MLSQL by seamlessly integrating machine learning
operations into SQL. It supports model training by using create
model ... with ..., and model inference by using expression
predict by .... The detailed usage will be introduced in Sec-
tion II-C. Note that GaussML supports PBE (i.e. parser-bind-
execute) protocol which is a lazy parameter binding approach
to execute queries, SQLs with the same template are parsed
only once.
MLSQL Optimizer. In this layer, GaussML supports opti-
mization on MLSQL to handle both scenario 1 and scenario
2. GaussML optimizer can not only use model-aware cost
estimator to find the optimal data visit path and model
prediction orders, it also conducts interleaving optimizations
between data visit operators and model training operators. We
also design a brand-new in-database cardinality estimation
component customized for machine learning operations in
GaussML. The details of the optimizer will be introduced
in Section III.
MLSQL Executor. In this layer, we define a set of ML op-
erators to support high performance ML execution. GaussML
supports over 20 popular machine learning algorithms, and
the training executors of these algorithms are composed of
4 basic operators, including matrix computation operator,
statistic operator, gradient descent operator, and distance com-
putation operators. To increase the parallelism and reduce the
latency of model training, we also develop parallel training
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Scenario 1: SGD training Scenario 3: Model prediction
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Fig. 1: Exemplary scenarios for end-to-end machine learning in database (pink boxes represent ML operators).
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Fig. 2: GaussML System Overview

operators for each ML algorithm, including parallel training
on single instance and distributed training on multiple nodes.
We also utilize auxiliary operators to optimize model training
process. For example, shuffle operator is used for accelerating
convergence of stochastic gradient descent, materialized op-
erator is used for reducing IO overhead of iterative training.
GaussML also designs a set of data preprocessing operators,
and these operators optimize data normalization and missing
data imputation processes by leveraging native statistics in
database. The detailed design and implementation of these
operators are introduced in Section IV.
Training Data Management. We develop two new compo-

Operation MLSQL

Training

CREATE MODEL model name
USING model type,
[AUTOML ON — OFF]
[FEATURES attribute list,
TARGET attribute name[,attribute name]*],
FROM ([schema.]table — subquery — view)
WITH (hp name [= hp value]) [, ...]*]

Inference

SELECT attribute[,attribute]*
PREDICT BY model name
[(FEATURES attribute[,attribute]*]
FROM ([schema.]table name — subquery)

Explain EXPLAIN MODEL model

TABLE I: Grammar of MLSQL.

nents in this layer to support ML executions. Firstly, we
add the data redistribution operators in GaussML, which
shuffle data across execution nodes to balance data labels and
accelerate model convergence. Secondly, we design a new data
structure RVD (Resilient Versioned Data) as training data of
each model by using materialized view or lazy computation,
so that users can trace the training data used by current model.
We introduce this part in [21].

C. GaussML SQL

In this section, we formally introduce the extended MLSQL
of GaussML in Table I. For training operation, model name
sets the name of model in database after training, and
model type sets the algorithm of model (e.g. linear model,
SVM), and the subquery with attribute list can select features
and labels from data. The training data can be a materialized
view, a subquery or a base table. Users can also offer a set
of hyperparameters with knob AUTOML on, and GaussML
will automatically select the optimal hyperparameters by us-
ing hyperparameter optimization (HPO) techniques (see Sec-
tion IV-A). For predicting operation, the model name in
the expression designates trained model, and the projection
transforms the predicted data.

III. QUERY PLANNING

Query planner is a vital component for end-to-end ML
because it can effectively schedule both the ML and traditional
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Fig. 3: Candidate plans for SGD model create.

SELECT PREDICT BY M1 FEATURES A, B, C as p1,

            PREDICT BY M2 FEATURES B, C, D as p2

FROM  T

WHERE A=1 AND B=2 AND p1='anxiety' AND p2='cancer';

SEQSCAN (A=1 and B=2)

PREDICT BY M1

(p1='anxiety')

PREDICT BY M2

(p2='cancer')

SEQSCAN (A=1 and B=2)

PREDICT BY M1

(p1='anxiety')

PREDICT BY M2

(p2='cancer')

Fig. 4: Order of model predict for scan node.
operators. However, traditional optimizer in database cannot
handle end-to-end ML scenarios for four reasons [22].

(i) In model creating phase, the query planner should be
able to mount ML operators on the plan tree, and make the
performance of model training optimal.

(ii) Traditional query planner does not reorder the execution
order of traditional predicates on one relation based on cost
because the performance gain is little.

(iii) Traditional cardinality estimator cannot estimate the
conjunctive predicates with both ordinary conditions and
model prediction because database cannot catch correlations
between model labels and data in other columns.

(iv) Database doesn’t have cost model for model prediction
expressions. For example, traditional optimizer cannot tell the
prediction cost difference between XGBoost and decision tree.

In this section, we introduce the query planner designed for
end-to-end ML in GaussML. We first introduce the rules of
query planning for model creating of different types of models
in Section III-A, and then we show the workflow of query
planning of hybrid DML query containing ML predictions in
Section III-B, and next we propose the design of cardinality
estimators in Section III-C, and finally we propose cost models
for machine learning expressions in Section III-D.

A. ML-DB hybrid DDL(creat) query planning

In Table II, we summarize four types of ML models we
support in GaussML.

