
CloudyBench: A Testbed for A Comprehensive
Evaluation of Cloud-Native Databases

Chao Zhang
§
, Guoliang Li∗, Leyao Liu†, Tao Lv‡, Ju Fan

§

∗Tsinghua University, §Renmin University of China,†Imperial College London,‡China Software Testing Center
cycchao@ruc.edu.cn, liguoliang@tsinghua.edu.cn, leyao.liu24@imperial.ac.uk, lvtao@cstc.org.cn, fanj@ruc.edu.cn

Abstract—As more and more on-premise databases are moving
towards the cloud service, it is crucial to have a benchmark
to holistically evaluate the performance of their core features
including elasticity, multi-tenancy, and cost-efficiency. However,
existing benchmarks lack specific workload patterns and metrics
for evaluating cloud-native databases, and the real workload is
often unavailable due to privacy requirements.

In this paper, we propose a new testbed for cloud-native
databases, named CloudyBench. Its core contribution is to
provide tailored workloads and metrics to evaluate the service
quality of cloud-native databases in various dimensions. First,
we design cloud-native workload patterns with peaks and valleys
for elasticity evaluation. Second, we devise new multi-tenancy
patterns by posing varied resource contention to evaluate the
resource scheduling among tenants. Third, we propose a uni-
fied metric that considers performance, cost, elasticity, multi-
tenancy, replication lag time, and fail-over. Fourth, we provide
an evaluation testbed for evaluating cloud-native databases. To
verify the effectiveness of CloudyBench, extensive experiments
have been conducted over five commercial representatives from
multiple cloud providers. We also obtain a number of insights
for the performance implications of cloud-native databases from
the architectural perspective.

I. INTRODUCTION

Recently, we have witnessed a proliferation of cloud-native
databases (CDB) that seek for higher elasticity and lower
cost by developing new database techniques in the cloud [8],
[45]. CDBs own the disaggregation of compute and storage
architecture [38], [39], [16], [41], [18], which decouples
the storage from the compute nodes, and then connects the
compute nodes to the shared storage through a high-speed
network. The compute layer consists of a primary read-write
(RW) node and multiple secondary read-only (RO) nodes,
where each node has a local cache. Further, the disaggregated
memory architecture decouples the memory from the local
instance to a remote buffer pool. Consequently, CDB claims to
provide better elasticity and multi-tenancy service, higher cost-
efficiency, and superior transaction processing performance.
However, it is not clear under what circumstances there
is a significant benefit of using a CDB compared with the
AWS Relational Database Service (RDS). To answer such
a question, we, in this work, make the first comprehensive

Guoliang Li is the corresponding author. This paper was supported by
National Key R&D Program of China (2023YFB4503600), NSF of China
(62232009, 62436010, 62441230, 62436010). Thank database teams of
GaussDB, PolarDB, TDSQL-C, Dameng, OceanBase, and GoldenDB for the
help of benchmark design and evaluation.

investigation of CDB’s key features by proposing a new end-
to-end benchmark, named CloudyBench.

Database benchmarking [12], [35], [36], [5], [9], [22], [44],
[47], [46], [4], [17] is a common practice for evaluating the
database performance. Since the real workload is unavailable
and there is a dearth of benchmarks for cloud-native databases,
many practitioners tried to utilize established database bench-
marks such as TPC-C [35], YCSB [5], and SysBench [15]
to evaluate the cloud-native databases. Unfortunately, existing
benchmarks are unsuitable for benchmarking CDBs as follows:

Motivation 1: Elasticity Evaluation. The real-world work-
loads of many applications usually fluctuate unexpectedly
(e.g., peaks and valleys), and the cloud vendors have rolled
out the elastic data service that can dynamically schedule
the resources to the varied workloads on demand. Existing
benchmarks lack the elasticity evaluation and they can not
readily vary the workload patterns at runtime. To address such
a problem, we develop an elasticity evaluator that can generate
customized patterns with peaks and valleys to evaluate the
elasticity of the cloud data services.

Motivation 2: Multi-Tenancy Evaluation. When deploy-
ing on-premise databases, the hardware resources are bound to
the fixed customers, leading to a waste of idle resources. With
multi-tenancy [24], the cloud data service could dynamically
schedule resources to different tenants based on their needs
and priorities so as to achieve better resource utilization.
Existing benchmarks do not support multi-tenancy evaluation,
failing to simulate various degree of resource contention
among multiple tenants. Consequently, we develop a multi-
tenancy evaluator to quantify the CDB’s performance with
interweaving workloads from multiple tenants.

Motivation 3: Holistic Metric. Existing benchmarks fall
short of metrics in two aspects. First, they pay most attention to
performance such as latency and throughput but lack tailored
metrics to quantify the resource cost in the cloud including
CPU, memory, I/O, and network. Second, they lack a unified
metric that can make a horizontal comparison among the
CDBs in a holistic way. To this end, we design a unified
metric, taking into account performance, elasticity, multi-
tenancy, resource cost, data replication and fail-over. These
factors are chosen because they reflect the most important
aspects of service quality of CDBs.

Challenges. There are three main challenges for bench-
marking CDBs. First, elasticity and multi-tenancy are two
critical features of CDBs, but it is non-trivial to design

TABLE I
A COMPARISON BETWEEN CLOUDYBENCH AND EXISTING OLTP BENCHMARKS

Features SysBench YCSB TPC-C CDSBen[48] Stitcher[40] CloudyBench
Domain-Specific Cloud-Native Application × × × × ×

√

OLTP Evaluation with ACID
√ √ √

× ×
√

Elasticity Evaluation with Peaks and Valleys × × ×
√ √ √

Multi-Tenancy Evaluation with Contention Patterns × × × × ×
√

Fail-Over Evaluation with Built-in Module × × × × ×
√

Replication Lag Time Evaluation × × × × ×
√

Cloud-Native Metrics with Performance and Cost × × × × ×
√

representative workloads that can quantify the performance
of elasticity and multi-tenancy of existing CDBs effectively
(C1). Second, different cloud vendors have different hardware
environments and pricing models, and it is challenging to com-
pare the performance and cost-efficiency of different vendors
simultaneously (C2). Third, different CDBs have their pros
and cons, and it is challenging to design a unified metric
for a horizontal comparison (C3). To address C1, we design
foundation deterministic patterns and assemble them to cover
representative patterns with peaks and valleys, allowing users
to evaluate the elasticity and multi-tenancy in an effective and
economic way. To address C2, we calculate the cost from the
resource perspective by defining the standard price based on
the resource unit cost of CPU, memory, I/O, and network,
allowing us to evaluate the CDB’s performance and cost-
efficiency in a unified framework. To address C3, we devise a
unified metric to quantify the CDBs’ performance from seven
dimensions considering performance, cost, elasticity, multi-
tenancy, fail-over, and replication lag time.

In this paper, we propose an end-to-end benchmark for
cloud-native databases, named CloudyBench. As shown in
Table I, it is the only one covering all the seven salient features.
First, we design a SaaS scenario of sales microservice that
contains typical read/write transactions in a cloud application.
The access distribution and pattern of transactions can be
controlled to evaluate the cloud-based OLTP performance and
replication lag time. Second, we design basic elastic workload
patterns to evaluate the elasticity with specialized peaks and
valleys. Third, we design basic multi-tenancy patterns to
measure the capacity of resource scheduling among multiple
tenants. Fourth, we develop a fail-over evaluator that can
inject the node failure and report the fail-over performance
automatically. To the best of our knowledge, this is the first
benchmark that can evaluate the performance of throughput,
elasticity, multi-tenancy, cost-efficiency, and fail-over with
tailored workloads and metrics for CDBs.

The main contributions are summarised as follows:
1) We made an in-depth investigation on the key features of

various state-of-the-art cloud-native databases.
2) We designed an end-to-end benchmark and a testbed to

evaluate the key features of cloud-native databases, includ-
ing elasticity, multi-tenancy, and cost-efficiency. The code
is open-sourced at Github.

3) We proposed a unified metric to quantify the service quality
of cloud-native databases by considering the performance,
cost, elasticity, multi-tenancy, lag time, and fail-over.

4) We obtained a number of insights by leveraging
CloudyBench to evaluate five cloud data services.

II. CLOUDYBENCH BENCHMARK

To evaluate the core features of CDB, we develop a new
testbed based on a scenario of cloud-based microservice. First,
we design typical operations to evaluate the disaggregated
transaction processing with controllable access distribution. It
also enables to evaluate the replication time independently.
Second, we design basic deterministic elasticity patterns with
peaks and valleys. Third, we also devise basic representative
multi-tenancy patterns to evaluate the resource scheduling
with the multi-tenancy deployment. Fourth, we develop a fail-
over evaluator to test the recovery speed concerning node
failure. Finally, we define seven metrics to quantify the CDBs’
service quality, we also design a unified metric to enable a
horizontal comparison. In order to simulate the real work-
load, the designed workloads have referenced the workload
characteristics in real cloud OLTP applications (such as ERP
microservice [19] and E-Commerce application) [43].

Figure 1 depicts an overview of CloudyBench, including
the data generation, workload manager, elasticity evaluator,
multi-tenancy evaluator, OLTP evaluator, fail-over evaluator,
performance collector, and metrics. Given a configuration file,
data is generated based on the scale factor and the workload
manager spawns the workers based on the concurrency and
access distribution. The workload consists of basic CRUD
transactions (T1-T4), which are used to evaluate the through-
put and replication lag time. They also serve as the base
for generating the elasticity and multi-tenancy patterns with
read and write operations. Lag time evaluation measures the
replication latency. Elasticity generator will produce an elastic
workload for each tenant. Multi-tenancy evaluator concur-
rently runs the workloads from multiple tenants. Fail-over
evaluator tests the recovery speed by injecting node failures.
Performance collector accumulates the performance metrics
and corresponding cost.

