
FedRoad: Secure and Efficient Road Network
Queries over Traffic Data Federation
Shuai Huang

Tsinghua University, China
huang-s19@mails.tsinghua.edu.cn

Guoliang Li
Tsinghua University, China
liguoliang@tsinghua.edu.cn

Wei Zhou
Xiamen University, China
weizhou@stu.xmu.edu.cn

Abstract—Federated computing has emerged as a promising
approach to address the data isolation problem, enabling multiple
data owners to utilize secure multi-party computation (MPC) to
collaboratively process queries while keeping the data decen-
tralized, private, and secret. However, existing studies primarily
focused on federated queries over structural data, which does
not apply to non-structural road network queries prevalent
in daily travel scenarios. To tackle this limitation, this paper
proposes FedRoad, the first traffic data federation with secure
and efficient road network shortest-path queries over it. In this
context, the network topology is shared while each silo (e.g.,
mobility services platform) holds an individual traffic observation
of edge weights (e.g., vehicle speeds), where we search the path
with minimum joint weights (e.g., the least traveling time).
To ensure security, we implement a secret-sharing-based MPC
operator to secretly compare joint path weights and achieve a
secure federated shortest-path search based on it. To improve the
efficiency over road network structures, we (1) first minimize
the search iterations by proposing federated shortcut indices
and effective federated lower-bound estimation methods, (2)
then reduce the cost in each iteration by designing a priority
queue structure dedicated to minimizing the expensive MPC
comparison operations. Extensive experiments demonstrate that
FedRoad significantly outperforms the baselines (100× faster)
and is practical for usage (sub-second level running time).

I. INTRODUCTION

In the era of big data, numerous businesses rely on analytics
over large volumes of data for decision-making. However, the
issue of “data isolation” [1], [2] remains a constraint on data
usage because sharing raw data among multiple owners is
restricted by legal regulations [3], [4] and concerns regarding
privacy and commercial competition.

To address the limitation of data isolation, “federated com-
puting” [5], [6] has emerged. It aims to unite multiple data
owners as a data federation, enabling joint queries to get the
desired results collaboratively over the data individually held.
These queries can be processed in the use-without-disclosure
privacy, i.e., the raw data is kept at each owner locally, and no
owner can gets anything beyond the final query results, with
the well-established secure multi-party computation [7] (MPC)
techniques. Since MPC operations involve high encryption and
communication overheads, previous research efforts [8]–[10]
focused on reducing the usage of MPC operations to enhance
the efficiency of MPC-based federated query processing.

This paper was supported by National Key R&D Program of China
(2023YFB4503600), NSF of China (62525202, 62232009), Shenzhen Project
(CJGJZD20230724093403007), Zhongguancun Lab, Huawei, and Beijing
National Research Center for Information Science and Technology (BNRist).
*Guoliang Li is the corresponding author.

0 5 10 15 20
Delay due to limited traffic data (min)

0

25

50

75

100

Pe
rc

en
ta

ge
 w

ith
in

 d
el

ay
 (%

)

1x traffic data
0.5x traffic data
0.25x traffic data
Aggregated data

Fig. 1: The percentage delay under various traffic data, e.g.,
the red point shows that: under 0.5× traffic data, around 10%
routing results have a delay of more than 5 minutes.

However, these studies are primarily aimed at the structural
queries (e.g., over relational [8], [9] and spatial data [10]) and
do not apply to the non-structural road network queries (e.g.,
querying the shortest paths) prevalent in daily location-based
services (LBS) such as map routing. In this scenario, real-
time traffic data (e.g., the congestion conditions and vehicle
speeds of various roads) from various platforms is crucial for
query quality (e.g., identifying the path with the least travel
time) [11]–[13]. To evaluate the impact of the volume of
traffic data, we experimented with Beijing’s road network. We
use real taxi trajectories [14] to simulate a full (1×) traffic
data [15] when all the platforms form an ideal federation.
Then, we sample subsets (0.5×, 0.25×) of these trajectories
to simulate individual platforms with less traffic data. For
each query, we compute the “shortest” (i.e., least traffic cost)
paths on road networks under the three datasets. As shown
in Figure 1, taking the travel time of roads under 1x traffic
data as the ground truth, routes under reduced traffic data
are less accurate and incur additional travel time compared
to the ground-truth shortest paths. It indicates that federation
incorporating more traffic data can improve the effectiveness
of road network shortest-path queries.

To handle the limited real-time traffic data in each sin-
gle LBS platform [15], several platforms such as Google
Maps [16] and Uber [17] can form a federation (as shown
in Figure 2) and collaborate on their respective traffic data to
obtain a more accurate depiction of traffic conditions, thereby
facilitating better routing recommendations (e.g., the shortest-
paths on the road network). A naive method to achieve this is
uploading all the traffic data (e.g., the traveling time of roads
derived from the observed vehicle speeds) of various platforms
to a third party to obtain a joint road network and processing

Data
Silo
#1

Data
Silo
#3

Data
Silo
 #2

Road Network
Federation

secret sharing

se
cr
et

sh
ar
ing

secret sharing

Federated
shortest-path

search

User

(Imaginary) joint road network

?
vs

<latexit sha1_base64="n7Xtf37tdPhfHgNHHnwINLi9BBU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnu6Vyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFrupxoSyER1gx1JJI9R+Nj91Ss6t0idhrGxJQ+bq74mMRlpPosB2RtQM9bI3E//zOqkJb/yMyyQ1KNliUZgKYmIy+5v0uUJmxMQSyhS3txI2pIoyY9Mp2hC85ZdXSbNa8S4r1Yercu02j6MAp3AGF+DBNdTgHurQAAYDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBt+o3k</latexit>

vt
<latexit sha1_base64="zFrDWKar3zPnchwHAHah95uF6pA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdzDXqnsVtw5yCrxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+LXZTwxPKRnTAO5YqGnHjZ/NTp+TcKn0SxtqWQjJXf09kNDJmEgW2M6I4NMveTPzP66QY3viZUEmKXLHFojCVBGMy+5v0heYM5cQSyrSwtxI2pJoytOkUbQje8surpFmteJeV6sNVuXabx1GAUziDC/DgGmpwD3VoAIMBPMMrvDnSeXHenY9F65qTz5zAHzifP29+jeU=</latexit>

vs
<latexit sha1_base64="n7Xtf37tdPhfHgNHHnwINLi9BBU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnu6Vyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFrupxoSyER1gx1JJI9R+Nj91Ss6t0idhrGxJQ+bq74mMRlpPosB2RtQM9bI3E//zOqkJb/yMyyQ1KNliUZgKYmIy+5v0uUJmxMQSyhS3txI2pIoyY9Mp2hC85ZdXSbNa8S4r1Yercu02j6MAp3AGF+DBNdTgHurQAAYDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBt+o3k</latexit>

vt
<latexit sha1_base64="zFrDWKar3zPnchwHAHah95uF6pA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdzDXqnsVtw5yCrxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+LXZTwxPKRnTAO5YqGnHjZ/NTp+TcKn0SxtqWQjJXf09kNDJmEgW2M6I4NMveTPzP66QY3viZUEmKXLHFojCVBGMy+5v0heYM5cQSyrSwtxI2pJoytOkUbQje8surpFmteJeV6sNVuXabx1GAUziDC/DgGmpwD3VoAIMBPMMrvDnSeXHenY9F65qTz5zAHzifP29+jeU=</latexit>

Query result
(joint shortest-path)

Shortest-path
query

Fig. 2: An example of road network federation and the
workflow of federated shortest-path queries.

the shortest-path queries locally on the third party. However,
this method is infeasible due to privacy concerns (e.g., even the
aggregated vehicle speeds may lead to mobility leakage [18],
[19]) and legal restrictions [3], [4]. These platforms will not
expose the detailed road traffic data they hold (excluding the
public road network topology). Instead, these platforms only
collaborate on queries [5], [8], [10] (e.g., for better routing
services) and disclose the minimum insensitive information
required for accessing the query results (e.g., shortest-path).

Specifically, in Figure 2, three traffic data silos (e.g., LBS
platforms) share the same road network topology (common
vertex and edge sets), with each silo individually holding a
local edge weight set representing its observed traveling costs
of roads. When a user wishes to route from vs to vt, all silos
collaboratively search the shortest path corresponding to the
(imaginary) joint road network, where each edge takes the
joint weight over the associating local weights from all silos
(e.g., by averaging the local weights from different silos to
reduce the noise introduced by limited samples of vehicle
speeds, as the curve “Aggregated data” in Figure 1 shows). In
this process, these silos use MPC techniques, such as secret
sharing [20], for essential communication required for the
federated shortest-path search, ensuring that their respective
edge weights remain local and confidential.

A basic solution for the secure federated shortest-path
query could be as follows. First, we can implement a secret-
sharing-based secure comparison operator, which secretly ag-
gregates the associating local edge weights from all silos and
compares the joint costs of any two paths. Then, we can
enumerate all possible paths and utilize secure comparison
to select the path with the minimum joint cost. To avoid a
full enumeration over the large path space, we can employ the
Dijkstra algorithm to explore paths judiciously. Specifically,
a federated Dijkstra search iteratively expands the current
nearest vertex, which is found by secure comparisons over
the joint costs of all explored paths until reaching the target.

However, without considering the road network structure,
the original federated Dijkstra search involves numerous iter-
ations and incurs many expensive secure comparisons in each

iteration. Thus, we must improve the search efficiency from
two aspects: (1) Reducing the number of search iterations, i.e.,
pruning the unpromising vertices to be explored. Although
extensive methods are designed for this goal in local road
networks (i.e., shortcut-based indexing and heuristic-based
pruning), they can not be directly applied to federated road
networks due to inconsistency of federated indices and shifted
bottleneck in federated queries. Firstly, although road net-
work indices [21]–[24] consisting of pre-computed shortcuts
can be utilized to skip vertices and reduce the search space,
individually constructing shortcuts on each silo may lead to
inconsistent shortcut sets, potentially resulting in wrong query
results. Thus, how can we build consistent federated indices
(C1)? Secondly, the A* algorithm can utilize an estimated
distance lower-bound to prune more vertices, such as the
landmark-based lower-bound [25], effectively balancing the
trade-off between computational cost and estimation accuracy,
to minimize the overall searching time. However, in federated
queries, this method will incur heavy communication costs,
which is an additional but crucial dimension in this trade-off.
So how can we design methods to reduce communication costs
and achieve a better balance in the new trade-off (C2)? (2)
Reducing the volume of secure comparisons in each iteration,
i.e., required for finding the nearest vertex (at the end of the
least-cost explored path) to expand next. A priority queue
can be utilized to efficiently retrieve the least-cost path, by
maintaining the partial order between path costs. The heap is
the most commonly used structure in local shortest-path search
due to its space efficiency. As the bottleneck shifts to secure
comparisons in federated search, how can we design a priority
queue structure that minimizes the secure comparisons (C3)?

In summary, we make the following contributions:
• We propose FedRoad, the first traffic data federation frame-

work with secure road network queries. We implement a
secret-sharing-based operator to collaboratively and securely
compare joint path costs. FedRoad supports federated road
network queries of two types, i.e., single-source and single-
pair shortest-path, while keeping the sensitive traffic data
local and secret in each silo.

• For C1, we propose a method for constructing federated
shortcut indices. The silos pre-compute shortcuts by collab-
oratively searching the corresponding joint shortest paths,
ensuring consistent shortcut sets across all silos while pre-
serving their respective shortcut weights, local and secret.

• For C2, we design two federated lower-bound estimation
methods, aiming to improve the communication-accuracy-
computation trade-off and minimize the query time with
different choices: The first circumvents the heavy commu-
nication costs by slightly sacrificing accuracy. The second
increases the accuracy by paying more local computation.

• For C3, we propose a priority queue structure, the Tourna-
ment Merge Tree, which minimizes secure comparisons in
road network search. It adopts a winner-tracking hierarchy
(Tournament-tree) to batch push vertices, minimizing the
amortized comparisons needed for maintaining the partial
orders among the vertices. It also employs scale-balanced

2

merging (Merge-tree) to maintain balance, thereby minimiz-
ing comparisons in pop operations.

• We have conducted extensive experiments on real-world
datasets, which show that FedRoad outperforms all the
baselines (100× faster) and is practical for usage.

II. PRELIMINARY

A. Problem Statement
Road Networks Federation. A road network is modeled as
a graph G = (V,E,W). A vertex vi ∈ V represents a road
segment junction and an edge evivj ∈ E represents a road
segment from vi to vj . Each edge is associated with a positive
weight ω(evivj) ∈ W , denoting the traveling time cost on
evivj , which periodically changes with the real-time traffic.

As shown in Figure 2, we consider a road network traf-
fic data federation consisting of P traffic silos, denoted as
F1, . . . , FP . (1) They share the same graph topology, i.e.,
(V,E), of the road network G; (2) They also share a set of
public static weights W0, which represent the traveling costs
of edges under no traffic congestion (e.g., derived from the
road lengths and free-flow vehicle speeds). (3) Additionally,
each silo Fp, p ∈ {1, ..., P} holds a private local weight set,
denoted as Wp = ωp(∗) for an edge e ∈ E, reflecting the
silo’s individual traffic observation of real-time vehicle speeds
(shown by different edge colors in Figure 2).

We aim for the federation to collaborate on their traffic
observation to obtain a more comprehensive traffic overview.
Thus, imagine that in an “ideal world”, the silos can upload
all their private data (i.e., the local weight sets) to a trusted
third party and form a joint road network.
Weighted Joint Road Network (WJRN). The WJRN is a
road network graph Ḡ = (V,E, W̄) with the shared graph
topology (V,E) and a joint edge weight set W̄ , which merges
the P local edge weight sets W1, . . . ,WP . Specifically, for
each road e ∈ E, its joint weight is the average value of the
P associating local weights:

ω̄(e) =

∑P
p=1 ωp(e)

P
(1)

Example 1 (WJRN): Figure 3 shows a traffic data federation
consisting of 2 silos F1, F2, holding G1, G2 respectively. The
corresponding (imaginary) WJRN Ḡ is shown on the right.
There are 8 vertices and 11 edges in each graph. Each silo
holds an individual traffic observation (i.e., the local edge
weight sets W1 and W2) where each edge is associated with
a positive weight in both directions. For example, the local
weight of ev6v5 in F1 is ω1(ev6v5) = 5. The joint weight of
each edge is the average of associating local weights from all
silos, e.g., ω̄(ev6v5) = (ω1(ev6v5) + ω2(ev6v5))/2 = 3. Note
that our methods can handle directed graphs regardless of the
undirected graphs in the examples of this paper.