Firstly, stochastic gradient descent is a general model train-
ing method, and it can support large amount of data and
any derivable model and loss function. In GaussML, if the

SELECT PREDICT BY M1 FEATURES T1.A, T1.B, T1.C as p1,

            PREDICT BY M2 FEATURES T2.A, T2.B, T2.C as p2

FROM  T1, T2

WHERE T1.key=T2.key AND p1='anxiety' AND p2='cancer';

INDEXSCAN T1

(T1.key=T2.key)

PREDICT BY M2

(p2='cancer')

PREDICT BY M1

(p1='anxiety')

SEQSCAN T2

NESTLOOP

INDEXSCAN T2

(T1.key=T2.key)

PREDICT BY M1

(p1='anxiety')

PREDICT BY M2

(p2='cancer')

SEQSCAN T1

NESTLOOP

Fig. 5: Inner/Outer table for NestLoop node.

data size is smaller than maximal process memory, then we
materialize all the data in memory and then do the shuffle and
iterative training. Otherwise, we shuffle the data blocks on
disk first, and then read and materialize each block, and train
in batches. These two possible plans are shown in Figure 3.

Secondly, statistic-based models generally need only a small
sample of data, and go through it for several times to optimize
the accuracy of prediction. The sample data can be placed in
the memory, and materialize is not necessary for this training.

Thirdly, distance-based model need to compute the distance
on input data iteratively when training, and thus the plan
of creating such models is composed of materialize and
distance operators. If the input data comes from subquery with
joins, the distance computation (L1, L2) can be divided into
two operators, partial distance operator and distance merge
operator to reduce join overhead. As Figure 1 shows, partial
distance operator can be pushed down to scan node, and for
each features in the tuple of each relation, we compute the sum
(for L1) or square sum (for L2) of element-wise distances
between the data and given parameters (e.g., centroids for
KMeans). The distance merge operator sums the distance of
join results.

Fourthly, in order to pursue the best performance and
deterministic model, for a small part of data, GaussML uses
analytic methods (e.g., convex optimization) to solve the loss
minimal problem. For this line of methods, training contains
data materialize and matrix computing.

B. ML-DB hybrid DML query planning

We integrate query optimizer of GaussML into traditional
optimizer in database. For each ML models, GaussML first
estimates the input cardinality and computes the cost of
predicting the model, and then GaussML selects an execution
plan with lower execution cost. Figures 4 and 5 show two
important scenarios of ML plan optimization.

In Figure 4, GaussML is able to reorder model prediction
expressions above scan node according to the total cost. The
original sequence scan node fetches tuples from table, and
tuples are first filtered by constraint A = 1∧B = 2 because it’s
much cheaper than model prediction, then the left tuples are
sent to next filters. The next two nodes filter results predicted
by model M1 and M2 (i.e. finding patients with both anxiety
and cancer in this example). The optimizer computes the total
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A B C D E F

P(ABC)=P(A)P(B|A)P(C|B)

A B C D E F Predict(M)

2 1 1 2 2 2 X

1 1 1 1 1 1 X

2 2 2 1 2 3 Y

SELECT PREDICT BY M FEATURES (A, B, C, D, E, F) as

target WHERE B < 3 and C < 3 and D > 0 and target='X';

P(A=2)

P(B=1|A=2)

P(C=1|B=1)

P(D=2)

P(E=2|D=2)

P(F=2|E=2,D=2)

Sample A from P(A).

Sample B from P(B|A, B<3)

Sample C from P(C|B, C<3)

Sample D from P(D|D>0)

Sample E from P(E|D)

Sample F from P(F|E,D)

P(DEF)=P(D)P(E|D)P(F|DE)

P(ABCDEF)=P(ABC)P(DEF)

Fig. 6: Steps of selectivity estimation for ML predicates.

cost of these two plans and selects the cheaper one. Assume
that the selectivity of predicates p1 and p2 are s1 and s2
and they are independent. N is the total number of rows in
table and n rows are fetched from SEQSCAN. The cost of
processing each tuple is denoted as C. Therefore the cost of the
first plan is C(SEQSCAN)∗N+C(M1)∗n+C(M2)∗n∗s1,
and the cost of the second plan is C(SEQSCAN) ∗ N +
C(M2) ∗ n+ C(M1) ∗ n ∗ s2.

Figure 5 shows a simple two-table join on keys, and each
table has a predicate with a model prediction individually. In
this case, query optimization problem is to decide which table
is the inner(outer) table. GaussML sequentially scans the outer
table and predicts each row by model, and if the result matches
the condition, GaussML searches tuples with the same key by
using index of inner table. We reuse notations s1, s2 and C,
and denote selectivity of join condition on T1 and T2 as s3
and s4, and the total number of rows of tables T1 and T2 are
N1 and N2. Therefore if all conditions are independent and
C(m1) ∗ N1 + C(m2) ∗ N1 ∗ s1 ∗ N2 ∗ s4 is smaller than
C(m2)∗N2+C(m1)∗N2 ∗s2 ∗N1 ∗s3, then the second plan
should be selected. Besides, GaussML also conducts query
optimizations for model training. For example, GaussML adds
a materialized node before training node for model that need
iterative data access to reduce IO overhead, and GaussML
adds a redistribute node when the data distribution in each
partition differs a lot (see Section IV-A).

C. Selectivity estimation for ML predicates.

The hardest part is how to estimate the selectivity of each
ML predicate before actually executing it, because the features
attributes are usually high dimensional and correlated, and the
model prediction results are not materialized in the table.

Problem Definition. Selectivity is the number of tuples
selected by predicates divided by number of table tuples,
selectivity estimation is vital to the optimizer in traditional
database. When machine learning predict operator is involved
in GaussML, the conjunctive predicates would be more com-
plex (refer to figure 6 as an example). We can formally define
the problem as follows.

