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Fast and Scalable Ridesharing Search
James Jie Pan and Guoliang Li

Abstract—In the next few decades, it is estimated that a quarter
of all trips worldwide will be served by shared mobility supported
in part by lower carbon footprint compared to private mobility. In
particular, on-demand ridesharing is appealing due to its conve-
nience, matching passengers needing rides to vehicles in real time
while optimizing the matching. While this matching problem is
computationally challenging, the state-of-art greedy search algo-
rithm assigns passengers one at a time to the locally best vehicle
and has been shown to perform well in practice. However, in order
to scale the algorithm, how to parallelize searches for multiple
requests remains challenging due to contention for vehicle tours.
Moreover, the request latency may still be too high for on-demand
requests. In this paper, we give several techniques to speed up
and scale out ridesharing search. To deal with data contention
while scaling out greedy search, we introduce a “map-release” and
ticketing system that sacrifices read-write consistency to achieve
high concurrency, even under high contention, and while avoiding
expensive aborts incurred by optimistic approaches. To address
high request latency, we give a caching technique to speed up
the tour expansion subroutine of greedy search, and we also give
a pruning technique to reduce the tour candidates even further
compared to existing techniques. Together, these techniques deliver
around 7x the throughput and order of magnitude lower latency
on a real instance compared to the “embarassingly parallel” par-
allelized map approach and with better scalability.

Index Terms—Ridesharing, concurrency control, tour
expansion.

I. INTRODUCTION

SHARED mobility, such as buses, subways, and shared ve-
hicles, represents around 2% of the global mobility market

and is estimated to reach 24% worldwide by 2040 and 36% in
China.1 This trend may be attributed to better environmental
friendliness compared to private mobility [1]. In particular,
on-demand ridesharing, which works by matching passengers
needing rides to participating vehicles located throughout a
service region, has appeal due to its convenience and low fares.
The service can act as a marketplace, where riders post requests
to the platform and drivers choose from a list which ones to
serve [2], but in most cases it centrally assigns passengers to
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vehicles. Doing so can lead to better matchings but suffers from
combinatorial explosion of not only assignments but also vehicle
tours as the platform must additionally decide the best tour for
serving the passengers once assignments are decided [3], as
illustrated below.

Example 1 (Tour Combinations): In Fig. 1, Vehicle 1 is
following tour AB, and Vehicle 2 is following tour CDE. The
request departing from X and arriving at Y is unassigned. For
Vehicle 1, there are 6 ways that it can insert the new request
into its tour, keeping departures (+) in front of arrivals (−) and
preserving the order of existing locations: XY AB, XAY B,
XABY , AXY B, AXBY , and ABXY , and for Vehicle 2,
there are 10 ways:XY CDE,CXYDE,CDXY E,CDEXY ,
XCYDE, CXDY E, CDXEY , XCDY E, CXDEY , and
XCDEY . If order is not preserved, e.g. C can be visited after
D or E, then there are a total of 30 ways to expand Vehicle
2’s tour. Without preserving order, the number of possible tours
grows in (2n)!/2n or O(n!), where n is the number of requests
in the expanded tour. With preserving order, the number grows
in n(n+ 1)/2 or O(n2), where n is the number of locations.

Real-world services of this type, such as UberX Share2 and
Lyft Shared,3 already struggle with the computational burden
of this problem, leading to compromises such as artificially
limiting vehicle capacities and incentivizing issuing requests far
in advance instead of on-demand. In the literature, the state-of-
art greedy search algorithm assigns passengers on a first-come
first-serve basis by finding the best vehicle per passenger, as
shown in Algorithm 1 [4]. The tour expansion operator on line
3, ExpandTour, determines the cost of a potential assignment on
line 4. As finding optimal tours is famously NP-hard [5], a key
technique is to approximate it using an insertion heuristic, where
the departure and arrival locations of a request are inserted into
an existing tour without changing the ordering of other locations
in the tour [6]. The naive algorithm requires O(n2) time, where
n is the length of the tour, but a dynamic programming (DP)
approach improves this to O(n) [4].

Limitations: Nevertheless, (1) how to parallelize Greedy-
Search across requests remains challenging due to contention
for vehicle tours by the parallel request processing workers, as
illustrated by the following examples.

Example 2 (Read-Write Conflict): Workers W1 and W2 are
processing requests r1 and r2, respectively, in parallel. At a
certain time,W1 reads tour s1 and evaluates ExpandTour(s1, r)
to obtain a cost for s1. Immediately after, W2 updates the tour.
The cost obtained by W1 is now incorrect because it does not
account for the update.

2http://www.uber.com/us/en/ride/uberx-share/
3http://www.lyft.com/blog/posts/shared-rides-return-to-more-cities
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Fig. 1. Example ridesharing scenario with two vehicles visiting locations A–E
and a new request aiming to depart from X and arrive at Y.

Fig. 2. All possible insertion-based tour expansions for an initial tour AB of
length 2 and request departing from X and arriving at Y . Here, A and X are
departure locations and they respectively must precede B and Y . In the worst
case, DP tour expansion issues 15 SPSP queries, indicated by the red arrows. In
(a) and (f), the blue and orange requests are “chained” one after another, with
requests being served in succession.

Example 3 (Write-Write Conflict): Continuing the example
above, if W1 proceeds to update s1 without reading it again
following the write by W2, then the write by W2 will be lost.

Moreover, (2) many objectives rely on calculating shortest-
paths (SPs) through a graph model of the road network as a
way to estimate the cost of an assignment [7]. Irregardless of
whether the paths represent least distance, least estimated travel
time, revenue, or other metric, SP queries are still expensive,
even when an index is used. The DP algorithm issues O(n)
number of single-pair shortest-path (SPSP) queries, which may
be too expensive for large tours such as those belonging to high-
capacity vehicles or for long “chains” on small capacity vehicles,
as shown in Fig. 2. Chains can be arbitrarily long, irregardless
of vehicle capacity. Finally, (3) a common technique for the
Prune routine on line 2 of Algorithm 1 is to use a request arrival
deadline to prune vehicles by distance [8], [9]. Naturally it is
possible to prune vehicles and tours by considering the arrival
deadlines of all existing requests in a tour, but it is unclear how
to do this without first performing expensive tour expansion. For
example in [4], tour expansion is necessary to determine the new
arrival times which are then checked against the deadlines.

