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Abstract—Federated data analytics, aimed at extracting in-
sights from decentralized private data while preserving privacy,

Parameter

is crucial for organizations holding sensitive data. Existing
approaches, such as output perturbation that adds noise to query
results based on differential privacy, often suffer from degraded
accuracy due to cumulative privacy budget consumption. In this
paper, we introduce ADAPT, a novel framework that addresses
this problem by training a privacy-preserving density model
over decentralized data. Unlike traditional methods, ADAPT avoids
accessing raw data when answering queries, thereby avoiding
additional privacy leakage. We tackle the technical challenges
raised by privacy-preserving federated data analytics, including
parameter misalignment and distribution discrepancy, through
innovative techniques of pre-alignment of network parameters
and fine-tuning towards accurate data distributions. Directly
using the density model, ADAPT accurately infers the results
of a wide range of analytical queries. Extensive experiments
demonstrate that ADAPT outperforms existing methods in terms of
accuracy. Notably, for answering 8,000 analytical queries, ADAPT
reduces the median relative error from over 10° to less than 6%.
Moreover, it achieves high accuracy comparable to centralized
differential privacy training, demonstrating its effectiveness in
practical federated data analytics scenarios.
Index Terms—data analytics, federated learning.

I. INTRODUCTION

Many organizations hold valuable and sensitive data that
cannot be shared with the public due to privacy concerns.
This urges the need for techniques that can effectively conduct
decentralized data analytics over private data owned by multi-
ple organizations, while still preserving data privacy, so called
federated data analytics. Federated data analytics can discover
meaningful insights while each individual organization cannot
if it only analyzes its own data.

Example 1. Consider several hospitals each possessing pri-
vate patient records. These hospitals want to conduct data
analytics to investigate the factors influencing a rare disease,
for example, exploring the relationship between the use of
surgical treatment (have undergone at least one surgery) and
the cure rate for a rare disease X. Hence, they may run
the following SQL query over their private data, which only
contains a limited amount of patient records.

SELECT AVERAGE (CureRate)
WHERE T.DISEASE =

FROM T
X AND T.SURGERY > 1;

In this example, because each hospital has no sufficient
data, running analytical queries independently on their own
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Fig. 1. Limitations in training density models in FL.

small data might lead to misleading conclusions. Federated
data analytics targets resolving this critical issue.

One intuitive way to support federated data analytics is
to leverage the output perturbation technique [39], [52], [5],
[6], [14], [26] introduced in differential privacy (DP). More
specifically, it first requests each client to query its own data
and injects noise to the query result to mitigate privacy leak
with differential privacy guarantee; it then aggregates the noisy
results reported by the clients to produce the final result.
However, differential privacy allows each query to leak certain
amount of private information, and moreover privacy leak
accumulates. The more queries a client runs, the more private
information will leak. As the goal is to preserve the privacy
of the whole database, a total privacy budget [16] has to be
assigned to the client. However, each query will consume
certain amount of privacy budget. Therefore, a query will only
get a small privacy budget when there are a large number of
queries. Consequently, a large amount of noise has to be added
to the result of each query, resulting in poor query accuracy.
Therefore, this method fails to produce accurate results when
there exist a large number of queries [54]. For example, on a
real-world dataset used in our experiments, the median relative
error was over 10,000% when answering only 100 queries.
Key Idea. In this work, we propose ADAPT, which for the
first time makes federated data analytics practical. The key
idea is to first train a privacy-preserving density model that
accurately learns the joint data distribution across all clients,
i.e., a probability density function; queries will then be directly
approximated based on the density model without accessing
the private data. This avoids additional privacy leaks, thus
addressing the above problem.

Technical Challenges. The success of this new federated data
analytics paradigm relies on two factors: an accurate density
model and an efficient inference strategy. To learn an accurate
density model over the decentralized private data, a natural
way is to adopt federated learning (FL) [38], where model
parameters exchange iteratively between the server and clients.
In the typical FL framework, clients receive model parameters,
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Fig. 2. Framework of ADAPT that trains a privacy-preserving density model in federated learning for analytical queries.

train with their local data, and send back updated parameters
to the server. These updated parameters are then averaged
coordinate-wise on the server to obtain a new shared global
model. However, training density models in FL faces two
critical challenges (Figure 1) that degrade the performance of
model.

Parameter Misalignment (C1): FL. commonly uses coordinate-
wise averaging to aggregate the models received from the
clients. Assume that each parameter has a coordinate in the
client model. Coordinate-wise averaging aggregates the client
models by taking an average over the parameters at the same
coordinate. However, the parameters of each model, e.g.,
hidden neurons in fully connected layers, can be randomly
permutated during training without impacting network outputs,
leading to a parameter misalignment across the models. This
often significantly degrades the accuracy of the aggregated
model. To address this issue, existing works [49], [56], [35],
[58] use an additional matching step to align neurons after each
client trains its local model. However, this post-processing
method is ineffective for privacy-preserving local training
because the noise added to the model parameters misleads the
matching. Moreover, it is also inefficient due to the additional
computational overhead for matching.

Distribution Discrepancy (C2): The density models trained
independently at different clients only learn the local distribu-
tions, while our ultimate goal is to learn the joint distribution
across all clients. However, as illustrated in Figure 1, even
if we could completely resolve the misalignment issue in
coordinate-wise averaging, the probability density function
(PDF) which the averaged density model estimates would still
significantly deviate from the PDF learned from all client data
in a centralized setting. This is because as a heuristic, the
parameter average does not guarantee any error bound [38].
Even if each client could learn a density model that perfectly
fits its own data distribution, simply averaging their parameters
would not produce a density model that accurately fits the joint
data distribution across different clients.

Inference Inefficiency (C3): Answering analytical queries with
a learned density model requires computing one or several
integrals of the PDF over the value range specified by the
query predicates, known as query domain 2. Specifically: (1)
the integrand is an expression of density corresponding to the
aggregate function of the query; (2) the probability density
is inferred from the density model. However, these integra-
tions do not have analytical solutions. Existing works that
use density models for cardinality estimation or approximate
query processing rely on Monte Carlo integration techniques,

including uniform sampling [37], progressive sampling [55]
and adaptive importance sampling [50], [51], [19]. However,
to accurately estimate the probability density with a model,
these methods have to generate numerous sampling points
within the query domain, resulting in significant computational
overhead. This inefficiency issue is further exacerbated on
complex aggregation queries requiring multiple integrations,
like MODE, VARIANCE and PERCENTILE.

Proposed Approach. We propose ADAPT that features novel
techniques to address the above challenges in training privacy-
preserving density models as well as an optimized adaptive
importance sampling-based method that effectively and effi-
ciently approximates a broad range of analytical queries using
the trained density model. In particular, ADAPT successfully
overcomes the performance gap between federated learning
and centralized training for density models: ADAPT can pro-
duce a density model with accuracy close to a model learned
with centralized privacy-preserving training.

