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Abstract—Entity resolution (ER) is an important data integra-
tion task with a wide spectrum of applications. The state-of-the-
art solutions on ER rely on pre-trained language models (PLMs),
which require fine-tuning on a lot of labeled matching/non-
matching entity pairs. Recently, large languages models (LLMs),
such as GPT-4, have shown the ability to perform many tasks
without tuning model parameters, which is known as in-context
learning (ICL) that facilitates effective learning from a few
labeled input context demonstrations. However, existing ICL ap-
proaches to ER typically necessitate providing a task description
and a set of demonstrations for each entity pair and thus have
limitations on the monetary cost of interfacing LLMs. To address
the problem, in this paper, we provide a comprehensive study
to investigate how to develop a cost-effective batch prompting
approach to ER. We introduce a framework BATCHER consisting
of demonstration selection and question batching and explore
different design choices that support batch prompting for ER.
We also devise a covering-based demonstration selection strategy
that achieves an effective balance between matching accuracy
and monetary cost. We conduct a thorough evaluation to explore
the design space and evaluate our proposed strategies. Through
extensive experiments, we find that batch prompting is very cost-
effective for ER, compared with not only PLM-based methods
fine-tuned with extensive labeled data but also LLM-based meth-
ods with manually designed prompting. We also provide guidance
for selecting appropriate design choices for batch prompting.

I. INTRODUCTION

Entity resolution (ER), which finds entities that refer to the

same real-world object, is a crucial task for data cleaning and

data integration. Its applications span across various domains,

with particular significance in healthcare, finance, customer

relationship management, law enforcement, and many others.

The state-of-the-art (SOTA) results in ER are achieved

through the application of deep learning methodologies. These

methods [1]–[5] involve the utilization of Transformer-based

models, which are trained on extensive datasets comprising

numerous (e.g., hundreds or thousands) labeled entity pairs.
Standard Prompting and Batch Prompting. Meanwhile,
large-scale pre-trained language models (LLMs), such as GPT

models [6], have adopted an emerging learning paradigm

called in-context learning (ICL), which does not require to
update the model parameters of LLMs [7]–[10]. It facilitates

effective learning from a restricted set of labeled input context

demonstrations, referred to as demonstrations.
Next, we use an example to illustrate the typical way of

in-context learning, referred to as standard prompting.

Ju Fan and Chengliang Chai are the corresponding authors.
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Are E1 and E2 the same? Why?

:Task description :Demonstrations :Question(s) :Questions in a batch

Fig. 1: Standard Prompting and Batch Prompting

Example 1: [Standard Prompting] Figure 1(a) shows stan-
dard prompting for ER. The user needs to provide a task
description, several demonstrations (i.e., the ER pairs with

known matching or non-matching labels), and one question
(i.e., the ER pair whose label is unknown). An LLM (e.g.,
GPT-4) can then answer whether the two entities in the

question match or not. �
Recent studies have shown that standard prompting for ER

is effective on matching accuracy [11], [12]. However, a key
limitation of this approach is its monetary cost of calling APIs
of LLMs, as it necessitates providing a task description and

a set of demonstrations for each question, as explained in

the following example. For instance, consider a real-world

ER dataset, i.e., Abt-Buy from Magellan [13]. With a ded-

icated blocking technique [14], we obtain about 10K pairs

to be matched, where each pair has about 100 tokens. Then,

querying GPT-4 with standard prompting consisting of 10
demonstrations and 1 question will cost 10, 000×(100×(10+
1)) × (0.01/1000) = $110, where the pricing of GPT-4 API
services is $0.01 per 1K tokens (https://openai.com/pricing).

To be cost-effective, a natural alternative is to use a set,

or a batch of questions when prompting the LLMs, which is
known as batch prompting.

Example 2: [Batch Prompting] As shown in Figure 1(b),
the user needs to provide a task description, a set of demon-
strations, and a set of questions. Subsequently, the underlying
LLM can answer whether each question (i.e., entity pair) in
this batch matches or not. �
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However, despite some very recent attempts of batch

prompting for general natural language tasks [15]–[18], as far

as we know, exploring the effectiveness of batch prompting for

ER under different design choices is not addressed. To bridge

the gaps, we provide a comprehensive study to investigate how

to develop a cost-effective batch prompting approach to ER. To

achieve this, we introduce a batch prompting framework called

BATCHER that consists of two main modules, demonstration

selection and question batching. Based on the framework, we

conduct extensive experiments on well-known ER benchmarks

to systemically investigate the following two key questions.

A Design Space Exploration on Both Accuracy and Cost.
Due to the importance of ER and the increasing ability of

in-context learning, it is highly desired to systemically study

batching prompting for ER, under different design choices, on

both matching accuracy and monetary cost. To this end, we

categorize different choices in question batching and demon-

stration selection. For question batching, we categorize exist-

ing methods as similarity-based, diversity-based and random
question batching. For demonstration selection, we classify
existing methods as fixed, kNN-batch and kNN-question.
A Covering-based Selection Strategy. While empirically ex-
ploring the above design space, we find that existing solutions

only consider selecting relevant demonstrations after a batch
of questions is determined, without considering whether the
selected demonstrations can well cover all questions in a

batch. Thus, we further study the problem:“how to select a
batch of questions and how to select a set of demonstrations
collectively, such that the demonstrations can well cover all
questions which can best guide LLMs to provide answers”? We
model the problem as a set cover problem, which is known as

NP-hard. We solve the problem by devising a covering-based

selection strategy, which selects demonstrations by considering
relevance and coverage. The covering-based strategy aims to

generate a labeled demonstration set by selecting the minimum

number of demonstrations to cover all questions and then

labeling them, and thus can effectively balance the trade-off

between accuracy and cost.

A Summary of Experiments. We conduct a thorough eval-
uation to explore the design space and evaluate our proposed

strategies. Our experimental findings reveal insights into accu-

racy and cost of different batch prompting strategies. (1) Batch

prompting can bring 4x-7x cost saving and achieve higher

and more stable accuracy than standard prompting. (2) The

design choice that combines diversity-based question batching

and our proposed covering-based demonstration selection is

the most favorable, i.e., achieving the highest accuracy while
incurring the lowest cost. (3) Our BATCHER framework is the

most cost-effective, compared with not only PLM-based meth-

ods [1]–[3] fine-tuned with extensive labeled data, but also

LLM-based methods with manually designed prompting [11].

Contributions. We make the following notable contributions.
1) We investigate the design space of batch prompting for

ER, by introducing a framework BATCHER and sys-

tematically categorizing existing methods for question

batching and demonstration selection in Section II.

2) We introduce various question batching strategies (Sec-

tion III) and demonstration selection methods for ER

(Section IV). We devise a novel covering-based selection

strategy to connect the process of question batching and

demonstration selection in Section V.

3) We empirically evaluate our batch prompting framework

BATCHER (Section VI). We make all codes and datasets

in our experiments public at Github1. Based on the

evaluation, we provide insights on the strengths and

limitations of various strategies, which guide designing

cost-effective ICL approaches to ER.

II. BATCH PROMPTING FOR ENTITY RESOLUTION: A

DESIGN SPACE EXPLORATION

A. Entity Resolution

Let TA and TB be relational tables with m attributes. Each

tuple refers to an entity consisting of m properties, i.e., for
a tuple a ∈ TA, a = {attri, vali}mi=1 where attri and

vali denote the i-th attribute name and value respectively.
The problem of entity resolution (ER) is to identify all the
entity pairs (a, b) ∈ TA × TB that refer to the same object in

the real world based on the corresponding attributes.