ŝel = argmin
s

errf(s− σ∧1≤i≤n(opi(fi(a1,a2,··· ,an),vi))(T ))

(1)
where errf is an arbitrary error metrics to measure the error
between estimated cardinality and true cardinality. op can be
any value comparing operators (>, <, =, etc.), and fi can be
either a native function or ML model prediction operator. T
is a table.
Methodology. There are two challenges for estimating such
conjunctive predicates in figure 6, one is the statistics of
labels produced model cannot be read directly, the other is
random sampling is hard to get conditional distribution of data
falling into the predicates (model predict result is correlated to
other conditions). In order to estimate the selectivity precisely,
GaussML progressively samples values from ordinary predi-
cates. Several generative data distribution models are proposed
to sample data in existing works [23], [24], but they have
some drawbacks for ML scenarios. We propose a cardinality
estimation framework to integrate the model into GaussML,
and overcome these existing drawbacks.

As Figure 6 shows, step 1 builds model on original table,
steps 2 & 3 are online estimation for ML queries. In step 1,
we first analyze correlations between columns on data samples.
We compute correlation degree as

corr(T.A, T.B) =
∑
r∈T

P (r.A, r.B)log
P (r.A, r.B)

P (r.A)P (r.B)
(2)

Then we group correlated columns together and select joint
distribution model within each group according to the depen-
dency topological. For example, we train a Bayesian Network
for columns A, B and C such that they satisfy conditional
independence assumption, and train Autoregressive model for
columns D, E and F because they are correlated each other.
We adopt attribute independence assumption to estimate the
selectivity between different groups.

In step 2, we sample n rows of data from predicates on
feature columns progressively and compute probability of each
row (denoted as P (rowi)) as Figure 6 shows. In step 3, for
each sample row, we obtain the result by model predicting
and estimate the target distribution in samples. We denote
ML predicate as M(rowi), and the selectivity of conjunctive
predicates can be calculated as below.

ŝel =

∑n
i=1 I(M(rowi) = true)P (rowi)∑n

i=1 P (rowi)
(3)

In this way, we can easily compute cardinality by multi-
plying selectivity and total number of rows in a table. For
distributions in cardinality estimation, GaussML utilizes the
in-database ML operators for training and evaluating.
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Category Training Pipeline ML Models Inference Cost

Gradient-based Training
Training models with mini-batch SGD.

(classification/regression/
dimension reduction)

Shuffle →
[Materalize → Matrix → SGD]*

Linear model α ·D · card
Logistic model α ·D · card
Polynomial model α ·D · card
Support vector machine (SVM) α ·D · card
SVM with square kernel α · (D2 +D + 1) · card
SVM with Gaussian kernel α · (D + 1) ·D′ · card
Multi-layer perceptron (MLP) α · |w| · card
Principal Components Analysis (PCA) α ·D ·D′ · card

Statistic-based Training
Training model with data counting.

(Tree-based/Bayes)
Sample → [Statistic]*

Decision Tree α · depth · card
Random Forest α · depth · n · card
XGBoost α · depth · n · card
Naive Bayes α · log(Nd) ·D · card
Bayes Network α · log(Nd) ·D · card

Distance-based Training
Training models with distance functions.

(clustering)
Materialize → [Distance]*

KMeans α ·D ·K · card
K-nearest neighbors (KNN) α ·N2 · card
KNN (HNSW) α · log(N) · card

Analytic-based Training
Training models with analytical solutions.

(regression)
Materialize → Matrix Mixture Model α · |w| · card

TABLE II: Details of ML Models Supported by GaussML.

D. Cost estimation for ML inferences.

In order to select a better ML model prediction order,
we need a cost model to estimate the prediction time. Cost
formulas are mathematical expressions of the computation
time complexity of model predictions, and they are related
to 3 metrics: dimension of features for ML model (denoted
as D), the estimated cardinality of precedent execution nodes
(denoted as card) and model structures. Table II shows
cost models for typical models we support in GaussML.
The cost of linear, logistic, polynomial and SVM model is
proportional to dimension of features and input cardinality.
SVM with square kernel will map D-dimension features into
(D2 +D + 1)-dimension. SVM with Gauss kernel will map
D-dimension features into infinite dimensions, and we use
D′ = max(128, 2 ∗ D) centroids to compute Gaussian dis-
tances to approximate the mapping. The cost of decision tree is
proportional to the depth of the tree, and the cost of ensemble
models like Xgboost and random forest is proportional to the
depth multiplying number of estimators. In Bayes models,
we need to find the distribution from a sorted list, and the
cost is proportional to log(Nd) where Nd is the distinct value
number. The naive KNN relies on data sorting and the cost
is proportional to N2, and the KNN with a pre-constructed
index (HNSW) only need O(log(N)) time complexity for each
query, where N is the data rows number. In each cost model, α
is a coefficient which can be tuned manually or automatically.

IV. QUERY EXECUTION

The implementation of query execution with ML models
in GaussML relies on both native and extended operators.
The extended operators include model training and predict-
ing, and data preprocessing. In these procedures, GaussML
incorporates ML algorithms with traditional execution opera-
tors. In this part, we first introduce model training workflow
and operators in Section IV-A and then we describe the
model persistence and model predicting in Section IV-B and
Section IV-C. Next we introduce the design details of data
shuffle operators in Section IV-D. Finally we introduce data
preprocessing in Section IV-E.

A. Model Training

Training Workflow. The training workflow in GaussML is
shown in Figure 7. For iterative training models, hyperpa-
rameter optimization engines first read a list of hyperparam-
eters parsed from user-defined SQL, and then train models
with different hyperparameters in parallel. In each iteration,
executor first samples data from precedent execution nodes,
and then updates model parameters according to gradients
and learning rates. HPO engine stops and drops models with
large validation errors in each iteration until only one model
left. At last, executor trains the model on full data again until
convergence, and then stores the model in the system.
Basic Training Operators. We summarize the training
pattern of all the machine learning model, and implement a
series of common operators in database for model training, we
will present these basic operators in the following.