We consider the network queries on the (imaginary) WJRN,
utilizing traffic data from all silos to enhance query results.
One of the most common queries is the shortest-path query.
Path. A path is a sequence of adjacent edges between two
vertices. We use ρ = ⟨v0, v1, . . . , vl⟩, where v0 = vs, vl = vt
and evivi+1 ∈ E for i ∈ [0, l), to denote a path from vs to

G1 = (V, E, W1)
<latexit sha1_base64="ayYZxmZcbBwqSyPlEXzAO82eNx0=">AAAB+nicbVDLSgNBEOz1GeNro0cvg0GIEMJuFPQiBEX0GME8IFmW2clsMmT2wcysEtZ8ihcPinj1S7z5N06SPWhiQUNR1U13lxdzJpVlfRtLyyura+u5jfzm1vbOrlnYa8ooEYQ2SMQj0fawpJyFtKGY4rQdC4oDj9OWN7ya+K0HKiSLwns1iqkT4H7IfEaw0pJrFm5cG12gUrOMrsuo5drHrlm0KtYUaJHYGSlChrprfnV7EUkCGirCsZQd24qVk2KhGOF0nO8mksaYDHGfdjQNcUClk05PH6MjrfSQHwldoUJT9fdEigMpR4GnOwOsBnLem4j/eZ1E+edOysI4UTQks0V+wpGK0CQH1GOCEsVHmmAimL4VkQEWmCidVl6HYM+/vEia1Yp9UqnenRZrl1kcOTiAQyiBDWdQg1uoQwMIPMIzvMKb8WS8GO/Gx6x1ychm9uEPjM8fxQ2RGA==</latexit>

G2 = (V, E, W2)
<latexit sha1_base64="b1nZe/FHuHGXWISIje8H9DQcdxM=">AAAB+nicbVDLSgNBEOz1GeNro0cvg0GIEMLuKuhFCIroMYJ5QLIss5PZZMjsg5lZJcR8ihcPinj1S7z5N06SPWhiQUNR1U13l59wJpVlfRtLyyura+u5jfzm1vbOrlnYa8g4FYTWScxj0fKxpJxFtK6Y4rSVCIpDn9OmP7ia+M0HKiSLo3s1TKgb4l7EAkaw0pJnFm48B12gUqOMrsuo6TnHnlm0KtYUaJHYGSlChppnfnW6MUlDGinCsZRt20qUO8JCMcLpON9JJU0wGeAebWsa4ZBKdzQ9fYyOtNJFQSx0RQpN1d8TIxxKOQx93Rli1Zfz3kT8z2unKjh3RyxKUkUjMlsUpBypGE1yQF0mKFF8qAkmgulbEeljgYnSaeV1CPb8y4uk4VTsk4pzd1qsXmZx5OAADqEENpxBFW6hBnUg8AjP8ApvxpPxYrwbH7PWJSOb2Yc/MD5/AMgkkRo=</latexit>

v1
<latexit sha1_base64="CjmP85F9x9vbcL2ENUsPPB1Vqnk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3vgZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Wqg9X5dptHkcBTuEMLsCDa6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAJ8o2i</latexit>

v2
<latexit sha1_base64="lE8WDoWfUTC8KgvVYi3+vwjrTxc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8MbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbusVB+uyrXbPI4CnMIZXIAH11CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AELdo2j</latexit>

v3
<latexit sha1_base64="Q/aveuY5+n/l8vwyIRXs5XSXR+c=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju7nfGqPSPJZPZpKgH9GB5CFn1Fjpcdyr9oolt+wuQNaJl5ESZKj3il/dfszSCKVhgmrd8dzE+FOqDGcCZ4VuqjGhbEQH2LFU0gi1P12cOiMXVumTMFa2pCEL9ffElEZaT6LAdkbUDPWqNxf/8zqpCW/8KZdJalCy5aIwFcTEZP436XOFzIiJJZQpbm8lbEgVZcamU7AheKsvr5NmpexVy5WHq1LtNosjD2dwDpfgwTXU4B7q0AAGA3iGV3hzhPPivDsfy9ack82cwh84nz8M+o2k</latexit>

v4
<latexit sha1_base64="iVTvddOc7068PJ07WLG+5oEmaUE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xyiOBDZkdGpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju7nfmqDSPJJPZhqjH9Kh5APOqLHS46RX7RVLbtldgKwTLyMlyFDvFb+6/YglIUrDBNW647mx8VOqDGcCZ4VuojGmbEyH2LFU0hC1ny5OnZELq/TJIFK2pCEL9fdESkOtp2FgO0NqRnrVm4v/eZ3EDG78lMs4MSjZctEgEcREZP436XOFzIipJZQpbm8lbEQVZcamU7AheKsvr5NmpexdlSsP1VLtNosjD2dwDpfgwTXU4B7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8Ofo2l</latexit>

v5
<latexit sha1_base64="AQMl8YQ1vqrQPuNFXFrwGUVUNEI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedYslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlCsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEAKNpg==</latexit>

v6
<latexit sha1_base64="mgQO5Rp4uoHWhxqBQ4TU0bH9YMU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedYslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlCsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEYaNpw==</latexit>

v7
<latexit sha1_base64="6dygheKTEsF0+RWrEvQBT8Zl+tU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRBI9ELx4xyiOBDZkdBpgwO7uZ6SUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY38391oRrIyL1hNOY+yEdKjEQjKKVHie9aq9YcsvuAmSdeBkpQYZ6r/jV7UcsCblCJqkxHc+N0U+pRsEknxW6ieExZWM65B1LFQ258dPFqTNyYZU+GUTalkKyUH9PpDQ0ZhoGtjOkODKr3lz8z+skOLjxU6HiBLliy0WDRBKMyPxv0heaM5RTSyjTwt5K2IhqytCmU7AheKsvr5NmpexdlSsP16XabRZHHs7gHC7BgyrU4B7q0AAGQ3iGV3hzpPPivDsfy9ack82cwh84nz8TCo2o</latexit>

v8
<latexit sha1_base64="xdhnPfqY9ZhXL8aXYfrzPT8kWps=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI5ELx4xyiOBDZkdBpgwO7uZ6SUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY38391oRrIyL1hNOY+yEdKjEQjKKVHie9aq9YcsvuAmSdeBkpQYZ6r/jV7UcsCblCJqkxHc+N0U+pRsEknxW6ieExZWM65B1LFQ258dPFqTNyYZU+GUTalkKyUH9PpDQ0ZhoGtjOkODKr3lz8z+skOKj6qVBxglyx5aJBIglGZP436QvNGcqpJZRpYW8lbEQ1ZWjTKdgQvNWX10mzUvauypWH61LtNosjD2dwDpfgwQ3U4B7q0AAGQ3iGV3hzpPPivDsfy9ack82cwh84nz8Ujo2p</latexit>

1

6 6

1

1

2

3

5
5

3
5

v1
<latexit sha1_base64="CjmP85F9x9vbcL2ENUsPPB1Vqnk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3vgZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Wqg9X5dptHkcBTuEMLsCDa6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAJ8o2i</latexit>

v2
<latexit sha1_base64="lE8WDoWfUTC8KgvVYi3+vwjrTxc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8MbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbusVB+uyrXbPI4CnMIZXIAH11CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AELdo2j</latexit>

v3
<latexit sha1_base64="Q/aveuY5+n/l8vwyIRXs5XSXR+c=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju7nfGqPSPJZPZpKgH9GB5CFn1Fjpcdyr9oolt+wuQNaJl5ESZKj3il/dfszSCKVhgmrd8dzE+FOqDGcCZ4VuqjGhbEQH2LFU0gi1P12cOiMXVumTMFa2pCEL9ffElEZaT6LAdkbUDPWqNxf/8zqpCW/8KZdJalCy5aIwFcTEZP436XOFzIiJJZQpbm8lbEgVZcamU7AheKsvr5NmpexVy5WHq1LtNosjD2dwDpfgwTXU4B7q0AAGA3iGV3hzhPPivDsfy9ack82cwh84nz8M+o2k</latexit>

v4
<latexit sha1_base64="iVTvddOc7068PJ07WLG+5oEmaUE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xyiOBDZkdGpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju7nfmqDSPJJPZhqjH9Kh5APOqLHS46RX7RVLbtldgKwTLyMlyFDvFb+6/YglIUrDBNW647mx8VOqDGcCZ4VuojGmbEyH2LFU0hC1ny5OnZELq/TJIFK2pCEL9fdESkOtp2FgO0NqRnrVm4v/eZ3EDG78lMs4MSjZctEgEcREZP436XOFzIipJZQpbm8lbEQVZcamU7AheKsvr5NmpexdlSsP1VLtNosjD2dwDpfgwTXU4B7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8Ofo2l</latexit>

v5
<latexit sha1_base64="AQMl8YQ1vqrQPuNFXFrwGUVUNEI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedYslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlCsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEAKNpg==</latexit>

v6
<latexit sha1_base64="mgQO5Rp4uoHWhxqBQ4TU0bH9YMU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedYslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlCsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEYaNpw==</latexit>

v7
<latexit sha1_base64="6dygheKTEsF0+RWrEvQBT8Zl+tU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRBI9ELx4xyiOBDZkdBpgwO7uZ6SUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY38391oRrIyL1hNOY+yEdKjEQjKKVHie9aq9YcsvuAmSdeBkpQYZ6r/jV7UcsCblCJqkxHc+N0U+pRsEknxW6ieExZWM65B1LFQ258dPFqTNyYZU+GUTalkKyUH9PpDQ0ZhoGtjOkODKr3lz8z+skOLjxU6HiBLliy0WDRBKMyPxv0heaM5RTSyjTwt5K2IhqytCmU7AheKsvr5NmpexdlSsP16XabRZHHs7gHC7BgyrU4B7q0AAGQ3iGV3hzpPPivDsfy9ack82cwh84nz8TCo2o</latexit>

v8
<latexit sha1_base64="xdhnPfqY9ZhXL8aXYfrzPT8kWps=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI5ELx4xyiOBDZkdBpgwO7uZ6SUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY38391oRrIyL1hNOY+yEdKjEQjKKVHie9aq9YcsvuAmSdeBkpQYZ6r/jV7UcsCblCJqkxHc+N0U+pRsEknxW6ieExZWM65B1LFQ258dPFqTNyYZU+GUTalkKyUH9PpDQ0ZhoGtjOkODKr3lz8z+skOKj6qVBxglyx5aJBIglGZP436QvNGcqpJZRpYW8lbEQ1ZWjTKdgQvNWX10mzUvauypWH61LtNosjD2dwDpfgwQ3U4B7q0AAGQ3iGV3hzpPPivDsfy9ack82cwh84nz8Ujo2p</latexit>

1

6 6

1

7

2

7

1
1

1
5

v1
<latexit sha1_base64="CjmP85F9x9vbcL2ENUsPPB1Vqnk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3vgZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Wqg9X5dptHkcBTuEMLsCDa6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAJ8o2i</latexit>

v2
<latexit sha1_base64="lE8WDoWfUTC8KgvVYi3+vwjrTxc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8MbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbusVB+uyrXbPI4CnMIZXIAH11CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AELdo2j</latexit>

v3
<latexit sha1_base64="Q/aveuY5+n/l8vwyIRXs5XSXR+c=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju7nfGqPSPJZPZpKgH9GB5CFn1Fjpcdyr9oolt+wuQNaJl5ESZKj3il/dfszSCKVhgmrd8dzE+FOqDGcCZ4VuqjGhbEQH2LFU0gi1P12cOiMXVumTMFa2pCEL9ffElEZaT6LAdkbUDPWqNxf/8zqpCW/8KZdJalCy5aIwFcTEZP436XOFzIiJJZQpbm8lbEgVZcamU7AheKsvr5NmpexVy5WHq1LtNosjD2dwDpfgwTXU4B7q0AAGA3iGV3hzhPPivDsfy9ack82cwh84nz8M+o2k</latexit>

v4
<latexit sha1_base64="iVTvddOc7068PJ07WLG+5oEmaUE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xyiOBDZkdGpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju7nfmqDSPJJPZhqjH9Kh5APOqLHS46RX7RVLbtldgKwTLyMlyFDvFb+6/YglIUrDBNW647mx8VOqDGcCZ4VuojGmbEyH2LFU0hC1ny5OnZELq/TJIFK2pCEL9fdESkOtp2FgO0NqRnrVm4v/eZ3EDG78lMs4MSjZctEgEcREZP436XOFzIipJZQpbm8lbEQVZcamU7AheKsvr5NmpexdlSsP1VLtNosjD2dwDpfgwTXU4B7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8Ofo2l</latexit>

v5
<latexit sha1_base64="AQMl8YQ1vqrQPuNFXFrwGUVUNEI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedYslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlCsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEAKNpg==</latexit>

v6
<latexit sha1_base64="mgQO5Rp4uoHWhxqBQ4TU0bH9YMU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedYslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlCsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEYaNpw==</latexit>

v7
<latexit sha1_base64="6dygheKTEsF0+RWrEvQBT8Zl+tU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRBI9ELx4xyiOBDZkdBpgwO7uZ6SUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY38391oRrIyL1hNOY+yEdKjEQjKKVHie9aq9YcsvuAmSdeBkpQYZ6r/jV7UcsCblCJqkxHc+N0U+pRsEknxW6ieExZWM65B1LFQ258dPFqTNyYZU+GUTalkKyUH9PpDQ0ZhoGtjOkODKr3lz8z+skOLjxU6HiBLliy0WDRBKMyPxv0heaM5RTSyjTwt5K2IhqytCmU7AheKsvr5NmpexdlSsP16XabRZHHs7gHC7BgyrU4B7q0AAGQ3iGV3hzpPPivDsfy9ack82cwh84nz8TCo2o</latexit>

v8
<latexit sha1_base64="xdhnPfqY9ZhXL8aXYfrzPT8kWps=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI5ELx4xyiOBDZkdBpgwO7uZ6SUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY38391oRrIyL1hNOY+yEdKjEQjKKVHie9aq9YcsvuAmSdeBkpQYZ6r/jV7UcsCblCJqkxHc+N0U+pRsEknxW6ieExZWM65B1LFQ258dPFqTNyYZU+GUTalkKyUH9PpDQ0ZhoGtjOkODKr3lz8z+skOKj6qVBxglyx5aJBIglGZP436QvNGcqpJZRpYW8lbEQ1ZWjTKdgQvNWX10mzUvauypWH61LtNosjD2dwDpfgwQ3U4B7q0AAGQ3iGV3hzpPPivDsfy9ack82cwh84nz8Ujo2p</latexit>