An end-to-end ER system consists of a blocker and a

matcher. The blocker’s goal is to identify a subset of TA×TB
containing candidate pairs with a high probability of being

matched [1], [19], [20] while the matcher’s objective is to
determine whether each entity pair (a, b) in the above candi-
date set refers to the same real-world entity (i.e., matching)
or not (i.e., non-matching). While the design of an effective
blocking strategy is beyond the scope of this paper, we employ

a widely accepted blocking method [1], [20], [21] to produce

the aforementioned pairwise candidate set.

B. In-Context Learning

In-context learning (ICL). It refers to the capability of
LLMs to learn from a few demonstrations in the input context
without any parameters updating [6].

ICL for ER. Given any entity pair (ai, bi), we utilize a
serialization function to serialize it into a text by concatenating

all attribute names and values within the entity pair,

S((ai, bi)) = S(ai)[SEP]S(bi)
S(e) = attr1 : val1...attrm : valm

(1)

where [SEP] is used to separate entities of a pair and S(·)
denotes the serialization function of each data entity e.

Then, we construct a prompt consisting of a task descrip-

tion Desc, several serialized pairs with golden labels Demos

(denoted as demonstrations in this paper) and a serialized pair
Question to be queried (denoted as question). By feeding
them to an LLM G, we generate the target y with the next

1https://github.com/fmh1art/BatchER
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(a, b, ?)

(a, b, ?) (a , b , ?)

(a , b , 1)

(a , b , 1)

(a , b , ?)

Question Set

Unlabeled 
Demonstration Pool

Batches

Manual Labeling

(a) Question Batching

(b) Demonstration Selection

Fig. 2: Our proposed BATCHER framework, which consists

of (a) question batching and (b) demonstration selection.

token prediction, which can be regarded as a conditional text

generation problem:

y = argmax
y∈Y

PG(y |
supervision of ER task
︷ ︸︸ ︷
Desc⊕ Demos ⊕Question) (2)

where Y = {matching, non-matching} is the label space.
As Eq. 2 shows, G receives the task’s supervision only

from a pre-defined task description (Desc) and the concate-

nated demonstrations (Demos). Usually, In-context learning is
highly sensitive to the provided demonstrations and different
question selection strategies will bring huge fluctuations in

performance [22], [23]. Thus, a comprehensive exploration for

selecting beneficial demonstrations deserves a detailed design.

C. The BATCHER Framework and Design Space

Despite the good accuracy of ICL [15], [18], [24], the cost

of finance may be very expensive, since most LLM companies

such as OpenAI charge users based on the token consumption.

To reduce the cost of interfacing LLMs while maintaining

high accuracy, batch prompting is proposed, which allows to

query a batch of questions with several demonstrations and
asks LLM to make multiple predictions in one interface [25].

Example 3: Figure 1 shows the difference between Standard
Prompting and Batch Prompting. Although both select two

demonstrations for the in-context learning of LLMs, Batch
Prompting asks LLMs to answer 2 questions at one interface,
which approximately saves tokens of 2 demonstrations and 1
task descriptions. Naturally, the more questions we put in a
batch, the more cost of interfacing LLMs will be reduced. �
The BATCHER Framework.We can observe that two critical
components in the prompt of Batch Prompting are in-context

demonstrations and questions. Thus, to design effective Batch
Prompting, we introduce a framework called BATCHER that

consists of the modules of in-context demonstration selection

and question batching, as shown in Figure 2. The BATCHER

framework takes a set of questions, i.e., entity pairs {q} as
input, and aims to produce a set of batch prompts, which
are then fed into an LLM. As a prompt needs in-context

demonstrations, BATCHER also considers a set of entity

pairs without matching/non-matching results as an Unlabeled
Demonstration Pool. In this section, we first formally define

the above two modules and then systematically explore the

TABLE I: A Design Space Exploration
Modules Categorization

Question Batching

(1) Random

(2) Similarity-based

(3) Diversity-based

Demonstration Selection

(1) Fixed

(2) kNN-batch
(3) kNN-question
(4) Covering-based (Our proposal)

design space of Batch Prompting for ER by categorizing each

individual module in the BATCHER framework.

• Question Batching. Considering a Question Set M of

questions to be queried, Question Batching aims to

iteratively select b questions and group them into one

batch Bi = {qj}bj=1. To ensure all questions will be
queried at least once, the union set of all batches should

equal to the original question set, satisfying
⋃

Bi = M .

• Demonstration Selection. Considering a large pool of
unlabeled demonstrations Du from which we iteratively

select several data points {dj} for each batch Bi. We as-
sume manual annotation will be adopted for the selected

data to generate labeled demonstrations Di = {(dj , y)}
which will be used to guide LLMs to make predictions

for batched questions.

To put the above together, the BATCHER framework takes

a Question Set M and an Unlabeled Demonstration Pool Du

as input and outputs a set of question batches B = {Bi}
along with a set of corresponding demonstrations D = {Di},
satisfying

⋃
Bi = M and

⋃
Di ⊆ Du.

A Design Space Exploration. To utilize in-context learning
for ER, several challenges should be addressed.

First, question batching and demonstration selection require

a feature extractor to map questions and demonstrations into
vectors, which facilitates the measurement of their relevance.

However, the ER data typically consists of structured tables

with multiple attributes, which makes the process of fea-

ture extraction more complicated. Existing semantics-based

feature extractors [26]–[28] simply concatenate words from

various attribute-value pairs into a sentence, e.g., “title:Rashi,

album:Here. . . , genre:Dance. . . ”, and may have a limitation

of neglecting the structure information of the tuples to be

matched. Therefore, this motivates us to investigate structure-
aware feature extractors in our design space.
Second, in-context learning shows stable and remarkable

performance in Standard Prompting with relevant demonstra-

tion selection [18], [29], [30]. However, previous methods

typically adopt a kNN strategy to select k most “relevant”

demonstrations for each question. Naturally, this strategy may
result in a large number of demonstrations, especially for large
ER datasets with many pairs, which would incur significant

data annotation expenses. Thus, effective demonstration se-

lection strategies still lack a comprehensive investigation on

the trade-off between accuracy and cost.

Third, the choice of batching strategy is of great significance

in downstream performance, which is neglected by existing

studies and thus deserves in-depth investigation.
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Clustered Questions
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Similar batches

Fig. 3: Question Batching Framework, where circles with

different stripes represent questions in different clusters.

To address the challenges, we propose a categorization

of design choices for each module in BATCHER, which

forms a design space as shown in Table I. We first explore

strategies for the question batching module and discuss dif-

ferent feature extractors used for measuring relevance among

questions (Section III). Subsequently, we investigate methods
for selecting demonstrations for a batch (Section IV). We note
that BATCHER is extensible, i.e., it is possible to incorporate
new modules, new categories, or new methods or variants of

existing methods. Moreover, it is possible to define the search

space from a different angle; that is, we contend that our

proposal is rational, but may not be unique.

III. QUESTION BATCHING

This section explores the question batching strategies, as

shown in Table I. To this end, we first describe a general

framework of question batching, as illustrated in Figure 3.

Specifically, given a Question Set M of entity pairs, the

framework produces batches of questions in three steps.

• Feature Extraction. We first use a Feature Extractor to
cast the questions into feature vectors

• Question Clustering. We then adopt an unsupervised

clustering algorithm such as DBSCAN or K-Means to

group the questions into clusters.
• Question Batching. We finally group questions into

batches based on the clusters using various strategies.