(1) Materialize operator is responsible for loading data from
disk into memory, which will be controlled by upper operators
in the training plan. For example, SGD tells the materialize
operator what will be used in the next round, and materialize
can trigger asynchronous data prefetch task to accelerate large
scale data training.

(2) Sample operator supports two types of sampling, based
on number of rows or sample ratio. GaussML offers two way
to sample data, one is sample pages from file, which is faster;
the other is reservoir sampling, which is more evenly, but may
access more pages.

(3) Distance operator has two types, distance compute oper-
ator and distance merge operator. Distance compute operator
get two lists of tuples from scan node and data from upper
operator, and then it computes the distance by using SIMD.
For distance computing (like L1 and L2) over features across
different tables, the computing can be pushed down to each
table scan, and merge later. In this way, only the distance and
the join key will participate the join, and we can reduce the
tuple width of join, and reduce the join overhead (data transfer,
memory usage, etc.) significantly.

(4) SGD operator in GaussML updates the model parame-
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Fig. 7: Training workflow.

ters according to gradients and errors of functions on batches
of data. It also controls the Materialize operator when to fetch
the next batch.

(5) Shuffle operator has two stages, it first shuffle the blocks
and get a random page for each call, and then it shuffles the
tuples in the block before return the result to upper node in
the execution plan.

(6) Matrix operator computes all kinds of matrix calcula-
tions, for example, element-wise matrix add, matrix multipli-
cation, matrix inversion, etc. In GaussML, we also use SIMD
to accelerate the matrix calculation, for example, we compute
4 float simultaneously.
Parallel/Distributed Training. In order to accelerate model
training on large dataset, we implement parallel and distributed
training operators in GaussML. GaussML designs a syn-
chronous collective model training framework, where each
thread trains each iteration independently on part of training
data, and they broadcast parameters/gradients by global shared
memory after each iteration. An iteration ends when every
thread has received information from all other threads. Before
next iteration begins, each thread updates model according
to synchronized parameters/gradients. One typical parallel
training execution plan example is as follows.

-> Merge Model (16-way)
-> Streaming (type: Local dop: 1/16)
-> Train Model
-> Materialize
-> Seq Scan on T1

Different from parallel execution on single node, distributed
training uses streaming operators on all data nodes to exchange
parameters/gradients between executors, and each executor
trains model on its local data. One typical distributed training
execution plan example is as follows.

-> Streaming (type: GATHER)
Node/s: All datanodes
-> Streaming (type: BROADCAST)
Spawn on: All datanodes
-> Recursive Train Model
-> Materialize
-> Seq Scan on T1

We implement RTMController in Recursive Training operator
to synchronize the behavior of each data node. Specifically,
each data node should receive updated models from all other
nodes before starting a new training iterations.
GaussML supports parallel/distributed training based on the

architecture of GaussDB. We will introduce implementation
details next.

(1) For linear model, logistic model, polynomial model and
MLP, GaussML implements parallel SGD for training. Each
thread firstly fetches one part of data in mini-batches and
shuffles them, and then computes local gradients of model. In
the distribute phase, each thread sends local model gradients
δwi to other threads in each iteration. In the merge phase, each
thread updates the model parameters by gradients produced
by all threads. The training process terminates until model
convergence or iterations budget is used up.

(2) For KMeans, each thread samples K centroids first,
and we guarantee the consistency of the initial centroids in
different threads with the same random seed. In next iterations,
each thread firstly obtains centroids from other threads and
computes the mean as new centroids, and then each thread
re-clusters local data and calculates centroids according to the
new clusters, and finally each thread exchanges centroids with
others and start the next iteration.

(3) For Naive Bayes and Bayes Network, only a few data
passes are needed (typically 3 iterations, for data discretizing,
data statistic, and conditional probability calculation). Specifi-
cally, each thread generates data distribution table for its local
data in parallel, and aggregates the frequencies and computes
the probabilities for each Bayes node in merge phase.

(4) For KNN, each thread receives the current distance upper
bound disup, and then finds the nearest tuple whose distance
to the query is smaller than disup from its own data part.
Next it shares the top-k smallest distances in each iteration.
The merge node maintains K nearest tuples and updates the
largest distance in K tuples.
Hyperparameter Optimization. In order to reduce the man-
ual efforts of tuning models, we build an HPO engine in
GaussML, which is used to find an optimal set of model
hyperparameters (including learning rate, training batch size,
kernel type, etc.) to achieve the lowest validation errors.
HPO problem is challenging because it’s often a non-convex
problem, and thus convex optimization methods cannot be
utilized. Moreover, it’s hard to model the mapping between
hyperparameters and validation errors, and thus the gradient-
based optimization methods cannot be used. In general, three
kinds of methods are used for HPO, including grid search,
random search and hyperband. Grid search will try all possible
combinations of hyperparameters on training data, and select
the best set of hyperparameters. Grid search can guarantee to
find the optimal model, but it’s too costly and it’s impossible
to be deployed on cost-sensitive relational database. Random
search first draws a small set of hyperparameters randomly
and then train models on training data. Random search is
faster but it’s more likely to miss the optimal hyperparameters.
In GaussML, we implement a hyperband-based HPO engine
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in ML executor. When creating a model with AUTO-ML
on, GaussML first searches candidate hyperparameters from
system catalog, and then the engine trains models on sample
data in parallel. The executors report model accuracy to
the coordinate node after each iteration by using streaming
operator. GaussML throws away hyperparameters with errors
higher than the average constantly until only one model left.
One model training plan example with HPO is shown as
follows.