Training Privacy-preserving Density Model. To address the
parameter misalignment problem (C1), after careful analysis,
we observe that it is the permutation invariance property [49],
[58] of neural networks that causes this problem, where
neurons in the same layer cannot be distinguished and aligned,
resulting in that hidden layer neurons can be reordered without
affecting the network outputs. Based on this observation,
we propose a novel method that contrary to existing post-
processing-based matching methods, pre-aligns the model
neurons before the clients train their local models. More
specifically, we propose to alleviate the permutation invariance
problem by judiciously designing the neuron structure to make
neurons easily distinguished with different neural connections.
This guarantees that permutating neurons would produce net-
works with different outputs, thus addressing the parameter
misalignment. However, arbitrarily setting the neural connec-
tions may remove too many connections, resulting in an overly
sparse, hence ineffective model. We thus propose a neural
connection selection method to address this issue. We first
formulate this problem as an optimization objective that given
a hard constraint on the number of removed neural connec-
tions, minimizes the pairwise similarity between neurons. We
then prove that the optimal solution to this problem can be
found by an efficient algorithm with a time complexity linear
to the number of model parameters.

To overcome the distribution discrepancy problem (C2), we
first propose a method called distribution average (DA) that can
estimate the PDF of the joint distribution across all clients
with bounded error for any data point. However, answering




an analytical query by directly using DA to estimate the
probability density of the corresponding domain values is not
practical, because the estimation of DA has to leverage all local
models, which inherently leaks more privacy [13], [36], [7]
and introduces higher inference latency [43], [35]. To address
these issues, we propose a method that instead leverages the
theoretical conclusion of DA to guide the federated training
process. It fine-tunes the parameter-averaged model to imitate
the PDF computed by DA, and finally produces a single
density model, thus dramatically alleviating the distribution
discrepancy problem.

Query Inference Acceleration. To improve the efficiency of
query inference (C3), we focus on reducing redundant sam-
pling points based on two observations. First, not all integra-
tions contribute equally to the accuracy of analytical queries.
We thus design a strategy to identify the integrations that have
negligible impact on query results and stops sampling at early
stage. In this way, ADAPT avoids unnecessary computations,
while not sacrificing accuracy. Second, complex queries are
often decomposed into multiple similar queries with highly
overlapping query domains. We propose to reuse samples from
previous integrations in subsequent ones to reduce the total
number of required samples, thereby improving efficiency.
Contributions. We summarize our contributions as follows:
(1) We propose ADAPT, a new paradigm for Approximate
federated Data Analytics leveraging the Privacy-preserving
densiTy model. To the best of our knowledge, this is the first
work to use density models for private federated data analytics.
(2) We propose a network structure selection algorithm to
address the parameter misalignment problem in federated
training of density models, which pre-aligns neurons to avoid
random parameter permutation in training.

(3) We solve the distribution discrepancy problem by com-
puting an error-bounded PDF leveraging the local models and
employing it to fine-tune the parameter-averaged model.

(4) We propose an inference acceleration algorithm that avoids
redundant sampling in answering complex analytical queries.
(5) We conduct extensive experiments to demonstrate that
ADAPT significantly outperforms existing private federated data
analytics methods in terms of accuracy. In particular, for
answering 8,000 analytical queries, ADAPT reduces the median
relative error from 103 to less than 6%. Moreover, compared
with SOTA FL training methods, ADAPT produces a much more
accurate density model: ADAPT reduces the estimation error
by over 10x, and achieves similar accuracy as centralized DP
training — the upper bound in this setting.

II. PRELIMINARY
A. Problem Definition

Privacy-Preserving Federated Density Estimation. Consider
¢ clients each holding private data with m attributes {4, As,
.., Amn}. Each client U; has n; private data records, de-
noted as D, = {mgl)}?;l and we denote the total number
of data records across all clients as N = Z;Zlnj. The
objective of privacy-preserving federated density estimation

(PrivFDE) is to maximize the accuracy of the density model

subject to the differential privacy (DP) and federated learning
constraints. The DP constraint requires the common sample-
level differential privacy [2], i.e., each client satisfies (e,0)-
differential privacy with respect to its local dataset. Here the
parameter €, i.e., privacy budget, quantifies the degree of
privacy preservation. A smaller e indicates stronger privacy
preservation. The parameter ¢ is the likelihood of privacy
leakage beyond the protection provided by € and typically
takes a small value, e.g., 10~°. The FL constraint requires raw
data of each client to be stored locally and only intermediate
model updates are transferred in collaborative training.

Formally, the optimization objective of PrivFDE can be
defined as maximizing model accuracy using the maximum
likelihood principle under FL. and DP constraints:

. R (i)
0" = arg min 32::1 ; —logpe(z;”)
. ey
_ ; nj ..
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where logpg () denotes the probability density of data point
x computed by the density model parameterized by 8; and
L(0; D;) denotes the loss on local dataset D, .
Supported Query Types. ADAPT directly uses the density
model to support a broad range of aggregate queries without
accessing the private data. In summary, ADAPT supports SQL
queries of the form:

SELECT AGG(Y) FROM T
[WHERE PREDICATE ]
[AND/OR PREDICATE,]

[GROUP BY G]J;

Here AGG(Y) denotes an aggregate function applied to
attribute Y over the tuples filtered by the predicates. ADAPT
supports various aggregate functions, such as COUNT, SUM,
AVG, VARIANCE, PERCENTILE, MODE or STDDEV (Section V-A).
ADAPT supports both conjunctions and disjunctions of single-
column predicates on numerical and categorical data. Each
predicate PREDICATE; for attribute A; can either be an
equality predicate (e.g., A; = a;) or a range predicate (e.g.,
A; > 1 or l; < A; < hy). Without loss of generality, we focus
on conjunctions in this paper, as disjunctions can be converted
into conjunctions by the inclusion-exclusion principle [50].
Moreover, GROUP BY queries can be supported by decomposing
the query into multiple queries that replace the GROUP BY
predicate with equality predicates enumerating all distinct
values of the group attribute.

B. Normalizing Flow

In the past decades, various generative models have been
proposed for learning the joint data distribution. However, al-
though diffusion models [44], [22], GANs [18] and VAEs [28]
excel in tasks like image synthesis, they do not explicitly
estimate the probability density, thus fail to meet our need.
In contrast, normalizing flows (NF) [42], [12], [15] are a



family of generative models known for their state-of-the-
art density estimation capability, adopted in a range of core
database problems, e.g., cardinality estimation [50], [51] and
learned index [53]. Naturally, in this work we adopt NF as the
density estimation model, although our proposed framework
is compatible to other density models as well.

To be specific, NF is defined by a sequence of invertible
transformations fi,...,f;, which converts a data point x
to a random variable uw with tractable probability density
via a sequence of latent variables h;,... hi_; following
the sequence: x & h; &, hy--- &5 w. Since the
density change of each f; can be quantified by the Jacobian
matrix, the probability density of a data point x can be
computed utilizing the change-of-variable formula as follows:
logp(; 0) = logp(u)+log| 9| = logp(u)+ Y1, log| 52— |.
Here log|%| and log| af:fil| denote the logarithm of the
absolute determinant of the Jacobian matrices of f at & and f;
at h;_;. Each transformation f; generally employs a coupling
layer [12], [40], [15] that divides the attributes into two parts
and learns the relationship between them. In training, the
maximum likelihood principle is used.

C. Overall Framework

ADAPT learns an NF model that effectively estimates the
joint distribution of all client data while ensuring differential
privacy. As shown in Figure 2, the clients first jointly train an
(e,9)-DP NF model 0 using federated learning. Once trained,
the NF model @ is leveraged to answer analytical queries via
privacy-preserving probability density computation.
Training. ADAPT first preprocesses the original data of all
clients, transforming both numerical and categorical data into a
continuous format suitable for training. Numerical data, which
include both continuous and discrete data, are handled differ-
ently: continuous data are already supported, while discrete
data have to undergo a uniform dequantization [23], [21],
[46] that adds uniform noise between O and the width of
each discrete bin to make them continuous. Categorical data
are discretized into integers as in existing works [19], [55],
and then tackled as discrete data. For example, as illustrated
in Figure 2, a categorical value X in column A; is first
discretized into 0 and then dequantized into a continuous form
by adding uniform noise within [0, 1), e.g., 0.1.