In the remaining of this section, we mainly introduce three

representative batching strategies, including similarity-based

question batching, diversity-based question batching and ran-

dom question batching, which have been adopted by previous

studies [25], [31] (Section III-A). Next, as feature extraction

and distance measurement (for clustering) are involved in

the batching process, we then discuss two feature extraction

methods in Section III-B. Note that, for question clustering,

we adopt DBSCAN [32], as the algorithm achieves the best

performance. Due to the space limit, this section does not

discuss various clustering algorithms.

A. Batching Strategies

Given clustered questions, BATCHER generates batches

based on the following three representative strategies.

Similarity-based Question Batching. The intuition of this

strategy is to group similar questions within the same clusters
into the same batch. To this end, we iteratively select b (i.e.,
batch size) questions from the same cluster to form a batch,

to ensure that questions in the same batch have similar feature
vectors to each other. In particular, during the final stage of

batch generation, some clusters may contain questions fewer
than the required batch size b. In such case, we select the
largest remaining cluster, denoted as Cmax. We then seek to

pair it with another cluster whose size exactly matches b −
|Cmax|, to form a complete batch. If no such cluster exists, we

opt for the next largest cluster, randomly selecting b − |Cmax|
elements from them to form a batch in conjunction with Cmax.

Diversity-based Question Batching. The intuition of this

strategy is to group questions that are from diversified clus-

ters into a batch. In this batching strategy, batches are also

generated in two stages. Firstly, we ensure batch diversity by

selecting one question from each of b different clusters, such
that the questions in different batches have obvious differences
in feature vectors from each other. Then, when the batching

process almost completes, we may encounter scenarios where

the number of available clusters is less than b. In such instance,
we simply ensure the diversity of batches generated from

a limited number of clusters by selecting questions from

remaining clusters in a round-robin manner.

Example 4: [Question Batching] Consider the questions in
Figure 3. We denote the three clusters as Ca = {qai }2i=1, Cb =
{qbi }3i=1, and Cc = {qci }4i=1, respectively.
(1) For similarity-based question batching, we sequentially

select Cb and Cc, forming batches B1 = {qb1, qb2, qb3} and B2 =
{qc1, qc2, qc3}. Subsequently, from the remaining clusters Ca =
{qa1 , qa2} and Cc = {qc4}, we choose the larger cluster Ca and
combine it with Cc to create B3 = {qa1 , qa2 , qc4}.
(2) For diversity-based question batching, we can generate

diverse batches B1 = {qa1 , qb1, qc1} and B2 = {qa2 , qb2, qc2} in
the initial stages by iteratively selecting one question from

Ca, Cb and Cc. Then with remaining clusters Cb = {qb3} and
Cc = {qc3, qc4}, we sequentially select questions from Cc, Cb
and Cc to generate the final batch B3 = {qc3, qb3, qc4}. �
Random Question Batching. We also consider a straightfor-
ward random question batching strategy, which is commonly

adopted in the existing works [25], [31]. In this approach,

each batch is formed by randomly selecting questions from the

remaining question set. Due to this randomness, the generated

batches may contain a mix of both similar and dissimilar

questions. This implies that a random batch, to some extent,

represents a middle ground between a similar batch and a

diverse batch.

B. Feature Extractor

The process of batching questions in the previous section
relies on the utilization of a feature extractor to convert

questions into corresponding feature vectors. Subsequently,

these feature vectors are used to calculate distances between

questions and then serve as the basis for the clustering

procedure. Formally, given a set of questions M , we need
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title album genre
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Here Comes 

the Fuzz
Dance,Music
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Age
FOUR Pop, Music
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Fuzz [Explicit]

Music

Change 
My Mind

Take Me Home Pop

1q

2q

Fig. 4: An example instance of Entity Resolution.

to define a feature extractor f and a distance function dist,

and thus the distance of any two questions qi and qj can be
calculated via dist(vi,vj) between the two feature vectors,
i.e., vi and vj . We notice that the distance function can

be further defined by a variety of ways, such as Euclidean

distance or cosine similarity (distance). In our experiments, we

define the distance function based on the Euclidean distance,

which achieves the best performance among others.

Next, we introduce two types of feature extractors, one

based on semantics and the other being structure-aware.

Semantics-based Feature Extractor. Semantics-based feature
extractor utilizes a pre-trained language model (PLM) to en-

code each serialized question. For ER task, as all questions are
structural pairs, i.e., with multiple attributes, we first use the
serialization function defined in Eq.(1) to generate serialized

questions and pass it to a PLM, such as SBERT [26] and

RoBERTa [27] to generate embedding-based representations.

Formally, given a question q, the feature vector v can be

generated as v = Encoder(S(q)), where Encoder denotes
the encoding function of a PLM. Although the above feature

extractor formulates the relevance as semantic distance, it may

have the limitation of ignoring the structural information. This

inspires us to introduce another feature extraction method,

which can capture structural similarity to model relevance.

Structure-aware Feature Extractor. Structure-aware feature
extractor employs a string similarity function to map attribute-

matching signals of two entities of a question into a low-

dimensional space, which enables the generated feature vectors

to capture structural information and task-related knowledge.

Formally, given a structural pair (a, b), we derive the feature
vector by calculating the similarities of attributes between a
and b. Since attribute values typically take a string format,
we can compute similarity si on attribute attri with string

similarity function, e.g., Levenshtein ratio and Jaccard.

Using the Jaccard similarity, we tokenize valai and

valbi into sets and compute the similarity as si =

JAC(valai , val
b
i ) =

|valai ∩valbi |
|valai ∪valbi |

, where valai represents the

tokenized set of attribute value vali of entity a and |valai |
represents corresponding token-set size.

The Levenshtein ration (LR) derives from the Levenshtein

edit distance (LED) [33], representing the minimum number

of edits needed to transform one string into another, as

si = LR(valai , val
b
i ) = 1 − LED(valai ,val

b
i )

s , where LED is the

Levenshtein edit distance function and s represents the sum
of string length of valai and valbi .

Thus, given a question q with entity pair (a, b), the feature
vector v can be generated by concatenating the similarities of
all attributes make v = {si}mi=1.

kNN-batch

d

3
4

Cover
3

4

kNN-question
3

4

Fixed

Question Batches

(a, b, ?)

Unlabeled 
Demonstration

Pool

F
Manual Labeling

q qq

d

d

dqq

q qq

d

d

d

d

qq

d

d

d

d

q

2 2 5

2 2 5
2 2 5

1

11

Fig. 5: Demonstration Selection Framework, where blue cir-

cles and yellow circles represent demonstrations and questions
respectively, and values on edges represent distances.

IV. DEMONSTRATION SELECTION

Figure 5 illustrates the framework of demonstration se-

lection and describes four demonstration selection methods.

Given an Unlabeled Demonstration Pool Du and a set of

generated question batches B, demonstration selection aims to
select beneficial in-context demonstrations Di for each batch

Bi ∈ B, which will be then manually labeled. To further
specify the concept of four demonstration selection methods,

we give an illustration for each method. For simplicity, we

only consider two closest demonstrations for each question.

A. Fixed Demonstration Selection

A basic idea is to sample fixed K demonstrations and then
allocate them to every batch. In Figure 5, we generate two

fixed demonstrations by randomly sampling from the unla-

beled demonstration pool and allocate these two demonstra-
tions to each batch. This method brings a fixed annotation cost.
However, existing studies show that random demonstrations
may incur unstable performance of ICL [22], [23].