B. Model Persistence

We save the trained model in system table
gs model warehouse in structural data including model
name, training time, hyper-parameters, validation metrics
and model parameters. For security and space efficiency, we
store the model parameters as a binary sequence where all
parameters are arranged one by one in a predefined structure.
We build indexes for object id and name of each model to
accelerate the model search, and we make an instance-level
memory context to cache the deserialized model for avoiding
repeated costly model loading process.

C. Model Prediction

The workflow of model prediction has three steps. Firstly,
the ML executor searches the query model in the shared
memory. If found, then the executor inputs results from
precedent execution nodes into model to predict. If the model
is not found in memory, executor searches the system table
gs model warehouse by name, and then deserializes the
model parameters and predicts the target labels. Finally, we
cache the model loaded from disk into memory. If the desig-
nated model has descendant versions, our will organize them
with version ids and users can use previous models easily.

-> Train Model - logistic_regression
CTE t
-> Select Model
-> Streaming (dop: 1/16)
-> Train Model - logistic_regression
-> Materialize
-> SampleResult
-> Seq Scan on T1

-> Seq Scan on T1

D. Data Shuffle

Data shuffle not only is vital to convergence speed of
machine learning optimizer like stochastic gradient descent
(SGD), but also balance the data distribution between different
data partitions.
Local Shuffle Operator. Local shuffle aims to change the IO
order for each training iteration. GaussML supports two types
of local shuffle operators, tuple shuffle and block shuffle. For
block shuffle, we integrate it with scan node. We shuffle block
ids within each page read by heap scan function and store
it into structure shuffled block ids, and then the upper node
reads blocks according to shuffled block ids. For tuple shuf-
fle, we add a shuffle node before model training. The shuffle

node fetches tuples into buffer from precedent nodes, and shuf-
fles tuple ids in buffer into an index shuffled tuple indexes.
If the buffer is not empty, training node fetches the next tuple
according to shuffled tuple indexes; otherwise, fetches tuples
until the buffer is full, and then shuffles index and fetches
tuples.
Cross-node Shuffle Operator. The distributed training in
GaussML performs well if the training label distributed evenly
across all data nodes. However, this condition is not always
satisfied due to the distribution key bias. For example, if
training labels are correlated to the time, and the data is
distributed by time, then the labels are likely to be bias. In
GaussML, we provide two strategies to redistribute the data,
they are full redistribution and fine tuning.

The query optimizer in GaussML will check the bias
of training labels according to the partition-level statistics
in system table gs statistic. Specifically, query optimizer
checks the MCV of discrete training labels, or it checks
the histogram of continuous columns on all data partitions,
and if the distribution differs a lot between partitions, query
optimizer inserts a redistribution operator in the plan to shuffle
training data across different data nodes.

However, full shuffle across all data nodes is not always
possible in considering of efficiency. We offer another fine tune
strategy for training label redistribution in GaussML. Instead
of adding a new operator, the fine tune strategy redistributes a
small set of tuples by using streaming (broadcast) operator
when training. Specifically, in each iteration, a data node
receives models from other nodes. The node then tests these
models on a sample of local data, and collect those under-
fitting training labels. In next broadcast phase, each data node
sends both the updated model and some training tuples. In this
way, each node can utilize the samples from other nodes to
calibrate the distribution of data itself.
E. Data Preprocessing

In most cases, data preprocess for model training and
prediction can be done by simple Select-Projection-Join (SPJ)
queries. However, some data preprocessing operators need
to know the data distribution in an aggregation subquery.
For example, min-max scaling depends on the maximum
and minimum statistics on each column. In this case, we
integrate two new operators for normalization and missing
value imputation into GaussML. These operators can reuse
the system statistics table in relational database, and avoid
additional costly aggregation subqueries when training models.
Normalization. GaussML offers min-max scaling and z-score
normalization for ML queries. For linear scaling, each value
x in an attribute is transformed as x−xmin

xmax−xmin
. In GaussML,

xmax and xmin are collected in real-time, and all statistics
are maintained in system table gs statistic. For z-score
normalization, each value x is transformed as x−µ

σ where µ
is the mean of the population and σ is the standard deviation
of the population. GaussML saves µ and σ (by Welford’s
algorithm [25]) in system table gs statistic.
Missing Value Imputation. To support missing value im-
putation, we utilize the distribution of the column or the
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whole dataset for missing value inference. It’s costly to model
the distribution of dataset before training the data, and thus
GaussML makes full use of the system statistics including the
most common values (MCV) on single column, histogram on
single column, MCV on multi-columns, and machine learning
model on multi-columns. Next we introduce how GaussML
uses these statistics to infer the missing value. If machine
learning models on multi-columns exist, we predict the condi-
tional probability of each possible value given values in other
columns. For example, we have a bayesian model for table
T with three attributes a1, a2, a3, and attribute a3 is missing
for a tuple. We predict a3 by using probability P (a3|a1, a2)
given by model. Similarly, if MCV on multi-column exists,
GaussML matches other attributes (a1 and a2 in the example)
with the most common values, and a3 in matched tuples are
highly possible to be the missing value. When the multi-
column statistics does not exist (due to resource limitation),
GaussML uses single-column statistics, including MCV and
histogram. Specifically, GaussML samples missing values
from MCV according to the frequency or from buckets in
histogram according to the height of buckets.