Algorithm 1: GreedySearch(S, r).

Input: vehicle tours S, request r
1: s∗ ← null, c∗ ← ∞
2: for s ∈ Prune(S, r) do � Read phase
3: s′ ← ExpandTour(s, r)
4: c← Cost(s′)
5: if c < c∗ then
6: s∗ ← s′, c∗ ← c
7: Update(S, s∗) � Write phase

Our Contributions: In this paper, we give several techniques
to address these limitations. (1) We start by giving concur-
rency control techniques to deal with contention during parallel
request processing. To the best of our knowledge, while one
work [10] parallelizes the inner loop of GreedySearch using
a map-reduce framework, parallel request processing for cen-
tralized ridesharing platforms has not been previously studied.
Speculative approaches such as MVCC [11] abort requests
when inconsistencies are encountered, but aborts may not be
acceptable for on-demand requests that demand low latency.
Instead, we give a variation of two-phase locking (2PL) called
“map-release” (MR) that more flexibly acquires and releases
locks to improve concurrency. The price of MR is the loss of
read-write consistency because locks are not held until the end of
processing. But as tour expansion is approximated anyway and
read-write errors are small, quality is not greatly impacted. We
then give a “ticket-locking” (TL) mechanism on top of MR that
can flexibly avoid deadlocks, further increasing concurrency. (2)
To reduce the number of SP queries, we give an “insertion cache”
technique that requires only 2 or 2 + n single-source queries if
the road network graph is directed. (3) To improve the pruning
power, we give a “slack bubble” technique that considers the
arrival deadlines on all requests in a tour without needing to
perform tour expansion, taking advantage of fast lower bounding
using the euclidean metric. Experimental results show that these
techniques together can process hundreds of requests per second
on a commodity server even without an SP index, representing
about 7x improvement in throughput over the parallelized map
approach.

The rest of this paper is organized as follows. In Section II,
preliminary definitions are given. In Section III, related work is
presented. Then in Section IV, the locking schemes are given,
and in Section V, the caching and pruning techniques are given.
Experimental results are presented in Section VI, followed by
concluding remarks in Section VII.

II. PROBLEM STATEMENT

Table I lists the notation used throughout this paper.
Definition 1 (Ridesharing Request): A ridesharing request

consists of a departure location u, called the origin, and an
arrival location v, called the destination. This is represented by
an ordered pair, (u, v).

Definition 2 (Vehicle Tour): A vehicle tour consists of a
sequence of locations, each belonging to a unique request.
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TABLE I
NOTATION USED IN THIS ARTICLE

In the real world, passengers cannot be dropped off before
being picked up, imposing an ordering constraint on tours. If
origin u appears in a tour, then the corresponding destination v
must appear after it. A tour does not need to start and finish at
the same location.

Many optimization objects, including distance or duration [8],
[12], revenue [13], or utility [14], are calculated based on seg-
ments along the tours. We call this function d, so that the cost
of a tour, s = s1s2 . . . sn, becomes D(s) =

∑n−1
i=1 d(si, si+1).

In these studies, function d fundamentally performs an SPSP
query. The road network is modeled as a directed graph using
existing map-matching techniques such as [15], and the edges
are usually set as travel duration or distance along the matched
roads. The edges can also be dynamic to represent traffic, and
existing techniques can be used to answer SP queries on dynamic
road networks [16]. All request and tour locations belong to the
vertices in the graph.

Service providers aim to optimize ridesharing assignments
across a planning period, for example one business day. This
can be modeled as an online matching problem: Given a set
of ridesharing requests, R, that are revealed online, and a set
of vehicles with tours, S, that may be initially empty, assign
requests to vehicles such that the cost across the tours is a
minimum once all the requests have been revealed, subject to
constraints. When request (u, v) is assigned to a vehicle, the
vehicle tour is expanded to contain u and v.

The GreedySearch algorithm solves the online matching prob-
lem by greedily assigning each request one at a time. This is
formalized as the following local search problem:

Definition 3 (Ridesharing Search Problem): Given a set of
vehicles with tours, S, and a ridesharing request r, assign r
to the vehicle with minimum change in tour cost, subject to
constraints.

Typically, there are two constraints on the tours. The capacity
constraint represents the physical seating limitations of rideshar-
ing vehicles, and the deadline constraint represents limits on
travel duration.

Definition 4 (Capacity Constraint): Associate each tour with
a capacity, κ, and each request with a load. For each location in
a tour, add the load of the corresponding request to a running
sum if it is an origin, or subtract the load if it is a destination.
The sum must never exceed κ.

Definition 5 (Deadline Constraint): Associate each tour with
a timestamp, t0, indicating the start of vehicle service, and
associate each request with a pair of deadlines, ts and te. For
each location si in tour s, label it with T (i) = t0 if i = 1 or
T (i) = T (i− 1) + δ(si−1, si) otherwise, where δ(u, v) returns
the travel duration between u and v. For any i, and where ts

and te are the deadlines of the request corresponding to si: if
si is an origin, then T (i) ≥ ts must be true, otherwise if si is a
destination, then T (i) ≤ te must be true.

The T value represents the time that a vehicle visits a partic-
ular location. The “start time”, ts, is the earliest possible time
that a passenger can depart, and the “end time”, te, is the latest
acceptable time that a passenger can arrive at the destination.
Together, they form the delivery time window [8]. The duration
δ(u, v) can be found using travel time estimation techniques
such as [17]. It is impossible to guarantee that real vehicles will
visit tour locations exactly at the estimated times. Even so, the
deadline constraint is a useful model for limiting passenger travel
times which can lead to greater customer satisfaction.