B. kNN-batch Demonstration Selection

Similar to the strategy in Standard Prompting of recom-

mending top k most relevant demonstrations [34], this strategy
selects the k most relevant demonstrations for each batch.

Specifically, we first define the relevance between Bi and d
based on the distance function dist defined in Section III-B:

dist∗(Bi, d) = min
qj∈Bi

dist(qj , d) (3)

which shows that the relevance between Bi and d calculated
as the distance between the d and the closest question in Bi.
Based on this, we can use the kNN algorithm to generate k
in-context demonstrations for Bi.
Take Figure 5 as an example. Considering k = 3, kNN-

batch selects d1, d2 and d3 as demonstrations. We notice
that some questions, e.g., q3, may not be assigned with

relevant demonstrations, if they have larger distances to the
demonstrations compared with other questions.

C. kNN-question Demonstration Selection

To address the above issue, we investigate a demonstration

selection method kNN-question that select the k most relevant
demonstrations for each question in the batch. This is based
on the assumption that, since relevant demonstrations are

beneficial when querying the individual question, the set of
relevant demonstrations will also benefit when querying the
whole batch. Formally, considering a batch Bi = {qi}bi=1,
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the in-context demonstration set Di can be generated as

Di =
⋃
qj∈Bi kNN(qj , Du). Figure 5 illustrates the basic idea

of the kNN-question method where we set k = 1 and select
d1 for p1, d3 for p2 and d4 for p3 respectively.
Although this method can improve accuracy of ICL, it may

have a limitation of incurring large monetary cost. Also, it

may generate long prompts which could lead to long text

comprehension issue and input length overrun. Specifically,

for large b and k, the input length (i.e., number of tokens) for
the LLM is more likely to exceed the length limit, e.g., 4096
tokens for GPT-3.5. For example, given b = 8 and k = 3,
all the batches on our 8 ER datasets exceed the input length

limit. Moreover, some existing studies [25] have shown that

such long inputs increase the difficulty for LLMs to understand

the questions, resulting in a degradation of performance.

V. COVERING-BASED DEMONSTRATION SELECTION

A key limitation of kNN-question and kNN-batch is that
they may incur substantial labeling cost, which is caused

by labeling the selected demonstrations. To mitigate this,

we introduce a new approach based on the idea of using

demonstrations to “cover” all questions in the batch Bi
where “cover” means that the distance between question q and
demonstration d is smaller than a threshold t. This is based
on the assumption that the beneficial demonstrations are a set
of relevant data points and all beneficial to a given question.
In Figure 5, we assume that demonstrations with a shorter
distance than 5 can be regarded as a beneficial reference when

answering the question. Thus, we first select d1 to cover q1
and q2. Then, to cover q3, the demonstration d4 is selected.
More formally, the covering-based method aims to address

two main problems, namely Demonstration Set Generation and

Batch Covering. First, Demonstration Set Generation aims to

reduce the labeling cost. To this end, we need to select a
minimal subset of demonstrations from an unlabeled demon-

stration pool to cover all the questions of all batches. Second,
given the selection results, each batch may be assigned with

multiple sets of demonstrations, which have varying numbers
of tokens. Thus, we devise Batch Covering to further select

the demonstration set with the minimum token number, so as

to reduce the API cost. We also empirically evaluate the effect
of Batch Covering, and find that this procedure can achieve

11.11% − 21.58% for API cost reduction on our datasets in

the experiments.

A. Demonstration Set Generation

Definition. Given a Question Set M containing all questions
to be queried, an unlabeled demonstration pool Du and a non-

negative distance threshold t, we need to select a subset of
demonstrations Ds ⊂ Du, satisfying ∀q ∈ M , exists at least

one d ∈ Ds, dist(q, d) < t. The goal is to minimize the
size of selected Demonstration Set |Ds|. We can prove the
Demonstration Set Generation Problem to be NP-hard by a

reduction from the Set Cover Problem, which is proven to be

NP-hard [35]. We omit the proof due to the space limit.

Algorithm 1 Demonstration Set Generation/Batch Covering
Input: Set of questions Q, set of demonstrations D, nondecreas-

ing value function f , weight function w.
Output: set of selected demonstrations Ds.
1: Ds ← ∅

2: while fQ(Ds) �= fQ(D) do
3: d← argmax

d∈D
fQ(Ds∪{d})−fQ(Ds)

w(d)

4: Ds ← Ds ∪ {d}
5: end while

Greedy Algorithm. To efficiently address the Demonstra-

tion Set Generation Problem, we propose a greedy-based

algorithm. To start with, we define a non-decreasing value

function fQ(Ds) =
∑|M |
i=1 zi to measure the value of inter-

mediate demonstration set Ds, where for qi ∈ Q, zi = 1 if
mindj∈Ds

dist(qi, dj) < t, otherwise, zi = 0. Generally, the
value function calculates the number of covered questions by
Ds. Then, taking the value function f , set of questions M ,

and an unlabeled demonstration set Du as input, we iteratively

select the most efficient demonstration. Efficiency is defined by
the ratio of the incremental value a demonstration contributes
to the intermediate Demonstration SetDs relative to its weight.

For the Demonstration Set Generation Problem, we set the

weights of all demonstrations to be 1, since selecting any

demonstration brings us equivalent cost. The pseudo-code is
shown in Algorithm 1.

We first initialize the demonstration set Ds to an empty set

(line 1). Then we determine whether the value of intermediate

set Ds meets the value of full unlabeled demonstration pool

Du (line 2) which is probably equaled to |M | with a large
enough pool size. If not, we will iteratively select the most

efficient demonstration and add it to the intermediate demon-
stration set (lines 3∼4). Otherwise, the algorithm ends and

outputs the selected demonstration set Ds (line 5).

Assuming that the optimal sum of Demonstration Set Gen-

eration Problem is OP T and the final sum of our greedy

algorithm is ans∗, we have ans∗ ≤ Hk · OP T , where
Hk =

∑k
i=1

1
i , k = maxdi∈Ds fQ({di}). A complete proof

can be found in [36].

For Demonstration Set Generation problem, by setting a

target function and designing a greedy algorithm to optimize

it, we can generate an effective solution, that is, selecting a

small number of demonstrations to cover all the questions to
be queried, thereby greatly reducing the labeling cost.

B. Batch Covering

Next, based on the generated Demonstration Set, we will

allocate relevant demonstrations to each batch, so as to cov-
ering all the questions in the batch. At this stage, we ask a
question: Is there further optimization space when allocating

demonstrations? To answer this question, we consider an

example of a Question Set M = {q1, q2, q3, q4} and a labeled
Demonstration Set {d1, d2}. We have d1 covers q1, q2, q3 and
d2 covers q2, q3, q4. Given a batch Bi = {q2, q3}, we need
to allocate demonstrations to cover all questions in Bi. It
can be seen that, at this time, whether allocating d1 or d2
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TABLE II: Statistics of Datasets.
Dataset Domain # Attr. # Pairs # Matches

Walmart-Amazon (WA) Electronics 5 10, 242 962

Abt-Buy (AB) Product 3 9575 1028

Amazon-Google (AG) Software 3 11, 460 1, 167

DBLP-Scholar (DS) Citation 4 28, 707 5, 347

DBLP-ACM (DA) Citation 4 12, 363 2, 220

Fodors-Zagats (FZ) Restaurant 6 946 110

iTunes-Amazon (IA) Music 8 532 132

Beer Beer 4 450 68

can cover all questions in the batch. Therefore, although we

only consider covering each question once when generating

the Demonstration Set, there is still room for choice when

allocating demonstrations for each batch.