1

6 6

1

4

2

5

3
3

2
5

Ḡ = (V, E, W̄)
<latexit sha1_base64="lzyqQtbak42xPGp/nLYo2ryN3ys=">AAACAHicbVDLSgMxFL1TX7W+Rl24cBMsQoVSZqqgG6EoossK9gHtUDJppg3NPEgyQhm68VfcuFDErZ/hzr8xnc5CWw9cODnnXnLvcSPOpLKsbyO3tLyyupZfL2xsbm3vmLt7TRnGgtAGCXko2i6WlLOANhRTnLYjQbHvctpyR9dTv/VIhWRh8KDGEXV8PAiYxwhWWuqZB10XC3SLLlGpWUY3ZZS+Wyc9s2hVrBRokdgZKUKGes/86vZDEvs0UIRjKTu2FSknwUIxwumk0I0ljTAZ4QHtaBpgn0onSQ+YoGOt9JEXCl2BQqn6eyLBvpRj39WdPlZDOe9Nxf+8Tqy8CydhQRQrGpDZR17MkQrRNA3UZ4ISxceaYCKY3hWRIRaYKJ1ZQYdgz5+8SJrVin1aqd6fFWtXWRx5OIQjKIEN51CDO6hDAwhM4Ble4c14Ml6Md+Nj1pozspl9+APj8wc1q5OW</latexit>

Fig. 3: Road networks and shortest-paths examples.

vt. Its joint cost ϕ̄(ρ) on the WJRN is the sum of joint edge
weights: ϕ̄(ρ) =

∑l−1
i=0 ω̄(evivi+1

). The joint path cost is also
equal to the average of the associating partial costs ϕp(ρ) on
all silos (p = 1, . . . , P) for this path (according to Equation 1):

ϕ̄(ρ) =
∑l−1

i=0

∑P
p=1 ωp(evivi+1

)

P
=

∑P
p=1 ϕp(ρ)

P
(2)

Shortest Path. Among all the paths from vs to vt, ρ̄∗(vs, vt)
is the one with the least joint cost, which captures how to
travel between these two vertices on the road network and is
denoted as a joint shortest-path. We also use ϕ̄ to denote the
joint shortest-path cost on the WJRN between two vertices:
ϕ̄(vs, vt) = ϕ(ρ̄∗(vs, vt)). Similarly, we use ρ∗p(vs, vt) to
denotes the partial shortest-path on a local road network Gp.

There are two basic types of shortest-path queries:
Single-Pair Shortest-Path (SPSP). Given a source vertex vs
and a target vertex vt as an SPSP query, we answer the joint
shortest-path from vertex vs to vertex vt.
Single-Source Shortest-Path (SSSP). An SSSP query asks
for the joint shortest-paths from source vertex vs to all other
vertices v ∈ V \ {vs}. We can also only query the k (usually
k ≪ |V |) nearest vertices to vertex vs, a.k.a. the kNN query.

Example 2 (Shortest-path queries): On the WJRN Ḡ in Fig-
ure 3, the SPSP from v7 to v3 is ρ̄∗(v7, v3) = ⟨v7, v8, v3⟩, with
joint cost ϕ̄(v7, v3) = 7. Note that the joint shortest-path is
different from the partial shortest paths (i.e., ⟨v7, v8, v4, v3⟩ on
G1 and ⟨v7, v6, v5, v4, v3⟩ on G2) and requires less traveling
cost than these two paths. The SSSP from v2 where k = 3 is
(v2, ⟨v2⟩), (v8, ⟨v2, v8⟩) and (v3, ⟨v2 , v8, v3⟩).

To answer these two types of joint queries, in the “ideal
world”, a trusted third party holds the WJRN with traffic
data collected from all silos and can conduct the shortest-path
search locally. However, in this way, the privacy and security
of each silo’s data are not preserved, typically prohibited by
privacy regulations [3], [4] and commercial reasons. Therefore,
FedRoad processes the shortest-path queries collaboratively
under the following classic security settings:
1) Autonomous Data Silos: Each silo Fp does not share its

raw traffic data (i.e., edge weights Wp) with other silos
or any trusted third-party, which is aligned with the real-
world data federations [8], [9], [26], [27]. Therefore, the
WJRN shown in both Figure 2 and 3 does not exist in the
real world, e.g., on any silo or third-party. Moreover, the
federation does not rely on a central honest broker [10].

2) Security Guarantee: During the query processing, any silo
Fp could not see or deduce sensitive information, i.e., any
edge weight ω(e) or path cost ϕ(ρ) on other silos Gp′(p′ ̸=

3

p) or on the WJRN Ḡ. Only the insensitive comparison
results, e.g., whether ϕ̄(ρA) < ϕ̄(ρB), between joint costs
of paths ρA, ρB , are revealed among silos. This is similar
to the classic problem where two millionaires compare who
is richer without revealing their actual wealth [28].

3) Semi-honest (Passive) Adversaries: Each silo honestly exe-
cutes queries and returns authentic results but may attempt
to infer data from others during query execution. This
assumption is common in federated query processing [8]–
[10]. See Section II-B for the discussion on expanding to
other adversary models such as with malicious silos.

To access query results on the imaginary WJRN while
keeping raw traffic data local (Setting 1) and only revealing
insensitive information (Setting 2) to each other, FedRoad
follows the federated computing paradigm [5], [8], [9], using
the techniques of secure multi-party computation.

B. Secure Multi-Party Computation (MPC)
MPC algorithms enable parties (e.g., silos) to jointly com-

pute functions (e.g., integer comparison) while keeping each
party’s inputs secret [7]. Currently, garbled circuits (GC) and
secret sharing (SS) are two dominant MPC techniques. GC
uses logic gates (e.g., AND, XOR) to hide the computation
program traces, where the final results can be revealed by
secure evaluation [28]. While it can compute any arbitrary
function (preferring binary computation), it becomes ineffi-
cient with more than two parties. SS splits each sensitive
input into “secret shares”, which in combination yield the
original data, and then uses specific encoding to process the
secret shares so that they cancel out into the result of clear-
text value [20]. While SS supports fewer functions (preferring
arithmetic computation), it is more efficient, particularly for
settings with more than two parties [10], [29].

According to Equation 2, to securely compare the joint
costs ϕ̄(ρ) of paths, we need to secretly merge the associating
partial costs ϕp(ρ) from silos. Therefore, we utilize MPC
to implement a function named federated sum-and-compare
(Fed-SAC) as a building block for the shortest-path search.
Specifically, Fed-SAC secretly sums up the P partial costs
corresponding to each of two paths ρA, ρB (obtaining two joint
costs), and reveals only the comparison result between the two
joint costs. Throughout this paper, we use function [ϕp(ρA)
] < [ϕp(ρB)] to denote the invocation of Fed-SAC from the
perspective of a certain silo Fp, to securely upload its partial
costs ϕp(ρA), ϕp(ρB) and collaboratively compare the joint
costs ϕ̄(ρA), ϕ̄(ρB) with other silos. Under MPC protocol,
this operation satisfies security (Setting 1 and Setting 2), as
the local edge weights remain local and secret, and only the
joint comparison results are exposed.

Since the Fed-SAC function primarily involves arithmetic
operations (i.e., integer addition and comparison), we adopt
SS rather than GC to implement Fed-SAC as it is more
efficient and can better scale to more than two silos. We
leverage MP-SPDZ [29], an open-source library that imple-
ments multiple SS-based protocols and supports an arbitrary
number of parties. Specifically, we use a protocol in MP-SPDZ

Algorithm 1: Fed-SSSP (for each silo Fp)
Input: (V,E): global road network topology,

ωp(∗): local weight set in Fp,
vs: source vertex, k: query size

1 Initialize the result set and set of found paths R = Q = ∅
2 Initialize nearest vertex v = vs with ρ = ⟨vs⟩, ϕp(ρ) = 0
3 while |R| < k do

/* (Local step): Explore the nearest vertex v */
4 if v /∈ R then
5 Add (v, ρ) into R
6 foreach neighbor v′ where evv′ ∈ E do
7 ρ′ = ρ ∪ ⟨v′⟩, ϕp(ρ

′) = ϕp(ρ) + ωp(evv′)
8 Add (v′, ρ′, ϕp(ρ

′)) into Q
/* (MPC step): Secretly find the shortest-path from Q */

9 Initialize the shortest-path v, ρ, ϕp(ρ) = Q[0]
10 foreach (v′, ρ′, ϕp(ρ

′)) ∈ Q[1 :] do
11 if [ϕp(ρ

′)] < [ϕp(ρ)] then
12 Update v, ρ, ϕp(ρ) = v′, ρ′, ϕp(ρ

′)

13 Remove the shortest-path (v, ρ, ϕp(ρ)) from Q
14 return R

with semi-honest security (Setting 3) to implement Fed-SAC.
It is worth noting that we can also support other adversary
models (e.g., malicious and colluded) simply by switching
to the corresponding underlying MPC protocol [30]. This
paper focuses solely on the design of an efficient upper-layer
algorithm, which is independent of the underlying protocol.
Federated Query Bottleneck. MPC computation incurs ex-
pensive network communication costs, making Fed-SAC the
primary bottleneck in federated shortest-path queries. As the
inherent cost of MPC can hardly be eliminated [9], the key to
optimizing federated query processing lies in minimizing the
usage of Fed-SAC.

C. Federated SSSP Query
A naive method to find the shortest-path is enumerating

all possible paths and then using Fed-SAC to compare their
joint costs to identify the one with the least cost. To avoid
enumerating in a large space, we can employ the Dijkstra
algorithm, which efficiently searches for the shortest-paths by
judiciously exploring the graph, i.e., prioritizing expanding the
nearest vertex. Algorithm 1 shows the search process executed
by each silo Fp. It iteratively performs two key steps until the
top-k shortest-paths are found (line 3-13):
1) Local Vertex Exploration Step. Starting from the nearest

vertex v (initially set to vs), the path ρ from vs to v is
recorded as a shortest-path (line 5). Then we extend ρ to
ρ′ as a tentative shortest-path to v′ by each of v’s neighbors
v′, and compute the partial cost ϕp(ρ

′) (line 6-7).
2) Global MPC Comparing Step. Among all the explored

paths, we select ρ with the minimum joint cost ϕ̄(ρ) using
Fed-SAC (line 9-12), which aggregates partial cost ϕp(ρ)
from each silo Fp to compare (line 11). Meanwhile, the
corresponding target vertex v becomes the new nearest
vertex, to be expanded in the next local step.

In step 2), to avoid using N − 1 MPC comparisons each
time to find the minimum path cost among the N = O(|V |)

4

explored paths (the total time complexity for k iterations is
O(k|V |), and the space complexity is O(k|N |) where |N |
represents the average number of neighbors because each
iteration expands the neighbors of a vertex), we can use a
priority queue such as the heap to store the partial order
(i.e., previous comparing results) between path costs, which is
commonly utilized in local shortest-path search. Then, we can
use O(logN) Fed-SACs to pop the shortest-path efficiently,
reducing the time complexity to O(k log |V |).

Note that Fed-SAC is the only operation that needs to
utilize the traffic data from other silos in Fed-SSSP, and
Fed-SAC meets the security guarantees (mentioned in Sec-
tion II-B). Thus, the entire algorithm meets the secure settings
(see Section VII for more details).

D. Federated SPSP Query

Fed-SPSP can be processed similarly, but it is more
challenging to prune the unpromising vertices not in the final
shortest-path. Intuitively, given a source vertex vs and a target
vertex vt, we can start a bi-directional federated Dijkstra
search from both vs and vt simultaneously until they converge
(Figure 4 (a)). To enhance efficiency, we can utilize the A*
algorithm, with a heuristic lower-bound (e.g., the straight-line
distance calculated by the vertices’ longitudes and latitudes),
to “guide” the search toward the target and safely prune
unpromising vertices. Specifically, each vertex is prioritized
based not only on its current joint path cost away from vs
but also on the estimated remaining distance to vt, with their
sum defined as the tentative cost. We also use a priority
queue to maintain the partial relationships among vertices and
efficiently retrieve the vertex with the minimum tentative cost.

However, this approach still requires exploring numerous
vertices during the search, including those not in the final
shortest-path. Therefore, we need to further optimize Fed-
SPSP tailored for the road network.

III. FEDERATED ROAD NETWORK SPSP FRAMEWORK

We first introduce existing methods to reduce the search
space in local road network (i.e., without federation) SPSP
queries and then propose how to redesign these techniques to
apply them in FedRoad.
Local Road Network SPSP. There are extensive studies [31],
[32] which can mainly be divided into two categories:
1) Shortcut-based indices use a pre-processing phase that adds

shortcuts (e.g., connecting “important” vertices) into G and
pre-computes their costs [22], [23], [33]. Then, during the
query phase, the A* search algorithm can utilize these
shortcuts to bypass many “unimportant” vertices and reach
the target faster, particularly in queries of long-distance
vertex pairs. For example, as shown in Figure 4 (c), the two
added shortcuts (dashed red arrow) enable the A* search
algorithm to prune more vertices and converge faster.

2) A more accurate lower-bound estimation also enables A*
search to prune more vertices by prioritizing the exploration
of vertices more likely to lead toward the target (colored by

darker black in Figure 4 (e)). Among these, the landmark-
based method ALT [25], is the most commonly used. It
chooses a small set of landmarks and pre-computes their
distances away from all the vertices. Then, for any two
vertices, we can efficiently compute a lower-bound from
their distances to each landmark and use the largest one as
the most accurate estimation of the distance between them.

Differences in Federated Road Networks. However, these
methods cannot be directly applied in FedRoad, mainly due
to the following two differences about this problem:
• The pre-computed structures (e.g., shortcut index and the

vertex-landmark distances) in all silos need to be globally
consistent to ensure correct federated query results. There-
fore, we need a collaborative method for pre-processing.