CloudyBench is extensible for adding new patterns and
OLTP workloads. To extend elasticity and multi-tenancy pat-
terns, users can simply modify the length of elastic testTime
(e.g., 4) and add corresponding concurrency in the props
file. (e.g., fourth con), then modify the CloudyBench class to
launch the new patterns. For fail-over pattern, it supports to
add more replicas in the props file, then it can pose fail-over
test on any node. Since the framework has decoupled the SQL
statements, new workload can also be readily incorporated

2

https://github.com/Rucchao/CloudyBench2024

Configuration File

Data
Generation

Cloud-Native Databases

Multi-Tenancy Evaluator

Workload
Manager

Performance Metrics

Fail-Over
Evaluator

Performance
Collector

P-Score E1-Score R-Score F-Score
C-Score T-ScoreE2-Score

Elasticity Evaluator
Single
Peak

Large
Spike

Single
Valley

Zero
Valley

O-Score

Cloud OLTP Evaluator

T1

High Contention Low Contention

Staggered Low Staggered High

Lag Time
EvaluationT2 T3 T4

Fig. 1. CloudyBench Overview

23

CDEFGHI

Sales Service (S)Manufacturing Service (M) Inventory Service (I)

MC=A=I <

!

Order

OrderLine Customer

Warehouse

Region StockProductPart

ProductLine

DB Instance
M1

DB Instance
I1

DB Instance
S1

DB Instance
Mn

DB Instance
In

DB Instance
Sn

?@ABCDE?F@CGA ?@ABCDEHAIAJAKC ?@ABCDE?CBLCB

MC=A=I > MC=A=I N MC=A=I =

Cloud-Native Database

!

Fig. 2. MicroService in CloudyBench

by adding the statements in stmt db.toml and modifying the
classes of SqlReader and Sqlstmts.

A. MicroService Schema and Data Generation

Software as a service (SaaS) applications are prominent
in the cloud. Common examples are Salesforce [33], Mi-
crosoft 365 [31], and Shopify [32]. SaaS applications normally
adopt the microservice architecture. However, microbench-
marks such as SysBench [15] and YCSB [5] contain sim-
ple read/write operations on single table, and lack specific
transaction logic for evaluating CDB. Consequently, we de-
sign a cloud-native application, simulating modern SaaS ERP
applications like Salesforce [33] and ODOO [11]. As shown
in Figure 2, it contains three microservices, manufacturing
service, inventory service, and sales service. Tenants can
share schema/database/server among the services. It has two
advantages. First, the schema mimics the real cloud-native
sales application. Second, it contains realistic transaction logic
that involves multiple tables, posing a larger challenge than
microbenchmark on OLTP. In this work, we focus on the sales
service, we will add the microservicse of ”Manufacturing” and
”Inventory” in the future. Specifically, the sales schema con-
tains three tables (CUSTOMER, ORDER and ORDERLINE),
and the workload simulates the typical operations in the cloud
(e.g., make online orders and payments, check the status). The
scaling model makes the ORDERLINE table being an order
of magnitude larger than the CUSTOMER table and ORDER
table, with a same size of 300,000. Upon sales service, we
assemble the basic elasticity and multi-tenancy patterns to
evaluate the core features.

B. Cloud OLTP Patterns

Existing benchmarks [35], [15] generate the transactions
based on the uniform or independent assumption, thus they are
insufficient to simulate a cloud OLTP workload. First, realistic
access distribution is skewed [48], [9], but macrobenchmarks
like TPC-C generate the transactions with uniformly sam-
pled parameters. Second, the workload should simulate the
common operations, but microbenchmarks like SysBench can
only generate the read/write operations on single table without
any correlation between operations. Third, data replication is
a crucial aspect in a disaggregated architecture, but existing
benchmarks cannot evaluate the replication time. To address
these issues, we design a new cloud-native workload.

1) Throughput Evaluation.: The workload covers the most
common transactions in a sales microservice of ODOO [11].
As shown in Table II, T1 (New Orderline) is a write-only
transaction that inserts a new orderline; T2 (Order Payment)
is a read-write transaction that finds a target order, and then it
updates the customer’s credit and order’s status. T3 (Order
Status) is a read-only transaction that checks the status of
a given order; T4 (Orderline Deletion) is to delete a given
orderline. The workload manager will launch a worker for each
transaction based on the concurrency number and transaction
ratio. We support two types of distributions, uniform and
latest. For the former one, the substitution parameters are
chosen uniformly. For the latter one, we generate the skewed
access distribution by controlling the access range of O ID.
For instance, concerning the latest-10 distribution, T2
will update 10 specific items, and T3 will read these items
randomly. As a result, the more skewed the distribution is, the
more likely the fresh data is read.

2) Lag Time Evaluation.: To evaluate the log-replaying
efficiency, we design three patterns to evaluate the replication
lag time. Namely, (a) insert lag time; (b) update lag time; (c)
delete lag time. The basic idea is to measure the lag time
synchronizing the data changes from the RW node to the RO
node with varied concurrency. Specifically, we run T1, T2,
T4 with varied ratio to measure the latency that a replica
has synchronized the data changes. For each pattern, once
the primary RW node commits the transaction, the client will
try to read the data change from the replica until the data is
consistent between the RW node and RO nodes.

C. Elasticity Patterns

Realistic cloud applications often exhibit intermittency and
therefore stressing the elasticity [37], [39]. However, existing
benchmarks can not vary the workload patterns at runtime. To
address such a problem, we design basic elastic patterns and
assemble them to simulate the realistic arrival patterns in a
sales microservice.

As shown in Figure 3, pattern (a) launches a single peak to
test if the CDB can handle the spike (e.g., an ETL maintenance
job); pattern (b) has two small spikes and a large spike which
starts from a small concurrency, then gradually increases to
a spike, and finally decreases to a small concurrency (e.g.,
ordering a hot-selling product); pattern (c) has a reverse pattern

3

TABLE II
CLOUDYBENCH’S OLTP WORKLOAD

Task Transaction Name SQL Statement Reference Pattern
T1 New Orderline INSERT INTO orderline VALUES (DEFAULT, ?,?,?,?,?) Write-Only

T2 Order Payment
(1) SELECT O ID, O C ID, O TOTALAMOUNT, O UPDATEDDATE FROM orders WHERE O ID=?

(2) UPDATE orders SET O UPDATEDDATE=?, O STATUS=’PAID’ WHERE O ID=?
(3) UPDATE customer SET C CREDIT=C CREDIT+?, C UPDATEDDATE=? WHERE C ID=?

Read-Write

T3 Order Status SELECT O ID, O DATE, O STATUS FROM orders WHERE O ID = ? Read-Only
T4 Orderline Deletion DELETE FROM orderline WHERE OL ID=? Deletion

00:00 01:00 02:00 03:00

Q
ue

ry
 A

rr
iv

al
s

(a) Single Peak
00:00 01:00 02:00 03:00

(b) Large Spike
00:00 01:00 02:00 03:00

(c) Single Valley
00:00 01:00 02:00 03:00

(d) Zero Valley
Fig. 3. Elasticity Patterns in CloudyBench

00:00 01:00 02:00 03:00

Te
na

nt
 W

or
kl

oa
d

(a) High Contention
00:00 01:00 02:00 03:00

(b) Low Contention
00:00 01:00 02:00 03:00

(c) Staggered High
00:00 01:00 02:00 03:00

(d) Staggered Low

Tenant 1 Tenant 2 Tenant 3 Workload Threshold Total Workload

Fig. 4. Multi-Tenancy Patterns in CloudyBench

to (b) that starts from a large concurrency, then decreases
to small concurrency, and finally increases to a large con-
currency (e.g., declined sales due to price variation); pattern
(d) aims to evaluate the pause-and-resume mechanism, which
starts from a large spike, then decreases to a zero valley,
finally increases to a large spike again (e.g., out of stock
shortly). The concurrency will be changed in each time slot,
and we specify a minute as a time slot. To determine the
specific concurrency number in each time slot, we obtain the
concurrency number τ where a tested database reaches the
resource limit, then we generate the patterns proportionally.
For instance, given a configured CDB and the concurrency
τ=110, we generate the basic patterns in the following typical
proportions: pattern (a): (0%, 100%*τ , 0%)=(0, 110, 0);
pattern (b): (10%*τ , 80%*τ , 10%*τ)=(11,88,11); pattern (c):
(40%*τ , 20%*τ , 40%*τ)=(44,22,44); pattern (d): (50%*τ ,
0%, 50%*τ)=(55,0,55). Note that when evaluating multiple
databases, we set τ to the maximum concurrency among all
databases so as to evaluate the elasticity for each one. Addi-
tionally, the default proportion is set by the Pareto distribution.

D. Multi-Tenancy Patterns

Multi-tenancy is a core feature of CDBs for improving the
resource utilization by sharing and scheduling the resources
among tenants. However, existing method can not pose various
resource contention to evaluate how well CDB can schedule
the resources among tenants, we thus design new multi-
tenancy patterns.