Definition. Given a batch Bi of questions Bi = {q}, a
generated demonstration set Ds and a non-negative distance

threshold t, we need to select a set of demonstrations Di ⊂ D,
satisfying ∀q ∈ Bi, exists at least one d ∈ Di such that

dist(q, d) < t. The goal is to minimize the weight of

selected demonstrations
∑
d∈Di

w(d). We define the weights
of demonstrations as token numbers, and the goal of our

problem is to find a demonstration set to cover the batch with

minimum token assumption. Also, we can prove the batch

covering problem as an NP-hard problem.

Greedy Algorithm. We again use Algorithm 1 to address the

Batch Covering Problem. We use the same value function de-

fined in section V-A and define the weights of demonstrations
as token numbers. Taking the value function f , batch Bi of
questions, the generated Demonstration Set Ds, and weight

function w as input, the algorithm will output the allocated

demonstration set Di for batch Bi. This greedy algorithm

yields an approximation ratio of ln |Bi| − ln ln |Bi| + Ω(1).
A complete proof can be found in [36].

For Batch Covering Problem, by defining the weights

of demonstrations as token numbers and formulating it as

Weighted Set Cover Problem, we can generate an effective

solution with the minimum sum of tokens of batch prompts,

thereby reducing the interfacing API cost.

VI. EXPERIMENTS

This section evaluates our batch prompting framework

BATCHER investigated in this paper.

A. Experimental Setup

Datasets. We evaluate our proposed batch prompting frame-
work BATCHER using well-adopted benchmarking datasets

from Magellan benchmark [13], which range from a variety

of domains, such as product, software, and citation. Table II

provides detailed statistics of the datasets. Specifically, each

dataset contains entities from two relational tables with mul-

tiple attributes, and a set of labeled matching/non-matching

entity pairs. Take the Amazon-Google (AG) dataset as an ex-

ample: it contains software products from Amazon and Google

with three attributes (title, manufacturer, price), and
has 11, 460 entity pairs where 1, 167 pairs are matches. For
fair comparison, the set of labeled entity pairs is split into

train, validation and test sets with a ratio of 3:1:1, which is

consistent with existing ER studies [1], [5], [14].

Evaluation Metrics. In this paper, we evaluate the perfor-
mance of ER approaches on both Accuracy and Cost.
(1) Matching Accuracy. Following existing ER studies [1]–

[3], [14], we use F1 score to measure the matching accuracy of

an ER approach. Specifically, let TP, FP, FN denote the number

of true positives (i.e., matching pairs correctly identified), false
positives (non-matching pairs incorrectly identified) and false

negatives (matching-pairs incorrectly omitted) respectively.

Then, we can respectively compute Precision and Recall as

P = TP/(TP + FP) and R = TP/(TP + FN), and derive

F1 score as harmonic mean of Precision and Recall, i.e.,
F1 = 2 · P · R/(P+ R).

(2) Monetary Cost. We evaluate an approach by considering
its incurred monetary cost, which consists of two parts.

• API Cost measures how much an approach pays for

calling the API of a proprietary LLMs (e.g., GPT-3.5 and
GPT-4). In particular, the API is priced per token. For

example, according to the pricing of GPT API services2,

GPT-4 incurs $0.01 / 1K tokens for input texts.

• Labeling Cost measures how much an approach pays for
labeling entity pairs to prepare demonstrations. To calcu-
late the cost, we refer to the latest rates on the crowd-

sourcing platform, Amazon Mechanical Turk (AMT) 3 for

text data labeling, which is $0.08 per labeling task. Fol-
lowing the existing crowdsourcing approach to ER [37],

we group ten entity pairs into one labeling task and ask

the crowd to label them in batch. Based on this, we

estimate the cost of labeling one entity pair as $0.008.

Baselines.We consider two types of baselines. The first type is
the SOTA PLM-based approaches to ER, including Ditto [1],

JointBert [2] and RobEM [3]. The other type is the LLM-based

approaches [11] to ER via in-context learning, equipped with

manually designed prompts. We briefly describe the methods.

(1) Ditto [1] is a well-recognized PLM-based approach to ER,
which utilizes pre-trained language model RoBerta [27] and

employs labeled entity pairs for fine-tuning. We use the code

and default setting of Ditto in its original paper [1].

(2) JointBert [2] is a dual-objective training method for BERT
that combines binary matching and multi-class classification

for entity matching. We use the code provided from [38]. We

select the uncased base versions of BERT for JointBert and

set all the hyper-parameters as default as in the original paper.

(3) RobEM [3] is a recent work that investigates the robust-

ness of PLM-based ER methods with varying data distributions

and identifies data imbalance as a critical issue. To solve this, it

proposes simple yet effective modifications to enhance PLMs

and achieves superior performance on ER. We run its original

code from [39] and keep all the setting as default.

(4) ManualPrompt [11] is a pioneering initiative that uses
LLMs (GPT-3) for ER as well as other data wrangling tasks.

2https://openai.com/pricing
3https://www.mturk.com/
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Similar to our work, it also employs in-context learning to

answer ER questions. However, the key difference is that

ManualPrompt utilizes standard prompting (i.e., asking ques-
tions one by one) and manually designed demonstrations. We
reproduce the results of ManualPrompt by using its original

code and following its instruction at Github4. We notice

there exist performance discrepancies between the reproduced

results and the results reported in its original paper. This may

be attributed to the different versions of the underlying LLMs.

While the original paper’s results were obtained using “text-

davinci-002”, the current version of its code has changed

the default LLM to “text-davinci-003”. Moreover, different

from BATCHER, for each dataset, Manual Prompting directly

provides a set of demonstrations designed by experts, instead
of utilizing data annotation. Thus, we can not provide data

annotation expenses for Manual Prompting.

Implementation Details. We briefly present the implementa-
tion details of our proposed framework as follows.

(1) Batch Prompting. We implement the design choices in
Table I for question batching and demonstration selection, and

compare them on matching accuracy and monetary cost. For

question batching, we set the batch size to 8, which ensures

that none of the design choices exceeds the maximum token

limit of LLMs’ text input, and employ DBSCAN [32] for

question clustering. For fair comparison of demonstration se-

lection strategies (i.e., fixed, kNN-batch and kNN-question),
we choose 8 demonstrations for each batch. For our covering-
based strategy, we calculate the threshold t by first computing
the distances between all questions and then taking the 8-th
percentile as t since it can achieve great balance between cost
and accuracy: with smaller t, the labeling cost will become
larger while larger t will degrade the matching accuracy.

(2) Large Language Models. In our experiments, we use

GPT-3.5-turbo-0301, or GPT-3.5-03 for short, as the default

LLM, where 0301 means that the model version was finalized

on March 1st. In particular, according to the guideline of

OpenAI5, we set the temperature parameter of GPT-3.5-03 as

0.01. Moreover, we also investigate other proprietary LLMs,

GPT-3.5-turbo-0613 (or GPT-3.5-06 for short) and GPT-4-

1106-preview (or GPT-4 for short), as well as a very recent

open-source LLM, LLama2-chat-70B [40].