• The bottleneck shifts from local computation and data access
to the comminication in MPC operations. Therefore, our
focus lies in minimizing the MPC comparisons (Fed-SAC),
e.g., in selecting lower-bounds, and we can pay more local
computation in exchange for that.
Based on these differences, we redesign the shortcut indices

and the lower-bound estimation for the federated A* search
algorithm. These two methods reduce the search iterations,
and we further optimize the costs of MPC operations in each
iteration by designing a novel priority queue structure that
minimizes the secret comparisons.
Framework. As shown in Figure 4, FedRoad optimizes the
federated road network SPSP problem (i.e., pruning unpromis-
ing vertices and reducing MPC comparisons) in three aspects.
(1) Federated Shortcut Index. To ensure accurate query
processing, the indices in all silos need to be consistent
with a (imaginary) global index built on the WJRN (i.e.,
same shortcut set and correct joint shortcut weights). The
key factor to address this issue lies in ensuring that: for each
shortcut, the associating witness paths on all silos need to be
consistent with the global witness path on WJRN, i.e., the joint
shortest-path. Therefore, we propose a framework for building
federated shortcut indices, where all silos add shortcuts by
collaboratively searching the joint shortest-path. As shown
in Figure 4 (b), to add a shortcut, all silos use Fed-SPSP
to search the corresponding joint shortest-path as the global
witness path, and then each silo preserves the respective partial
cost as the local shortcut weight. In this way, the shortcut
indices on all silos are consistent, while only the insensitive
witness path is synchronized across silos, and the sensitive
shortcut weights keep local and secret.

In this way, we can utilize the federated shortcut indices to
skip vertices and thus significantly reduce the search space.
(2) Federated Lower-Bound Estimation. The landmark-
based method ALT can be extended to estimate a federated
lower-bound (Fed-ALT). Specifically, the federation uses Fed-
SPSP to collaboratively pre-compute the joint shortest-paths
between all vertices and landmarks, which can provide a
lower-bound by each landmark li for any two vertices. Then,
it can select the tightest joint lower-bound provided by the
“farthest landmark” l∗ from L, equal to the lower-bound

5

…

FP
<latexit sha1_base64="eS15yvzoCXTMIZDbcZvdBS/2tOw=">AAAB6nicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LIoiMuK9gHtUDLpnTY0kxmSjFCGfoIbF4q49Yvc+Tem7Sy09UDgcM655N4TJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6uO3Ve6WyW3FnIMvEy0kZctj8V7cfszRCaZigWnc8NzF+RpXhTOCk2E01JpSN6AA7lkoaofaz2aoTcmqVPgljZZ80ZKb+nshopPU4CmwyomaoF72p+J/XSU145WdcJqlByeYfhakgJibTu0mfK2RGjC2hTHG7K2FDqigztp2iLcFbPHmZNKsV77xSvb8o167zOgpwDCdwBh5cQg3uoA4NYDCAZ3iFN0c4L8678zGPrjj5zBH8gfP5A++/jZE=</latexit>

…

FP
<latexit sha1_base64="eS15yvzoCXTMIZDbcZvdBS/2tOw=">AAAB6nicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LIoiMuK9gHtUDLpnTY0kxmSjFCGfoIbF4q49Yvc+Tem7Sy09UDgcM655N4TJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6uO3Ve6WyW3FnIMvEy0kZctj8V7cfszRCaZigWnc8NzF+RpXhTOCk2E01JpSN6AA7lkoaofaz2aoTcmqVPgljZZ80ZKb+nshopPU4CmwyomaoF72p+J/XSU145WdcJqlByeYfhakgJibTu0mfK2RGjC2hTHG7K2FDqigztp2iLcFbPHmZNKsV77xSvb8o167zOgpwDCdwBh5cQg3uoA4NYDCAZ3iFN0c4L8678zGPrjj5zBH8gfP5A++/jZE=</latexit>

FP
<latexit sha1_base64="eS15yvzoCXTMIZDbcZvdBS/2tOw=">AAAB6nicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LIoiMuK9gHtUDLpnTY0kxmSjFCGfoIbF4q49Yvc+Tem7Sy09UDgcM655N4TJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6uO3Ve6WyW3FnIMvEy0kZctj8V7cfszRCaZigWnc8NzF+RpXhTOCk2E01JpSN6AA7lkoaofaz2aoTcmqVPgljZZ80ZKb+nshopPU4CmwyomaoF72p+J/XSU145WdcJqlByeYfhakgJibTu0mfK2RGjC2hTHG7K2FDqigztp2iLcFbPHmZNKsV77xSvb8o167zOgpwDCdwBh5cQg3uoA4NYDCAZ3iFN0c4L8678zGPrjj5zBH8gfP5A++/jZE=</latexit>

…

Federated
Shortcut Index

F1
<latexit sha1_base64="oOdPRADXtKgXqbdvTAyddTGewZw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FgUxGNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6uO15vVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrVindeqd5flGvXeRwFOIYTOAMPLqEGd1CHBjAYwDO8wpsjnBfn3fmYt644+cwR/IHz+QPAw41y</latexit>

Collaboratively
adding shortcuts

shortcut edge

Fed-SPSP

witness path
(public)

Federated
Lower-Bound Estimation

Fed-ALT

Fed-ALT-Max

Fed-AMPS
�1(vs, vt)

<latexit sha1_base64="hnJR/QhBR2Aa95bRE+9MUY1tuiA=">AAAB+XicbVBNS8NAEN34WetX1KOXxSJUkJJUQY9FLx4r2A9oQ9hsN+3SzSbsTgIl9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5QSK4Bsf5ttbWNza3tks75d29/YND++i4reNUUdaisYhVNyCaCS5ZCzgI1k0UI1EgWCcY38/8TsaU5rF8gknCvIgMJQ85JWAk37b7yYj7bjXz9SXOfLjw7YpTc+bAq8QtSAUVaPr2V38Q0zRiEqggWvdcJwEvJwo4FWxa7qeaJYSOyZD1DJUkYtrL55dP8blRBjiMlSkJeK7+nshJpPUkCkxnRGCkl72Z+J/XSyG89XIukxSYpItFYSowxHgWAx5wxSiIiSGEKm5uxXREFKFgwiqbENzll1dJu15zr2r1x+tK466Io4RO0RmqIhfdoAZ6QE3UQhRl6Bm9ojcrt16sd+tj0bpmFTMn6A+szx8cRJKq</latexit>

�P (vs, vt)
<latexit sha1_base64="TJWS9PrA2c2hvr5sJ/xxnpKxdXQ=">AAAB+XicbVBNS8NAEN34WetX1KOXxSJUkJJUQY9FLx4r2A9oQ9hsN+3SzSbsTgIl9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5QSK4Bsf5ttbWNza3tks75d29/YND++i4reNUUdaisYhVNyCaCS5ZCzgI1k0UI1EgWCcY38/8TsaU5rF8gknCvIgMJQ85JWAk37b7yYj7zWrm60uc+XDh2xWn5syBV4lbkAoq0PTtr/4gpmnEJFBBtO65TgJeThRwKti03E81SwgdkyHrGSpJxLSXzy+f4nOjDHAYK1MS8Fz9PZGTSOtJFJjOiMBIL3sz8T+vl0J46+VcJikwSReLwlRgiPEsBjzgilEQE0MIVdzciumIKELBhFU2IbjLL6+Sdr3mXtXqj9eVxl0RRwmdojNURS66QQ30gJqohSjK0DN6RW9Wbr1Y79bHonXNKmZO0B9Ynz9MdpLJ</latexit>

…

global shortest

(a) (b) (c) (d) (e)

partial costs
(private)

vt
<latexit sha1_base64="zFrDWKar3zPnchwHAHah95uF6pA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdzDXqnsVtw5yCrxclKGHPVe6avbj1kacYVMUmM6npugn1GNgkk+LXZTwxPKRnTAO5YqGnHjZ/NTp+TcKn0SxtqWQjJXf09kNDJmEgW2M6I4NMveTPzP66QY3viZUEmKXLHFojCVBGMy+5v0heYM5cQSyrSwtxI2pJoytOkUbQje8surpFmteJeV6sNVuXabx1GAUziDC/DgGmpwD3VoAIMBPMMrvDnSeXHenY9F65qTz5zAHzifP29+jeU=</latexit>

vs
<latexit sha1_base64="n7Xtf37tdPhfHgNHHnwINLi9BBU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnu6Vyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFrupxoSyER1gx1JJI9R+Nj91Ss6t0idhrGxJQ+bq74mMRlpPosB2RtQM9bI3E//zOqkJb/yMyyQ1KNliUZgKYmIy+5v0uUJmxMQSyhS3txI2pIoyY9Mp2hC85ZdXSbNa8S4r1Yercu02j6MAp3AGF+DBNdTgHurQAAYDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBt+o3k</latexit>

F1
<latexit sha1_base64="oOdPRADXtKgXqbdvTAyddTGewZw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FgUxGNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6uO15vVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrVindeqd5flGvXeRwFOIYTOAMPLqEGd1CHBjAYwDO8wpsjnBfn3fmYt644+cwR/IHz+QPAw41y</latexit>

(f)

Comparison-Optimized
Priority Queue

pop

Tournament Merge Tree

batched
push

F1
<latexit sha1_base64="oOdPRADXtKgXqbdvTAyddTGewZw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FgUxGNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6uO15vVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrVindeqd5flGvXeRwFOIYTOAMPLqEGd1CHBjAYwDO8wpsjnBfn3fmYt644+cwR/IHz+QPAw41y</latexit>

x

x

x

x

x
x

x

F1
<latexit sha1_base64="oOdPRADXtKgXqbdvTAyddTGewZw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FgUxGNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfzsrq2vrGZmGruL2zu7dfOjhs6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/VbT6g0j+WjGSfoR3QgecgZNVZ6uO15vVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrVindeqd5flGvXeRwFOIYTOAMPLqEGd1CHBjAYwDO8wpsjnBfn3fmYt644+cwR/IHz+QPAw41y</latexit>

x

x

xx

x
x

Bi
-d

ire
ct

io
na

l A
* s

ea
rc

h

1�
<latexit sha1_base64="o3x8lc3q9kDuNwKlCGbSMBkJYFs=">AAAB+HicbVDLSgNBEOyNrxgfWfXoZTAInsJuFPQY9OIxgnlAsoTZ2UkyZPbBTK8Yl3yJFw+KePVTvPk3TpI9aGJBQ1HVPdNdfiKFRsf5tgpr6xubW8Xt0s7u3n7ZPjhs6ThVjDdZLGPV8anmUkS8iQIl7ySK09CXvO2Pb2Z++4ErLeLoHicJ90I6jMRAMIpG6tvlHvJHZEIxyYPMnfbtilN15iCrxM1JBXI0+vZXL4hZGvIImaRad10nQS+jCoV5clrqpZonlI3pkHcNjWjItZfNF5+SU6MEZBArUxGSufp7IqOh1pPQN50hxZFe9mbif143xcGVl4koSZFHbPHRIJUEYzJLgQRCcYZyYghlSphdCRtRRRmarEomBHf55FXSqlXd82rt7qJSv87jKMIxnMAZuHAJdbiFBjSBQQrP8Apv1pP1Yr1bH4vWgpXPHMEfWJ8/I0yTZQ==</latexit>

2�
<latexit sha1_base64="oKMAoltoyfrxwjGqJxdLhRhocVY=">AAAB+HicbVDLSgNBEOyNrxgfWfXoZTAInsJuFPQY9OIxgnlAsoTZ2UkyZPbBTK8Yl3yJFw+KePVTvPk3TpI9aGJBQ1HVPdNdfiKFRsf5tgpr6xubW8Xt0s7u3n7ZPjhs6ThVjDdZLGPV8anmUkS8iQIl7ySK09CXvO2Pb2Z++4ErLeLoHicJ90I6jMRAMIpG6tvlHvJHZEIxyYOsNu3bFafqzEFWiZuTCuRo9O2vXhCzNOQRMkm17rpOgl5GFQrz5LTUSzVPKBvTIe8aGtGQay+bLz4lp0YJyCBWpiIkc/X3REZDrSehbzpDiiO97M3E/7xuioMrLxNRkiKP2OKjQSoJxmSWAgmE4gzlxBDKlDC7EjaiijI0WZVMCO7yyaukVau659Xa3UWlfp3HUYRjOIEzcOES6nALDWgCgxSe4RXerCfrxXq3PhatBSufOYI/sD5/ACTRk2Y=</latexit>

3�
<latexit sha1_base64="Ub56NwkCxLWwXwWn4QwnD/ekeZI=">AAAB+HicbVBNT8JAEN3iF+IHVY9eGomJJ9KCiR6JXjxiImACDdluB9iw3Ta7UyM2/BIvHjTGqz/Fm//GBXpQ8CWTvLw3szvzgkRwja77bRXW1jc2t4rbpZ3dvf2yfXDY1nGqGLRYLGJ1H1ANgktoIUcB94kCGgUCOsH4euZ3HkBpHss7nCTgR3Qo+YAzikbq2+UewiMyrpiAMKtP+3bFrbpzOKvEy0mF5Gj27a9eGLM0AolMUK27npugn1GF3Dw5LfVSDQllYzqErqGSRqD9bL741Dk1SugMYmVKojNXf09kNNJ6EgWmM6I40sveTPzP66Y4uPQzLpMUQbLFR4NUOBg7sxSckCtgKCaGUKa42dVhI6ooQ5NVyYTgLZ+8Stq1qlev1m7PK42rPI4iOSYn5Ix45II0yA1pkhZhJCXP5JW8WU/Wi/VufSxaC1Y+c0T+wPr8ASZWk2c=</latexit>

x

Fig. 4: Framework of the federated road network single-pair-shortest-path query processing

computed by ALT on the WJRN. However, Fed-ALT requires
|L| − 1 MPC comparisons to find the “farthest landmark”, for
each estimation (Figure 4 (d) 1⃝), incurring heavy communi-
cation costs. To strike a better balance in the estimation trade-
off involving communication, computation, and accuracy, for
minimizing the end-to-end query processing time, we propose
Fed-ALT-Max and Fed-AMPS as two choices.