We design basic multi-tenancy patterns, covering the most
common contention cases. Namely, (a) high contention, (b)

low contention, (c) staggered high and (d) staggered low. As
shown in Figure 4, multiple tenants’ workloads arrive with
varied demand. The red line depicts the workload threshold
and the black line illustrates the actual total workload. Pattern
(a) and (b) pose resource contention among tenants. Such
patterns evaluate if the CDB can schedule the resources from
the low-demand tenants to the high-demand tenants so that
the overall resource utilization is improved. In pattern (c)
and (d), tenants’ workloads arrive and stop at different time
slots. Such patterns evaluate if the CDB can schedule the
resources to the tenants on demand in the contention-free case
so that the allocated resource is reduced. The tenants’ total
workload is higher than the workload threshold in pattern (a)
and pattern (c), but it is lower than the threshold in pattern
(b) and (d). To generate the specific patterns, we create the
tenants’ concurrency with the defined ratio, then we adjust
the concurrency and execution mode based on the multi-
tenancy patterns. For instance, we define the concurrency
of three tenants with three time slots as follows: tenant 1:
(10%*τ , 10%*τ , 10%*τ), tenant 2: (30%*τ , 30%*τ , 30%*τ),
tenant 3: (60%*τ , 60%*τ , 60%*τ). By adding/subtracting the
concurrency of the tenants with a concurrency of δ and running
three tenants’ workloads in parallel, we manage to generate
pattern (a) and (b) respectively. For pattern (d), we define the
concurrency of tenants as follows: tenant 1: (10%*τ , 0, 0),
tenant 2: (0, 20%*τ , 0), tenant 3: (0, 0, 30%*τ), then we
run the tenants’ workload in sequence. By adding 100%*τ to
the tenants, we are able to generate pattern (c). Concerning
multiple databases, we set τ to maximum concurrency for

4

pattern (a) and (c) and set τ to minimum concurrency for
pattern (b) and (d). This allows us to evaluate the impact of re-
source contention and sharing for multiple databases. Note that
by configuring the parameter file, CloudyBench supports
arbitrary numbers of tenants and time slots, and the generation
method remains the same. Additionally, CloudyBench has
an extensible framework that can easily incorporate new multi-
tenancy patterns.
E. Fail-Over Patterns

Existing benchmarks do not support automatic fail-over
evaluation and DBAs have to manually craft the failure and
analyze the performance [3], [6]. To enable the fail-over
evaluation, we develop a module in the testbed that can
inject the node failure and report the fail-over performance
automatically.

We design basic fail-over patterns to evaluate the recovery
performance of various CDBs, namely, (a) RO failure; (b) RW
failure. The basic idea is to inject the node failure during
workload processing, then evaluate how fast the CDB can
recover the service and throughput, respectively. By inves-
tigating the existing APIs of CDBs, we develop a restart
model [20] to simulate the node failure and evaluate the fail-
over performance. This is because the kill or stop API will
lead to the unavailable service, and we have to start the service
manually. To evaluate the recovery time, we invoke the restart
API and record the TPS before the failure, then calculate the
duration in two phases. In phase one, we measure how long
the TPS is greater than zero after the node failure. In phase
two, we continually check if the current TPS is recovered to
the original TPS in a given interval.
F. Resource Unit Cost

As CDBs have disparate hardware configurations and pric-
ing models, it is challenging to quantitatively measure the cost-
efficiency. For instance, the ratio between CPU and Memory
and the pricing of CDBs are totally different; Aurora will
charge the IOPS but PolarDB does not; their storage services
employ different number of replicas. We define the resource
unit cost (RUC) to address such a challenge. The basic idea is
to define the standard unit price to measure the resource cost,
then we can normalize the cost across different providers from
the perspective of basic resource unit.

According to the existing settings, we set the resource
unit separately for resource package calculation. Namely, 1
vCore for CPU, 1 GB for RAM, 1 GB for Storage, 100 for
IOPS, 1 Gbps for TCP/IP or RDMA network. Such a method
allows us to quantify any combinations of resource package.
For instance, concerning the case that Aurora defines the ACU
with 1 vCPU, 2GB while PolarDB defines the instance with
4 vCPU, 32 GB, we can calculate the resource cost based
on the unit price. Since the cloud vendors may define the
cost in hour or in month, we unify the unit price in hour.
To calculate the hourly cost more accurately, we propose a
new method to have the standardized costs closer to the real
costs. The calculation performs in three steps. First, we finalize
the relative ratio between the resource units in the package

TABLE III
RESOURCE UNIT COST PER HOUR

Resource Unit Cost Reference

CPU (vCore) $0.1847/h Aurora/PolarDB/HyperScale/Neon
Memory (GB) $0.0095/h Aurora/PolarDB/HyperScale/Neon
Storage (GB) $0.000853/h Aurora/PolarDB/HyperScale/Neon
IOPS (100) $0.00015/h AWS RDS IOPS Pricing

TCP/IP Network (Gbps) $0.07696/h Huawei S1730S-S24T4X-QA2 10G
RDMA Network (Gbps) $0.23088/h MELLANOX MSB7890-ES2F 100G

by referencing the hardware price. Second, we normalize the
unit price based on their real cost. Third, we obtain each
resource unit by averaging the price of the systems. For
instance, by referencing the CPU price of referenced Intel
Xeon Platinum 8562Y+ Processor and compatible RAM price
of Micron DDR5, we define the ratio of CPU and Memory
is 0.95 and 0.05. Since Aurora defines the ACU cost is $0.2
per hour, we have the CPU price is $0.1809/vCore/hour and
the RAM price is $0.0095/GB/hour. Finally, we calculate the
unit price for each cloud-native database and average the unit
costs. That is, we obtain the CPU cost and Memory cost as
$0.1847/vCore/hour and $0.0095/GB/hour by averaging the
unit costs of Aurora, PolarDB, HyperScale, and Neon. Since
the RDMA network is an emerging resource only supported in
PolarDB, we leverage the same way to calculate the network
cost for a fair comparison.

Consequently, we are able to make a horizontal comparison
with the normalized resource cost. Note that for the cases that
CDBs have the different hardware, we can calibrate the price
with the actual cost. We have also discussed the difference
between resource cost and actual cost in Section III-G.

G. Performance Metrics

To measure CDB’s performance holistically, we propose a
framework of ”PERFECT”. The basic idea is to reflect the
most important aspects with the consideration of performance
and cost. In specific, ’P’ refers to productivity that measures
the ratio of throughput and RUC; the first ’E’ (i.e., E1) refers
to scaling up/down elasticity and the second ’E’ (i.e., E2)
refers to scaling out/in elasticity; ’R’ refers to throughput
recovery efficiency; ’F’ refers to fail-over speed; ’C’ refers
to replication lag time for consistency; ’T’ refers to tenants’
performance. Finally, we combine seven metrics into a unified
metric that reflects the overall performance, called O-Score. In
the following, we introduce each cloud metric in detail:

P-Score. To consider the performance and cost together, we
define the Productivity (P-Score) as the average transaction
performance per RUC as follows:

P-Score = TPS/(Costcpu+Costmem+Costs+Costio+Costnet)
(1)

where TPS is the average TPS and we consider the average
resource cost of CPU, memory, storage, IOPS, and network
per minute.

E1-Score. To quantify the scaling up/down elasticity, we
define E1-Score as follows:

5

E1-Score = TPS/(C̃ostcpu + ˜Costmem + C̃ostio) (2)

where TPS is the average TPS and we consider the resource
cost of CPU, memory, and IOPS that are mostly relevant to
the elasticity.

F-Score. Concerning node failure, we calculate the time
range starting from failure injection to the point where
databases resume the throughput. The definition is as follows:

F-Score =
1

k

k∑
i=1

(tis − tif) (3)

where tif and tis is the timing of injecting node failure and the
timing of service recovery in the i-th recovering phase.

R-Score. We evaluate the CDB’s recovery speed for recov-
ering the TPS after the service recovery with R-Score. Since
CDBs have different TPS for a given concurrency, we set the
same target TPS for recovery. The definition is as follows:

R-Score =
1

k

k∑
i=1

(tir − tis) (4)

where tis and tir is the epoch timestamp of service recovery
and the epoch timestamp of recovering the TPS before the
failure in the i-th recovering phase.

E2-Score. To evaluate the scalability, we add RO nodes
and quantify the CDB’s improved performance per node. The
definition of E2-Score is as follows:

E2-Score =
1

λ

λ∑
i=1

(TPSi − TPSi−1)/δ (5)

where λ is the number of RO node and δ is the scaling factor;
TPSi is the throughput with i nodes.

C-Score. To evaluate the replication lag time with DML
operations, we define C-Score as follows:

C-Score = (Tinsert + Tupdate + Tdelete)/λ (6)

where |λ| is the number of replicas; Ti, Tu, and Td is the
average lag time for insertion, update, and deletion, respec-
tively. Note that the smaller the C-Score is, the faster the data
replication is.

T-Score. We define T-Score as follows:

T-Score = m

√√√√ m∏
i=1

TPSi/

m∑
i=1

Costi (7)

where the numerator calculates the geometric mean of the
overall TPS and TPSi is the average TPS of i-th tenant; Costi
is the consumed resource unit cost of i-th tenant;

O-Score. Having a unified metric is beneficial for com-
paring the performance of cloud databases holistically. Solely
relying on one aspect cannot reflect the overall performance.
Given that the serven components (cost-aware performance
(P-Score), multi-tenancy (T-Score), scale-up elasticity (E1-
Score), scale-out elasticity (E2-Score), fail-over time (F-
Score), recovery time (R-Score) and replication latency (C-
Score) are widely recognized as the most important factors

for quantifying the service quality of cloud-native databases,
we design a unified metric to quantify the overall performance.
By multiplying all the seven scores and adding the logarithm,
we propose O-Score defined as follows:

O-Score = SF ∗ lg
(
P ∗ T ∗ E1 ∗ E2

R ∗ F ∗ C

)
(8)

where SF is the scale factor; the numerator computes the
multiplication of P-Score, T-Score and two elasticity scores;
the denominator calculates the multiplication of R-Score, F-
Score, and C-Score. The logarithm is for an accurate horizontal
comparison. Note that O-Score has an equal weight to each
aspect, and cloud vendors can adjust the weight to emphasize
the individual part, e.g., add more weight to elasticity.