To explain the later techniques, we introduce the concept of
“insertion pairs”. Insertion pairs denote where a new request
should be inserted into a tour.

Definition 6 (Insertion Pair): Given tour s = s1s2. . .sn, an
insertion pair for this tour is any pair (i, j) where 1 ≤ i ≤ n+ 1
and i ≤ j ≤ n+ 1.

Example 4 (Insertion Pairs): Let s = s1s2s3s4. Given re-
quest r = (u, v) and insertion pair (2,4), the expanded tour is
s1us2s3vs4.

III. RELATED WORK

A. Ridesharing Algorithms

Ridesharing services can take many forms. In the Dial-A-Ride
Problem (DARP), rides are requested in advance instead of
on-demand [18]. In the ridehailing problem, each vehicle serves
one passenger at a time like a taxi, modeled as a bipartite
mathing problem [19]. For centralized ridesharing as studied
in this paper, existing works can be classified as search-based
or join-based algorithms [20]. But as join-based algorithms are
generally slower than search-based algorithms, in this paper
we focus on search and its specific subroutines, namely tour
expansion and tour pruning. For completeness, we also mention
related work on vehicle pruning.

Search Algorithms: By far, the most popular search-based
algorithm is GreedySearch which assigns each request to its
locally optimal vehicle [4], [7], [8], [21], [22], [23]. Several
variants have also been studied, including [22], [23], [24],
[25] which searches for Pareto optimal solutions for a dual-
objective variant, [7], [14], [26] which aim to increase the
quality of the search via local minima escape mechanisms or
via demand-aware mechanisms, and [10], [27] which aim to
increase throughput by parallelizing the search. In this paper, we
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focus on parallelizing the core GreedySearch algorithm across
requests, not just parallelizing the search itself. Note that there
is no guarantee GreedySearch provides an optimally compet-
itive solution, but it is believed that there is no algorithm for
centralized ridesharing that has constant competitive ratio [4].

Tour Expansion: In [12], a tree-based index is used to speed
up exact tour expansion, later used in [24], [25]. But most works
use insertion-based tour expansion, which appears in [6] for
DARP and used in many later works. The O(n) DP algorithm
appears in [4] and is the basis for [7], [22], [23] and used in [28].
A speed-up technique involving precomputing parts of the tour
cost appears in [22], [23], [26].

Physical tour construction is usually performed by concate-
nating SPSPs across each segment of the tour. To avoid repeating
individual SP queries, several works make use of SP caches. For
example in [10], [27], an all-pairs SP cache is constructed so that
subsequent queries can be answered via O(1) lookup. But this
approach is memory intensive, and other works use a fixed-size
least-recently used (LRU) cache [4], [7], [12], [13], [26]. In this
paper, we propose an insertion cache that can be quickly primed
and relies on a more fine-tuned eviction mechanism compared
to LRU.

Tour Pruning: Infeasible tours can be pruned during tour
expansion. A naive “admittance” strategy is used in [8], [21],
where each candidate tour is checked for feasibility only after
it is already constructed. The “early termination” strategy used
in [4], [7], [10], [12], [14], [22], [23], [24], [25], [26], [27] works
by terminating tour expansion once a certain stopping condition
is met, thereby pruning all subsequent expansion candidates. For
example, one particular condition states that if T (i) + δ(si, u)
for request (u, v) exceeds the request deadline, then i cannot
be an insertion position. This prunes all the insertion pairs
(i, i), (i, i+ 1), . . . , (i, n). Even so, early termination still re-
quires at least partially evaluating a number of insertion pairs.
In this paper, we propose a slack bubbles technique that aims to
yield all feasible insertion pairs upfront.

Vehicle Pruning: Proximity-based pruning prunes all vehicles
outside a particular distance to the request origin, typically based
on the request deadline. In [8], [9], [21], [24], vehicle and
road network indexes are introduced to quickly prune vehicles
based on this principle. Another approach is cost-based pruning,
where the estimated tour cost of a vehicle is used as the pruning
condition. In [4], vehicles are processed in order of lower-bound
cost so that once the lower-bound cost of a vehicle exceeds the
true cost of an incumbent, then all vehicles lower in the order
can be safely pruned. This technique is also used in [7], [26].

B. Concurrency Control

In [10], a map-reduce framework is used to parallelize the
vehicle search loop of GreedySearch (lines 2–6 of Algorithm 1).
But this framework cannot be used to parallelize the requests as it
lacks any means of concurrency control. Instead, ridesharing as-
signment can be viewed analogously to a transaction as it results
in an update to the state of the system, and various techniques
are available from the database community for transaction
concurrency control including partitioning [29], optimistic or

pessimistic methods [30], [31], [32], [33], and methods based on
multi-versioning [11], [33]. Partitioning assigns worker threads
to distinct non-overlapping partitions, but this approach cannot
be adapted to the ridesharing problem because the vehicle tours
are hard to effectively partition. Pessimistic techniques such as
2PL use locks to prevent conflicts from arising in the first place
but suffer from reduced concurrency. Optimistic techniques
speculatively execute transactions in a lock-free manner, relying
on a pre-commit verification phase to detect data conflicts and
using aborts to avoid data corruption. But for ridesharing, each
search is expensive, making even a single abort hard to tolerate.
Multi-version schemes such as MVCC [11] store multiple ver-
sions of the same data record, allowing it to loosen the conditions
that cause abort while still retaining strong isolation guarantees.
But in addition to storage and maintenance overhead, they may
still exhibit frequent aborts under high contention. For these
reasons, we propose a pessimistic technique but with more
flexibility compared to 2PL.