Fed-ALT-Max. To alleviate the high communication costs
for each estimation, we can sacrifice accuracy slightly. Specif-
ically, all silos directly select an approximate “farthest land-
mark” l∗0 by comparing the |L| plain-text lower-bounds under
the public static weights W0 instead of collaboratively com-
paring the joint lower-bounds. Although the joint lower-bound
provided by l∗0 is slightly less accurate than l∗, this method
is more cost-effective than Fed-ALT since it circumvents the
large volume of MPC comparisons (Figure 4 (d) 2⃝).

Fed-AMPS. We can pay more for local computation to
increase the estimation accuracy, thus reducing search iter-
ations. Specifically, if each silo searches a partial shortest-
path locally, then the Mean of these Partial Shortest-path costs
(MPS) is another lower-bound of the joint shortest-path cost
(the derivation will be presented in Section V), which is much
more accurate than Fed-ALT. Although Fed-AMPS requires
each silo to perform an entire local shortest-path search for
each estimation, this can be processed without communication.

Leveraging these effective and efficient lower-bounds, A*
search algorithm can prune numerous unrelated vertices.
(3) Comparison-Optimized Priority Queue. The heap is
space-efficient and has favorable memory access locality;
thus, it is commonly employed to implement priority queues.
However, when the bottleneck shifts to MPC comparison, it
is no longer the optimal choice. In response, we design a
novel priority queue structure, i.e., the Tournament Merge-tree
(TM-tree), which is dedicated to minimizing the number of
comparisons in road network searches.

Queue Operation Workload in Road Network Search. Dur-
ing the A* search, when we explore a vertex, we pop it from
the priority queue and push all its neighbors (may be more
than 10) in. Therefore, the push operations usually arrive in
groups and the total number of pushes is higher (e.g., 5−10×).

Batch Pushing. Therefore, we propose to push the grouped
n vertices in batch (Figure 4 (f)), with O(1) amortized com-
parisons instead of O(log |Q|) in one-by-one insertion, where
|Q| denotes the queue size. Specifically, we first batch-build a
local queue for each insertion group and then merge it into the

global queue. For the queue structure, we opt for a winner-
tracking hierarchy, the Tournament-tree (T-tree), instead of the
heap. This is because we can use the least comparisons (n−1)
to batch build a T-tree (while using up to 2n for a heap) and
can merge two T-trees by only 1 comparison (while O(log n)
for heaps). Although the T-tree is less efficient in terms of
space usage and memory access than the heap, it significantly
reduces MPC comparisons, making this trade-off worthwhile.

Balance Keeping. Moreover, we adopt a scale-balanced
merging mechanism to keep the global queue balanced, which
affects the popping costs. Specifically, we maintain multiple
T-trees of different scales in the global queue. When inserting
a local queue, we merge it with an existing T-tree only if
their sizes are similar (e.g., within 2×), and propagate the
merging thereafter. This approach limits the height of TM-
tree to O(log |Q|).

IV. FEDERATED SHORTCUT INDEX

There are several road network indices [21]–[24], [34]
designed for accelerating the SPSP searching. During a pre-
processing phase, these indices commonly incorporate a set
of shortcuts (e.g., between important vertices), enabling a
shortest-path search to skip over unpromising vertices. How-
ever, these indices can not be directly applied to federated
road networks since they can not ensure consistent index
structures (i.e., shortcuts) across various silos. To address this,
we propose a framework of building and maintaining federated
shortcut indices based on various underlying algorithms.

A shortcut evivj preserves the shortest-path distance
ϕ(ρ∗(vi, vj)) from vi to vj , and ρ∗(vi, vj) is the witness
path of this shortcut. For example, in the rightmost graph
Ḡ in Figure 5, there are 3 shortcuts ev7v2 , ev7v4 , ev2v4 . The
witness path of shortcut ev7v2 is ⟨v7, v8, v2⟩, and its weight
ω̄(ev7v2) = ϕ(v7, v2) = 6. The number of shortcuts cannot
be too large, as it would impact pre-processing time, space
consumption, and query performance. Thus, we can only
choose a limited set of “important” shortcuts.

For a road network federation, we build federated shortcut
indices in all silos, which need to be globally correct. It means
that the weighted joint shortcut set should be equivalent to
a (imaginary) global shortcut set built on the WJRN, i.e.,
globally correct shortcut weights and consistent shortcut sets.
We first introduce how to compute the weight of each federated
shortcut, then show how to collaboratively select appropriate
shortcuts and ultimately construct a federated shortcut index.

6

Algorithm 2: Adding a shortcut (for each silo Fp)
Input: (V,E): road network, Wp = ωp(∗): local weight set,

vi, vj : the 2 end vertices
1 ρ∗ = Fed-SPSP(V,E,Wp, vi, vj)
2 Computing ϕp(ρ

∗) =
∑

e∈ρ∗ ωp(e) locally
3 Add shortcut evivj with ωp(evivj) = ϕp(ρ

∗)

Algorithm 3: Federated shortcut index construction by
vertex contraction (for each silo Fp)

Input: (V,E): road network, Wp: local weight set,
Vc: set of vertices to be contracted

1 Initialize the shortcut set S = ∅
2 foreach v ∈ Vc in ascending order of importance do
3 foreach neighbor vi where eviv ∈ E do
4 R = Fed-SSSP(V,E,Wp, vi) until all neighbors

vj with evvj ∈ E are settled
5 foreach vj , ρ

∗ ∈ R where evvj ∈ E do
6 if ρ∗ passes through v then
7 Add evivj into E and S with

ωp(evivj) = ϕp(ρ
∗)

8 Remove v and the associating edges from (V,E)

9 return S

Federated Shortcut Computing. For each shortcut
(vi, vj), we need to ensure its joint weight over all silos∑P

p=1 ωp(evivj)/P equal to corresponding weight in the
WJRN ω̄(evivj). All silos first use Fed-SAC to search a
global shortest path as the witness path collaboratively. Then
each silo can calculate and store the local shortcut weight
based on the witness path individually. More specifically, as
shown in Algorithm 2, we first search the global shortest path
ρ∗(vi, vj) between the two end vertices by federated SPSP
(line 1). Then we preserve the associating partial cost ϕp(ρ

∗)
locally in each silo Fp as the local shortcut weight ωp(evivj)
(line 2-3). Aggregating the local shortcut weights from all silos
can yield the correct joint shortcut weight on WJRN.

As shown in Figure 5, for shortcut ev7v4 , its local weights
computed collaboratively in all silos are globally correct,
i.e., their joint weight ω̄(ev7v4) = (12 + 4)/2 is equal to
ω̄(ev7v4) = 8 on the WJRN Ḡ. This is because all these
local shortcuts is associated with the same witness path
(i.e., the joint shortest-path) ⟨v7, v8, v4⟩. As a comparison, if
each silo naively computes shortcuts individually, the local
weight of ev7v4 on G1 will be set to the local shortest-
path cost ϕ1(⟨v7, v8, v4⟩) = 4 and the joint shortcut weight
ω̄(ev7v4) = (4 + 4)/2 ̸= 8 is incorrect. This may result in
wrong outputs during the federated shortest-path search.
Federated Shortcut Selection. Various algorithms [21], [23],
[34] propose different strategies to select a set of “important”
shortcuts, which depend on not only the road network topology
but also the edge weights. The goal is to ensure all silos
select the correct global shortcut sets in a federated road
network. To achieve this, except for the weight-independent
steps, all other steps need to be processed collaboratively.
We will illustrate the vertex contraction-based algorithm [23]

v1
<latexit sha1_base64="CjmP85F9x9vbcL2ENUsPPB1Vqnk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3vgZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Wqg9X5dptHkcBTuEMLsCDa6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAJ8o2i</latexit>

v2
<latexit sha1_base64="lE8WDoWfUTC8KgvVYi3+vwjrTxc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8MbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbusVB+uyrXbPI4CnMIZXIAH11CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AELdo2j</latexit>

v3
<latexit sha1_base64="Q/aveuY5+n/l8vwyIRXs5XSXR+c=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju7nfGqPSPJZPZpKgH9GB5CFn1Fjpcdyr9oolt+wuQNaJl5ESZKj3il/dfszSCKVhgmrd8dzE+FOqDGcCZ4VuqjGhbEQH2LFU0gi1P12cOiMXVumTMFa2pCEL9ffElEZaT6LAdkbUDPWqNxf/8zqpCW/8KZdJalCy5aIwFcTEZP436XOFzIiJJZQpbm8lbEgVZcamU7AheKsvr5NmpexVy5WHq1LtNosjD2dwDpfgwTXU4B7q0AAGA3iGV3hzhPPivDsfy9ack82cwh84nz8M+o2k</latexit>

v4
<latexit sha1_base64="iVTvddOc7068PJ07WLG+5oEmaUE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xyiOBDZkdGpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju7nfmqDSPJJPZhqjH9Kh5APOqLHS46RX7RVLbtldgKwTLyMlyFDvFb+6/YglIUrDBNW647mx8VOqDGcCZ4VuojGmbEyH2LFU0hC1ny5OnZELq/TJIFK2pCEL9fdESkOtp2FgO0NqRnrVm4v/eZ3EDG78lMs4MSjZctEgEcREZP436XOFzIipJZQpbm8lbEQVZcamU7AheKsvr5NmpexdlSsP1VLtNosjD2dwDpfgwTXU4B7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8Ofo2l</latexit>

v5
<latexit sha1_base64="AQMl8YQ1vqrQPuNFXFrwGUVUNEI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedYslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlCsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEAKNpg==</latexit>

v6
<latexit sha1_base64="mgQO5Rp4uoHWhxqBQ4TU0bH9YMU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedYslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlCsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEYaNpw==</latexit>

v7
<latexit sha1_base64="6dygheKTEsF0+RWrEvQBT8Zl+tU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRBI9ELx4xyiOBDZkdBpgwO7uZ6SUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY38391oRrIyL1hNOY+yEdKjEQjKKVHie9aq9YcsvuAmSdeBkpQYZ6r/jV7UcsCblCJqkxHc+N0U+pRsEknxW6ieExZWM65B1LFQ258dPFqTNyYZU+GUTalkKyUH9PpDQ0ZhoGtjOkODKr3lz8z+skOLjxU6HiBLliy0WDRBKMyPxv0heaM5RTSyjTwt5K2IhqytCmU7AheKsvr5NmpexdlSsP16XabRZHHs7gHC7BgyrU4B7q0AAGQ3iGV3hzpPPivDsfy9ack82cwh84nz8TCo2o</latexit>

v8
<latexit sha1_base64="xdhnPfqY9ZhXL8aXYfrzPT8kWps=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI5ELx4xyiOBDZkdBpgwO7uZ6SUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY38391oRrIyL1hNOY+yEdKjEQjKKVHie9aq9YcsvuAmSdeBkpQYZ6r/jV7UcsCblCJqkxHc+N0U+pRsEknxW6ieExZWM65B1LFQ258dPFqTNyYZU+GUTalkKyUH9PpDQ0ZhoGtjOkODKr3lz8z+skOKj6qVBxglyx5aJBIglGZP436QvNGcqpJZRpYW8lbEQ1ZWjTKdgQvNWX10mzUvauypWH61LtNosjD2dwDpfgwQ3U4B7q0AAGQ3iGV3hzpPPivDsfy9ack82cwh84nz8Ujo2p</latexit>

1

6 6

1

4

2

5

3

3

2

5
6

4

8

v1
<latexit sha1_base64="CjmP85F9x9vbcL2ENUsPPB1Vqnk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3vgZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Wqg9X5dptHkcBTuEMLsCDa6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAJ8o2i</latexit>

v2
<latexit sha1_base64="lE8WDoWfUTC8KgvVYi3+vwjrTxc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8MbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbusVB+uyrXbPI4CnMIZXIAH11CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AELdo2j</latexit>

v3
<latexit sha1_base64="Q/aveuY5+n/l8vwyIRXs5XSXR+c=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju7nfGqPSPJZPZpKgH9GB5CFn1Fjpcdyr9oolt+wuQNaJl5ESZKj3il/dfszSCKVhgmrd8dzE+FOqDGcCZ4VuqjGhbEQH2LFU0gi1P12cOiMXVumTMFa2pCEL9ffElEZaT6LAdkbUDPWqNxf/8zqpCW/8KZdJalCy5aIwFcTEZP436XOFzIiJJZQpbm8lbEgVZcamU7AheKsvr5NmpexVy5WHq1LtNosjD2dwDpfgwTXU4B7q0AAGA3iGV3hzhPPivDsfy9ack82cwh84nz8M+o2k</latexit>

v4
<latexit sha1_base64="iVTvddOc7068PJ07WLG+5oEmaUE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xyiOBDZkdGpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju7nfmqDSPJJPZhqjH9Kh5APOqLHS46RX7RVLbtldgKwTLyMlyFDvFb+6/YglIUrDBNW647mx8VOqDGcCZ4VuojGmbEyH2LFU0hC1ny5OnZELq/TJIFK2pCEL9fdESkOtp2FgO0NqRnrVm4v/eZ3EDG78lMs4MSjZctEgEcREZP436XOFzIipJZQpbm8lbEQVZcamU7AheKsvr5NmpexdlSsP1VLtNosjD2dwDpfgwTXU4B7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8Ofo2l</latexit>

v5
<latexit sha1_base64="AQMl8YQ1vqrQPuNFXFrwGUVUNEI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedYslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlCsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEAKNpg==</latexit>

v6
<latexit sha1_base64="mgQO5Rp4uoHWhxqBQ4TU0bH9YMU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedYslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlCsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEYaNpw==</latexit>

v7
<latexit sha1_base64="6dygheKTEsF0+RWrEvQBT8Zl+tU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRBI9ELx4xyiOBDZkdBpgwO7uZ6SUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY38391oRrIyL1hNOY+yEdKjEQjKKVHie9aq9YcsvuAmSdeBkpQYZ6r/jV7UcsCblCJqkxHc+N0U+pRsEknxW6ieExZWM65B1LFQ258dPFqTNyYZU+GUTalkKyUH9PpDQ0ZhoGtjOkODKr3lz8z+skOLjxU6HiBLliy0WDRBKMyPxv0heaM5RTSyjTwt5K2IhqytCmU7AheKsvr5NmpexdlSsP16XabRZHHs7gHC7BgyrU4B7q0AAGQ3iGV3hzpPPivDsfy9ack82cwh84nz8TCo2o</latexit>

v8
<latexit sha1_base64="xdhnPfqY9ZhXL8aXYfrzPT8kWps=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI5ELx4xyiOBDZkdBpgwO7uZ6SUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY38391oRrIyL1hNOY+yEdKjEQjKKVHie9aq9YcsvuAmSdeBkpQYZ6r/jV7UcsCblCJqkxHc+N0U+pRsEknxW6ieExZWM65B1LFQ258dPFqTNyYZU+GUTalkKyUH9PpDQ0ZhoGtjOkODKr3lz8z+skOKj6qVBxglyx5aJBIglGZP436QvNGcqpJZRpYW8lbEQ1ZWjTKdgQvNWX10mzUvauypWH61LtNosjD2dwDpfgwQ3U4B7q0AAGQ3iGV3hzpPPivDsfy9ack82cwh84nz8Ujo2p</latexit>