III. EXPERIMENTS

A. Experimental Settings

Systems Under Test (SUTs). We evaluate CloudyBench
over four state-of-the-art cloud-native databases. We use
anonymization names of all cloud-native databases be-
cause they are commercial databases and have the ”Dewitt
Clause” [42] that forbids the publication of database bench-
marks when the database vendor has not sanctioned. AWS
RDS [1] is chosen as a representative of RDS. In the following,
we briefly introduce their core features.

(1) CDB1 separates the compute and storage, where the
compute layer processes the transactions with the local cache,
and the storage layer maintains the data’s durability and
availability. To reduce the I/O overhead, it offloads the redo
processing to the storage tier. Concerning elasticity, it supports
to scale the unit of CPU and memory. For scaling up, it will
increase the resource immediately when the usage hits a built-
in threshold. For scaling down, it will gradually decrease the
resource to avoid performance fluctuation. On multi-tenancy,
it supports to deploy the instances/clusters of different tenants
into different regions, thus the resources of tenants are fully
isolated in different nodes. Compared with the traditional
ARIES recovery mechanism [23], it pushes down the redo
process to the storage layer, and the compute layer does not
need to write back the dirty pages.

(2) CDB2 separates the storage into two parts: the log
service for log management and page service for page man-
agement. The log service employs fast storage device and the
page service leverages general storage device. On elasticity,
it can automatically scale the CPU and memory resources
independently based on the workload demand and load pre-
diction [28]. It enables multiple tenants to share the compute
and log service by developing an elastic pool for multi-tenancy
where the tenants’ instances within the pool can share vCores,
memory, SSD cache, as well as the log service.

(3) CDB3 develops a disaggregated compute-log-storage
architecture based on PostgreSQL codebase. Its compute nodes
are scheduled by Kubernetes [21] ; WAL is handled by the
SafeKeeper procedures; the page servers replay the logs
to serve the materialized pages; the hot data is cached in the
compute nodes and the cold data is persisted to the cloud

6

object storage. On elasticity, CDB3 defines that a capacity
unit (CU) is 1 vCore and 2 GB, where the minimum setting
could be 0.25*CU. For both scaling up and scaling down, it
will immediately adapt the CU usage to the workload pattern.
It implements a git-style multi-tenancy model, where each
project has a primary branch and each child branch is a copy-
on-write clone of the parent branch. In this case, each branch is
regarded as a tenant with a pre-allocated and isolated resource
configuration. It supports the pause-and-resume mechanism,
meaning that it can scale to zero and resume the service once
a workload comes in.

(4) CDB4 develops a memory disaggregation architecture
which relies a distributed storage service, and employs a
shared remote buffer pool with a high-speed RDMA network.
To ensure cache coherency, it utilizes cache invalidation to
synchronize the updates between the local cache and the
remote cache. It adopts an ARIES-style recovery algorithm
with a remote buffer pool [49]. When a node failure occurs,
the cluster manager initiates an auto switch-over process by
promoting a RO node to a RW node. Then the new RW node
distributes the redo logs with the checkpoint version from the
storage service to the page server for log replaying.

Experiment Environment. For each SUT in different cloud
vendors, we deploy the database service in the same region.
The setting is summarized in Table IV, which presents the
databases, engine, CPU, Memory, Storage, Network, Server-
less, and Buffer Size.
Benchmark Configuration. To avoid the impact of network
latency, we deploy the client in the virtual machine in the
same VPC (Virtual Private Cloud) of the tested CDB. We
produce testing datasets with three scale factors, SF1, SF10,
and SF100, with raw data of sizes 194MB, 1.99GB, and
20.8GB respectively. In order to evaluate different workload
patterns, e.g., read-only, read-write, and write-only, we vary
the transaction ratios. Namely, (t1 : t2 : t3) ∈ {(0 : 0 :
100), (15 : 5 : 80), (100 : 0 : 0)}.

B. Transaction Processing Evaluation

Figure 5 illustrates the overall throughput of all SUTs
with varied scale factors, transaction patterns and concurrency
numbers. The three groups of bars are the TPS of read-only
(RO), read-write (RW), write-only (WO) patterns, respectively.
We deploy one RW node and one RO node for each SUT.

We have four major observations. First, it clearly indicates
that CDB4 has the highest performance, which has an average
throughput of 24502 for all workload patterns and scale
factors. For the RO and WO patterns, CDB4 is the best
because its 10G local buffer greatly promotes the performance
(Note that we will also evaluate the impact of buffer size
in Section III-I). As for the RW pattern, CDB4 outperforms
others because it has a 24GB remote buffer with a high-speed
RDMA network. Overall, the throughput of CDB4 is 3x higher
than CDB2. Second, CDB3 has higher throughput than CDB1
and CDB2 because of its Local File Cache [25] and parallel
log replaying [26]. Particularly, it has comparable read-write
performance to AWS RDS for large dataset (i.e., SF100) and

high concurrency (100-200). Third, the throughput of CDB2
is bounded when the concurrency increases: its TPS is no
more than 11863, 8140, 9291 on RO, RW, and WO patterns,
respectively. We believe the buffer has become its performance
bottleneck due to the small size. Fourth, AWS RDS has the
highest throughput on RW patterns regarding small dataset
(i.e., SF1) and low concurrency (< 150) because the majority
of data is cached in the buffer, and reading/writing the local
storage is faster than the disaggregated storage that requires to
access the network. While the performance decreases as the
data grows (i.e., SF10 and SF100) and concurrency increases
(> 150). The reason is that the dirty page flushing and
checkpointing incur larger overhead. Such a finding verifies
that CDB can benefit from disaggregated storage architecture
via asynchronous log replaying.

Table V depicts the P-Score on different patterns of all
SUTs, considering the average TPS and resource cost of CPU,
memory, storage, IOPS, and network simultaneously.

By considering both throughput and resource cost, we
observe that AWS RDS has the highest P-Score across all
workloads as it has a relatively high throughput and incurs a
relatively low cost. For instance, it has a high TPS of 12382
on RW patterns and its cost is the lowest, i.e., $0.0437. CDB4
ranks the second because its remote buffer pool delivers the
highest TPS of 36995. However, despite having 1.5x higher
throughput than AWS RDS, CDB4 has the lower average P-
Score due to its highest cost, especially for the RDMA network
that is 3x more expensive than TCP/IP network. CDB3’s P-
Score on RW pattern is higher than CDB4, indicating that it
also strikes a good balance between performance and resource
cost. For instance, its cost is only 57.7% of CDB4’s but its TPS
is close. The P-Score of CDB2 is the lowest due to its low
TPS. CDB1 has a higher cost than CDB2 due to two folds.
First, its instance has a higher ratio of CPU and Memory,
e.g. (1:8). Second, it has a higher storage cost as it adopts
the six-way replication [38] while others employ the three-
way replication [26]. We also observe that IOPS has a large
impact on the cost. For instance, CDB2 has 327x higher IOPS
cost than AWS RDS.

C. Elasticity Evaluation

We combine elastic workload patterns to evaluate elasticity
of all the SUTs. we use SF1 and vary the transaction ratio to
produce three workload modes. The concurrency number of
each time slot in four patterns is: single peak: (0, 110, 0); large
spike: (11, 88, 11); single valley: (44, 22, 44); zero valley:
(55, 0, 55). We choose to calculate the cost in a ten-minute
range starting from the beginning of each workload pattern.

Figure 6 illustrates the results of elasticity evaluation, in-
cluding average throughput, total cost (including execution
cost and scaling cost) and E1-Score. Notably, we found that
enabling serverless will largely impact the performance. For
instance, CDB3 and CDB1 has degraded the performance
with 32% and 82% compared with the fixed configuration.
Moreover, it is visible that the write ratio will also impact the
throughput, i.e., from Read-Only, to Read-Write and Write-

7

TABLE IV
THE EXPERIMENTAL SETTING OF CLOUD-NATIVE DATABASES

Databases Engine CPU & Memory & Storage Network Serverless Buffer Size
AWS RDS PostgreSQL 15 4 vCores, 16GB RAM, 150GB NVMe SSD 10 Gbps TCP/IP × 128MB
CDB1 PostgreSQL 15 1 vCore, 2GB RAM – 4 vCores, 8GB RAM 10 Gbps TCP/IP ✓ 128MB
CDB2 SQL Server 12 0.5 vCores, 2GB RAM – 4 vCores, 12GB RAM 10 Gbps TCP/IP ✓ 44MB
CDB3 PostgreSQL 15 1 vCore, 2GB RAM – 4 vCores, 16GB RAM 10 Gbps TCP/IP ✓ 128MB
CDB4 MySQL 8 4 vCores, 16GB local RAM and 24GB remote RAM 10 Gbps RDMA × 10GB

Read-Only Read-Write Write-Only
0

20000

40000

TP
S

Read-Only Read-Write Write-Only
0

20000

40000

Read-Only Read-Write Write-Only
0

20000

40000

Read-Only Read-Write Write-Only
0

20000

40000

Read-Only Read-Write Write-Only
0

20000

40000

SF
 1

Read-Only Read-Write Write-Only
0

20000

40000

TP
S

Read-Only Read-Write Write-Only
0

20000

40000

Read-Only Read-Write Write-Only
0

20000

40000

Read-Only Read-Write Write-Only
0

20000

40000

Read-Only Read-Write Write-Only
0

20000

40000

SF
 1

0

Read-Only Read-Write Write-Only
0

20000

40000

TP
S

(a) con = 10
Read-Only Read-Write Write-Only

0

20000

40000

(b) con = 50
Read-Only Read-Write Write-Only

0

20000

40000

(c) con = 100
Read-Only Read-Write Write-Only

0

20000

40000

(d) con = 150
Read-Only Read-Write Write-Only

0

20000

40000

SF
 1

00

(e) con = 200

RDS CDB1 CDB2 CDB3 CDB4

Fig. 5. Transaction Processing Performance of Different Cloud Databases; con denotes the concurrency number and y-axis denotes the TPS.