After preprocessing, to train a more accurate density model
under FL. and DP constraints, we first select a network
structure that can achieve parameter alignment across multiple
clients (Section III). For privacy-preserving local training, we
employ DP-SGD [2] that adds noise to gradients. To miti-
gate the distribution discrepancy problem that the distribution
learned by the model of parameter averaging deviates from
the target distribution, we propose a fine-tuning algorithm to
adjust the averaged model (Section IV).

Inference. As the learned joint data distributions are continu-
ous, the analytical queries can be estimated by integrations
over the query domain (2. Formally, we denote the value
range satisfying the predicates for attribute A; as R;, thus
Q = Ry X --- X Ry,. Because not all predicates are range
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Fig. 3. An Example of Neurons with Different Connections.
predicates, we convert equality predicates over categorical
values into ranges, similar to the preprocessing in the training
phase. For example, the query in Figure 2 corresponds to
Ry =10,1) and Ry = [4,7), making Q = [0,1) x [4,7).

During inference, ADAPT first computes the legal range R;
for each attribute based on the query predicates to obtain
. Analytical queries are then expressed as integrations of
the joint data distribution over (2. For instance, the above
SUM query is computed by N - [, pe(®)x[As] dx, where
pe(x) is the probability density of @ and x[As] is the value
of attribute Ao for data point x. ADAPT approximates these
integration results using Monte Carlo (MC) integration [32]
over the ). However, some analytical queries require density
estimation for a large number of data samples. To improve
computation efficiency, we propose optimizations to reduce
redundant sampling points for acceleration (Section V).

III. ALIGNING NETWORK PARAMETERS USING
DISTINCTIVE NEURONS

Our main idea for solving the parameter misalignment prob-
lem is to make the neurons distinguishable. We first outline
the overall solution in Section III-A, where we ensure neurons
at different locations are distinctive by assigning them distinct
neural connections, thus their parameters can be pre-aligned.
We then formalize the optimization problem of selecting ap-
propriate neural connections for each neuron in Section III-B,
derive its optimal minimum value in Section III-C, and propose
an efficient construction algorithm to achieve the optimum in
Section III-D.

A. Overall Solution

Our key idea is to enforce distinctiveness among neurons
prior to model training by assigning unique roles to neurons
in each hidden layer. This ensures that neurons in different
positions capture specialized information, thus avoiding ran-
dom parameter permutation in training and effectively aligning
neurons across clients.

However, during training, we lack direct control over the
weight matrix W of each layer. Thus, we enhance the orthog-
onality between neuron parameters by adjusting the network
structure. Specifically, we drop some neural connections in
the original fully connected layer to make neurons in the
same layer possess different neural connections. In this way,
the connections of neurons are not the same and thus the
neurons are no longer interchangeable. Figure 3 shows an
example network. After dropping some neural connections, the
hidden layer neurons in Figure 3(b) become non-exchangeable
because they own different neural connections.

As our goal is to maximize the difference in neural connec-
tions among neurons in the same layer, one straightforward
approach is to remove an arbitrary number of connections
for each neuron. However, although this is able to maximize



the structural difference, it will also make the network much
sparser than the original network. This affects the expressive
capability of the network, thus degrading the final accuracy.
Therefore, we aim to propose an approach that selectively
discards some neural connections to maximize the difference
between neurons, while not making the network too sparse.
B. Neural Connection Selection

Consider a hidden layer in a fully connected network, where
the input size of the layer is m and this layer comprises n
neurons. The status of the neural connections of this layer can
be denoted by an n x m binary matrix H. Let each entry H;;
denote whether the connection from the ¢-th neuron to the j-th
input is present (H;; = 1) or absent (H;; = 0); and the i-th
row in H, denoted as H,, represents the neural connections
for the ¢-th neuron. The original complete fully connected
network corresponds to an  matrix with all ones. To avoid
the network becoming too sparse, we restrict each H; to have
at most K zeros, where K is a constant, proportional to m.
Therefore, our optimization goal is to maximize the differences
between neurons subject to this constraint. Given two neurons,
we measure their difference based on the orthogonality degree
between their neural connections H; and Hj;, which can be
computed as the dot product [9]:

m

D(H;, Hj) = > Hy - Hj, )

k=1
Here, a smaller value indicates a higher degree of orthogonal-
ity. Therefore, to maximize the neuron difference, the objective
is to minimize the sum of all pair-wise D(H;, H;), which is
equivalent to the sum of all entries in HH” except the terms
on the diagonal:

arg min i i (HH™");;

i=1 j=1,j#i

(HHT);; denotes the j-th entry in the i-th row of HH™.
Now, we are ready to formally define the problem we target.

3)

Problem 1. Neuron Structure Selection. Given a hidden layer
with n neurons and m-dimensional input in a fully connected
network and the sparsity constraint constant K. The task of
neuron structure selection is to construct an n X m binary
matrix H denoting the neural connections of the layer, where
each row has at most K zeros, with the objective of minimizing

Z?:l Z?:l,j;éi(HHT)ij'
C. Optimal Result

To guide the design of an effective selection algorithm, we
first derive the optimal result of Problem 1 and establish the
conditions for achieving this optimal result. For the matrix H,
let aq,...,a,, denote the count of zeros in the m columns,
and let by, ..., b, denote the count of ones in the m columns.
The optimal value and conditions are as follows.

Lemma 1. The20172timal result of Problem 1 is n®m —2n2K +
nK —nm + "”IL{ and can be achieved if and only if by =
R — n(m—K)

Due to space limit, please refer to our technical report [1]
for the proof. The intuition is to evenly distribute inputs among
neurons to minimize overlap in their connections. Note that m
sometimes does not divide n(m — K). In such cases, n(m —
K)%m of the by, ..., by, should be LMJ + 1, while the

remaining should be Lw .
D. Neural Connection Selection Algorithm

Guided by the above optimality condition, we design an
efficient neuron structure selection algorithm that achieves the
optimal minimum value. A pseudo-code is present in our
technical report [1]. ADAPT first initializes all elements in
the m x m matrix H to one. Then it uses a set of rows
P for keeping track of the rows with fewer than K zeros
in H. Initially, P contains all rows, ie, P = {1,...,n},
since no rows contain zeros. Next, the target count of ones
for each column, denoted as bq,...,b,, is computed using
the conclusions drawn in Section III-C. Subsequently, the
algorithm determines the values of the matrix H column by
column. For the j-th column, a subset S of rows, with a size
of b; is selected randomly from the candidate row set P. For
each row H; within the selected subset, the corresponding
entry H;; is set to 0. After that, as some rows now contain
more zeros, the candidate row set P is updated based on the
current state of H. The above process iterates through all
columns, ultimately resulting in a binary matrix H that obtains
the optimal solution. Overall, this process takes O(nm) time.