B. Comparing Batch Prompting with Standard Prompting

Exp-1: How does Batch Prompting compare with Stan-
dard Prompting? We conduct experiments to compare batch
prompting with standard prompting on matching accuracy and

monetary cost. For fair comparison, we use the same 8 fixed
demonstrations, which are selected randomly, for both ap-

proaches. In this case, we only need to consider the API cost,

as labeling costs of both approaches are the same. Moreover,

we run the experiments for three times, and compute mean

and standard variance of the obtained F1 scores.

4https://github.com/HazyResearch/fm data tasks
5https://platform.openai.com/docs/api-reference/completions

TABLE III: Comparing Batching Promting with Standard
Prompting on Matching Accuracy and API Cost (The best
results are bolded).
Dataset Metric Standard Prompting Batch Prompting

WA F1 67.54±8.08 78.92±0.32

API ($) 1.43 0.33

AB F1 65.70±10.81 85.79±1.01

API ($) 1.10 0.24

AG F1 53.72±3.88 61.07±0.83

API ($) 1.29 0.29

DS F1 75.08±6.03 80.79±1.72

API ($) 5.31 1.22

DA F1 85.96±4.45 92.10±0.88

API ($) 2.93 0.63

FZ F1 89.95±3.67 94.13±1.11

API ($) 0.19 0.04

IA F1 90.59±0.94 91.75±0.84

API ($) 0.06 0.01

Beer F1 91.11±2.22 88.31±2.60

API ($) 0.07 0.01

(a) The WA Dataset (b) The AB Dataset

Fig. 6: Comparing Batch Prompting (Batch) and Standard

Prompting (Standard) on Recall, Precision and F1.

The experimental results are reported in Table III. We can

see that, batch prompting significantly outperforms standard

prompting on both accuracy and cost. First, batch prompting

improves F1 score by 1.3%-30.6% on all datasets except Beer.

The reason that batch prompting performs worse than standard

prompting on the Beer dataset is that the dataset is very small

(with only 91 pairs for testing), and the two methods actually
output very similar matching results. Moreover, we can also

observe that batch prompting is more stable than standard

prompting, i.e., achieving much smaller standard variance.

Second, compared with standard prompting, batch prompting

can achieve 4x-7x cost saving on API callings.
While it is intuitive that batch prompting can save cost, it

is somewhat surprising that it can also significantly improve

the accuracy. Thus, we conduct a detailed analysis to report

Precision and Recall on WA and AB datasets, as shown in

Figure 6. We can see batch prompting achieves much higher

Precision than standard prompting, while their Recall scores

are comparable. This is mainly attributed to the batching

mechanism, where the LLM can refer to not only the provided

demonstrations, but also the answers generated for previous
questions within the same batch. This may help the LLM to

identify some key characteristics that are useful to differentiate
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the entities. For example, on the WA dataset, batch prompting

can help the LLM to focus on a critical attribute “modelno”,

and enable the LLM to understand entities with different

“modelno” tend to be non-matching pairs.

Finding 1: Batch prompting can not only bring 4x-7x cost
saving, but also achieve higher and more stable matching
accuracy than standard prompting.

C. Exploring Design Space of Batch Prompting for ER

Exp-2: What are effective strategies in our design space
of question batching and demonstration selection? We
explore the design space shown in Table I by comparing the

12 combinations of three question batching methods and four

demonstration selection methods. From the experimental re-

sults reported in Table IV, we have the following observations.

Evaluation on question batching. As reported in Table IV,
the diversity-based question batching achieves the highest

overall F1 scores. Moreover, it is interesting to see that

the similarity-based question batching performs the worst

on matching accuracy, even achieving lower F1 scores than

the random question batching. This is because the questions
within a batch is very similar, thus making the LLM difficult

to differentiate entities by comparing different questions. Con-
sequently, the LLM tends to produce identical answers for var-

ious questions, leading to degradation of matching accuracy.

On the other hand, we can see that different question batching

strategies have similar results on API cost and labeling cost,

given varying demonstration selection methods. The reason is

straightforward since prompts of different question batching

strategies have similar amounts of tokens.

Evaluation on demonstration selection. Observing Table IV
again, we can see that kNN-question and our covering-

based strategy (denoted as Cover) outperform other strategies

on accuracy, while the F1 scores of these two strategies

are comparable. For example, under diversity-based batching,

kNN-question yields the highest F1 score on 2 datasets,

while Cover is the best on the remaining 6 datasets. This is
because both kNN-question and Cover aim to select relevant

demonstrations for each individual question within a batch,

which is helpful for the LLM to understand varying cases of

ER. However, kNN-question method suffers from the heavy

labeling cost since the number of demonstrations selected by
the kNN algorithm will increase proportionally as the number

of predicted entity pairs grows.

By contrast, Cover is much more cost-effective than kNN-
question on demonstration labeling, e.g., brings 10x-100x
labeling cost savings on the former five large datasets and

5x savings on the latter three small datasets. The results

validate the effectiveness of our covering-based mechanism:
by selecting a minimal set of demonstrations that cover all
questions in a batch, we can significantly reduce the number
of required demonstrations, and thus save the labeling cost.

Finding 2: The design choice that combines Diversity-
based Question Batching and our Covering-based Demon-

stration Selection is the most favorable, i.e., achieving the
highest accuracy while incurring the lowest cost.

D. Comparing with PLM-based Approaches to ER

Exp-3: How does our BATCHER framework compare with
PLM-based approaches to ER? We compare our framework
with the PLM-based approaches mentioned in Section VI-A,

by varying the size of training set for these approaches. Note

that we use the best design choices shown in Table IV,

i.e., Diversity-based Question Batching and Covering-based
Demonstration Selection, as the default setting.

Figure 7 shows the experimental results on the eight

datasets, where the results of our framework are represented as

red solid lines. Not surprisingly, our framework is much more
cost-effective than Ditto [1], JointBert [2] and RobEM [3].

For example, on the WA, AB and AG datasets, the three

PLM-based methods require at least 2000 training samples

to achieve a similar F1 score of our framework. In contrast,

our framework requires no more than 50 labeled samples on

all the datasets. According to our cost calculation method

in Section VI-A, the monetary cost incurred by these PLM-

based approaches is about 300x-400x larger than our overall
cost (i.e., API cost plus labeling cost). Furthermore, we also
observe that once models like RobEM catching up with the

F1 score of our framework, additional training samples do not

substantially increase the performance; on some datasets (e.g.,
FA, IA and Beer), even the entire training set is insufficient

for the baselines to reach the F1 score of our framework.

Finding 3: With much less labeled data, our batch prompt-
ing framework achieves competitive performance with
PLM-based method trained with hundreds of or even
thousands of labeled matching/non-matching entity pairs.

E. Comparing with Manual Prompting for ER

Exp-4: How does our BATCHER framework compare with
LLM-based approaches to ER? We compare our framework
with the existing LLM-based approach [11], equipped with

manually designed prompts, including hand-picked demon-
strations. The results are reported in Table V. The reason for
the absence of a comparison for the Abt-Buy dataset in the

Table V is that ManualPrompt approach [11] is not tested on

this dataset. We can see that, with only 20% of the API cost,

our BATCHER framework can achieve comparable F1 score,

compared with the ManualPrompt approach. In particular, on

four datasets (DS, DA, FZ, Beer), our framework even out-

performs ManualPrompt. The results implies that BATCHER,

despite requiring cost of labeling selected demonstrations, may
still be more practical than ManualPrompt, which requires

domain experts for prompt designing.