TABLE V
P-SCORE OF DIFFERENT CLOUD DATABASES WITH DETAILED RESOURCE COST

System CPU/vCore Memory/GB Storage/GB IOPS Network/Gbps Resource P-Score
Value Cost Value Cost Value Cost Value Cost Value Cost Cost RO RW WO AVG

AWS RDS 4 0.0123 16 0.0025 42 0.0006 1000 0.000025 10 0.0128 $0.0437 505538 283350 346174 378354
CDB1 4 0.0123 32 0.0051 126 0.0018 1000 0.000025 10 0.0128 $0.0512 383837 123620 174070 227176
CDB2 4 0.0123 20 0.0032 63 0.0009 327680 0.008192 10 0.0128 $0.0538 189939 109292 142282 147238
CDB3 4 0.0123 16 0.0025 63 0.0009 1000 0.000025 10 0.0128 $0.0443 403273 213922 285425 300873
CDB4 4 0.0123 40 0.0063 63 0.0009 84000 0.0021 10 0.0385 $0.0797 464181 173773 284335 307429

Read-Only Read-Write Write-Only
0

10000

20000

30000

TP
S

Read-Only Read-Write Write-Only
0

10000

20000

30000

Read-Only Read-Write Write-Only
0

10000

20000

30000

Read-Only Read-Write Write-Only
0

10000

20000

30000

Read-Only Read-Write Write-Only
0.0

0.1

0.2

To
ta

l C
os

t

Read-Only Read-Write Write-Only
0.0

0.1

0.2

Read-Only Read-Write Write-Only
0.0

0.1

0.2

Read-Only Read-Write Write-Only
0.0

0.1

0.2

Read-Only Read-Write Write-Only
0

200000

400000

600000

E1
-S

co
re

(a) Single Peak
Read-Only Read-Write Write-Only

0

200000

400000

600000

(b) Large Spike
Read-Only Read-Write Write-Only

0

200000

400000

600000

(c) Single Valley
Read-Only Read-Write Write-Only

0

200000

400000

600000

(d) Zero Valley

RDS CDB1 CDB2 CDB3 CDB4

Fig. 6. Elasticity Evaluation of Different Cloud Databases with TPS, Total Cost, and E1-Score

TABLE VI
TIME INTERVAL AND SCALING COST DURING AUTOSCALING OF CLOUD-NATIVE DATABASES

System Single Peak Large Spike Single Valley Zero Valley
0→110 110→0 0→11 11→88 88→11 11→0 0→44 44→22 22→44 44→0 0→55 55→0 0→55 55→0

CDB1 14s 479s 17s 501s 11s 536s 11s 535s
CDB2 30s 25s 30s 30s 30s 30s 25s 20s 15s 25s 30s 30s 30s 30s
CDB3 60s 60s 60s 60s 80s 60s 60s 180s 60s 60s 60s 80s

CDB1 $0.0018 $0.0789 $0.0035 $0.0756 $0.0019 $0.0827 $0.0019 $0.0827
CDB2 $0.0071 $0.0017 $0.0027 $0.0082 $0.005 $0.0018 $0.0058 $0.0051 $0.0042 $0.0037 $0.0081 $0.0026 $0.0077 $0.0042
CDB3 $0.0037 $0.0022 $0.0022 $0.0065 $0.0059 $0.0019 $0.004 $0.0205 $0.0053 $0.0028 $0.0071 $0.0043

Only. Especially for CDB4 and AWS RDS, the higher write
ratio incurs larger overhead of dirty page flushing, leading
to lower throughput. Overall, the performance rank is CDB4

>AWS RDS>CDB2 >CDB3 >CDB1. Since CDB4 and AWS
RDS have the fixed configuration, their TPS are 3x and 1.5x
higher than CDB2. Nevertheless, the sub-figure of total cost

8

TABLE VII
MULTI-TENANCY EVALUATION RESULTS OF DIFFERENT CLOUD DATABASES

System TPS Total Resources Cost T-Score
(a) (b) (c) (d) CPU, Memory, Storage, IOPS, Network (a) (b) (c) (d) AVG

CDB2 4000 6467 4948 3458 12 vCores, 36GB RAM, 189 GB, 54000 IOPS, 10Gbps TCP/IP $0.06 70008 107799 82483 57647 79484
CDB3 5633 5389 5494 1237 12 vCores, 48GB RAM, 63 GB, 3000 IOPS, 10Gbps TCP/IP $0.058 92524 92917 94724 21344 75377

AWS RDS 13489 6772 5321 1826 12 vCores, 48GB RAM, 126 GB, 3000 IOPS, 30Gbps TCP/IP $0.085 158702 79673 62611 21488 80619
CDB1 9791 5607 3217 1622 12 vCores, 96GB RAM, 378 GB, 3000 IOPS, 30Gbps TCP/IP $0.096 101991 58412 33515 16903 52705
CDB4 20480 19319 7084 6130 12 vCores, 120GB RAM, 189 GB, 84000 IOPS, 30Gbps RDMA $0.176 116365 109770 40253 34831 75305

demonstrates that their cost is also much higher, which is
12x and 9x higher than CDB3’s. Besides, CDB2’s total cost
is higher than that of CDB3 due to its minimum 0.5 vCore
usage and higher scaling resources. We attribute CDB3’s low
cost to its on-demand scaling and pause/resume strategy. For
instance, its superiority becomes evident concerning pattern
(a) that contains two idle time slots. As a result, the E1-Score
rank is CDB3 >CDB2 >CDB4 >AWS RDS>CDB1.

Table VI presents the detailed scaling time, scaling cost,
and consumed resources within each time slot. We compare
three CDBs with autoscaling feature, including CDB3, CDB2,
and CDB1. We measure the scaling time in each time slot
by calculating the duration from workload’s changing to the
scaling completion. Then we calculate the cost and average
consumed resource per second. Our first observation is that
CDB1 has a good elasticity on scaling up but its scaling
down is much slower due to the gradual scaling strategy.
For instance, it takes 14s to scale up in Single Peak, but
it spends 479s scaling down to zero. Obviously, gradual
scaling down incurs high cost because CDBs will also charge
during scaling. The second observation is that CDB2 has better
elasticity than CDB1 because it achieves on-demand scaling
up/down. Particularly, it is capable of scaling the resources
in each period. However, we do not observe any proactive
autoscaling [29]. The third observation is that CDB3 has the
best elasticity as it combines on-demand scaling up/down and
pause/resume approach to minimize the cost. Nevertheless, it
could not be sensible to instant workload change. For instance,
it fails to scale down for the Single Valley (44, 22, 44)
and Zero Valley (55, 0, 55). Finally, we observe that CDB3
consumes less resource than others. On average, CDB3 saves
56% vCores and 11% memory than CDB1.

D. Multi-Tenancy Evaluation

In this section, we evaluate CDB’s multi-tenancy. We set
up CDB2 with an elastic pool including 12 vCores and 36
GB memory shared by 3 tenants. Hence, each tenant has 4
vCores and 12 GB memory on average. As for CDB3, we
create three branches that share the storage and each branch
has 4 vCores and 16 GB of RAM, resulting in a total compute
resources of 12 vCores and 48 GB memory. For CDB1, CDB4
and AWS RDS, we create a separate instance for each tenant.
Since their instances are isolated, the cost of the network and
IOPS is tripled. The detailed resource and cost are given in
Table VII. Following the multi-tenancy patterns introduced
in Section II-D, we generate four patterns for 3 tenants as
follows: pattern (a): {(264, 264, 264), (99, 99, 99), (33, 33,

33)}; pattern (b): {(40, 40, 40), (30, 30, 30), (10, 10, 10)};
pattern (c): {(363, 0, 0), (0, 429, 0), (0, 0, 396)}; pattern (d):
{(10, 0, 0), (0, 20, 0), (0, 0, 30)}.

Table VII summarizes the evaluation results of all SUTs
with the multi-tenancy patterns. We have four observations.
First, multi-tenancy with isolated instances can achieve high
performance, but such a model has a rather high cost and can
not share and schedule the resources effectively. For instance,
CDB4 has the highest throughput with the isolated instances,
remote buffer pool, and high-speed RDMA network. However,
this is achieved at the highest cost of $0.176. Currently
its multi-tenancy capacity has not been fully released, thus
the resources can not be shared and scheduled. Following
CDB4, AWS RDS also excels at transaction processing with
an average TPS of 6852, but it is also unable to share the
resources among tenants. CDB3 can deploy multiple tenants
in a unified cluster, and its cost is low (i.e., $0.058). Never-
theless, the tenants’ compute and I/O resources are stringently
isolated, thus its average resource utilization is low concerning
staggered patterns, leading to a lowest TPS of 1237 at pattern
(d). Second, multi-tenancy with shared resources has the best
cost efficiency. For instance, CDB2 has the highest T-Score
of 57647 at pattern (d) with a shared elastic pool where
multiple tenants can share compute and I/O resources. Third,
we found there is no silver bullet regarding different multi-
tenancy patterns. We make a comparison of CDB2 and CDB1
as they have similar read-write TPS in P-Score evaluation. On
pattern (a), CDB1’s TPS is 2.45x higher than CDB2 because
of its fixed and isolated configuration, which prevents the
tenants from being affected by others’ heavy workload and
high resource demand. On the contrary, the tenants of CDB2
suffer from high resource contention, resulting in the lowest
TPS of 4000. On pattern (b), when total workload is lower
than the threshold, CDB2 outperforms CDB1 since its elastic
pool could allocate the resources to each tenant as needed,
achieving better overall performance because high-demand
tenant acquires more resources. Regarding pattern (c) and (d),
CDB2’s TPS is 2.13x higher than Aurora. This is because all
the available resources in elastic pool could be scheduled to
the only tenant that currently has resource demand, which can
greatly increase the throughput. In contrast, Aurora is unable
to schedule the resources, leading to a low resource utilization.