IV. MAP-RELEASE AND TICKET LOCKING

The search loop of Algorithm 1 starting on line 2 is embarass-
ingly parallel on condition that the reduction is performed atom-
ically. This can be achieved under a local lock. But parallelizing
multiple instances of the search algorithm is not as trivial as
there can be contention for vehicle tours.

For ridesharing, write-write conflicts cannot be tolerated.
While a read-write conflict merely leads to a potentially sub-
optimal assignment, a write-write conflict erases a previous
assignment, causing an assigned customer to be suddenly unas-
signed. For read-write conflicts, tour expansions are approxi-
mated anyway and the error in the tour cost due to the conflict is
usually small. Hence, it may be worth it to sacrifice read-write
consistency for the sake of concurrency, if by doing so the
concurrency can be increased.

The “map-release” (MR) and “ticket locking” (TL) schemes
are both designed towards this aim, differing in the way that
deadlocks are managed. In MR, locks are acquired in a global
sort order, just as in many modern in-memory transactional
databases [33], [34], [35], [36]. This is a well-known deadlock-
avoidance technique, but it can lead to long locking periods.
In TL, worker threads acquire locks on a first-come first-serve
basis, and there is no global sort requirement. Free from the
need for read-write consistency, this simple technique is suffi-
cient to avoid deadlocks while reducing locking periods due to
more flexible lock acquisition. The basis for these techniques
is the “exclusive” locking scheme based on 2PL, which is able
to provide both read-write and write-write consistency. Fig. 3
illustrates the workflows for these three schemes.

A. Exclusive Locking

Exclusive locking shown in Fig. 3(a) is characterized by its
use of exclusive locks that block all access to the locked data
record, except for the owner of the lock. To maintain read-write
consistency during parallel vehicle search, all the locks must be
exclusive because the tour to update is not known at the time of
the request. Before the read phase, a lock for each of the tours
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Fig. 3. Workflows for different locking schemes.

Fig. 4. Task evolution under exclusive locking (a) and map-release (b) on an
instance with two request processing workers, W1 and W2, and three tours, s1,
s2, and s3. Each circle represents an ExpandTour task.

in the candidate set is acquired. Then following the write phase,
all the locks are released at once. To prevent deadlocks, locks
are acquired in a global sort order.

Exclusive locking has marginal overhead but it can cause long
locking periods when there is high contention.

B. Map-Release

Map-release (MR) allows a larger number of tours to be
simultaneously accessed by acquiring and releasing locks along
the way instead of all at once. The workflow is shown in
Fig. 3(b). Note that absence of a pre-acquisition phase compared
to exclusive locking. As soon as a tour is determined to not be
the reduction incumbent, the lock on the tour is immediately
released, allowing other workers to access the tour. This is
highlighted by the following example.

Example 5 (Map-Release): In Fig. 4 , each request processing
worker can perform an unlimited number of parallel ExpandTour
tasks. At time t1, worker W1 obtains locks on all three tours,
s1, s2, and s3, and at time t2, worker W1 decides that s2 is
the reduction incumbent for the request it is processing. Under
exclusive locking (Fig. 4(a)), W1 holds the lock on s1 until the
end of request processing, even though this tour is no longer
needed, but under MR (Fig. 4(b)), it can release this lock,
allowing W2 to acquire a lock on s1 and begin working on
it immediately.

Algorithm 2: GreedySearch(S, r) With Map-Release.

Input: vehicle tours S, request r
1: s∗ ← null, c∗ ← ∞
2: for s ∈ Prune(S, r) do
3: Acquire lock on s �
4: s′ ← ExpandTour(s, r)
5: c← Cost(s′)
6: if c < c∗ then
7: Release lock on s∗ �
8: s∗ ← s, c∗ ← c
9: else �

10: Release lock on s �
11: Update(S, s∗)
12: if s∗ 	= null then �
13: Release lock on s∗ �

Algorithm 3: GreedySearch(S, r) With Ticket Locking.

Input: vehicle tours S, request r, ticket queues Q
1: s∗ ← null, c∗ ← ∞
2: P ← processer identifier �
3: S ′ ← Prune(S, r)
4: Push a ticket into Q[s] for each s ∈ S ′ �
5: for s ∈ S ′ do
6: while Ticket neither first nor notified do �
7: Wait until notified �
8: s′ ← ExpandTour(s, r)
9: c← Cost(s′)

10: if c < c∗ then
11: Pop ticket for P from Q[s∗] and notify next �
12: s∗ ← s, c∗ ← c
13: else �
14: Pop ticket for P from Q[s] and notify next �
15: Update(S, s∗)
16: if s∗ 	= null then �
17: Pop ticket for P from Q[s∗] and notify next �

Algorithm 2 shows how MR is applied to request processing.
The new lines compared to Algorithm 1 are indicated by the
triangle symbol (�) on the right-hand side, showing the release
mechanism on lines 7, 10, and 13. For parallelizing ExpandTour
tasks inside the search loop on line 2, the task threads need to be
coordinated so that locks are acquired in the global sequence.
This can be done by moving lock acquisition out of the parallel
portion.

Under MR, read-write consistency is not guaranteed. If
worker W1 working on r decides that tour s is not the reduction
incumbent, the lock on s is released and is never reclaimed. If s
is subsequently updated by another worker while r is still being
processed byW1, workerW1 will not reevaluate s as a candidate
for r, even if s ends up being the best tour for r as a result of
the update.
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Fig. 5. Task evolution under map-release (a) and ticket locking (b) on an instance with three request processing workers, W1, W2, and W3, and three tours, s1,
s2, and s3.

C. Ticket Locking

When the reduction incumbent for all requests is always
the first evaluated tour, map-release degenerates into exclusive
locking because of its reliance on the global lock order, as
shown in Fig. 5(a). To overcome this issue, ticket locking (TL)
arranges tour expansion tasks in a more fine-grained way in
order to improve concurrency while still providing write-write
consistency. To achieve this, the global lock order is replaced
with a “ticket order” that is based on the needs of the individual
requests. The workflow is shown in Fig. 3(c).