1

6 6

1

1

2

3

5

5

3

5
4

2

✖

4

v1
<latexit sha1_base64="CjmP85F9x9vbcL2ENUsPPB1Vqnk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3vgZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Wqg9X5dptHkcBTuEMLsCDa6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAJ8o2i</latexit>

v2
<latexit sha1_base64="lE8WDoWfUTC8KgvVYi3+vwjrTxc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8MbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbusVB+uyrXbPI4CnMIZXIAH11CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AELdo2j</latexit>

v3
<latexit sha1_base64="Q/aveuY5+n/l8vwyIRXs5XSXR+c=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju7nfGqPSPJZPZpKgH9GB5CFn1Fjpcdyr9oolt+wuQNaJl5ESZKj3il/dfszSCKVhgmrd8dzE+FOqDGcCZ4VuqjGhbEQH2LFU0gi1P12cOiMXVumTMFa2pCEL9ffElEZaT6LAdkbUDPWqNxf/8zqpCW/8KZdJalCy5aIwFcTEZP436XOFzIiJJZQpbm8lbEgVZcamU7AheKsvr5NmpexVy5WHq1LtNosjD2dwDpfgwTXU4B7q0AAGA3iGV3hzhPPivDsfy9ack82cwh84nz8M+o2k</latexit>

v4
<latexit sha1_base64="iVTvddOc7068PJ07WLG+5oEmaUE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xyiOBDZkdGpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju7nfmqDSPJJPZhqjH9Kh5APOqLHS46RX7RVLbtldgKwTLyMlyFDvFb+6/YglIUrDBNW647mx8VOqDGcCZ4VuojGmbEyH2LFU0hC1ny5OnZELq/TJIFK2pCEL9fdESkOtp2FgO0NqRnrVm4v/eZ3EDG78lMs4MSjZctEgEcREZP436XOFzIipJZQpbm8lbEQVZcamU7AheKsvr5NmpexdlSsP1VLtNosjD2dwDpfgwTXU4B7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8Ofo2l</latexit>

v5
<latexit sha1_base64="AQMl8YQ1vqrQPuNFXFrwGUVUNEI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedYslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlCsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEAKNpg==</latexit>

v6
<latexit sha1_base64="mgQO5Rp4uoHWhxqBQ4TU0bH9YMU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedYslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlCsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEYaNpw==</latexit>

v7
<latexit sha1_base64="6dygheKTEsF0+RWrEvQBT8Zl+tU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRBI9ELx4xyiOBDZkdBpgwO7uZ6SUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY38391oRrIyL1hNOY+yEdKjEQjKKVHie9aq9YcsvuAmSdeBkpQYZ6r/jV7UcsCblCJqkxHc+N0U+pRsEknxW6ieExZWM65B1LFQ258dPFqTNyYZU+GUTalkKyUH9PpDQ0ZhoGtjOkODKr3lz8z+skOLjxU6HiBLliy0WDRBKMyPxv0heaM5RTSyjTwt5K2IhqytCmU7AheKsvr5NmpexdlSsP16XabRZHHs7gHC7BgyrU4B7q0AAGQ3iGV3hzpPPivDsfy9ack82cwh84nz8TCo2o</latexit>

v8
<latexit sha1_base64="xdhnPfqY9ZhXL8aXYfrzPT8kWps=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI5ELx4xyiOBDZkdBpgwO7uZ6SUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikaaJEM95gkYx0O6CGS6F4AwVK3o41p2EgeSsY38391oRrIyL1hNOY+yEdKjEQjKKVHie9aq9YcsvuAmSdeBkpQYZ6r/jV7UcsCblCJqkxHc+N0U+pRsEknxW6ieExZWM65B1LFQ258dPFqTNyYZU+GUTalkKyUH9PpDQ0ZhoGtjOkODKr3lz8z+skOKj6qVBxglyx5aJBIglGZP436QvNGcqpJZRpYW8lbEQ1ZWjTKdgQvNWX10mzUvauypWH61LtNosjD2dwDpfgwQ3U4B7q0AAGQ3iGV3hzpPPivDsfy9ack82cwh84nz8Ujo2p</latexit>

1

6 6

1

7

2

7

1

1

1

5
8

4
hv7, v8, v4i

<latexit sha1_base64="6Cg5lU5NEnb193veHgE5pY13DWs=">AAACBHicdZDNSsNAFIUn9a/Wv6jLbgaL4EJKmtam7opuXFawrdCEMJlO26GTSZiZFErowo2v4saFIm59CHe+jZO2gooeuHD47r3M3BPEjEplWR9GbmV1bX0jv1nY2t7Z3TP3DzoySgQmbRyxSNwGSBJGOWkrqhi5jQVBYcBINxhfZv3uhAhJI36jpjHxQjTkdEAxUhr5ZtFliA8ZgRPfOZ34DV016Io5882SVT5v1O0zG1ply3Lsaj0ztlOzq7CiSaYSWKrlm+9uP8JJSLjCDEnZq1ix8lIkFMWMzApuIkmM8BgNSU9bjkIivXR+xAwea9KHg0jo4grO6feNFIVSTsNAT4ZIjeTvXgb/6vUSNWh4KeVxogjHi4cGCYMqglkisE8FwYpNtUFYUP1XiEdIIKx0bgUdwtel8H/TscuVatm+rpWaF8s48qAIjsAJqAAHNMEVaIE2wOAOPIAn8GzcG4/Gi/G6GM0Zy51D8EPG2yd9H5df</latexit>

hv7, v6, v5, v4i
<latexit sha1_base64="gFXFFfA3mRFoHFTPGYo5Ufu5jk8=">AAACCHicdVDLSgMxFM3UV62vUZcuDBbBhZTp9DF1V3TjsoJ9QKcMmTRtQzOZIckUytClG3/FjQtF3PoJ7vwbM20FFT1w4HDOvST3+BGjUlnWh5FZWV1b38hu5ra2d3b3zP2DlgxjgUkThywUHR9JwignTUUVI51IEBT4jLT98VWatydESBryWzWNSC9AQ04HFCOlLc88dhniQ0bgxHPOJ15Vs6JZhq6Y+56ZtwoXtapdsaFVsCzHLlVTYTtluwSL2kmRB0s0PPPd7Yc4DghXmCEpu0UrUr0ECUUxI7OcG0sSITxGQ9LVkqOAyF4yP2QGT7XTh4NQaHIF5+73jQQFUk4DX08GSI3k7yw1/8q6sRrUegnlUawIx4uHBjGDKoRpK7BPBcGKTbVAWFD9V4hHSCCsdHc5XcLXpfB/0bILxVLBvinn65fLOrLgCJyAM1AEDqiDa9AATYDBHXgAT+DZuDcejRfjdTGaMZY7h+AHjLdPCguYuw==</latexit>

hv7, v6, v5, v4i
<latexit sha1_base64="gFXFFfA3mRFoHFTPGYo5Ufu5jk8=">AAACCHicdVDLSgMxFM3UV62vUZcuDBbBhZTp9DF1V3TjsoJ9QKcMmTRtQzOZIckUytClG3/FjQtF3PoJ7vwbM20FFT1w4HDOvST3+BGjUlnWh5FZWV1b38hu5ra2d3b3zP2DlgxjgUkThywUHR9JwignTUUVI51IEBT4jLT98VWatydESBryWzWNSC9AQ04HFCOlLc88dhniQ0bgxHPOJ15Vs6JZhq6Y+56ZtwoXtapdsaFVsCzHLlVTYTtluwSL2kmRB0s0PPPd7Yc4DghXmCEpu0UrUr0ECUUxI7OcG0sSITxGQ9LVkqOAyF4yP2QGT7XTh4NQaHIF5+73jQQFUk4DX08GSI3k7yw1/8q6sRrUegnlUawIx4uHBjGDKoRpK7BPBcGKTbVAWFD9V4hHSCCsdHc5XcLXpfB/0bILxVLBvinn65fLOrLgCJyAM1AEDqiDa9AATYDBHXgAT+DZuDcejRfjdTGaMZY7h+AHjLdPCguYuw==</latexit>

G1
<latexit sha1_base64="SvP+ZoWN7PFEXZJSOlAu6vZdLfY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0oMeK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoZuq3nlBpHstHM07Qj+hA8pAzaqz0cNvzeqWyW3FnIMvEy0kZctR7pa9uP2ZphNIwQbXueG5i/Iwqw5nASbGbakwoG9EBdiyVNELtZ7NTJ+TUKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadog3BW3x5mTSrFe+8Ur2/KNeu8zgKcAwncAYeXEIN7qAODWAwgGd4hTdHOC/Ou/Mxb11x8pkj+APn8wfCSY1z</latexit>

G2
<latexit sha1_base64="go9JyZ8aQNe9uMvI/Mo7MmhpN3k=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0oMeK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh9tetVcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns1Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06RRuCt/jyMmlWK955pXp/Ua5d53EU4BhO4Aw8uIQa3EEdGsBgAM/wCm+OdF6cd+dj3rri5DNH8AfO5w/DzY10</latexit>

Ḡ
<latexit sha1_base64="zTy3KuHUcmah2BacGyrZQwlfVso=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoQY8RzAOSJcxOZpMx81hmZoWw5B+8eFDEq//jzb9xkuxBEwsaiqpuuruihDNjff/bW1ldW9/YLGwVt3d29/ZLB4dNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6mfqtJ6oNU/LBjhMaCjyQLGYEWyc1uxHW6LZXKvsVfwa0TIKclCFHvVf66vYVSQWVlnBsTCfwExtmWFtGOJ0Uu6mhCSYjPKAdRyUW1ITZ7NoJOnVKH8VKu5IWzdTfExkWxoxF5DoFtkOz6E3F/7xOauOrMGMySS2VZL4oTjmyCk1fR32mKbF87AgmmrlbERlijYl1ARVdCMHiy8ukWa0E55Xq/UW5dp3HUYBjOIEzCOASanAHdWgAgUd4hld485T34r17H/PWFS+fOYI/8D5/AOu3jrI=</latexit>

12hv7, v6, v5, v4i
<latexit sha1_base64="gFXFFfA3mRFoHFTPGYo5Ufu5jk8=">AAACCHicdVDLSgMxFM3UV62vUZcuDBbBhZTp9DF1V3TjsoJ9QKcMmTRtQzOZIckUytClG3/FjQtF3PoJ7vwbM20FFT1w4HDOvST3+BGjUlnWh5FZWV1b38hu5ra2d3b3zP2DlgxjgUkThywUHR9JwignTUUVI51IEBT4jLT98VWatydESBryWzWNSC9AQ04HFCOlLc88dhniQ0bgxHPOJ15Vs6JZhq6Y+56ZtwoXtapdsaFVsCzHLlVTYTtluwSL2kmRB0s0PPPd7Yc4DghXmCEpu0UrUr0ECUUxI7OcG0sSITxGQ9LVkqOAyF4yP2QGT7XTh4NQaHIF5+73jQQFUk4DX08GSI3k7yw1/8q6sRrUegnlUawIx4uHBjGDKoRpK7BPBcGKTbVAWFD9V4hHSCCsdHc5XcLXpfB/0bILxVLBvinn65fLOrLgCJyAM1AEDqiDa9AATYDBHXgAT+DZuDcejRfjdTGaMZY7h+AHjLdPCguYuw==</latexit>

Fig. 5: Example of federated shortcut indices (the shortcuts
are represented by red dashed lines).
as an example, which incorporates “important” shortcuts by
contracting a set of “unimportant” vertices (e.g., with a low
degree) successively. In this method, the vertex set to be
contracted is selected at first (the selection is independent
of the edge weights). Then, shortcuts are added to preserve
shortest-paths in the remaining graph after a vertex v is
contracted, i.e., when a shortest-path ρ∗(vi, vj) passes through
v, we add a shortcut evivj when contracting v. Since any
shortest-path that passes through v also passes through its
neighbors, we only search for such vi, vj from the neighbors
of v. Algorithm 3 shows how all silos collaboratively add
shortcuts: For each vertex to be contract (line 2), we perform a
federated SSSP from each of its neighbors vi until the shortest-
paths to all other neighbors are found (line 4). Then for each
neighbor vj that the shortest-path ρ∗(vi, vj) passes through
v, we add a shortcut (vi, vj) (line 5-7). In this way, all silos
obtain consistent shortcut sets.

As displayed in Figure 5, we perform federated SSSP when
contracting v8 and find that it is on the joint shortest-paths
between (v2, v7) and (v2, v4), and we add shortcuts ev2v7 and
ev2v4 in all silos. As a comparison, if each silo performs
vertex contraction individually, F2 will not add ev2v4 since
the shortest-path ⟨v2, v3, v4⟩ on G2 does not pass through v8.
Consequently, the resulting shortcut sets are inconsistent with
the (imaginary) global shortcut set built on the WJRN.

Since contracting each of the |Vc| vertices needs |N |
Fed-SSSPs and each Fed-SSSP terminates as soon as
the |N | neighbors are settled, the time complexity is
O(|Vc||N |2 log |V |). The space complexities depends on the
number of shortcuts added. In the worst case it is O(|V |2),
but according to [23], it is typically only a constant multiple
of |E| and the time cost is also usually close to linear.
Federated Index Updating. The traffic conditions change
in real-time. Thus, we need to update the federated shortcut
indices periodically. Similar to federated index building, the
federation performs Algorithm 2 to collaboratively recompute
shortcut weights. The difference is that in each update, usually,
only the weights of a small subset of edges change, affecting
only a small portion of shortcuts. We only need to recompute
this subset of shortcuts. We can leverage some methods such
as [11] to efficiently identify the affected shortcuts.