IV. FEDERATED MODEL TRAINING

To overcome the distribution discrepancy problem, we pro-
pose a Distribution Average method, which approximates the
target joint distribution of all client data with a bounded error.
Guided by this more accurate approximation, ADAPT fine-tunes
the model obtained by parameter averaging to eliminate the
distribution discrepancy. In Section IV-A, we first introduce
the Distribution Average approach. Then in Section IV-B, we
theoretically prove its error bound. Finally in Section IV-C,
we introduce the training algorithm.

A. Distribution Average

Note our ultimate objective is to accurately learn the joint
distribution of data from all clients. We observe that this target
distribution constitutes a mixture distribution, i.e., a weighted
combination of the local distributions of the clients, denoted
mathematically as p* = >, w;p;. Here, p* denotes the target
distribution and each local distribution p; of client U, serves
as a component distribution, with a mixture weight w; = 3.
Here, the mixture weight can be interpreted as the probability
that a data sample is drawn from this mixture component.
Hence, client U; with n; data samples has a weight w; of "W
Therefore, the density in the target distribution is a mixture
density that can be computed as the weighted average of local
distribution densities, i.e., p*(z) = Y. w;p;(x). Since each
local model is trained on local data for many iterations to fit the
local distribution p; by the learned distribution ¢;, the mixture
of learned distributions, i.e., Y, w;q;(x) can form an accurate
approximation of p*, which we call Distribution Average (DA).



B. Error Bound of Distribution Average

DA approximates p* by ¢ = ). w;g;. Next, we show that
the approximation error of ¢ to p*, measured by their KL-
divergence Dk, (p*||¢) is bounded.

Since employing neural networks inevitably incurs certain
approximation errors, we introduce -y; to denote the error when
fitting p; by ¢;, which is defined as the maximum ratio between

pi(z) and g;(z), i.e, v; = max{p’ } Thus, we have p’Ei)) <
v, for all z.
The KL-divergence between p* and ¢ is defined as:
" . p(x)
Dkr(p”llg :/p z)log dx “4)
wlla) = [ 9" @)os”
Leveraging p* = ), wip;, ¢ = Y, wiq; and ’;E,f)) < v
we have:
pr(x) D wipi(x) Y viwiqi(x)

Q(l‘) - Zi wiQi(X) = Zi wiQi(X) ©)

Taking Vmq» = max{y;}, we have:

Zi Yiw;qi ()
Z» w;q;(x) =

Therefore, we have q(( ))

Zi TYmazWiq; (X)
Zi w;q; ('7;)

< ymam Since p* is a probability
density function satisfying [ p*(x)dz = 1, we can obtain the
upper bound of the KL—divergence as:

o — [ o onoe? @) g,
Dxr(p*llq) _/p ()log q(x) d @)

< / p*(x)10g(Ymaz) dz = 10g(Ymaz)

By Equation 7, the approximation error of DA is upper
bounded by the approximation error of the most inaccurate
local model, which is generally small in practice.

C. Federated Flow Training Algorithm

ADAPT leverages DA to fine-tune the density model learned
by the classic parameter averaging in FL.
Finetune via KL Divergence. In the ¢-th round, the central
server receives updated local models 6%, ..., 0% from clients
and aggregates them using parameter average, obtaining the
averaged model 6. We use ¢’ to denote the distribution
represented by 0% and ¢ to denote the distribution obtained
by DA of the learned distributions of 6%, ..., 6.

To narrow the gap between ¢’ and ¢ is equivalent to
adjusting 0" to reduce the KL divergence D1, (q||q’), defined

as:
q(x) x

Dicrlall) = [ ataios >

Unfortunately, the exact computation of Dxr,(q|¢’) is in-
feasible due to the absence of closed-form expressions for ¢(x)
and ¢’ (z). However, based on the law of large numbers, the
KL divergence can be approximated using a set of data points
D [25] as follows:

®)

~)
|D\ Z ID\ ;) ©

Drr(qllq)

However, relying on samples to approximate the KL diver-
gence requires additional data that is lacking in FL scenarios.
Fortunately, normalizing flow models, as a class of generative
models, inherently possess the capability to generate synthetic
data points. Therefore, we first utilize the NF model parame-
terized by 0* to generate a small set of data points D?, e.g.,
0.1N data. Subsequently, we compute the probability densities
of these points in ¢ and ¢’ separately. The density in ¢’ can
be computed using the NF model parameterized by 8¢, while
the density in ¢ can be computed using all the client models
based on DA. Finally, we use D? and their probability densities
computed using DA as training data to refine 8¢, The objective
is to minimize the KL divergence loss £(0%; D), where the
loss function L is defined as:

i)
Z \D| (zi)

Through iterative adjustment of 8% to reduce the loss over
D?, the gap between the learned distribution and the error-
bounded distribution g is significantly narrowed. This iterative
process results in more accurate model fusion in each federated
round, ultimately yielding a more accurate trained model.
Training Algorithm. Overall, the training algorithm of ADAPT
involves two modifications to the original FedAVG: selecting a
parameter-aligned network structure before training and using
distribution average to aggregate local models during training.
A detailed explanation is provided in the technical report [1].
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V. INFERENCE

After training the privacy-preserving NF model 0, the next
step is to utilize the model to estimate the results of analytical
queries.

Given a query ) with an aggregate function AGG(Y) over
attribute Y, we first identify the query domain €2 based on pred-
icates of (). We then transform the query into an expression of
one or more integrals, where the integrands correspond to the
aggregate function AGG and €) denotes the integral interval.

Next, we will first introduce how to convert () into integrals
for different aggregate functions in Section V-A. Subsequently,
we will introduce how to utilize Monte Carlo (MC) integration
to compute the integrals for answering queries in Section V-B.
We then present our acceleration optimizations in Section V-C.

A. Supporting Different Aggregate Functions

For simplicity, we use p(x) to denote pg(x) and use y to
denote x[Y], i.e., the value of attribute Y for a data point .
COUNT. The COUNT aggregation can be computed as:

N-/Qp(w) da

Here, the integral of p(x) over 2 computes the proportion of
data points within 2, also known as the selectivity of the query.
Therefore, multiplying it by the total data size N leads to the
total number of data records that meet the query predicates,
i.e., the COUNT result.



AVG. The AVG aggregation can be computed as:
Jop(z)y dz

E[Y] = ==——F~+—
fQ p(z) dz
Since the average of Y is equivalent to the mathematical
expectation of Y, we can compute it as E[Y].
SUM. The SUM aggregation can be computed as:

COUNT - AVG = N~/p(as)~yda:
Q

Since SUM is the product of COUNT and AVG, we can multiply
the expressions of COUNT and AVG to get the SUM result.
VARIANCE. The VARIANCE aggregation can be computed as:

2
Jop(@)y? dw} B {fgp(w)y dw]
fﬂ p(x) dz fﬂp(w) dz
The computation is based on the definition of variance. The
first term E[Y?2] corresponds to the expectation of Y2, while

the second term is the square of AVG.
STDDEYV. The STDDEV aggregation can be computed as:

E[Y?] - E[Y]* = {

VVARTANCE = \/ [fyplei” e _ [fopteydeT”
fQ p(z) dz pr(:c) dx
STDDEV is the squared root of VARIANCE. Therefore, it can
be computed in a similar way to variance.
MODE. MODE identifies the most frequently occurring value in
the dataset. It can be computed by: (1) decompose the original
query into multiple queries by replacing the MODE predicate
with equality predicates for all possible attribute values; (2)
estimate the cardinality of these queries, i.e., compute their
COUNT results; (3) select the attribute value with the largest
estimated COUNT as the final result. Figure 4 shows an example
for the above process.
PERCENTILE. PERCENTILE (Y, p) computes the value below
which a percentage (p) of the values in column Y falls. That
is, it computes the value « such that P(Y < a) = p. Setting
p to 0, 0.5, and 1, PERCENTILE is able to estimate MIN,
MEDIAN, and MAX. To compute «, the bisection method is
employed [48], [37], which involves a binary search of o using
multiple COUNT queries.
RANGE. RANGE computes the difference between the maxi-
mum and minimum values in column Y, i.e., MAX-MIN. It can
be estimated by separately computing MAX and MIN using the
estimation method for PERCENTILE.
B. Monte Carlo Integration

Although we derive the integral expression, unfortunately
there is no way to answer an analytical query by directly
computing the integration, due to the absence of a closed-
form solution. Therefore, we employ Monte Carlo (MC)
integration [32], [31] for approximation. The key idea of MC is
to first sample a set of data points from the integration interval
), compute their integrand values, and finally integrate the
results to get the estimation. Among these steps, sampling is
crucial to the accuracy and efficiency of MC.