As shown in Algorithm 3, prior to calling GreedySearch, a
“ticket queue” is constructed for each tour. Then during the
search, a “ticket” is placed into the corresponding queue for
each vehicle candidate (line 4). If a ticket for s is at the head
of its queue, then tour expansion is performed on s (line 8);
otherwise, the algorithm enters a wait cycle, exiting the cycle
once the ticket is “notified” (lines 6–7). On line 10, the ticket
for s is guaranteed to be at the head of its queue. If this line
evaluates to false, then the ticket is popped from the queue, and
any tickets remaining in the queue move up by one spot. If there
is a new ticket at the head of the queue, it is notified, causing the
worker holding this ticket to advance (line 14). But if this line
evaluates to true, the ticket remains in the queue, and any ticket
associated with the reduction incumbent is popped instead (line
11). If s∗ is not null once all tours have been evaluated, then the
ticket associated with s∗ is released after this tour is updated.

Example 6 (Ticket Locking): In Fig. 5, at time t1, worker W1

works on all three tours, s1, s2, and s3. Under MR (Fig. 5(a)),
these tasks are performed under a lock, whereas under TL
(Fig. 5(b)), these tasks proceed because the ticket for W1 is
at the head of the queues for each of the tours, Q(s1), Q(s2),
and Q(s3). At time t2, worker W1 decides that tour s1 is the
reduction incumbent for the request it is processing. Under MR,

while s2 is no longer needed by W1 and there is a task on s2
for worker W3, worker W3 cannot acquire the lock on s2 before
acquiring the lock on s1 due to the global lock order. But under
TL, it can freely work on s2 because it is the next worker in the
Q(s2) queue.

D. Discussion

Exclusive locking provides serializable isolation as it is essen-
tially 2PL. On the other hand, while both MR and TL provide
a serializable write order to avoid errors such as overloading a
vehicle, they do nothing to prevent non-repeatable or phantom
reads, and there are also no mechanisms for preventing dirty
reads. Hence, they can only offer read uncommitted isolation.

V. CACHING AND PRUNING

The insertion cache exploits a pattern in the insertion pairs
to reduce the SP query burden while slack bubbles exploit the
deadline constraint to prune these pairs. An insertion cache
reduces the SP query burden to just 2 or 2 + n single-source (SS)
queries, depending on if the road network graph is undirected
or directed. Slack bubbles reduce the cost of tour expansion
by pruning the insertion pairs that are guaranteed to lead to a
deadline constraint violation. Each bubble is easy to construct,
is updated only when s changes, and each of the pairs is checked
against the pruning condition in O(1) time.

A. Insertion Cache

Insertion cache stores useful SP segments in local memory so
they can be reused instead of re-queried. The key observation for
the insertion cache is that all SPSP queries needed by insertion-
based tour expansion are known at the time of the call, and they
all can be found using a small number of SS queries, as shown in
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Fig. 6. Forward (blue) and backward (green) SS queries for finding all seg-
ments in Fig. 2.

Fig. 6. Answering SS queries to a number of targets is trivially
guaranteed to be just as fast, and in practice many times faster,
than answering multiple single-pair queries to each of the targets.

The cache stores d(s1, s2), d(s2, s3), . . . , d(sn−1, sn) for
each tour in global shared memory accessible by all workers.
When ExpandTour(s, r) is called, it finds the answers to the new
segments involving the departure u and arrival location v and
stores these in local memory. Any single-source SP algorithm
can be used to prime the cache, including an SP index. If the
search operation returns s as the distance-minimizing tour, then
the new segments for s that are created by inserting r into s are
added to the permanent store. In any case, the answers in local
memory are discarded.

There is a minimum number of segments needed to find
the cost of all tour expansion candidates. In addition to the
permanently cached segments, all tour candidates require only
a few new segments in order to evaluate their cost. These
are the “forward segments,” us1 . . . usn and vs1 . . . vsn, and
the “backward segments,” s1u . . . snu and s1v . . . snv. Clearly,
these segments can be found by a small number of SS queries.
If the road network graph is undirected, only two SS queries
are needed, one from u with each si ∈ s as a target and also
including v as a target, and one from v with the same targets. If
the graph is directed, n additional queries are needed, one from
each si and with u and v as the targets.

Example 7: In Fig. 7, requests (A, B), (C, D), and (E, F) are
successively inserted into an initially empty tour. At time t1, to
insert (A, B), there is only a single tour expansion candidate AB,
and the cost d(A,B) is found and stored in the global cache. At
time t2, to insert (C, D), there are 9 new segments across all
the possible tour candidates. The cost of each segment is found
by issuing two single-source (SS) queries, one originating from
C and the other from D, to get the cost of forward segments,
and then two additional SS queries to get the cost of backward
segments. The minimum-cost tour is found using the costs in
local memory in addition to the costs in the global cache, and
it turns out to be ACDB. The segments AC, CD, and DB are
stored into the global cache. At time t3, to insert (E, F), there are
17 new segments across all the possible tour candidates. Once
again, the cost of each segment is found using 2 + n = 6 SS
queries.

B. Slack Bubbles

Slack bubbles aim to prune infeasible insertion pairs. As each
location in the tour must be visited within a certain time window,
a proximity-based pruning rule can be extended across all the
segments in the tour. As each segment consists of two endpoints,

Fig. 7. Tour expansion workflow for a directed road network using insertion
cache over requests (A, B), (C, D), and (E, F).

Fig. 8. Example slack bubbles. Request (u, v) is being inserted into tour
s1s2s3s4. As u is covered only be the E2 bubble, it can only be inserted
between s1s2. Likewise as v is covered by both the E3 and E4 bubbles, it can
only be inserted between the second and third segments. The feasible insertion
pairs are thus (2, 3) and (2, 4). The E1 bubble shows the convention proximity
range around u for proximity pruning.

the proximity range is elliptical. The departure and arrival loca-
tions of a new request can only be inserted between the segments
where the ellipse of the segment covers the location. This allows
discarding all insertion pairs corresponding to segments that do
not meet this condition, as shown in Fig. 8.