V. EXPERIMENTS

A. Experimental Settings

In this section, we first introduce the datasets, methods and
hardware we use for evaluating GaussML in section V-A.
Then we analyze the overall evaluation results for standalone
deploy mode in section V-B. Next we show comparison results
of different features of GaussML in section V-C-V-D. At last,
we summarize all experiments.
Datasets. We adopt six datasets to evaluate the efficiency
and performance of different machine learning platforms (as
table III shows).RLCP contains data pairs of student informa-
tion in the course of several years and each pair is marked
as ’match’ or ’nonmatch’. ADULT contains staff members and
their incomes, the classification task is to find whether income
of each people exceeds 50K per year. ClickStream con-
tains information on clickstream from online store.UrbanGB
contains coordinates of locations in urban and each location
belongs to a partition. Each record in Swarm represents a
boid, including positions, velocity, alignment, etc. Workload
contains query ranges and 3 kinds of aggregation results,
and we use the coordinator and count to predict the aver-
age result. YearPredict represents description of songs
and their published years. CCPP contains 4 features of the
Combined Cycle Power Plant, we use them to predict the
energy output of the plant. These datasets cover classification,
clustering, dimension reduction and regression tasks, and they
are challenging and general for all machine learning platforms.
Slice is retrieved from CT images, it is adopted by HPO
benchmark proposed by Klein [26].
Methods. (1) GaussML is a system build in native openGauss
database, it offers MLSQL interface for end-to-end machine
learning applications. There are three deployment approaches
including single-thread, multiple-thread and multiple-node.

dataset tasks #columns #rows
RLCP [27] classification 12 5,749,132
ADULT [28] classification 14 48,842

ClickStream [29] classification 14 165,484
UrbanGB [30] clustering 2 360,177
Swarm [31] dimension reduction 2,400 28,555

Workload [32] regression 8 260,000
YearPredict [33] regression 90 515,345

CCPP [34] regression 4 9,568
Slice [35] HPO 385 42,800

TABLE III: Datasets

It also supports automatic hyperparameters optimization in
database.
(2) MADlib is a set of ML UDFs customized for relational
database, and it’s widely adopted by Postgres, GreenPlum,
etc. We also integrate these functions into openGauss for fair
evaluation.
(3) ML-A is implemented by using Python script with widely-
used machine learning libraries including sklearn [14], pan-
das [36] and openGauss connector. They offer Python pro-
gramming interface for ML users and users need to load
batches of dataset from database by using database connector
in each training iteration.

In order to guarantee the fairness of evaluations, we set the
same batch size and iteration number for GaussML, MADlib,
and ML-A.
Hardware Environment. We conduct experiments on 4
machines each with 72 Intel 3.00GHz CPU cores, 64GB
memory (which is enough for datasets we use) and 2TB disk.

B. Overall Comparison

Expr1: In table IV, we compare GaussML with MADlib
and ML-A on classification tasks, and the results show that
GaussML significantly outperform MADlib and ML-A.

For training on datasets RLCP, GaussML outperforms
MADlib by 5-400% for SVM, and the advantage of GaussML
is more obvious with more iterations. The reason is that
GaussML is native for both data reading and model training,
while MADlib parses the SQL in database and then invokes
Python functions to load data and train model. Moreover,
GaussML uses materialize operator to adaptively cache min-
batches when loading data iteratively. ML-A is the worst
for training performance because it need to transfer data on
network by connecting to database server. Similar result can
be observed for Logistic model and XGBoost. On dataset
ADULT, GaussML outperforms MADlib by 4-9 times for
10 iterations training, and 1-2 orders of magnitude for 100
iterations training. This is because that the materialize operator
in GaussML can cache nearly all data for small dataset.
The ML-A outperforms MADlib, but still much slower than
GaussML.

Experiment results also show that GaussML and MADlib
spend similar time for model prediction because they all need
to load data once in database. However, ML on ML-A is slower
than GaussML, because the data loading by Python driver is
more time consuming.

For accuracy, GaussML, MADlib and ML-A show similar
final results because they use the same algorithms. However,

9



Method SVM Logistic Model XGBoost
dataset #iterations Platform training predict accuracy training predict accuracy training predict accuracy

RLCP

10
GaussML 21,131 1,561 .991 13,724 1,580 .990 36,182 2,829 .983
MADlib 50,138 1,537 .986 55,297 1,534 .981 / / /
ML-A 66,751 1,873 .985 69,557 1,631 .988 311,918 3,125 .977

100
GaussML 95,565 1,568 .996 110,685 1,580 .999 131,377 2,822 .999
MADlib 485,899 1,664 .999 565,649 1,567 .999 / / /
ML-A 579,112 1,832 .999 701,971 1,898 .999 1,487,396 2,976 .999

Adult

10
GaussML 44.9 21.7 .743 113 16.6 .751 513 136 .803
MADlib 388 25 .721 430 22.8 .738 / / /
ML-A 217 26.2 .717 253 24.1 .737 1,443 154 .794

100
GaussML 78.6 18.9 .780 589 22.9 .789 4,171 361 .828
MADlib 3,614 25.3 .781 4,338 23.2 .787 / / /
ML-A 540 29.5 .775 1,142 23.5 .790 9,231 379 .825

TABLE IV: Comparison training time (ms)/prediction time(ms)/validation accuracy on classification tasks.
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Fig. 8: Training time comparison on regression tasks.
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Fig. 9: Mean Square Error comparison on regression tasks.
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Fig. 10: Comparison on clustering tasks (d is dimension, k is
#centroids, the dataset is UrbanGB, the method is kmeans).