Adaptive Importance Sampling. A straightforward sampling
approach is to uniformly sample data records from 2. How-
ever, it tends to degrade accuracy since the integrand within
) may not exhibit a uniform distribution.

To address this issue, we employ the adaptive importance
sampling (AIS) algorithm [32], [31], which refines the sam-
pling process by dividing it into multiple steps. The goal is to
sample according to the integrand distribution, denoted as [. To
this end, AIS leverages samples from earlier steps to gradually
approximate [, thus guiding subsequent sampling steps. To
speed up the approximation, AIS divides each attribute of [
into a sequence of successive buckets and uniform samples
from each bucket. The samples w.r.t. each attribute will then
be joined together to form the complete data records.

To accurately approximate [, AIS dynamically adjusts the
width of each bucket such that the buckets divide the total
integral uniformly. In this way, uniform sampling from the
buckets approximately follows the distribution of [. Such
partition produces narrower buckets that contain data objects
with higher integrand values, i.e., more important. Thus, there
will be more buckets at the high spikes in the integrand.
Consequently, AIS will sample more data records from such
important areas. AIS iteratively adjusts the buckets until
convergence, i.e., almost no further changes in bucket width.
Overall Inference Process. Given the analytical query, ADAPT
first obtains the query domain of the query and determines
the corresponding integrand function based on the aggregate
function. At the beginning of MC integration, AIS initializes
equi-width buckets for the query domain, as there is no
knowledge about [. Then AIS iteratively samples data points
from the buckets, computes their integrand values using the
NF model, and updates the buckets until convergence. Finally,
AIS conducts a weighted aggregation of all the sampled data
points across various steps to derive the final integration result
for answering the analytical queries.

C. Inference Acceleration

Supporting complex aggregate functions typically involves
multiple integrations. Independently computing these integra-
tions often results in inefficiency due to a large number
of redundant samples. To this end, we propose to leverage
inherent correlations between these integrations to reduce
redundant sampling in AIS.

Our optimization is based on two key principles: (1) Early
Termination of Low-Impact Integrations: Answering ana-
lytical queries does not always require accurately estimating
all integrations. By identifying and terminating low-impact
integrations early in the iterative process of AIS, we can
avoid unnecessary computations without affecting accuracy.
(2) Sample Reuse Across Similar Integrations: A complex
query is typically decomposed into multiple similar queries:
have similar query domains and tend to generate similar
samples. Therefore, by reusing samples drawn during previous
integrations in subsequent integrations, we can reduce the total
number of samples, thus improving overall efficiency.

Next, we illustrate these principles using MODE and
PERCENTILE queries as examples.
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Fig. 4. An Example of Early Termination for a MODE query.
Early Termination for MODE Queries. Estimating a MODE
query involves decomposing it into multiple COUNT queries.
Because the goal is to identify the value with the highest
cardinality, rather than computing the exact cardinalities for
all values, using numerous samples to accurately estimate each
COUNT is inefficient. The key idea here is to identify the values
with small cardinality and stop the corresponding computation
early in the iterative AIS process, as these values are unlikely
to be the MODE result. Specifically, in each iteration, ADAPT
concurrently conducts AIS for all COUNT queries and estimates
the result of each query using current sampled data points.
In the next iteration, it aborts the queries that have low
cardinalities. This significantly reduces the total number of
samples, thus improving estimation efficiency.

Figure 4 shows an example. Contrary to the naive AIS

that conducts all three iterations for each COUNT query, our
optimized approach early terminates sampling for ); and Q3
after the first and second iterations, thus reducing the total
number of samples without sacrificing accuracy.
Reuse Samples for PERCENTILE Queries. When answering
a PERCENTILE query, a sequence of COUNT queries that differ
only in the attribute used by the PERCENTILE function will
be estimated during the binary search process. Given that
queries with similar query domains generate similar samples,
this offers opportunities to reuse data points sampled for
earlier integrations. Specifically, we initialize the buckets of
AIS for each integration using samples from the most recent
integration that exceeds the target percentile. This is effective
in that: (1) the query domain of this query contains the current
query, requiring no additional samples for bucket initialization;
(2) its query domain has the largest overlap with the current
query, ensuring that most samples can be reused. Note this
reuse does not sacrifice accuracy, as subsequent sampling
iterations still lead AIS to convergence.

Sample Dg
Qo = [0,8] Ny = 100

Converge in 5 iterations
Reuse Dg; Sample Dy

=0 = [0,4] Ny = 60
Converge in 2 iterations
Reuse D1; Sample Do

=0, =[0,2] Ny = 40
Converge in 2 iterations
Reuse Dq; Sample D3

=03 = [O, 3] N3 =50

Converge in 2 iterations

Consider above one-dimensional example where the query
is to find the median (p = 0.5) in Qy = [0,8]. First,
we compute the cardinality of the entire domain 2y, which
converges in 5 iterations using samples Dy. With an estimated
Ny of 100, the target is Ny x p = 50. The binary search then
begins with the estimation of £; = [0, 4]. Given the similarity

between (2 and €2y, we can reuse the data points in Dg that
fall within € to initialize the buckets for AIS. In this way,
the number of iterations for €2; is reduced to two. Similarly,
both €25 and (23 reuse D; and obtain faster convergence.

VI. PRIVACY AND TIME COMPLEXITY ANALYSIS

Theorem 1. (Differential Privacy Guarantee of ADAPT). The
trained model and answers given by ADAPT satisfy (¢, d)-DP.

Proof. In ADAPT, each client operates on a disjoint local
dataset D; and runs a local DP-SGD training mechanism M :
D; — R, which satisfies (¢, §)-DP with regard to its local data
independently (privacy proof of DP-SGD is in [2]). Because
the datasets {D;},c| are disjoint and also because during
model aggregation in federated training, ADAPT only consists
of a series of operations over the sequence of {M;}ic[q,
by the parallel composition property of DP [39], [57], the
algorithm ADAPT satisfies (maz;e;, max;0;)-DP. Given that €
and ¢ are identical across all clients, ADAPT satisfies (¢, d)-DP.
Therefore, the output of the mechanism, i.e., the trained model,
satisfies (e, 0)-DP. Based on the post-processing property of
DP [17], post-processing the trained (e, §)-DP density model
produces results that satisfy (e, d)-DP. O

Note that the neural connection selection in ADAPT does not
compromise the privacy guarantee, since the calibrated noise
to the gradients in DP-SGD local training ensures privacy.
Time Complexity. Compared to conventional FL, ADAPT
introduces two additional steps: network structure selection
before training and model aggregation via distribution averag-
ing. We prove that the time complexity of ADAPT remains the
same as that of FedAVG despite these extra steps.