We derive the widths of each ellipse, or “bubble”, based on
the deadline constraint and using euclidean distance as a lower
bound for travel distance, combined with an estimate of vehicle
speed, to yield a lower bound on travel duration.

Definition 7 (Slack Bubble): The slack bubble Ei for seg-
ment (si−1, si) of tour s, where 2 ≤ i ≤ |s|, is the ellipse
Ei = {p ∈ R2 : ||si−1 − p||2 + ||p− si||2 ≤ 2α} where 2α =
d(si−1, si) + ζ(i)ν.

Here, R are the real numbers, || · ||2 is euclidean distance, and
ν is the estimated vehicle speed. Function d returns a distance
in this case to give the spatial region of the ellipse.
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To find the radius 2α, we use the slack array, ζ, from [4].
Briefly, given tour s = s1s2 . . . sn, let (ui, vi) be the request
associated with si, and let (ts)i and (te)i be the deadlines
associated with this request. We restate the definition of the slack
array, ζ, using the concept of slack time.

Definition 8 (Slack Time [6]): The “slack time,” ξ(i), of
location si ∈ s is ξ(i) = T (i)− (te)i − δ(ui, vi) if si = ui, or
ξ(i) = (te)i if si = vi.

The “slack array”, ζ(i), associated with s is ζ(i) =
mini≤k≤n(ξ(k)). This array is constructed in O(n). The array
and bubbles are constructed only when a tour is updated.

Correctness: To show the correctness of slack bubbles, we
first restate the conditions that cause the deadline constraint to be
violated respective to the insertion pair, (i, j). These conditions
are well-known. From [4] and elsewhere, given s = s1s2. . .sn,
insertion pair (i, j), and the slack array for s, the deadline
constraint is violated:
� If i = j and

T (n) + ΔD > (te)j if j = n+ 1, or (1)

ΔD > ζ(j) otherwise; (2)

� If i 	= j and

ΔDi > ζ(i) or (3)

T (n) + ΔDj > (te)j if j = n+ 1, or (4)

ΔDj > ζ(j) if j < n+ 1. (5)

Here are the ΔD equations, also restated from [4]. For
brevity, let /s1s2 . . . sn/ mean δ(s1, s2) + δ(s2, s3) + · · ·+
δ(sn−1, sn). First, if i = j, then ΔD = /uvsj/ if j = 1, or
/sj−1uv/ if j = n+ 1, or /sj−1uvsj/ otherwise. But if i 	= j,
then ΔD = ΔDi +ΔDj , where

ΔDi =

{
/si−1usi/− /si−1si/ if i > 1, or
/usi/ if i = 1,

(6)

ΔDj =

{
/sj−1vsj/− /sj−1sj/ if j < n+ 1, or
/sj−1v/ if j = n+ 1.

(7)

Lemma 1: A vehicle is traveling along the tour s1s2. . .sn
at speed ν. If while traveling from si−1 to si, for any i where
2 ≤ i ≤ n, it exits the slack bubble Ei, then it cannot possibly
arrive at si before the deadline on si.

Proof: We just need to show that any of (2), (3), or (5) is true
when the vehicle exits the bubble.

Suppose the vehicle passes through two points, u and v, while
traversing si−1 to si. The minimum travel distance occurs when
u = v. In this case, the deadline on si is violated if d(si−1, v) +
d(v, si) > d(si−1, si) + ζ(i)ν by combining (6) and (3). If this
condition is violated, then any case where d(u, v) > 0 will
also violate this condition. The right-hand side of this expres-
sion equals the width of the slack bubble and the proof is
complete. �

Pruning: To find the feasible insertion pairs for request (u, v),
we scan all the bubbles twice, once to check which bubbles cover
u (by substituting coordinates of u for p in the condition of
Definition 7) and again to check which bubbles cover v. While
this isO(n), each check uses euclidean distance and is fast. Then,

we join the indices of the bubbles to get the insertion pairs. All
other pairs are safely pruned.

VI. EXPERIMENTS

We first evaluate the caching and pruning techniques, then
evaluate the locking schemes, and finally evaluate the perfor-
mance on real-world instances.

Implementation: We implement all algorithms in Julia 1.8.5
on a Ubuntu 20.04.4 machine with eighty Intel Xeon Gold
6242R@3.10 GHz logical cores. Julia is a dynamic high-level
programming language capable of C language performance due
to its compiler. For SP queries, we use index-free Dijkstra’s
algorithm with a priority queue. It is possible to use an SP
index or time-dependent routing index to speed up these queries.
But some smaller real-world platforms may use a third-party
provider such as Google Maps to answer SP queries instead of
maintaining accurate road network indexes themselves, leading
to expensive queries. Hence to better illustrate the magnitude of
savings offered by our caching and pruning techniques, we elect
to use an index-free approach.

Data Sets: We derive realistic problem instances by using
real-world taxi trips taken in Chengdu, China. Our instances are
comparable to those in [4]. In total, there are around 500,000 raw
taxi trips occurring within the period of one day. We chronolog-
ically sample from these trips to build instances with varying
numbers of requests and with realistic spatiotemporal distribu-
tions. To set the starting locations of the tours, we randomly
sample from the trip origins. To set travel deadlines, we use
a unitless factor, which we call the “delay tolerance,” τ . For
request (u, v), the deadline is set to the time that the request is
released plus the amount τ · d(u,v)ν , where τ ≥ 1. The speed ν
is set to 10 meters per second.

The road network is available from [15]. There are 18,300
nodes and 52,224 directed edges in the graph. The average time
to answer a single-pair query on this graph using our Dijkstra
implementation is around 10 ms.