GaussML convergence faster than MADlib and ML-A, be-
cause GaussML uses advanced online shuffle technique which
can change the blocks order read in different iterations.
Expr2: We test regression tasks on different ML platforms
on three datasets. We observe from figure 8 that GaussML
outperforms MADlib and ML-A on all three datasets for
training time. The reason is that the native scan operator
in GaussML is the most efficient, and GaussML avoids
inefficient code implemented by Python. The results show
that ML methods implemented on MADlib and ML-A have
similar training time because MADlib only puts algorithms in
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Fig. 11: Comparison PCA on Swarm dataset.
database by using UDF instead of using native operators.
Expr3: We compare the mean square test errors of GaussML,
MADlib and ML-A platforms in Figure 9. We can observe that
GaussML has lower test errors on three datasets, the reason
are as follows. (1) Global/local shuffle in GaussML reduces
the variance when model training, and makes the model less
overfitting. (2) The efficiency of HPO in GaussML is faster
than that in MADlib because of the early stop mechanism,
and thus GaussML could explore more hyper-parameters than
MADlib.
Expr4: Figure 10 shows training time of K-means with
varying number of centroids and dimensions. We can observe
that GaussML outperforms MADlib by 1 order of magnitude
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for different hyperparameters and data volumes. With the total
number of points increasing, training time increases faster
on MADlib than GaussML, because GaussML uses a more
efficient data visit path. When we increase the number of
centroids by 10 times, training time also increases around 1-10
times, because distance computation cost between points and
centroids increases. When we increase dimensions of dataset
by 10 times, training time also increases 1-8 times, because it
increases the distance computation cost.
Expr5: Because the PCA methods on GaussML and
MADlib use iterative training approach for supporting large
datasets, and we only compare them in figure 11a and fig-
ure 11b. We can observe that with the number of principal
components increasing, the training time drastically increases
because of computation cost increasing. The training time of
GaussML is always less than MADlib significantly because
that GaussML adopts native data scan method with data
materializing. We also observe that training time on both
GaussML and MADlib increases with data size increasing,
because of computation cost and IO cost growing.

In a word, single-thread model training in GaussML is
faster than other systems for all machine learning tasks,
because of it has more efficient data visit path with materialize
operator and local shuffle operators.
C. Query Planning

Expr6: In figure 12, we test different query optimization tech-
niques on 4 workloads. The WL1 is a workload with complex
data preprocessing pipeline in SQL, it contains operations like
union, merge and join which would be very expensive if a bad
execution plan is executed, and the results show that query per-
formance significantly decreases by 10 times by using query
optimizer in openGauss. The WL2 is a workload with single
relation and multiple filter conditions with different machine
learning model predictions, the execution plans generated from
ML-aware optimizer outperform traditional optimizer by 1
time because GaussML is able to reorder the filter conditions
according to their selectivity. The WL3 and WL4 are two
hybrid workloads with multiple relations, and constraints with
machine learning constraints exist on each relation, we can
observe that the ML-aware optimizer outperforms traditional
optimizer by 1-2 times because it can optimize the join orders
of different relations with model prediction predicates.

In summary, ML-aware query optimizer in GaussML can
generate better execution plan for end-to-end machine learn-
ing. This is because GaussML not only makes full use of
cost-based optimization in openGauss, but judiciously designs
the model computation cost estimator.

D. Query Execution

Expr7: We test HPO engines in GaussML with HPOBench-
mark [26] on dataset Slice. The HPOBenchmark can simu-
late the process of hyperparameter selection, data sampling and
model training for any plugin algorithm. In order to compare
the performance of HPO methods, we connect HPOBench-
mark as a controller in GaussML. Figure 13 shows that the
HPO strategies implemented in GaussML produce similar
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Fig. 12: Comparison on query optimization.
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Fig. 13: Comparison training time on hyperparameters.

training loss curves with HPOBenchmark. We can also ob-
serve that Hyperband strategy outperforms Random in training
efficiency by 1 order of magnitude. This is because Hyperband
can discard non-promising hyperparameter configurations in-
stantly, while the Random need to train models completely.
Expr8: We deploy GaussML on multiple nodes, and if
the number of data nodes exceeds 4, we simulate multiple
nodes by using different processes and data directories. From
figure 15, we can observe that with the number of data
nodes increasing, the training time decreases significantly
because distributed training accelerates data processing. How-
ever, training time becomes stable after 8 data nodes, and the
reason is as two folds. First it increases communication cost
for broadcasting parameters. Second the difference between
distributions of data nodes causes overfitting within each node
and more iterations are needed for distributed consensus.

In figure 15b, we observe that training time of MADlib
increases more than GaussML when the data size and paral-
lelism increase simultaneously, because GaussML has better
scalability.
Expr9: We compare the effect of different shuffle methods
on the parallel training curve. From figure 16, we can observe
that training without shuffle can only achieve 77% accuracy for
SVM and 80% for logistic model, while training with global
shuffle can achieve 99% accuracy. It’s worth noting that the
tuple-shuffle and block shuffle on single node is fast, while
the data redistribution at global scale takes much more time
because of data transfer. Therefore, the recommended shuffle
method is block-shuffle unless the label distribution is very
skew on different nodes.

We designs the framework to incorporate these operators
in GaussML with high efficiency, and these operators further
improve the performance of model training in parallel and
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distributed environment.
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Fig. 14: Training time comparison with optimizations.
Expr10: Figure 14 shows the training time decreases after
GaussML adds individual optimization approach. We observe
that shuffle technique decreases training time by 15-45%, data
materialize decreases training time by another 40-70%, and
SIMD/parallel technique makes training time to halve further.