Finding 4: Our automatic batch prompting framework
achieves comparable or even better F1 scores with manual
prompting methods for LLMs, with much less API cost.

F. Evaluation on Different Underlying LLMs

Exp-5: What is performance of our approaches given
various underlying LLMs? We evaluate the performance
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TABLE IV: Exploring the Design Space of Three Question Batching Methods and Four Demonstration Selection Methods
(The best results are bolded and the second best results are underlined).

Dataset Metric Random Question Batching Similarity-based Question Batching Diversity-based Question Batching
Fix kNN-batch kNN-question Cover Fix kNN-batch kNN-question Cover Fix kNN-batch kNN-question Cover

WA
F1 78.92 79.15 79.06 78.64 73.50 77.43 78.30 76.43 79.24 78.87 80.18 80.66

API ($) 0.33 0.34 0.35 0.30 0.34 0.34 0.35 0.24 0.35 0.34 0.34 0.28

Label ($) 0.06 11.53 12.63 0.34 0.06 14.15 12.63 0.34 0.06 13.30 12.63 0.34

AB
F1 85.79 86.24 86.79 85.71 85.19 85.65 87.02 87.16 85.03 86.38 87.91 88.38

API ($) 0.24 0.23 0.24 0.21 0.24 0.23 0.24 0.20 0.24 0.23 0.24 0.20

Label ($) 0.06 10.86 6.07 0.28 0.06 10.86 6.07 0.28 0.06 11.21 6.07 0.28

AG
F1 61.07 61.82 61.90 60.69 58.90 60.74 60.96 60.62 60.24 57.85 64.57 62.16

API ($) 0.29 0.30 0.30 0.25 0.30 0.30 0.30 0.25 0.29 0.30 0.30 0.25

Label ($) 0.06 14.20 9.70 0.23 0.06 14.09 9.70 0.23 0.06 13.84 9.69 0.23

DS
F1 80.79 82.49 83.55 82.36 76.44 73.78 77.09 75.59 79.07 79.80 83.46 83.70

API ($) 1.22 1.27 1.28 1.13 1.31 1.27 1.29 1.04 1.27 1.15 1.28 1.12

Label ($) 0.06 35.38 27.94 0.31 0.06 35.92 28.24 0.31 0.06 35.96 28.24 0.31

DA
F1 92.10 93.00 93.62 92.32 91.59 92.42 92.44 92.06 92.27 94.21 94.28 94.96

API ($) 0.63 0.62 0.63 0.54 0.62 0.62 0.63 0.50 0.62 0.62 0.63 0.53

Label ($) 0.06 15.50 14.61 0.32 0.06 15.50 14.61 0.32 0.06 15.09 14.61 0.32

FZ
F1 94.13 93.33 95.24 93.33 95.24 90.48 93.02 92.68 93.02 88.37 95.24 100.00

API ($) 0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.03

Label ($) 0.06 1.18 1.27 0.30 0.06 1.25 1.32 0.30 0.06 1.18 1.27 0.30

IA
F1 91.75 94.74 94.55 92.59 92.59 94.34 96.30 92.86 88.00 94.55 98.17 96.43

API ($) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Label ($) 0.06 0.60 0.56 0.16 0.06 0.69 0.56 0.16 0.06 0.42 0.56 0.16

Beer
F1 88.31 76.92 81.48 89.66 85.71 84.62 81.48 88.89 92.86 89.66 89.66 96.55

API ($) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Label ($) 0.06 0.65 0.66 0.14 0.06 0.68 0.66 0.14 0.06 0.64 0.62 0.14

(a) WA (b) AB (c) AG (d) DS

(e) DA (f) FZ (g) IA (h) Beer

Fig. 7: Comparing our Batch Prompting framework BATCHER with existing PLM-based approaches to ER.

of BATCHER on various underlying LLMs, including two

versions of GPT-3.5 and GPT-4, which are mentioned in

Section VI-A. Note that we also evaluate the well-known open-

source LLM, LLAMA2 [41]. However, we find that LLAMA2

is not suitable for batch prompting: When prompted to answer

multiple questions, LLAMA2 fails to produce any output in

most cases. Thus, we omit the results of LLAMA2.

The experimental results are shown in Table VI. First,

considering matching accuracy, GPT-4 achieves the best results

on five datasets, demonstrating its superior capability on text

comprehension and task solving. Moreover, we also find

GPT-3.5-03 is comparable to GPT-4. Specifically, GPT-3.5-

03 achieves the second highest F1 overall and the largest F1

difference from GPT-4 is less than 6.4%. Second, as per the

latest pricing, the token pricing of GPT-4 is 10x higher than
GPT-3.5, leads to considerably high API costs. To summarize,

the results show that GPT-3.5-03 achieves the best trade-off

between matching accuracy and monetary cost, making it a

more favorable choice for practical applications.

Finding 5: As the underlying LLM of BATCHER, GPT3.5-
03 achieves the best trade-off between matching accuracy
and monetary cost.
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TABLE V: Comparing BATCHER with Manual Prompting.
Dataset Metric Manual Prompting BATCHER

WA F1 82.63 80.66

API ($) 1.40 0.28

AG F1 65.40 62.16

API ($) 1.65 0.25

DS F1 70.44 83.70
API ($) 5.87 1.12

DA F1 94.90 94.96
API ($) 2.65 0.53

FZ F1 97.67 100
API ($) 0.14 0.03

IA F1 98.11 96.43

API ($) 0.05 0.01

Beer F1 92.23 96.55
API ($) 0.05 0.01

TABLE VI: Evaluating Different Underlying LLMs on
Matching Accuracy and API Cost.
Dataset Metric GPT-3.5-03 GPT-3.5-06 GPT-4

WA F1 80.66 80.32 81.22
API ($) 0.28 0.28 2.81

AB F1 88.38 69.08 85.22

API ($) 0.20 0.20 2.02

AG F1 62.16 52.40 64.06
API ($) 0.25 0.25 2.52

DS F1 83.70 65.94 89.48
API ($) 1.12 1.12 11.24

DA F1 94.96 91.29 96.04
API ($) 0.53 0.53 5.27

FZ F1 100.00 92.68 100.00
API ($) 0.03 0.03 0.32

IA F1 96.43 92.31 94.34

API ($) 0.01 0.01 0.09

Beer F1 96.55 92.31 96.30

API ($) 0.01 0.01 0.11

TABLE VII: Evaluating Feature Extractors on Accuracy.

Dataset Structure-aware Semantics-based
BATCHER-LR BATCHER-JAC BATCHER-SEM

WA 80.66 78.05 78.66

AB 88.38 84.23 87.06

AG 62.16 59.90 59.20

DS 83.70 81.27 80.91

DA 94.96 92.70 90.36

FZ 100.00 93.62 95.24

IA 96.43 90.57 90.91

Beer 96.55 89.66 91.67

G. Evaluation on Different Feature Extractors

Exp-6: What is performance of our approaches given
different feature extractors? We examine the performance
of BATCHER using different Feature Extractors described

in Section III-B, namely BATCHER-LR, BATCHER-JAC,

and BATCHER-SEM. The former two feature extractor use

Structure-aware Feature Extractor based on Levenshtein Ratio

(LR) and Jaccard Similarity (JAC). The latter uses Semantics-

TABLE VIII: Evaluating Different Demonstration Labelers
on Matching Accuracy and Overall Cost.