A. Caching and Pruning

The running time of tour expansion depends on the length of
the given tour. To evaluate the insertion cache and slack bubbles,
we design two special test instances. The first instance (n = 100,
m = 100, τ = 100, κ =∞) used to evaluate the cache elicits
a wide range of tour lengths, simulating large-capacity vehicles
and long chains. The second instance (n = 1000,m = 100, τ =
1.4, κ =∞) used to evaluate slack bubbles is a more realistic
instance designed to produce infeasible insertion pairs across a
range of tour lengths.

Insertion Cache: We compare against three differently sized
LRU caches, LRU100, LRU1k, and LRU10 k, sized with 100,
1,000, and 10,000 cache slots per vehicle, respectively. On our
test instance, we observed no difference beyond around 10,000
cache slots. Normally, one LRU serves as a global cache. But we
observed that a global cache experiences a high rate of evictions
as certain long-tour vehicles contend for the limited slots. Hence
to make the experiments more comparable, we attach a local
LRU per vehicle instead of using a global cache.
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Fig. 9. Comparison of SP caching strategies on an (a) undirected and
(b) directed road network.

Fig. 10. Memory usage of SP caches.

Fig. 11. Early termination and slack bubble insertion pair pruning strategies
with (b) and without (a) SP cache.

Fig. 9 shows the running time of tour expansion along with
best-fit lines. The observed linearity agrees with the O(n) com-
plexity of DP tour expansion. For insertion cache (ICache), the
time includes the time for priming the cache. On the undirected
graph, ICache achieves over 10x speed-up for long tours com-
pared to the next best, LRU10 k (Fig. 9(a)). On the directed
graph, ICache delivers about 5x speed-up for long tours com-
pared to LRU10 k (Fig. 9(b)). With LRU, a cache miss as a
result of a never-before seen query or as a result of eviction
leads to a new SP query. But with ICache, there are no cache
misses, and the cache itself is primed using fast SS queries.
On our machine, one SS query to 100 targets takes only 30 ms
compared to 1,000 ms for 100 single-pair queries to the same
targets.

Fig. 10 shows memory usage measured during execution.
Over time, LRU retains many SPs that are no longer necessary.
But ICache discards unnecessary SPs after each tour expansion,
leading to a small memory footprint.

Slack Bubbles: Fig. 11 shows the running time of tour ex-
pansion under early termination and under slack bubbles, along

with regression curves to the nearest logarithm. We expect long
tours to yield fewer feasible insertion pairs, hence the log shape.
When there is no SP cache (Fig. 11(a)), slack bubbles achieves
about 5x speed-up for long tours compared to early termination.
Early termination requires entering the tour expansion loop and
performing SP queries to decide whether or not to continue eval-
uating an insertion pair, but slack bubbles yields all the feasible
pairs upfront, avoiding these queries. Interestingly, when there is
a cache (Fig. 11(b)), the two techniques yield equivalent running
times, indicating that the main bottleneck is by far the cost of
SP queries.

B. Locking Schemes

We introduce a realistic test instance (n = 1000, m = 4000,
κ = 3) to evaluate the locking schemes. Locking schemes are
affected by the degree of contention, so to elicit different levels
of contention, we vary τ between 1.2 and 1.8. During vehicle
search, we use conventional proximity pruning to obtain vehicle
candidates. The number of candidates is small at low τ , so
the chance that any two requests share the same candidates is
also small, leading to low contention. At high τ , the chance of
shared candidates is much greater, leading to high contention.
We observe that when τ = 2.0, around 95% of the vehicles are
candidates, leading to full contention. To evaluate the scalability
of different locking schemes, we vary the number of processors.
We conduct all experiments in batch mode, where all requests
are released at the same time, and we report throughput as the
number of requests in a batch divided by the total time.

We compare exclusive, MR, and TL in addition to MVCC
and a single-worker baseline. For all approaches, we perform
vehicle search serially or in parallel. Request assignment is
performed serially for single-worker and in parallel for all other
approaches. For all approaches, we use DP tour expansion, early
termination tour pruning, and an LRU cache. In other words, we
do not use any new techniques for tour expansion, pruning, and
caching, and the only difference is the locking scheme. Fig. 12
shows the results, along with regression curves to the nearest
logarithm. For MVCC, we observed that some requests with
many candidates repeatedly abort, leading to “livelocks”. To
avoid these situations, we cap the amount of aborts to up to
three. In other words, if a request is not assigned after three
aborts, we drop the request.

Effect of Contention: Under low contention, when vehicle
search is conducted serially (Fig. 12(a)), MR yields the highest
throughput followed by MVCC. But when vehicle search is con-
ducted in parallel (Fig. 12(b)), TL yields the highest throughput,
followed by exclusive locking. There are several reasons for this
reversal. First, MR acquires locks in a global order, which re-
quires synchronizing across vehicle processing threads. Second
for MVCC, parallelizing vehicle search introduces thread-level
contention, increasing the risk of aborts. Third, exclusive locking
performs well under low contention because the locks rarely
block other workers.

Under high contention, the same general observations hold,
except that exclusive locking and MVCC perform significantly
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Fig. 12. Scalability under low (a, b) and high (c, d) contention.

Fig. 13. Effect of delay tolerance (a, b, c) and core count (d, e, f) on throughput across various request and vehicle ratios.

TABLE II
SCENARIO PARAMETERS (DEFAULTS IN BOLD)

worse, especially when vehicle search is conducted in parallel
(Fig. 12(d)). This is due to the high amount of blocking in the
case of exclusive locking and the high amount of aborts in the
case of MVCC. A side effect of high τ is that more vehicles and
tours become feasible, explaining the overall lower throughput.