V. FEDERATED LOWER-BOUND ESTIMATION
The pruning performance of A* search depends on the

effectiveness of lower-bound estimation, i.e., how close the
estimated value π(vs, vt) is to the real distance ϕ(vs, vt).
However, the estimation cost should be reasonable to deserve
its benefits. We first introduce a straightforward method which

7

can provide joint lower-bounds for federated road networks
based on Landmarks and the Triangle inequality (Fed-ALT).
Then, we point out its high communication costs in estimation,
and introduce Fed-ALT-Max which reduce the communication
required. We also propose another method, Fed-AMPS, aim-
ing at improving the estimation accuracy. These algorithms are
also shown in Algorithm 4.
Fed-ALT. First, we select a landmark set L ⊂ V using an
existing algorithm [25], [35], where the chosen landmarks are
public and static regardless of the changes of the edge weights.
Then in the pre-processing phase, all silos use federated SSSP
to collaboratively search all the vertex-landmark shortest-
paths ρ∗(v, li) and record the associated partial costs ϕp(ρ

∗)
in each silo, which can later provide lower-bounds for any
two vertex. We use Φp[|V |][|L|] to denote the pre-computed
vertex-landmark distance matrix of Fp. Note that if each silo
individually computes the landmark-vertex distances, the asso-
ciated shortest-paths may be inconsistent, leading to incorrect
joint costs (similar to the error case of shortcut weights in
Section IV). In the querying phase, for any (vs, vt), each
landmark li can provide a lower-bound ϕ̄(vs, li) − ϕ̄(vt, li)
of their joint shortest-path distance ϕ̄(vs, vt), according to
the triangle inequality. To get the tightest joint lower-bound
provided by L, each silo computes a partial lower-bound
Φp[vs][li] − Φp[vt][li] by each landmark li, then all silos use
Fed-SAC to aggregate and compare the joint costs of all |L|
lower-bounds and choose the maximum one as the tightest
lower-bound estimation maxli∈L{ϕ̄(vs, li)− ϕ̄(vt, li)}.

However, |L|−1 secret comparisons for each cost estimation
are too expensive. Moreover, the collaborative pre-computing
processes also incur heavy communication costs.
Fed-ALT-Max. To avoid the |L|−1 Fed-SACs in each lower-
bound estimation ϕ(vs, vt), we use plain-text computation
to select the landmark l∗ that can most likely give the
maximum lower-bound. Intuitively, for a vertex-target pair,
the farthest landmark l∗0 in the static road network G0, i.e.,
l∗0 = argmaxli∈L{ϕ0(vs, li) − ϕ0(vt, li)}, is also likely to
be the farthest in the WJRN. Thus, in advance, we compute
the plain-text distance matrix Φ0 on the public G0. Then
each silo can locally select the common l∗0 , and then use
Φp[vs][l

∗
0]−Φp[vt][l

∗
0] as the partial cost estimation. This way,

although the estimated lower bounds are slightly looser than
Fed-ALT, the estimation cost is much cheaper.
Fed-AMPS. We also propose another federated potential
function whose accuracy is higher than ALT, i.e., the joint par-
tial shortest-path cost in different silos is also a lower-bound
of the joint shortest-path cost. Specifically, since ϕ̄P (vs, vt) is
the average of partial costs

∑P
p=1 ϕp(ρ

∗(vs, vt))/P (denoting
ρ∗(vs, vt) by ρ∗ for short), where each ϕp(ρ

∗) is bounded
by the local shortest-path cost ϕp(ρ

∗
p). Therefore, to estimate

ϕ̄P (vs, vt), each silo Fp only needs to search the local shortest-
path ρ∗p, and the aggregation of all the partial shortest-path
costs ϕp(ρ

∗
p) provides a joint lower-bound:∑P

p=1 ϕp(ρ
∗
p)

P
≤

∑P
p=1 ϕp(ρ

∗)

P
= ϕ̄P (ρ

∗) = ϕ̄P (vs, vt) (3)

Algorithm 4: Federated lower-bound estimation (for
each silo Fp)

/* The vertex-landmark cost matrices Φ1, . . . ,ΦP have been
pre-computed collaboratively, Φ0 pre-computed publicly */

Fed-ALT πp(vs, vt):
1 Initialize πmax

p = Φp[vs][l0]− Φp[vt][l0]
2 for i = 1, . . . , |L| do
3 if [πmax

p] < [Φp[vs][li]− Φp[vt][li]] then
4 Update πmax

p = Φp[vs][li]− Φp[vt][li]

5 return πmax
p

Fed-ALT-Max πp(vs, vt):
6 Select l∗0 ∈ L with the max Φ0[vs][li]− Φ0[vt][li]
7 return Φp[vs][l

∗
0]− Φp[vt][l

∗
0]

Fed-AMPS πp(vs, vt):
8 Search the local shortest-path ρ∗p(vs, vt) on Gp

9 return its partial cost ϕp(ρ
∗
p)

Fed-AMPS (i.e., A* + Mean Partial Shortest-path cost) has
better estimation accuracy than Fed-ALT (will be shown by
experiments in Section VIII). This is based on the cost of local
SPSP searching in each silo. To accelerate this, we can build
local indices for each Gp. After all, since the cost of local
SPSP searching is minor compared to the cost of Fed-SAC,
it should have better end-to-end performance than Fed-ALT.

In summary, the communication overheads (each joint cost
comparison needs only 1 secret aggregation) of Fed-ALT-
Max and Fed-AMPS are significantly lower than that of
Fed-ALT(requiring |L| − 1 more secret comparisons in each
estimation), making both more efficient than Fed-ALT (both
Fed-ALT and Fed-ALT-Max need O(|V ||L|) space to store the
vertex-landmark cost matrices while Fed-AMPS need to store
indices for local SPSP searching such as the shortcut indices of
O(|E|) space). Fed-AMPS requires more local computation
than Fed-ALT-Max but achieves higher accuracy, making it
likely to outperform Fed-ALT-Max if accuracy is more critical
in the end-to-end query time (i.e., to find the shortest-path).

The federated shortcut index and the federated A* pruning
significantly reduce the number of explored vertices. We
next discuss reducing the cost of exploring each vertex by
designing a novel priority queue structure that minimizes the
comparisons for the SPSP searching.

VI. TOURNAMENT MERGE TREE

In the Dijkstra search, we alternately explore vertices and
select the next vertex v to extend with the highest priority (i.e.,
the minimum cost). To avoid comparing all N visited vertices
to find v (using N − 1 secure comparisons), we use a priority
queue structure Q (e.g., heap) to maintain a partial order of
the visited vertices so that the number of secure comparisons
in each push and pop operation is acceptable.

The heap is a popular choice for implementing priority
queues because it has favorable computational complexity
(O(log |Q|)), space usage (|Q|), and memory access locality.
However, in the federated query processing, the bottleneck
shifts to the secure comparison operation. Thus, the heap
is no longer the optimal choice. Therefore, we propose a

8

1. Batch build
a sub-T-tree

|N | � 1
<latexit sha1_base64="j5UdpB5z4ycEivqlDs3CRjXvtsk=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4sSRV0GXRjSupYB/QhjKZTtqhk0mYmSgl7ae4caGIW7/EnX/jpM1CWw8MHM65l3vm+DFnSjvOt7Wyura+sVnYKm7v7O7t26WDpooSSWiDRDySbR8rypmgDc00p+1YUhz6nLb80U3mtx6pVCwSD3ocUy/EA8ECRrA2Us8uTboh1kOCeXo3naAz5PbsslNxZkDLxM1JGXLUe/ZXtx+RJKRCE46V6rhOrL0US80Ip9NiN1E0xmSEB7RjqMAhVV46iz5FJ0bpoyCS5gmNZurvjRSHSo1D30xmOdWil4n/eZ1EB1deykScaCrI/FCQcKQjlPWA+kxSovnYEEwkM1kRGWKJiTZtFU0J7uKXl0mzWnHPK9X7i3LtOq+jAEdwDKfgwiXU4Bbq0AACT/AMr/BmTawX6936mI+uWPnOIfyB9fkDY8iTaw==</latexit>

42 6 8
2 4

5

4
2

insert
O

(lo
g|Q

|)
<latexit sha1_base64="9u3ihZCFCbVXiyOWyOEeprKZ0Dc=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBItQN2WmCrosunFnC/YBnaFk0kwbmkmGJCOUacFfceNCEbd+hzv/xkw7C209EDiccy/35AQxo0o7zre1srq2vrFZ2Cpu7+zu7dsHhy0lEolJEwsmZCdAijDKSVNTzUgnlgRFASPtYHSb+e1HIhUV/EGPY+JHaMBpSDHSRurZx/dlj4kBnHgR0kOMWNqYTs57dsmpODPAZeLmpARy1Hv2l9cXOIkI15ghpbquE2s/RVJTzMi06CWKxAiP0IB0DeUoIspPZ/Gn8MwofRgKaR7XcKb+3khRpNQ4CsxkFlItepn4n9dNdHjtp5THiSYczw+FCYNawKwL2KeSYM3GhiAsqckK8RBJhLVprGhKcBe/vExa1Yp7Uak2Lku1m7yOAjgBp6AMXHAFauAO1EETYJCCZ/AK3qwn68V6tz7moytWvnME/sD6/AG4bZVW</latexit>

One-by-one
insert

N
<latexit sha1_base64="AizTeXplBvn9PWeWHAXHzWaqlVY=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFN66kgn3AdCiZNNOGZpIhyQhl6Ge4caGIW7/GnX9jpp2Fth4IHM65l5x7woQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjjpapIrRNJJeqF2JNORO0bZjhtJcoiuOQ0244uc397hNVmknxaKYJDWI8EixiBBsr+f0YmzHBPLufDao1t+7OgVaJV5AaFGgNql/9oSRpTIUhHGvte25iggwrwwins0o/1TTBZIJH1LdU4JjqIJtHnqEzqwxRJJV9wqC5+nsjw7HW0zi0k3lEvezl4n+en5roOsiYSFJDBVl8FKUcGYny+9GQKUoMn1qCiWI2KyJjrDAxtqWKLcFbPnmVdBp176LeeLisNW+KOspwAqdwDh5cQRPuoAVtICDhGV7hzTHOi/PufCxGS06xcwx/4Hz+AIVdkWg=</latexit>

2.2. Propagate
merging 2.1. Merge a similar

sized sub-T-tree

O
(|N

| log |Q|)

<latexit sha1_base64="gsqRqciMwzfLh0ZFA1W3/3lTerU=">AAACC3icbVDLSsNAFJ3UV62vqEs3Q4tQNyWpgi6LblxpC/YBTSiT6bQdOpmEmYlQ0uzd+CtuXCji1h9w5984aQNq64ELh3Pu5d57vJBRqSzry8itrK6tb+Q3C1vbO7t75v5BSwaRwKSJAxaIjockYZSTpqKKkU4oCPI9Rtre+Cr12/dESBrwOzUJieujIacDipHSUs8s3panjo/UCCMW3yRThwVD+KM0kulJzyxZFWsGuEzsjJRAhnrP/HT6AY58whVmSMqubYXKjZFQFDOSFJxIkhDhMRqSrqYc+US68eyXBB5rpQ8HgdDFFZypvydi5Es58T3dmR4pF71U/M/rRmpw4caUh5EiHM8XDSIGVQDTYGCfCoIVm2iCsKD6VohHSCCsdHwFHYK9+PIyaVUr9mml2jgr1S6zOPLgCBRBGdjgHNTANaiDJsDgATyBF/BqPBrPxpvxPm/NGdnMIfgD4+MbbqybTA==</latexit>

3. Update the winner

(a) (b) (c) (d)

TN
<latexit sha1_base64="P3/4E6fUqiYhON5LKx/lqSFvXJo=">AAACAHicbZDLSsNAFIZP6q3WW9SFCzeDRXBVkirosujGlVToDdoQJtNJO3RyYWYilJCNr+LGhSJufQx3vo2TNoi2/jDw8Z9zmHN+L+ZMKsv6Mkorq2vrG+XNytb2zu6euX/QkVEiCG2TiEei52FJOQtpWzHFaS8WFAcep11vcpPXuw9USBaFLTWNqRPgUch8RrDSlmseDQKsxgTztJW5P3yXuWbVqlkzoWWwC6hCoaZrfg6GEUkCGirCsZR924qVk2KhGOE0qwwSSWNMJnhE+xpDHFDppLMDMnSqnSHyI6FfqNDM/T2R4kDKaeDpznxFuVjLzf9q/UT5V07KwjhRNCTzj/yEIxWhPA00ZIISxacaMBFM74rIGAtMlM6sokOwF09ehk69Zp/X6vcX1cZ1EUcZjuEEzsCGS2jALTShDQQyeIIXeDUejWfjzXift5aMYuYQ/sj4+AZwB5by</latexit>

T3
<latexit sha1_base64="UNl8VrY2OW7yOcrQCy8eXmsZp+4=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsy0gi6LblxW6ENoh5JJM21oJhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS0TJRhLaJ5FI9BlhTzgRtG2Y4fYwVxVHAaTeY3GV+d0qVZlK0zCymfoRHgoWMYGMlvx9hMyaYp635oD4oV9yquwBaJ15OKpCjOSh/9YeSJBEVhnCsdc9zY+OnWBlGOJ2X+ommMSYTPKI9SwWOqPbTReg5urDKEIVS2ScMWqi/N1IcaT2LAjuZhdSrXib+5/USE974KRNxYqggy0NhwpGRKGsADZmixPCZJZgoZrMiMsYKE2N7KtkSvNUvr5NOrerVq7WHq0rjNq+jCGdwDpfgwTU04B6a0AYCT/AMr/DmTJ0X5935WI4WnHznFP7A+fwBvyeSFA==</latexit>T2