Structure Selection. As analyzed in Section III-D, the time
complexity of model structure selection for each layer is linear
to the number of parameters in the layer. Therefore, the total
time complexity for structure selection is linear to the model
size, which is the same as the parameter initialization process
in conventional model training.

Distribution Average. The distribution average involves:

(1) Sample Generation: First, a set of samples is generated
using the parameter-averaged model. The time complexity of
this step is linear to model size, as it requires invocation of
the model, but no gradient computation.

(2) Density Computation: Next, the densities of the sampled
data points are computed using the local models. This step
is also efficient with a time complexity linear to model size,
as it only requires multiple local model invocations without
gradient computation.

(3) Fine-Tuning: Finally, the model is fine-tuned on the gen-
erated samples. While this step takes longer than FedAVG due
to the increased data size, it is still efficient and has the same
time complexity as local training.

Based on the above analysis, it can be concluded that the
overall time complexity for the training of ADAPT is the same
as that of conventional FedAVG, while with a higher constant
factor due to the additional data and computational steps.




TABLE I
STATISTICS OF DATASETS.

Dataset # Rows # Columns # Numerical Columns
Power 2,075,259 6 6

IMDB 3,688,889 7 4

BJAQ 382,168 5 5

FAERS 2,271,910 6 1

VII. EXPERIMENTS
Our experiments aim to answer the following questions:

e How does ADAPT perform in answering various aggregate
queries compared to other federated data analytics paradigms
in accuracy and efficiency? (Section VII-B)

e How does ADAPT perform in training density models
compared to other FL. methods in accuracy and training time?
(Section VII-B)

e How do the acceleration optimizations impact the effi-
ciency and accuracy of inference? (Section VII-C)

e How does the accuracy of ADAPT change when differ-
ent proportions of neural connections are removed? (Sec-
tion VII-D)

e Does ADAPT easily adapt to data changes? (Section VII-E)
e How effective is the proposed network structure selection
method in the training process? (Section VII-F)

A. Experimental Settings

Dataset. The experiments are conducted on four real-world
datasets that have been extensively adopted [15], [41], [20],
[50]. Table I presents the statistical details of these datasets.
(1) Power [24] is a household electric power consumption
data, with approximately 2 million numerical data points.

(2) IMDB [30] is a movie dataset commonly used for cardinality
estimation evaluation. Following previous works [50], [51],
we use the join result of Company_name, Movie_companies,
Title, movie_info_idx to evaluate the methods.

(3) BJAQ [8] includes hourly air pollutant data of Beijing, with
approximately 300K tuples.

(4) FAERS [11] includes the adverse event reports with drug
and patient information. We use the latest 2024 Q4 data.

We distribute the datasets to clients in the same way as the
classic FL methods [38], [49]. We first split each dataset into
80% train set and 20% test set. The train set is then uniformly
partitioned and assigned to clients as local data. We use the
train set for computing the ground truth of analytical queries
for evaluation. We use the test set to evaluate the density
estimation accuracy of the density models.

Baselines. To validate the effectiveness of our proposed new
paradigm, we compare it with the following four categories of
baselines:
e Output Perturbation (1-2): Add noise to query results to
ensure privacy in data analytics.
e Data Synthesis (3-4): Learn the local data distribution and
then synthesize data for data analytics.
o Federated Training (5-8): Within our new federated
data analytics paradigm, we employ various FL methods to
validate the superiority of ADAPT in training density models.
e Centralized Training (9-10): Aggregate all client data to
train on one server without protecting privacy. The results

serve as a reference to evaluate the performance gap between

models trained in FL and in a centralized manner.
(1) DPSQL [52] protects data privacy by adding noise to query
results. A privacy budget is evenly allocated across all queries.
(2) FLEX [26] also adds noise to query results for privacy
protection. However, FLEX only supports COUNT queries. For a
fair comparison, we compare with FLEX on COUNT queries, and
on these queries, assign the same privacy budgets as DPSQL.
(3) PrivMRF [10] is the SOTA data synthesis method with
DP guarantee. It generates synthetic data for each client using
Markov Random Fields and then collects the data together.
Over the collected data, the queries are executed and the results
are used as estimations.
(4) DP-WGAN [3] also synthesizes data but uses DP-WGAN.
(5) FedAVG [38] is the classic federated learning algorithm that
adopts coordinate-wise averaging to fuse local models.
(6) FedMA [49] matches the neurons of models before parame-
ter average. It formulates neuron matching as a linear assign-
ment problem and solves the problem using the Hungarian
algorithm [29].
(7) GAMF [35] improves linear assignment methods for neuron
matching [49], [43] by incorporating second-order weight
similarity. It achieves the SOTA accuracy in matching-based
fusion methods.
(8) FedPAN [34] pre-aligns neurons by perturbing the neuron
outputs with a location-based periodic function.
(9) CentralDP collects all client data and trains the model
with differential privacy (DP) guarantee in a centralized way.
However, in reality, collecting all client data to one server is
not allowed. Therefore, it only serves as an upper bound for
FL with DP.
(10) Similarly, Central conducts centralized training but not
using DP. Its results serve as an upper bound for all the other
methods.
Hyper-parameter Setting. We use 4 clients by default, each
holding a privacy budget of ¢ = 10 and § = 1075, The NF
model consists of 10 coupling layers [15], each containing
two hidden layers with 256 units. The local DP training in FL
uses the SGD optimizer with a momentum of 0.9 and a batch
size of 512. The learning rate is selected by grid search for
all methods with cosine learning rate decay. The FL training
consists of 40 rounds, with the server aggregating client
models after each epoch of local training. ADAPT employs
a mask selection parameter &' = 13 based on experiments
in Section VII-D, masking approximately 5% of all network
connections for aligning neurons. ADAPT generates 10% of the
original dataset, i.e., 0.1V, for fine-tuning. During inference,
adaptive importance sampling is executed with 100 buckets,
and the sampling process continues until convergence.
Evaluation Metrics. We measure both the query accuracy
and latency. To measure accuracy, we adopt the relative error
(RE) [20], [37] over the query workloads of different aggregate

. _ |Estimation—GroudTruth| .

queries. Defined as RE = CroundTruth , it com-
pares the estimated value of the aggregate query (Estimation)
against the actual value (GroundTruth). To thoroughly evaluate
accuracy, we report different quantiles of the relative errors,




including 50% (Median), 95%, 99% and 100% (Max). Addi-
tionally, for NF training, we also evaluate the log-likelihood
(LL) of the trained models over the test set, which is a common
metric for evaluating the accuracy of density models [42], [12],
[15]. For latency, we report the average query latency as well
as the end-to-end training time for NF model-based methods.
Workloads for Testing. For each dataset, we generate 2,000
queries for each aggregate function, including COUNT, SUM,
AVG, and VARIANCE. The multidimensional aggregate queries
incorporate both range and equality predicates. Following
existing works [55], [50], the queries are generated by: (1)
Randomly select a numerical column to place the aggregate
function. (2) Randomly select the number of predicates, de-
noted as f. (3) Randomly select f distinct columns to place
the predicates. For numerical columns, predicates are uni-
formly selected from {=, <, >}. For categorical columns, only
equality predicates are generated because range predicates on
categorical attributes have no practical meaning. (4) Randomly
select a tuple from the dataset and use its attributes as the
literals for the predicates. In addition, we randomly select 10%
of the queries that have categorical predicates and change one
of the categorical predicates to GROUP BY predicate to also
evaluate the GROUP BY queries.