Dataset Metric GPT-3.5
Labeler

GPT-4
Labeler

Human
Labeler

WA F1 75.04 75.47 80.66
Cost ($) 0.29 0.34 0.62

AB F1 85.34 85.43 88.38
Cost ($) 0.21 0.24 0.48

AG F1 58.32 58.81 62.16
Cost ($) 0.26 0.28 0.48

DS F1 80.83 81.17 83.70
Cost ($) 1.13 1.19 1.43

DA F1 93.90 93.96 94.96
Cost ($) 0.53 0.60 0.85

FZ F1 100 100 100
Cost ($) 0.04 0.08 0.33

IA F1 90.21 92.59 96.43
Cost ($) 0.01 0.03 0.17

Beer F1 88.34 96.55 96.55
Cost ($) 0.01 0.03 0.15

based Feature Extractor based on SBERT [26] embedding. We

choose SBERT as the semantics-based feature extractor over

BERT and RoBERTa because it more effectively generates em-

beddings that capture the semantic relevance among sentences

in an unsupervised manner [26]. Since their monetary cost is

close, we only compare these three variants on F1 scores.

As shown in Table VII, BATCHER-LR achieves the best

performance on all the datasets while BATCHER-JAC and

BATCHER-SEM achieve comparative results. This results val-

idates that stucture-aware feature extractor can better cap-

ture the relevance between entity pairs in the ER scenario.

Moreover, compared with BATCHER-JAC, BATCHER-LR is

more sensitivity to string order and its superior precision in

quantifying the similarity between two strings. For instance,

considering two strings “listen” and “silent”, the similarity

score calculated using LR is 0.5, whereas with JAC, it is 0.89.

This clearly demonstrates the former is better effectiveness

in quantifying the similarity between the two strings, thus is

more effective to generate feature vectors for entity pairs.

Finding 6: The structure-aware feature extractor is pre-
ferred for measuring distances among entity pairs in ER.
H. Evaluation on Different Demonstration Labelers

Exp-7: Is it feasible to substitute the use of crowd workers
with API requests to LLMs as a cost-effective alternative?
We evaluate BATCHER’s performance utilizing different label-

ing approaches. Specifically, instead of soliciting crowd work-

ers for labeling the selected demonstrations, we respectively
utilize GPT-3.5 and GPT-4 as demonstration labelers. After

that, we use the labeled demonstrations to guide our default
LLM (GPT-3.5) to make predictions for batched questions.
The experimental results are reported in Table VIII.

First, using LLMs as demonstration labelers can reduce the
overall cost. Take GPT-4 Labeler as an example: compared

with Human Labeler, GPT-4 Labeler achieves 52.44% cost

reductions on average on our eight datasets. Second, the
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matching accuracy of using LLMs as demonstration labelers
is still worse than that of using human labelers. Considering

GPT-4 Labeler again, we can find that the F1 score obtained by

GPT-4 Labeler is 2.90% lower than that of Human Labler on

average. This is mainly because that GPT-based demonstration
Labelers may generate demonstrations with incorrect labels,
which mislead the LLMs in answering questions in corre-

sponding batches. Thus, it is worthwhile to further explore

this aspect to enhance the overall cost-effectiveness.

Finding 7: Employing LLMs as demonstration labelers
may potentially improve cost-effectiveness of BATCHER.

VII. RELATED WORK

PLM-based Methods for Entity Resolution. Entity res-

olution is a popular data integration task that has been

widely studied for decades. With the rise of deep learning,

some approaches [42] leverage pre-trained word embeddings

to improve the ER performance. However, these methods

mainly use the non-contextual embeddings without consid-

ering the downstream tasks. Therefore, recent studies [1],

[2], [4], [5] have focused on using Transformer-based PLMs

to produce contextualized embeddings based on fine-tuning

over downstream tasks. To be specific, Ditto [1] regards ER

as a sequence-pair classification problem via Transformer,

where domain knowledge is injected to further improve the

performance. DADER [5] focuses on leveraging the domain

adaptation technique: given a labeled source dataset, it trains

an ER model for another target dataset by aligning features of

both datasets based on PLMs. Based on PLMs, Unicorn [4]

focuses on building a unified framework for data matching

tasks, including ER. Unicorn uses a unified encoder for

any pair of data to be predicted, and a mixture-of-experts

module to align the semantics of multiple tasks. Although the

above PLMs-based approaches can achieve a relatively good

performance, they need plenty of labeled pairs for supervision,

which are often expensive to acquire.

LLM-based Methods for Entity Resolution. With the size
of pre-training data and model parameters scales, large-scale

language models (LLMs) have gained an emergent capabil-

ity called In-Context Learning (ICL) to learn from a few

demonstrations without explicit model update [6], [43]. Recent
studies [11], [12], [31] have focused on utilizing the LLMs to

tackle ER with less labeled pairs for supervision. Narayan et

al. [11] are among the first to explore the capability of GPT-

3 [6] for ER with manually designed demonstrations, which
achieves remarkable performance compared with PLM-based

methods. Since manual demonstrations require professional
prompting engineering knowledge, Peeters et al. [12] propose

to select relevant demonstrations based on kNN retrieval

algorithm, where Jaccard similarity is utilized to measure

the relevance. Moreover, Zhang et al. [31] consider batch

prompting for ER, which employs a straightforward random

batching strategy with manually designed demonstrations.

Although question batching and demonstration selection have

been considered in existing studies, these studies mainly

rely on domain experts or develop heuristics for these two

problem, and have not explored the combination of different

demonstration selection and batching strategies. Compared to

them, we utilize the power of ICL and propose a compre-

hensive framework BATCHER. We explore a design space

to evaluate the performance of different design choices, and

propose a covering-based demonstration selection strategy that

effectively balances the trade-off between accuracy and cost.

In-Context Learning for Data Management. LLMs are
capable to capture rich linguistic patterns and generate co-

herent text [6], [40], [44], which have shown great success

in a wide range of NLP tasks [17], [18], [24]. ICL is an

emergent capability of LLMs that enables the model to learn

from few demonstrations without explicit gradient update [43].

Recently, researchers have studied to leverage ICL to solve

data management tasks, such as data discovery [45], data

cleaning and integration [11], and data labeling [46], and

also study how to batch questions and select demonstrations.

BatchPrompt [25] proposes to group multiple questions into

one batch and query LLMs to answer one batch in an interface.

In addition, both relevance-based [34], [47] and diversity-

based [48], [49] strategies are proposed for demonstration

selection. Compared with these studies, as far as we know,

we are the first to develop the batch prompting technique

tailored to the ER task, and design new methods, such as

covering-based demonstration selection and structure-aware

feature extraction, which are shown to be effective for ER.

VIII. CONCLUSION AND FUTURE WORKS

In this paper we have introduced a cost-effective batch

prompting framework BATCHER for entity resolution, and

explored the effectiveness of BATCHER under different design

choices. We also devised a covering-based demonstration

selection strategy that achieves effective balance between

accuracy and cost. We have conducted extensive experiments

to evaluate different combinations of design choices with

insightful empirical findings, as summarized using the six

findings in Section VI. These findings imply that BATCHER

is very cost-effective for ER, compared with not only PLM-

based methods fine-tuned with extensive labeled data, but also

LLM-based methods with manually designed prompting.

For future directions, it is desirable to study how to mitigate

generating erroneous labels from LLMs by using sophisti-

cated mechanisms, e.g., multi-round voting [50] and self-

correction [51], [52]. Moreover, integrating the capabilities of

both LLMs and crowd workers offers a promising avenue for

improving overall accuracy while controlling the cost.
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