E. Fail-Over Evaluation

Table VIII presents the fail-over evaluation results, including
the F-Score and R-Score that measure the recovery efficiency
regarding node failure of RW and RO. We perform a constant

9

TABLE VIII
F-SCORE AND R-SCORE OF DIFFERENT CLOUD DATABASES

System F-Score R-Score Total
RW RO AVG RW RO AVG Time(s)

AWS RDS 24 6 15 18 30 24 78
CDB2 6 6 6 36 18 27 66
CDB3 12 6 9 30 6 18 54
CDB1 6 6 6 18 0 9 30
CDB4 3 2 2.5 3 4 3.5 12

Fig. 7. Timeline of CDB4’s Failover Process; x-axis denotes the different
phase and y-axis shows the status of RO and RW.

read-write workload with a concurrency of 150 and inject the
node failure with the restart model.

The results clearly show that AWS RDS has the highest
recovering time across all failure patterns. Particularly, it takes
an average time of 15s to resume service and 24s to recover
the TPS, which are 2.5x and 2.6x longer than the recovering
time of CDB1. The results indicate that the log-based replaying
recovery mechanisms adopted by CDBs produce less over-
head compared to ARIES recovery mechanism. Specifically,
CDBs such as CDB1 and CDB3 can utilize asynchronous log
replaying and the materialized pages in the page server to
quickly recover the transaction data. A side observation is
that although recovering from page server could mitigate the
overhead of log replaying, the separation of log store and page
store adds more network latency to the recovery process. For
instance, CDB3’s and CDB2’s total recovering time is 1.8x and
2.2x higher than CDB1 due to the longer recovery route. CDB4
has the best fail-over ability, requiring 2.5s to resume and
another 3.5s to recover the TPS. We attribute its superiority
to its remote buffer pool that can quickly recover the data.

Figure 7 depicts a recovery process of CDB4. In the prepare
phase, when a failure is detected via heartbeat signals, its clus-
ter manager takes 1s to notify all nodes to refuse subsequent
requests, then it collects the latest sequence number (LSN)
of page and checkpoint. In the switch over phase, it takes 2s
to promote a RO node to the new RW ′ node. Meanwhile,
the original RW node performs a cleanup with the remote
buffer pool, then it transforms to a RO′ node via restarting. In
the recovering phase, the RW ′ node takes 3s to construct the
active transactions and rollback the uncommitted transactions
by scanning the undo logs. After 6s, the recovered cluster can
proceed to handle the subsequent requests.

F. Lag Time Evaluation between RW and RO

To evaluate the lagtime between primary and replica node,
we vary the ratio of Insert, Update and Delete (IUD) in four
patterns as follows: (I, U, D) ∈ {(60%, 30%, 10%), (100%,

0%, 0%), (0%, 100%, 0%), (0%, 0%, 100%)}. In AWS RDS,
checkpoint timeout is set to 30s, and max wal size is 128MB.

Through the lag time evaluation, We have four main in-
sights. First, CDB4 achieves the lowest latency of 1.5ms
with the memory disaggregation. This is mainly because it
utilizes the high-speed RDMA network to ship logs and
fetch the global timestamps [43]. Additionally, it employs
several optimizations such as local ordered timestamps and
on-demand log replaying to further reduce the latency. Second,
CDBs with storage disaggregation have disparate lag time. For
instance, CDB3 has a relatively low lag time of 14ms because
it also replays the relevant logs in parallel [26] which largely
speeds up the replication process. By replaying the logs in
sequence, CDB1 and CDB2’s lag time is higher with an order
(177ms) and two orders of magnitude (1082ms), respectively.
CDB2’s separation of log and storage leads to the highest lag
time due to the longer replication path. Third, AWS RDS has
a relatively small lag time because of its coupled compute
and storage. Fourth, we found the combination of IUD has an
impact on the lag time because different CDBs have disparate
handling logic. For instance, all the SUTs have less lag time
with higher delete ratio, the main reason is that most CDBs
perform the deletion via the logical deletion. We also found
that CDB1 is more sensitive to a higher insert ratio while CDB3
is affected by the higher update ratio.

G. Overall Performance

In this part, we quantify the CDB’s overall performance
with the proposed unified metric that contains seven scores,
namely, ”PERFECT” framework. We also compare an alter-
native method that computes the score based on the actual
cost charged by the cloud vendors, i.e., P-Score*, E1-Score*,
T-Score*, and O-Score*.

As presented in Table IX, different cloud databases have
their pros and cons. Firstly, AWS RDS has the highest P-Score
that is 3.6x higher than CDB2’s. Furthermore, it has the highest
T-Score and E2-Score after adding a RO node, and its TPS
increases from 17003 to 36198 with the local SSD storage.
However, its recovery speed is the lowest due to the dirty
page flushing. Secondly, CDB3 has the highest E1-Score that
is an order of magnitude higher than CDB1, and its other score
is relatively balanced. Thirdly, CDB4 excels at the recovery
speed with R-Score and F-Score of 3.5s and 2.5s, and it has the
minimum C-Score of 1.5ms with the RDMA-enabled memory
disaggregation. CDB2 performs the best among CDBs on the
multi-tenancy patterns via its shared elastic pool, resulting in
the highest T-score of 79484. By combining all the scores into
a unified metric, we can see that CDB4 is the winner that has
the highest O-Score of 17.7.

Interestingly, the actual cost leads to different ranks of
the designed metrics due to the impact of pricing model.
For instance, AWS RDS has the lowest P-Score* because its
pricing model charges for at least 10 minutes. The T-Score
of CDB2 has changed the second worst as the elastic pool is
charged at least one hour. Since CDB3 is a startup, its pricing
model tends to be cheaper than others, e.g., it has 3x lower

10

AWS RDS CDB1 CDB4
0

10000

20000

30000

TP
S

3880
11359

2100 4950 6890

AWS RDS CDB1 CDB4
0

10000

20000

30000

15096
20612

7145

15722 13943

AWS RDS CDB1 CDB4
0

10000

20000

30000

1635718758

8494

19260
14340

AWS RDS CDB1 CDB4
0

10000

20000

30000

15774
21318

8540

17487
13340

AWS RDS CDB1 CDB4
0

10000

20000

30000

1209713796
7488

16746
12682

AWS RDS CDB1 CDB4
0.00

0.05

0.10

Co
st 0.044 0.044 0.051 0.051

0.0797

(a) con = 10

AWS RDS CDB1 CDB4
0.00

0.05

0.10

0.044 0.044 0.0510.051
0.0797

(b) con = 50

AWS RDS CDB1 CDB4
0.00

0.05

0.10

0.044 0.044 0.0510.051
0.0797

(c) con = 100

AWS RDS CDB1 CDB4
0.00

0.05

0.10

0.044 0.044 0.0510.051
0.0797

(d) con = 150

AWS RDS CDB1 CDB4
0.00

0.05

0.10

0.044 0.044 0.0510.051
0.0797

(e) con = 200
AWS RDS CDB1 CDB4

0

200000

400000

600000

P-
Sc

or
e

88181

258159

4117697058 86449

AWS RDS CDB1 CDB4
0

200000

400000

600000

343090
468454

140098

308274
174943

AWS RDS CDB1 CDB4
0

200000

400000

600000
371750426318

166549

377647

179924

AWS RDS CDB1 CDB4
0

200000

400000

600000
358500

484500

167450

342882

167377

AWS RDS CDB1 CDB4
0

200000

400000

600000

274931313545
146823

328352

159121

AWS RDS - 128MB CDB1 - 128MB AWS RDS - 10GB CDB1 - 10GB CDB4 - 10GB

Fig. 8. Performance Evaluation on AWS RDS, CDB1, and CDB4 by Varying the Buffer Size from 128MB to 10GB.

TABLE IX
OVERALL PERFORMANCE OF CLOUD-NATIVE DATABASES. (X-SCORE)* DENOTES THE SCORE IS CALCULATED WITH THE ACTUAL COST

System P-Score P-Score* E1-Score E1-Score* R-Score F-Score E2-Score C-Score T-Score T-Score* O-Score O-Score*

AWS RDS 359735 359 59430 1052 24 15 20 14 80619 104 15.82 8.18
CDB1 131906 14369 16024 16311 9 6 3 178 52705 5326 13.48 11.53
CDB2 99212 2737 139933 70241 27 6 7 1082 79484 1923 13.64 10.17
CDB3 217002 480660 286643 401643 18 9 4 14 75377 45540 15.92 16.19
CDB4 153566 19124 80565 52241 3.5 2.5 10 1.5 75305 13806 17.7 15.87

price on CPU ($0.16 per vCore compared with $0.42 per
vCore by CDB2). Hence, its P-Score*, E1-Score*, T-Score*
are much higher, resulting in a highest O-Score*. We also
observe that all CDBs outperform AWS RDS with the actual
cost and defined metrics. Nevertheless, this is mainly affected
by the pricing strategies. Hence, it is more fair to compare the
service quality under a unified resource unit cost.