Scalability: Under serial search, scalability comes solely from
the multiple workers. As shown in Fig. 12(a)(c), MR, TL, and
MVCC all achieve logarithmic scaling while exclusive and
single-worker algorithms do not scale. Under parallel search,
scalability also comes from parallelizing vehicle search. In this
case, exclusive locking and single-worker algorithhms do exhibit
logarithmic scaling. The lack of scalability for MR is caused by
lock synchronization across vehicle threads.

C. Real-World Performance

Our real-world baselines consist of the state-of-art single-
worker algorithms pruneGreedyDP [4] and STaRS [10], and
we include an algorithm called MVCC-Assign to serve as a
multiple-worker baseline, retaining the hard limit of three aborts
as before. We compare these baselines against a multiple-worker

algorithm, TicketAssign, that is the same as MVCC-Assign
except using TL instead of MVCC, and TicketAssign+, that is the
same as TicketAssign but replaces early termination and LRU
with slack bubbles and insertion cache. Table III summarizes
these algorithms. We consider three scenarios, one with many
vehicles and few requests (n < m), one with equal numbers of
vehicles and requests (n = m), and one with few vehicles but
many requests (n > m). Other parameters are shown in Table II.

Figs. 13 and 14 report performance and quality characteristics
of the algorithms. For performance, we report throughput as a
multiple of that achieved by pruneGreedyDP, and we report the
average request latency in Fig. 14(g),(h),(i). As all requests are
released at once in a batch, the latency for one request is the
duration between the start of the batch and when the request
completes processing. For quality, we report the number of
assignments as a percentage of n, and we report the normalized
distance as the sum tour distances divided by the number of
assignments. We use normalized distance as an indicator of
tour characteristics. For example, for the same number of as-
signments, a larger normalized distance indicates more distance
traveled per passenger meaning costlier tours.

Effect of Number of Requests and Vehicles: When n < m
there is less contention for tours, and as Fig. 13(a) shows,
MVCC-Assign is able to achieve slightly greater throughput than
TicketAssign in some cases. But this result highly depends on the
abort limit. In any case, when n grows, MVCC-Assign through-
put begins to drop (Fig. 13(b)). Tours also get longer, slowing
down tour expansion. This effect can be seen from STaRS
throughput becoming closer to pruneGreedyDP in Fig. 13(c).
But even in this case, TicketAssign+ vastly outperforms both
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TABLE III
COMPARED ALGORITHMS. ALGORITHMS IN BOLD USE TECHNIQUES INTRODUCED IN THIS ARTICLE

Fig. 14. Effect of delay tolerance on assignments (a, b, c), distance (d, e, f), and latency (g, h, i) across various capacities.

STaRS and pruneGreedyDP due to the insertion cache and slack
bubbles.

Effect of Delay Tolerance (τ ): Large τ leads to more vehicle
candidates and longer tours, culminating in greater latency as
shown in Fig. 14(g), (h), (i). Large τ also leads to higher
contention. Fig. 13(a), (b), (c) show that the throughput of all
algorithms stay at similar levels relative to pruneGreedyDP,
except for TicketAssign+ which increases its relative advantage
to pruneGreedyDP due to more efficient tour expansion.

Fig. 14(a), (b), (c) show that assignments increase as τ in-
creases due to more feasible tours, while Fig. 14(d), (e), (f)
show that normalized distance also increases due to longer tours
and more chains. MVCC-Assign reaches its abort limit more
frequently under high τ , leading to decreased assignments and
decreased normalized distance, as it can only manage to pro-
duce short tours. Interestingly, TicketAssign and TicketAssign+
yield greater normalized distance compared to pruneGreedyDP
and STaRS while yielding the same number of assignments,
indicating that the tours they produce are costlier, perhaps due
to read-write errors. The worst-case difference is around 1 extra
kilometer per passenger.

Scalability: As shown in Fig. 13(d), (e), (f), STaRS stops
scaling after about 8 cores while the multiple-worker algorithms
all scale beyond 8 cores.

Effect of Tour Capacity (κ): Larger κ increases the possibility
of sharing. As shown in Fig. 14(d), (e), (f), increasing κ from
3 to 12 causes the normalized distance to decrease slightly, by
about 0.3 kilometers per passenger, for all algorithms except
MVCC-Assign.

D. Discussion

We offer the following takeaways. (1) Reducing SP queries is
more useful for lowering latency than tour pruning, and a cache
can avoid issuing new queries. If memory permits, an all-pairs SP
cache, as in STaRS, is most effective. Otherwise, insertion cache

is targeted at ridesharing and is preferred over LRU. (2) For low
contention workloads, exclusive locking achieves high through-
put while offering serializability. If serializability is not neces-
sary, TL can increase throughput but produces costlier tours. (3)
For high contention workloads, MVCC suffers from too many
aborts. Instead, TL can substantially increase throughput while
achieving high assignments, but again with costlier tours. (4) If
the request rate is not too high, then pruneGreedyDP or STaRS
can offer better tours while also achieving high assignments.

Future Work: We mention three areas for future work. First,
insertion cache assumes that the cost of a segment is independent
of the ordering of the segment in the tour. This precludes it from
order-dependent cost functions such as for time-dependent road
networks [37], requiring a new priming mechanism. Second,
MR and TL cannot be used for applications with a need for
strong read-write consistency. However, they may be other
applications where this requirement can be relaxed, for example
other matching and planning problems such as those listed
in [38]. Third, as mentioned in Section III, how to extend our
techniques to other algorithms including demand-aware search
algorithms such as [7], [26], join-based algorithms such as [13],
[28], [39], and other tour expansion techniques such as [23]
remains another area of future work.

VII. CONCLUSION

In this paper, we give techniques to speed up and scale out
ridesharing search. The insertion cache uses fast cache priming
to reduce the burden of shortest-path queries, while slack
bubbles can be used to prune infeasible tour expansions. The
map-release and ticket locking schemes sacrifices read-write
consistency in order to increase the concurrency of request
assignment. Ticket locking scales well with the number of
processors, and together, these techniques outperform existing
approaches across a wide range of instances.
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