B. Overall Evaluation

1) Comparison of Accuracy: Table II shows the relative
errors of different methods on different aggregate queries
and the test log-likelihoods for methods using NF models.
Methods are grouped by category. The results could be ranked
as centralized training > federated training > data synthesis >
output perturbation, where the accuracy of centralized training
serves as a reference of the upper bound for FL. methods.

Next, we explain the results. The accuracy of ADAPT is very
high on all aggregate queries over all datasets with different
characteristics. As Table II shows, ADAPT outperforms all other
federated training methods on both test LL and the entire
distribution of relative errors on all datasets. For example,
the medians of COUNT, SUM, AVG and VARIANCE of ADAPT
on Power (0.05, 0.06, 0.04, 0.06) are close to the optimal
CentralDP that trains in a centralized manner with DP (0.04,
0.06, 0.04, 0.05). Especially, ADAPT also performs well on
errors at the tail (99th, Max). For example, at the Max-quantile
of COUNT queries on IMDB dataset, ADAPT outperforms other
federated training methods by up to 251x. As a consen-
sus [55], errors at the tail indicate the stability of estimators
and are harder to optimize than the medians. Therefore, the
results further demonstrate that ADAPT is a well-performing yet
stable estimator. This is because our framework could train a
more accurate density model compared to other FL methods
(ADAPT obtains the highest test LL on all datasets compared
to other FL-based methods).

ADAPT performs better than FedAVG because ADAPT uses an
optimized parameter-aligned model structure and a customized
model fine-tuning algorithm during model fusion, which ef-
fectively improves the training accuracy in FL. ADAPT out-
performs the matching-based model fusion methods including
FedMA and GAMF to a large extent. For example, on BJAQ
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Fig. 5. Efficiency evaluation of different methods.
dataset, the model trained by ADAPT achieves a test LL of -
3.38 and a maximum relative error of 0.49 for COUNT queries,
while FedMA and GAMF only achieve -4.38, 210 and -4.42, 195
respectively. The reason is that the noise added to gradients
generally misleads the matching process in FedMA and GAMF,
thereby degrading the accuracy of their trained models. ADAPT
outperforms FedPAN. On Power, the max relative error for AVG
queries of ADAPT is 0.58, while that of FedPAN is 35.3. This
is because FedPAN only perturbs the neuron outputs with a
periodic function, which is not effective in aligning neurons.

ADAPT also outperforms methods based on output perturba-
tion (DPSQL and FLEX) in accuracy by up to 4 magnitudes.
The reason is that these methods have to assign a tiny privacy
budget to each of the queries. It thus has to add a large
amount of noise to each query result, inevitably leading to
poor accuracy. ADAPT obtains higher accuracy compared with
PrivMRF and DP-WGAN, because synthesized data is only an
inaccurate approximation of the learned distribution, and can
lead to catastrophic errors when none of the synthesized data
satisfies the query, i.e., the O-tuple problem [45].

2) Comparison of Efficiency: We evaluate the training time

of the methods that train density models as well as the
inference latency of different types of approaches.
Training Time. We report the training time of different
federated training methods on Power and IMDB in Figure 5(a).
We could see that the training time of ADAPT (about 1
hour) is almost the same as the conventional FedAVG and
applicable in practice. ADAPT is faster than FedMA and GAMF
(2-5 hours), because FedMA and GAMF need to iteratively
match the network parameters before each model fusion,
which is time-consuming. In addition, ADAPT is only a little
slower than FedAVG and FedPAN. The reason is that though
ADAPT introduces the element-wise mask multiplication to
the network and introduces the fine-tuning process, the time
complexity remains the same and the additional computation
could be computed efficiently and almost brings no overheads.
Inference Latency. We report the average inference latency
of different methods on Power and IMDB of COUNT queries
in Figure 5(b). The methods are grouped into 4 categories:
Density (ADAPT) denoting all methods that estimate query
results with density models, Synthetic denoting all data
synthesis methods (PrivMRF and DP-WGAN) and the conven-
tional output perturbation methods DPSQL and FLEX. We could
observe that Density has the smallest inference latency, and
performs similarly for datasets of different sizes. The reason
is that Density could answer queries by directly accessing
the density model, while other methods need to execute the
queries on the original or synthesized large data.



TABLE I
TEST LOG-LIKELIHOOD (THE HIGHER THE BETTER), RELATIVE ERRORS (THE LOWER THE BETTER) ON DIFFERENT AGGREGATE QUERIES OF DIFFERENT
METHODS ON 4 DATASETS. THE RESULTS OF CentralDP AND Central ARE IN
RESULTS ONLY SERVE AS A REFERENCE TO EVALUATE THE GAP BETWEEN MODELS TRAINED IN FLL AND IN A CENTRALIZED WAY. ”-” DENOTES

SINCE THEY ARE INFEASIBLE TO PROTECT PRIVACY AND THEIR

UNSUPPORTED METRICS OR QUERIES.

COUNT SUM AVG VARIANCE
Dataset Method Test LL [50th  95th 99th  Max 50th 95th 99th  Max | 50th 95th 99th  Max | 50th  95th 99th  Max
DPSQL - 183 5.1e3 1.0e* 1.4e* | 1.3¢3 2.1e* 4.8¢* 6.0e* | 89.1 301 1.2¢3 2.3e3 | 658 4.2¢3 9.8¢3 5.9¢*
FLEX - 617 8.9¢3 1.5¢* 2.1e? - - - - - - - - - - - -
PrivMRF - 1.91 945 141 573 1.53 11.2  82.1 290 1.12 591 209 103 1.89 134 105 674
DP-WGAN - 2.88 29.1 510 1.1e® | 2.34 15.1 160 401 1.33 925 315 126 2.01 19.5 1.0e3 1.2¢3
FedAVG 0.13 0.10  1.39 3.58 134 0.12 246 5.13 275 | 0.11 249 4095 347 | 0.13  8.56 13.3 482
Power FedMA -0.08 097 9.04 17.5 274 0.82 9.66 302 471 0.69 3.00 593 60.6 | 1.83 148 121 591
GAMF -0.07 0.94 8.65 14.9 205 0.80 8.18 31.1 381 0.77 471 7.38 50.1 1.81 15.1 119 480
FedPAN 0.14 0.10 135 3.46 105 0.12 343 475 255 | 0.10 244 504 353 | 0.13 897 11.5 39.8
ADAPT 0.21 005 034 071 088 | 0.06 037 084 1.09 | 004 040 053 058 | 0.06 043 1.38  3.29
DPSQL - 127 1.1e* 2.3¢® 1.4e* | 247 3.1e* 2.0e° 8.6¢° | 9.10 39.1 384 1.2¢% | 9.81 1.2¢® 7.3¢3 1.5¢*
FLEX - 20.1  1.3¢ 4.7¢2  2.0¢* - - - - - - - - - - - -
PrivMRF - 0.31 1.66 876 5.7¢3 | 1.09 634 816 8.5e¢% [ 094 426 691 575 | 1.32 649  30.1 375
DP-WGAN - 045 249 1.2¢% 8.1¢€3 1.42 18.0 1.2¢% 3.8¢* | 1.56 103 205 98.2 | 2.01 104 851 3.8¢%
FedAVG -4.02 0.10  0.96 1.80 110 0.12  0.54 1.89 375 | 0.05 047 0.82 1.19 | 0.27 0.87 188 594
IMDE FedMA -4.57 049 2.05 83.1 239 0.44  5.18 33.1 185 | 0.31 093 8.83 84.1 | 1.44 839 415 391
GAMF -4.28 044 392 69.0 198 0.37 4.85 32.8 147 0.29 0.88 7.61 52.5 1.39 741 39.9 402
FedPAN -4.01 0.10 0.85 1.59 795 0.12 052 1.63 74.0 | 0.05 0.38 0.85 1.15 | 0.26 0.74 822  30.6
ADAPT -394 1 0.05 039 081 095 | 009 026 097 125 | 003 012 026 036 | 022 0.54 0.88 5.82
DPSQL - 208 656 1.5¢3 2.9¢3 | 374 3.7¢® 4.6e3 1.le* | 672 174 245 258 581 974 3.0 5.4e®
FLEX - 491 851 1.8¢% 3.6¢3 - - - - - - - - - - - -
PrivMRF - 025 0.71 0.86 10.3 0.29 1.32 2.82 691 | 0.09 1.31 3.10 575 | 023  4.11 424  1.2€3
DP-WGAN - 0.33  1.05 3.41 38.2 | 045 256 874 389 [035 285 539 974 | 032 500 641 1.5¢
FedAVG -3.51 0.13 029 086 449 0.14 045 0.67 234 | 007 028 0.80 1.39 | 0.15 241 34.6 863
BIAQ FedMA -4.38 0.49 3.05 18.2 210 0.51 4.97 28.0 209 0.38 091 1.92 63.1 1.64 5381 48.2 2.69'3
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Fig. 6. Evaluation of inference acceleration.
C. Evaluation of Inference Acceleration