Overall, our metrics have three advantages. First, our met-
rics give a quantitative way to measure the cost from the
resource perspective, but the actual cost is largely affected by
the pricing model. Particularly, the vendors may have different
pricing on the instance configuration, and it is hard to make
a fair comparison. Second, our metrics are more accurate
with a standard normalization while the actual cost ends up
with different ranks. Third, our metrics can be computed
individually and combined into a unified metric.

H. Varying the Buffer Size

As discussed in Section III-B, CDB4 has high performance
because of its 10 GB local buffer size that is unmodified by
users. Hence, it is crucial to investigate if the buffer size has
an impact on performance and cost. To this end, we contrast
it against AWS RDS and CDB1 by increasing their buffer size
from 128 MB to 10 GB. CDB3 and CDB2 are excluded due
to the unmodified buffer setting for the users. We run the RW
pattern on SF1.

Figure 8 depicts the evaluation results, including TPS, Cost,
and P-Score. The results indicate that buffer size has a signif-
icant impact on the performance with the same cost, leading
to the different ranks of CDBs. For instance, the average TPS
of CDB1 increases from 6753 to 14833, which outperforms
CDB4 that has an average TPS of 12239. Consequently,
CDB1 improves 21% TPS and reduces 34% cost of CDB4,
resulting in 1.8x higher P-Score. We also observe that CDB1
outperforms RDS on the concurrency of 100. Nevertheless,
AWS RDS still has 16% higher average TPS and 12% lower
cost than that of CDB1.

2 3 4 5 6 7 8 9 10 11 12
Execution Time(min)

0.5

1.0

1.5

2.0

2.5

3.0

CP
U

CloudyBench SysBench-11 TPC-C-44

Fig. 9. A Comparison of CPU Fluctuation between CloudyBench and Two
Existing Benchmarks (i.e., SysBench and TPC-C).

I. Comparison with Existing Benchmarks

To verify CloudyBench’s effectiveness, we compare it
with two widely-used benchmarks in the cloud, SysBench and
TPC-C. We concentrate on the elasticity evaluation by con-
ducting a 12-minute experiment on CDB3 and collecting the al-
located CPU resources accordingly. We run CloudyBench’s
four elasticity patterns on CDB3 sequentially. We produce a
226MB dataset with 3 tables for SysBench, and each table
has size of 300000. We employ OLTP-Bench [7] to run TPC-
C with a scale factor of 1. To make a fair comparison, we
launch 11 threads on SysBench and 44 threads on TPC-
C, respectively. These two numbers lead to the peak and
valley points in CloudyBench. As shown in Figure 9,
CloudyBench’s elasticity patterns lead to notable resource
scaling while SysBench’s and TPC-C’s constant workloads
produce the relatively flat resource usage. We observe that the
scaling range of CDB3 is quite limited on SysBench’s or TPC-
C’s workload. For instance, CDB3’s CPU size scales between
0.5 vCore and 1.25 vCores on SysBench and it scales between
1 vCores and 2 vCores on TPC-C workload. The maximum
change between time slots is just 1 vCore. In contrast, CDB3
scales up to 3.25 vCores and scales down to 0.5 vCore during
processing CloudyBench’s elasticity patterns with peaks and
valleys. Particularly, CDB3 scales down from 3.25 vCores to 1
vCore from 9th to 10th minute, experiencing the largest drop
of 2.25 vCores, posing more benchmarking challenges.

11

J. Takeaways and Discussions

Through detailed experiments, we have the following
takeaways for both researchers and cloud providers:

(1) Concerning performance, AWS RDS [1] has better cost-
efficiency because it achieves higher throughput via its local
SSD storage and its resource cost is lower. Under heavy
workloads, CDBs can have the comparable performance via
asynchronous log replaying. Concerning various architectures
of CDBs, disaggregated memory architecture performs the best
on transaction processing because of the larger local buffer and
remote shared buffer. The local buffer size has also a large
impact on the performance. If the buffer size could be tuned
for CDB2 and CDB3, they could achieve higher performance.

(2) Concerning elasticity, CDBs significantly outperform
AWS RDS by scaling the resources on demand for the elastic
patterns. On the one hand, the on-demand scaling up/down
can respond to the varied workload in the second level,
resulting in a higher resource utilization. On the other hand, the
pause-and-resume technique can largely reduce the resource
consumption. If scaling down of CDB1 is improved with
on-demand scaling, it would be the clear winner. Moreover,
implementing auto-scaling in CDB4 has also a large potential
to achieve the best elasticity because of its memory disaggre-
gation architecture.

(3) Regarding multi-tenancy, AWS RDS achieves the high-
est T-Score because its high performance with isolated in-
stances. Nevertheless, by scheduling the resources to multiple
tenants on demand, CDB2 and CDB3 have a better performance
and higher resource utilization on the staggered patterns. If
they can address the performance drop concerning the con-
tention patterns, we believe CDBs could have more advantages
than AWS RDS.

(4) Concerning fail-over, memory disaggregation architec-
ture has the highest recovery and replication speed. As for
the recovery, it utilizes the remote buffer pool to enable the
fast fail-over. Concerning replication, it leverages the RDMA-
based network to quickly ship the logs for page materializa-
tion. We recommend all CDBS apply this schema to improve
the recovery speed.

(5) Regarding cost-efficiency, we advocate that all CDBs
should make more efforts to define the unit cost for each
resource clearly and fairly, such that the users can make a
clear comparison based on their own applications.

IV. RELATED WORK

Traditional database benchmarks including TPC-C [35] and
SysBench [15], have been adopted to benchmark cloud-native
OLTP databases [38], [6], [26], but they were merely used
to evaluate the read/write performance. YCSB [5] and its
variant [27] were proposed for benchmarking cloud systems,
but mainly focus on NoSQL data stores. Binnig et al. [2]
once pointed out transactional TPC benchmarks like TPC-
W are not sufficient for the cloud as they fall short of
tailored metrics for scalability, cost, elasticity, and fault toler-
ance. OLTP-Bench (a.k.a BenchBase) [7] is a relevant work
which has integrated many database benchmarks, including

OLTP benchmarks (e.g., TPC-C, SmallBank, TATP), OLAP
benchmarks (e.g., TPC-H and TPC-DS) and even an HTAP
benchmark (i.e., hyadapt). Despite its diversity, it has no
specific component for evaluating elasticity, multi-tenancy, and
fail-over of the cloud-native databases. Moreover, it contains
no tailored metrics for quantifying the performance and cost
of existing cloud-native databases. Pang et al. [26] recently
utilized TPC-C and SysBench to investigate the performance
of various disaggregated architectures by developing an open-
sourced CDB, called openAurora. However, it did not evaluate
the elasticity, multi-tenancy, and fail-over. Moreover, it did not
evaluate the memory disaggregation architecture.

Existing cloud-oriented database benchmarks mainly retrofit
established analytical benchmarks [34]. However, they cannot
be used to evaluate cloud-native OLTP databases. For instance,
CAB [37] creates a cloud analytic benchmark by incorporating
workload patterns and multi-tenancy into TPC-H. Particularly,
it generates multiple databases with varying scale factors to
simulate multi-tenancy, the workload arrival patterns are ran-
domly generated based on the defined patterns. Unfortunately,
CAB contains no transactional workload. Other than domain-
specific benchmarks, there exists microbenchmarks aiming to
synthesize the specific workload characteristics in production.
For instance, given an I/O trace in production, CDSBen [48]
and Stitcher [40] developed a learning-based I/O workload
benchmark for evaluating the performance of cloud-based
storage. However, the major limitation of them is that the real
I/O trace or query logs are often inaccessible due to privacy
requirement and different applications may have disparate
traces and metrics.

There exist numerous works [10], [30], [13], [14] studying
the cloud service performance and elasticity in cloud com-
puting. For instance, Garg et al [10] defines a framework to
quantify cloud computing services, considering how to define
the metrics such as agility, cost and usability as well as their
weights. Bertino et al [30] studied the performance variance
in the cloud using AWS EC2. Islam et al [14] and Hwang
et al [13] evaluated the elasticity of cloud platforms mainly
using TPC-W. Unfortunately, these works were published
over ten years and solely studied the cloud performance in
the virtual machine level. They also did not consider new
cloud service features such as multi-tenancy and fail-over.
In contrast, our work evaluated the performance of the state-
of-the-art cloud-native databases. Moreover, we defined new
metrics to quantify the overall performance of CDBs.

V. CONCLUSION

In this work, we propose a new benchmark CloudyBench,
for evaluating the key features of cloud-native databases,
including elasticity, multi-tenancy, and cost-efficiency. We
design tailored workloads for benchmarking cloud-native
databases. Furthermore, we propose new metrics to quan-
tify their performance considering throughput, cost, elasticity,
multi-tenancy, replication speed, fail-over efficiency. Experi-
mental results over five representatives offer a number of key
findings and verify the effectiveness of CloudyBench.

12

REFERENCES

[1] Amazon Web Service. Relational Database Service. https://aws.amazon.
com/rds/, 2024.

[2] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing. How is the weather
tomorrow? towards a benchmark for the cloud. In Proceedings of the
Second International Workshop on Testing Database Systems, pages 1–6,
2009.

[3] W. Cao, Y. Zhang, X. Yang, et al. PolarDB Serverless: A Cloud Native
Database for Disaggregated Data Centers. In SIGMOD, pages 2477–
2489, 2021.

[4] Y. Chen, A. Pan, H. Lei, A. Ye, S. Han, Y. Tang, W. Lu, Y. Chai,
F. Zhang, and X. Du. Tdsql: Tencent distributed database system.
Proceedings of the VLDB Endowment, 17(12):3869–3882, 2024.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of the
1st ACM symposium on Cloud computing, pages 143–154, 2010.