VI. RELATED WORKS

Machine learning in database. Recently, in-DB ML has been
widely studied. MADlib [37] is composed of a collection of
UDFs, and its performance is much lower because of the
function cannot be optimized by database. SQLFlow [38]
builds an SQL engine on database and external machine learn-
ing platforms, and it interprets the SQL to Python program
language, fetches data from database, and trains models in
existing platform. Sqlflow is also lack of holistic optimization
with database and the data transferring is very time consuming.
Papers [39], [40] propose optimization methods for model
prediction workflow, but they do not discuss model training
and they are not fully integrated in modern DBMS.
Hyperparemeter Optimization. To reduce the bars of using
machine learning, HPO is becoming an inevitable technique in
machine learning platform. Methods for machine learning has
been proposed in papers [41], [42]. In order to accelerate it,
we implement hyperband in GaussML, and GaussML stores
the history performance of each configuration for warm-start.
There are also some structure search methods proposed in [43],
but they are customized for complex neural network which is
not the scope of this paper.
Data Shuffle. Model training approaches like SGD rely on
data shuffle for fast convergence, and researchers propose
some partial shuffle methods to reduce IO [20]. GaussML
supports both fully shuffle across data nodes and local shuffle
by integrating the shuffle method [44] into openGauss.
Distributed Training. Distributed model training can be clas-
sified as data parallelism and model parallelism. On large scale
data, data parallelism is the most efficient way to accelerate
training. Many techniques have been adopted in machine
learning products [9], [45]–[47], but they are not designed for
distributed relational database and mostly rely on a parameter
server. In order to avoid the coordinate node in openGauss
becomes the bottleneck, GaussML makes the data nodes
exchange parameters directly.
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Fig. 15: Distributed training.
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Fig. 16: Comparison on shuffle methods.

VII. FUTURE WORK

We can extend GaussML to support GPU usage in future
work, as GaussML has abstracted the ML computation of
diverse algorithms as typical ML operators such as SGD
operator, statistic operator, distance operator, as illustrated
in Table II. In GaussML, these operators are essentially
implemented based on the matrix computation, which can be
accelerated by GPUs such as the CUDA library. However,
although GPU can reduce the computation time, especially
for large batch size, it adds overhead for transferring data
between RAM and GPU memory. Therefore, the key factor
of efficiency by using GPU is batch size, this is generally
tuned by the programmer (or platform user). In database, we
can easily computes the computing cost of each ML operators
the computing power of GPU, and the optimizer in GaussML
can choose a proper batch size and whether to use GPU for
ML operators. In summary, GaussML could support a more
adaptive GPU usage than Python-based ML system.

VIII. CONCLUSION

This paper proposes an end-to-end in-database machine
learning system GaussML. GaussML is seamlessly integrated
with openGauss database. GaussML offers native MLSQL
interface for data analysts, and supports holistic optimization
for end-to-end machine learning queries, including model
training and model prediction. GaussML introduces an ML-
aware cardinality and cost estimator to optimize the SQL+ML
query plan. GaussML leverages SIMD and data prefetching
techniques to accelerate the ML operators for training. Exten-
sive results on real datasets show that GaussML outperforms
counterparts significantly for typical machine learning queries.
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[37] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin,

A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, and A. Kumar, “The
madlib analytics library or MAD skills, the SQL,” Proc. VLDB Endow.,
vol. 5, no. 12, pp. 1700–1711, 2012.

[38] Y. Wang, Y. Yang, W. Zhu, Y. Wu, X. Yan, Y. Liu, Y. Wang, L. Xie,
Z. Gao, W. Zhu, X. Chen, W. Yan, M. Tang, and Y. Tang, “Sqlflow: A
bridge between SQL and machine learning,” CoRR, vol. abs/2001.06846,
2020. [Online]. Available: https://arxiv.org/abs/2001.06846

[39] Y. Lu, A. Chowdhery, S. Kandula, and S. Chaudhuri, “Accelerating
machine learning inference with probabilistic predicates,” in Proceedings
of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, G. Das, C. M.
Jermaine, and P. A. Bernstein, Eds. ACM, 2018, pp. 1493–1508.
[Online]. Available: https://doi.org/10.1145/3183713.3183751

[40] F. Hueske, M. Peters, M. Sax, A. Rheinländer, R. Bergmann,
A. Krettek, and K. Tzoumas, “Opening the black boxes in data flow
optimization,” CoRR, vol. abs/1208.0087, 2012. [Online]. Available:
http://arxiv.org/abs/1208.0087

[41] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res., vol. 13, pp. 281–305, 2012.

[42] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” J. Mach. Learn. Res., vol. 18, pp. 185:1–185:52, 2017.

[43] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” CoRR, vol. abs/1611.01578, 2016.

[44] L. Xu, S. Qiu, B. Yuan, J. Jiang, C. Renggli, S. Gan, K. Kara, G. Li,
J. Liu, W. Wu, J. Ye, and C. Zhang, “In-database machine learning with
corgipile: Stochastic gradient descent without full data shuffle,” in ACM
SIGMOD International Conference on Management of Data (SIGMOD
2022), June 2022.

[45] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. W. Senior, P. A. Tucker, K. Yang, and A. Y. Ng,
“Large scale distributed deep networks,” in NIPS, 2012, pp. 1232–1240.

[46] X. Chen, T. Chen, H. Sun, Z. S. Wu, and M. Hong, “Distributed training
with heterogeneous data: Bridging median- and mean-based algorithms,”
in NeurIPS, 2020.

[47] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication
efficient distributed machine learning with the parameter server,” in
NIPS, 2014, pp. 19–27.

13