To evaluate the acceleration algorithms proposed in Sec-
tion V-C, we measure the latency of MODE queries (for Early
Stop), PERCENTILE and RANGE queries (for Reuse Samples)
on IMDB with 1,000 queries per aggregate function. Accuracy,
measured by 95%-quantile relative error, is also reported. The
results in Figure 6 compare ADAPT with and without the
acceleration optimizations (ADAPT-noAcc). ADAPT reduces la-

Fig. 7. Evaluation of varying removed connection proportion.

tency by 2-5 times without sacrificing accuracy because ADAPT
avoids redundant samples that do not influence accuracy.
D. Varying the Proportion of Removed Neural Connections
We vary the proportion (p) of removed neural connections
(determined by the maximum number of neural connections
K to be removed for each neuron, see Section III-B) and
report the 95%-quantile relative errors of ADAPT for answering
SUM queries in Figure 7. As p increases, the relative error
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initially decreases, then increases. This is because, initially,
as more connections are removed, the neurons in the same
layer gradually become distinguishable, improving parameter
alignment with a negligible impact on the expressiveness of the
network. However, when too many connections are removed,
the expressive power of the model decreases, leading to a rise
in errors. We can also observe that generally, 2% to 15% is
a reasonable range for p that can achieve a balance between
parameter alignment and network expressive ability.

E. Data Update Evaluation

To address updates in the local datasets on the client side, we
propose an incremental training method that minimizes privacy
budget consumption, in contrast to retraining a model from
scratch, which incurs significant privacy costs. We partition
Power into two parts based on a time attribute: the first part
serves as the original dataset, and the second part as the
updated dataset. We evaluate three training strategies: ADAPT-
Retrain: retrains the model from scratch with an additional
privacy budget of € = 10 per client. ADAPT-Inc: incrementally
trains the stale model with an additional privacy budget of
€ = 1 per client. ADAPT-Stale: uses the stale model without
any updates. Figure 8(a) shows that ADAPT-Inc achieves
nearly the same accuracy as ADAPT-Retrain on the updated
dataset while consuming much fewer privacy budgets.

F. Evaluation of Network Structure Selection

We evaluate the proposed network structure selection al-
gorithm by COUNT queries on Power and IMDB and report
the 99%-quantile relative errors. Specifically, we compare the
performance of different network structure selection methods,
including the one in Section III-D (ADAPT), random selection
(Random), and not removing connections (Complete). Both
ADAPT and Random remove p = 5% of connections. As
shown in Figure 8(b), ADAPT obtains more accurate results
compared with Random and Complete. This is because
ADAPT judiciously selects optimal neural connections. The
high structural orthogonality across neurons in the same layer
makes neurons in the same layer more distinguishable with
more different neural connections, thus obtaining a better
neuron alignment and higher accuracy.

VIII. RELATED WORK
Differential Privacy. Differential Privacy (DP) [16] offers
a mathematical framework to quantify privacy loss when
analyzing sensitive data. The key idea is to ensure that any
data analysis outcome does not change significantly, regardless
of whether individual data is included. To train deep neural
networks with DP guarantee, differentially private stochastic
gradient descent (DP-SGD) [2] is commonly employed by

perturbing the gradients with noise. In FL, to protect client data
privacy, sample-level [2] DP is generally adopted. It enables
each client to perturb its local gradients using DP-SGD based
on its DP budget and transfer noised model parameters to the
server. Sample-level DP guarantees that both intermediate and
final model parameters are indistinguishable regardless of the
presence or absence of any individual data record at any client.
Federated Learning. Federated learning (FL) [38] enables
multiple clients to collaboratively train a global model, without
sharing raw data. FL significantly enhances model accu-
racy through iterative model fusion compared to one-shot
fusion [43], [35] that merges models trained separately for
clients. However, model accuracy still declines compared to
centralized training that aggregates data from all clients [33].
Recent studies [49], [56], [35] suggest this decline is mainly
due to parameter misalignment during server-side model fu-
sion. In FL, different clients may have updated model parame-
ters that are not aligned by coordinates due to the permutation
invariance [58], [49], [56] property of neural networks. This
misalignment leads to conflicts in parameter averaging and
decreases accuracy. Extensive research [49], [56], [35] has
tried to address this issue, employing graph matching algo-
rithms to align network neurons before averaging. However,
the effectiveness of these methods degrades significantly when
using DP-SGD in local training because the added noise for
privacy preservation tends to mislead the matching.

Data Synthesis. Some existing methods use data synthesis to
approximate query results with protected data privacy. These
methods employ a model (e.g., Markov Random Fields [10],
VAE [47], GAN [4], [27], [3] and Bayesian Networks [59],
[60]) to learn the data distribution and generate synthesized
data. In this way, we can directly query the synthesized data,
rather than querying the raw private data. However, these
methods are not accurate enough because the synthesized data
is likely to have a large variance with the learned distribution,
which always degrades the accuracy. For example, it may face
the O-tuple problem [45] that no synthesized data satisfies the
query, which can cause catastrophic errors.

IX. CONCLUSION AND FUTURE WORK

We propose ADAPT, which enables federated data analytics
with high accuracy regardless of query number while preserv-
ing data privacy. ADAPT leverages a privacy-preserving density
model trained using a specially designed network structure for
parameter alignment and a specialized training algorithm. This
model is used to answer queries without requiring access to
raw data. In the future, we aim to extend ADAPT to support
challenging multi-table scenarios and graph data analysis.
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