[6] A. Depoutovitch, C. Chen, J. Chen, et al. Taurus Database: How to be
Fast, Available, and Frugal in the Cloud. In SIGMOD, pages 1463–1478,
2020.

[7] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux. Oltp-
bench: An extensible testbed for benchmarking relational databases.
Proceedings of the VLDB Endowment, 7(4):277–288, 2013.

[8] H. Dong, C. Zhang, G. Li, and H. Zhang. Cloud-native databases: A
survey. IEEE Transactions on Knowledge and Data Engineering, 2024.

[9] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat,
M.-D. Pham, and P. Boncz. The LDBC social network benchmark:
Interactive workload. In SIGMOD, pages 619–630, 2015.

[10] S. K. Garg, S. Versteeg, and R. Buyya. A framework for ranking of cloud
computing services. Future Generation Computer Systems, 29(4):1012–
1023, 2013.

[11] C. Y. Gómez-Llanez, N. R. Diaz-Leal, and C. R. Angarita Sanguino.
A comparative analysis of the ERP tools, ODOO and Openbravo, for
business management. Aibi Revista de Investigación, 8(3 (2020)):145–
153, 2020.

[12] J. Gray. Database and transaction processing performance handbook.,
1993.

[13] K. Hwang, X. Bai, Y. Shi, M. Li, W.-G. Chen, and Y. Wu. Cloud
performance modeling with benchmark evaluation of elastic scaling
strategies. IEEE Transactions on parallel and distributed systems,
27(1):130–143, 2015.

[14] S. Islam, K. Lee, A. Fekete, and A. Liu. How a consumer can measure
elasticity for cloud platforms. In Proceedings of the 3rd ACM/SPEC
International Conference on Performance Engineering, pages 85–96,
2012.

[15] A. Kopytov. SysBench: a system performance benchmark.
http://sysbench. sourceforge. net/, 2004.

[16] G. Li, H. Dong, and C. Zhang. Cloud databases: New techniques,
challenges, and opportunities. Proc. VLDB Endow., 15(12):3758–3761,
2022.

[17] G. Li, H. Dong, and C. Zhang. Cloud databases: New techniques,
challenges, and opportunities. Proceedings of the VLDB Endowment,
15(12):3758–3761, 2022.

[18] G. Li, W. Tian, J. Zhang, R. Grosman, Z. Liu, and S. Li. Gaussdb:
A cloud-native multi-primary database with compute-memory-storage
disaggregation. Proc. VLDB Endow., 17, 2024.

[19] G. Li, W. Tian, J. Zhang, R. Grosman, Z. Liu, and L. Sihao. GaussDB: A
Cloud-Native Multi-Primary Database with Compute-Memory-Storage
Disaggregation. Proceedings of the VLDB Endowment, 17(5):1–12,
2024.

[20] T. Li, B. Chandramouli, S. Burckhardt, and S. Madden. Darq matter
binds everything: Performant and composable cloud programming via
resilient steps. Proceedings of the ACM on Management of Data, 1(2):1–
27, 2023.

[21] M. Luksa. Kubernetes in action. Simon and Schuster, 2017.
[22] E. Milkai, Y. Chronis, K. P. Gaffney, Z. Guo, J. M. Patel, and X. Yu.

How good is my HTAP system? In SIGMOD, pages 1810–1824. ACM,
2022.

[23] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. Aries:
A transaction recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging. ACM Transactions on
Database Systems (TODS), 17(1):94–162, 1992.

[24] V. Narasayya, S. Chaudhuri, et al. Cloud data services: Workloads,
architectures and multi-tenancy. Foundations and Trends® in Databases,
10(1):1–107, 2021.

[25] Neon. Local File Cache (LFC). https://neon.tech/docs/extensions/neon/,
2024.

[26] X. Pang and J. Wang. Understanding the performance implications of
the design principles in storage-disaggregated databases. In SIGMOD,
pages 1–26, 2024.

[27] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López, G. Gibson,
A. Fuchs, and B. Rinaldi. Ycsb++ benchmarking and performance
debugging advanced features in scalable table stores. In Proceedings
of the 2nd ACM Symposium on Cloud Computing, pages 1–14, 2011.

[28] O. Poppe, T. Amuneke, D. Banda, A. De, A. Green, M. Knoertzer,
E. Nosakhare, K. Rajendran, D. Shankargouda, M. Wang, et al. Seagull:
An infrastructure for load prediction and optimized resource allocation.
arXiv preprint arXiv:2009.12922, 2020.

[29] O. Poppe, Q. Guo, W. Lang, P. Arora, M. Oslake, S. Xu, and A. Kalhan.
Moneyball: proactive auto-scaling in Microsoft Azure SQL database
serverless. Proceedings of the VLDB Endowment, 15(6):1279–1287,
2022.

[30] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime measurements in
the cloud: observing, analyzing, and reducing variance. Proceedings of
the VLDB Endowment, 3(1-2):460–471, 2010.

[31] A. Skendzic and B. Kovacic. Microsoft office 365-cloud in business
environment. In 2012 Proceedings of the 35th International Convention
MIPRO, pages 1434–1439. IEEE, 2012.

[32] R. Su and X. Li. Modular monolith: Is this the trend in software
architecture? arXiv preprint arXiv:2401.11867, 2024.

[33] S. Sunkari. A brief review on crm, salesforce and reasons stating
salesforce as one of the top crm’s. Salesforce and Reasons Stating
Salesforce as One of the Top CRM’s (June 18, 2022), 2022.

[34] J. Tan, T. Ghanem, M. Perron, X. Yu, M. Stonebraker, D. DeWitt,
M. Serafini, A. Aboulnaga, and T. Kraska. Choosing a cloud DBMS:
architectures and tradeoffs. Proceedings of the VLDB Endowment,
12(12):2170–2182, 2019.

[35] Transaction Processing Performance Council. TPC-C, 2021.
[36] Transaction Processing Performance Council. TPC-H, 2021.
[37] A. Van Renen and V. Leis. Cloud Analytics Benchmark. Proceedings

of the VLDB Endowment, 16(6):1413–1425, 2023.
[38] A. Verbitski, A. Gupta, D. Saha, et al. Amazon Aurora: Design

Considerations for High Throughput Cloud-Native Relational Databases.
In SIGMOD, pages 1041–1052, 2017.

[39] M. Vuppalapati, J. Miron, R. Agarwal, et al. Building An Elastic Query
Engine on Disaggregated Storage. In NSDI, pages 449–462, 2020.

[40] C. Wan, Y. Zhu, J. Cahoon, W. Wang, K. Lin, S. Liu, R. Truong,
N. Singh, A. M. Ciortea, K. Karanasos, et al. Stitcher: Learned workload
synthesis from historical performance footprints. In EDBT, pages 417–
423, 2023.

[41] J. Wang and Q. Zhang. Disaggregated database systems. In Companion
of the 2023 International Conference on Management of Data, pages
37–44, 2023.

[42] Wikipedia. David dewitt, 2023.
[43] X. Yang, Y. Zhang, H. Chen, C. Sun, F. Li, and W. Zhou. Polardb-scc: A

cloud-native database ensuring low latency for strongly consistent reads.
Proceedings of the VLDB Endowment, 16(12):3754–3767, 2023.

[44] C. Zhang, G. Li, and T. Lv. HyBench: A New Benchmark for HTAP
Databases. Proceedings of the VLDB Endowment, 17(5):939–951, 2024.

[45] C. Zhang, G. Li, J. Zhang, X. Zhang, and J. Feng. HTAP Databases: A
Survey. IEEE Transactions on Knowledge and Data Engineering, pages
1–20, 2024.

[46] C. Zhang and J. Lu. Holistic evaluation in multi-model databases
benchmarking. Distributed and Parallel Databases, 39(1):1–33, 2021.

[47] C. Zhang, J. Lu, P. Xu, and Y. Chen. Unibench: a benchmark for
multi-model database management systems. In Performance Evaluation
and Benchmarking for the Era of Artificial Intelligence: 10th TPC
Technology Conference, TPCTC 2018, Rio de Janeiro, Brazil, August
27–31, 2018, Revised Selected Papers 10, pages 7–23. Springer, 2019.

[48] J. Zhang, W. Jiang, B. Tang, H. Ma, L. Cao, Z. Jiang, Y. Nie, F. Wang,
L. Zhang, and Y. Liang. CDSBen: Benchmarking the Performance
of Storage Services in Cloud-Native Database System at ByteDance.
Proceedings of the VLDB Endowment, 16(12):3584–3596, 2023.

[49] Y. Zhang, C. Ruan, C. Li, X. Yang, W. Cao, F. Li, B. Wang, J. Fang,
Y. Wang, J. Huo, et al. Towards cost-effective and elastic cloud database
deployment via memory disaggregation. Proceedings of the VLDB
Endowment, 14(10):1900–1912, 2021.

13

https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://neon.tech/docs/extensions/neon/

	Introduction
	CloudyBench Benchmark
	MicroService Schema and Data Generation
	Cloud OLTP Patterns
	Throughput Evaluation.
	Lag Time Evaluation.

	Elasticity Patterns
	Multi-Tenancy Patterns
	Fail-Over Patterns
	Resource Unit Cost
	Performance Metrics

	Experiments
	Experimental Settings
	Transaction Processing Evaluation
	Elasticity Evaluation
	Multi-Tenancy Evaluation
	Fail-Over Evaluation
	Lag Time Evaluation between RW and RO
	Overall Performance
	Varying the Buffer Size
	Comparison with Existing Benchmarks
	Takeaways and Discussions

	Related Work
	Conclusion
	References