<latexit sha1_base64="pBvnhnScSX5bFi8EqUcsp9rkvmU=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuiG5cV+oJ2KJk004ZmMmOSKZSh3+HGhSJu/Rh3/o2ZdhbaeiBwOOde7snxY8G1cZxvVNjY3NreKe6W9vYPDo/KxydtHSWKshaNRKS6PtFMcMlahhvBurFiJPQF6/iT+8zvTJnSPJJNM4uZF5KR5AGnxFjJ64fEjCkRaXM+qA3KFafqLIDXiZuTCuRoDMpf/WFEk5BJQwXRuuc6sfFSogyngs1L/USzmNAJGbGepZKETHvpIvQcX1hliINI2ScNXqi/N1ISaj0LfTuZhdSrXib+5/USE9x6KZdxYpiky0NBIrCJcNYAHnLFqBEzSwhV3GbFdEwUocb2VLIluKtfXiftWtW9qtYeryv1u7yOIpzBOVyCCzdQhwdoQAsoPMEzvMIbmqIX9I4+lqMFlO+cwh+gzx+9o5IT</latexit>T1
<latexit sha1_base64="BvbDHMuttZWg9TdhuOWh6Pme3h0=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuiG5cV+oJ2KJk004ZmMmOSKZSh3+HGhSJu/Rh3/o2ZdhbaeiBwOOde7snxY8G1cZxvVNjY3NreKe6W9vYPDo/KxydtHSWKshaNRKS6PtFMcMlahhvBurFiJPQF6/iT+8zvTJnSPJJNM4uZF5KR5AGnxFjJ64fEjCkRaXM+cAflilN1FsDrxM1JBXI0BuWv/jCiScikoYJo3XOd2HgpUYZTwealfqJZTOiEjFjPUklCpr10EXqOL6wyxEGk7JMGL9TfGykJtZ6Fvp3MQupVLxP/83qJCW69lMs4MUzS5aEgEdhEOGsAD7li1IiZJYQqbrNiOiaKUGN7KtkS3NUvr5N2repeVWuP15X6XV5HEc7gHC7BhRuowwM0oAUUnuAZXuENTdELekcfy9ECyndO4Q/Q5w+8H5IS</latexit>

W3
<latexit sha1_base64="K/WGh0xf3u9aBfzMcF7olnlqJGg=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsy0gi6LblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3GV+Z0qVZpF8NLOY+gKPJAsZwcZKfl9gMyaYp535oD4oV9yquwBaJ15OKpCjOSh/9YcRSQSVhnCsdc9zY+OnWBlGOJ2X+ommMSYTPKI9SyUWVPvpIvQcXVhliMJI2ScNWqi/N1IstJ6JwE5mIfWql4n/eb3EhDd+ymScGCrJ8lCYcGQilDWAhkxRYvjMEkwUs1kRGWOFibE9lWwJ3uqX10m7VvXq1drDVaVxm9dRhDM4h0vw4BoacA9NaAGBJ3iGV3hzps6L8+58LEcLTr5zCn/gfP4Aw7ySFw==</latexit>

W2
<latexit sha1_base64="Zdh1U+3Z54LhIQexo4wN3gO3GdE=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+4B2KHfStA3NZMYkUyhDv8ONC0Xc+jHu/Bsz7Sy09UDgcM693JMTxIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ihRlDVoJCLVDlAzwSVrGG4Ea8eKYRgI1grGd5nfmjCleSQfzTRmfohDyQecorGS3w3RjCiKtDXrVXulsltx5yCrxMtJGXLUe6Wvbj+iScikoQK17nhubPwUleFUsFmxm2gWIx3jkHUslRgy7afz0DNybpU+GUTKPmnIXP29kWKo9TQM7GQWUi97mfif10nM4MZPuYwTwyRdHBokgpiIZA2QPleMGjG1BKniNiuhI1RIje2paEvwlr+8SprVindZqT5clWu3eR0FOIUzuAAPrqEG91CHBlB4gmd4hTdn4rw4787HYnTNyXdO4A+czx/COJIW</latexit>

Fig. 6: The insertion on a heap (left) and on a Tournament Merge Tree (right)

comparison-optimized priority queue structure, i.e., the Tour-
nament Merge Tree (TM-tree). We will first introduce the
design choices of the TM-tree to optimize the number of com-
parison operations inside road network search, then introduce
its insertion and deletion processes.

A. Design Choices
Batch Insertion. In road network search, when we explore
a vertex, we pop it from the priority queue Q and push all
its neighbors N in. The number of push operations that come
consecutively varies from 1 to several tens and accounts for
the vast majority of all queue operations. If we insert these |N |
items one by one into a heap (Figure 6(a)), since each item
needs to be sifted up from the bottom, the total number of
comparisons is O(|N | log |Q|). To reduce the amortized cost
for each insertion, we can batch the insertions by a 2-step
pushing process: first, building a sub-queue of the |N | items
(e.g., using O(|N |) comparisons by the bottom-up heapify),
then merging it into a global queue.
Winner-Tracking Hierarchy. To support batch insertion,
we use a priority queue structure which keeps track of the
“winner” of a series of “competitions” among items, e.g., the
yellow part in Figure 6 (b), named tournament tree (T-tree for
short), a.k.a. winner tree. The reason why the T-tree is a better
choice than the heap is: we can batch build a T-tree (step 1)
by |N |−1 comparisons (which reaches the lower-bound since
we can not use fewer comparisons to find the minimum one
among N), and can simply merge two T-trees (step 2) by one
comparison. Although the space usage (extra internal nodes
to store the winners) and memory access continuity (using
pointers) of a T-tree is less efficient than a heap, it is not
crucial in the federated query processing where the primary
bottleneck is the MPC comparisons.
Scale-Balanced Merging. In the second step of the batch
insertion, if we naively merge the newly added sub-T-tree
with the existing T-tree, i.e., adding a parent node representing
the “competition” between their respective “winners”, the tree
height will grow linearly with the number of batch insertions,
which will increase the costs of pop operations. Therefore,
we maintain a series of sub-T-trees of various scales (e.g., the
right part of Figure 6(b)) and merge two sub-T-trees only when
they have similar sizes. In this way, we limit the tree height
to O(log |Q|) and thus have a better popping performance.

B. TM-Tree: Pushing and Popping Processes
In a TM-tree (the right part of Figure 6 (b)), there are a

series of m sub-T-trees Tm, . . . , T1 (surrounded by dashed cir-
cles) of various scales, i.e., |Ti| > α|Ti−1| for i ∈ {2, . . . ,m},

where α > 1 is a parameter controlling the tree balance. There
are m−1 winner nodes Wm, . . . ,W2 to store the comparison
results between the priorities of subtrees (the pink nodes).
Larger sub-T-trees are located at higher levels meaning they
“compete” in a later order, i.e., W2 = Winner(T2, T1),W3 =
Winner(T3,W2), . . . , where Winner() return the one with
higher priority (i.e., lower cost).
Batch Push Process. We use three steps to push a batch of
items N . (1) We build a sub-T-tree TN on N , by |N | − 1
comparisons (the results are stored in the |N |−1 winner nodes,
see the upper left of Figure 6 (b)). (2) To insert TN into the
global TM-tree, we first search whether there is any sub-T-tree
Ti with a similar size, i.e., |TN | ≤ α|Ti| and |Ti| ≤ α|TN |.
If more than one sub-T-tree meet this condition, intuitively,
we choose the one with the closest size. We merge TN with
this Ti by performing a comparison between them and adding
a winner node above them. If the new sub-T-tree T ′

i can be
further merged, e.g., |Ti+1| ≤ α|T ′

i |, we continue merging to
the left until there are no more similarly sized sub-T-trees.
This process is shown in Figure 6 (c). In turn, if there is
no sub-T-tree with a similar size with TN , we simply insert
TN into the right place among other sub-T-trees. (3) Assume
that TN is inserted at the place of Ti (i.e., the last merged
sub-T-tree or the inserted place), we need to update all the
affected winner nodes (Figure 6 (d)). Specifically, we first
update the associating Wi (or W2 for the rightmost sub-T-
tree T1), then propagate to the left Wi+1,Wi+2, . . . and stop
when the winner is not changed in the last competition.

The batch pushing of |N | items takes |N |− 1 comparisons
in the sub-T-tree building and O(m) comparisons for inserting
this sub-T-tree into the TM-tree. Since m is limited by
O(log |Q|), the amortized number of comparisons for each
item is 1 +O(log |Q|)/|N |.
Pop Process. The pop process of the TM-tree is similar to
the T-tree. Each time an item pops, it first replaces the parent
winner node with the sibling node of this item. Then, it updates
all the winner nodes along the path to the root to find the new
“champion”. The number of comparisons is equal to the path
length, which is limited by the tree height O(log |Q|)).

VII. SECURITY ANALYSIS

We use a simulation-based method [36] to prove the security
of Algorithm 1, under semi-honest adversaries. In this process,
each silo Fp can be replaced by a simulator S which only
knows the comparison results between the joint path costs, not
having any edge weight on Gp. Then in each search iteration,
in the local step, S can extend the path ρ to ρ′ by each neighbor
v′ of the given vertex v, without knowing the local cost ϕp(ρ

′).

9

In the MPC step, S can select the next nearest vertex v with
a path of the minimum joint cost. Finally, S terminates after
finding k shortest-paths. This shows that each silo can simulate
the execution of Algorithm 1, which means the Fed-SSSP
searching is secure. Fed-SPSP can be proved similarly.

Regardless of the query pattern, one can only learn the
relative order of joint costs between paths but not the exact
edge weights of each silo.

VIII. EXPERIMENTS

A. Experiment Setting
Datasets. We use three real-world road networks CAL,
BJ, and FLA. Table I provides details. For each dataset,
we generate the edge weight sets for P silos by randomly
increasing the edge weights to simulate traffic congestion.
Specifically, we randomly choose a subset of congested road
segments Ec from E by a congestion ratio β = Ec/E. We
then increase the weight ω′(e) = ω(e) ∗ (1 + θ) of each
edge e ∈ Ec by a proportion θ sampled from the uniform
distribution U(0, θmax). We generate the edge weight sets
W1, . . . ,WP of all P silos through P ∗ Ec times sampling.
We vary β and θmax to simulate different congestion levels:
• Free traffic: β = θmax = 0 (using original road lengths)
• Slight congestion: β = 10%, θmax = 30%
• Moderate congestion: β = 20%, θmax = 50%
• Heavy congestion: β = 50%, θmax = 100%

By default, we simulate moderate traffic congestion on the
road networks in a data federation of 3 silos.
Evaluation. We generate SPSP queries by randomly sampling
vertex pairs (vs, vt) from V . We divide these queries into five
groups by the number of road segments (i.e., hops) in the
shortest-path of the original graph G0. For example, on CAL,
we generate five groups of queries with their hop counts in 5
intervals with boundaries at 0, 50, 100, 150, 200, 250.

We evaluate query efficiency by reporting the average run-
ning time, network communication, and communication rounds
of all silos in 20 consecutive queries in each group.
Implementation. We implemented federated query process-
ing in the MP-SPDZ [29] framework. We choose the “Temi”
protocol [37] with the “edaBits” optimization (both can be
found in [30]) to implement the Fed-SAC operator.
Experiment environment. The experiments are conducted
on up to 5 machines. Each machine has 2 Intel(R) Xeon(R)
CPU E5-2630 v4 @ 2.20GHz processors, with 128 GB RAM,
running Ubuntu 22.04.2 LTS. The network bandwidth between
machines is up to 1GB/s.

B. Comparative Analysis
Baselines. (1) Naive-Dijk: Bidirectional Dijkstra searching
with all the distance comparisons replaced by Fed-SAC; (2)
+Fed-Shortcut: Utilizing a federated shortcut index (Sec-
tion IV). Specifically, we use CH [23] in the experiments;
(3) +Fed-AMPS: Using Fed-AMPS for pruning (Section V)
over Fed-Shortcut; (4) + Fed-ALT-Max: Using Fed-AMPS
for pruning over Fed-Shortcut; (5) +TM-tree: Using TM-
trees (Section VI) as the priority queues instead of min-heaps,

TABLE I: Details of datasets
Dataset Region #Vertices #Edges

CAL California 21,048 43,386
BJ Beijing 338,024 881,050

FLA Florida 1,070,376 2,687,902

with the balance factor α = 4, over Fed-Shortcut and Fed-
AMPS; (6) Naive-Dijk +TM-tree: Using TM-trees as the
priority queues instead of min-heaps over standard Naive-Dijk,
as it is a standalone component.
Query performance. We evaluate the query costs of 4 meth-
ods in all three datasets. Figure 7 and Figure 8 respectively
show the processing times and communication sizes varying
query scale (i.e., number of hops in the final shortest-path). In
summary, we have the following observations:
(1) The curves of running time and communication cost
are similar. This indicates that MPC communication is the
bottleneck of federated SPSP query processing.
(2) Both the running time and communication cost of the query
increase with larger query scales for all four methods. This is
because for vertex pairs that are farther away from each other,
the Dijkstra search space is larger, and we need more search
iterations to find the shortest path.
(3) When utilizing a federated shortcut index, the query
performance is much better (10x-100x) than Naive-Dijk. The
costs increase more slowly with the growing query scale. This
is because, with a federated shortcut index, we perform a
hierarchical bi-directional search, where the search from the
two vertices that are far away can switch to higher levels
and meet sooner, skipping many lower-level vertices. This
significantly reduces search iterations (e.g., from 10K to 10).
(4) When using Fed-AMPS for pruning, the query perfor-
mance improves (10x-80x), which is better than Fed-ALT-
Max. This is because Fed-AMPS provide a very accurate
federated lower-bound (e.g., under 1% relative error) in a rela-
tively cheap cost (i.e., local partial shortest-path computation).
Therefore, the A* search can avoid scanning most vertices not
in the final shortest-path and terminate sooner.
(5) TM-tree further improves the performance by around
50%. This is because it reduces the MPC comparisons in
queue operations by batching the pushing of items (neighbors
of the vertex being explored), reducing the amortized MPC
comparisons of each item from O(log |Q|) to O(1) while
keeping the O(log |Q|) complexity of each pop operation.
Note that TM-tree also works on standard Dijk, but the gain is
not as significant as when integrating it over the shortcut index.
This is because, after adding shortcuts, the average number of
neighbors increases, making the batch enqueue mechanism of
TM-tree more beneficial.
(6) The final processing time of each federated SPSP query in
various distance scales is under 1 second on average, which
is practical for real-time query response.
Scalability. We evaluate the query costs varying the number
of data silos from 2 to 8 in all three datasets. We only test
the first query group of each dataset (i.e., 0-50 hops in CAL,
0-100 hops in BJ, 0-150 hops in FLA). Based on Figure 9,
we have the following observations: (1) All four proposed

10

50 100 150 200 250
#Hops

0.1

1

10

100
Ti

m
e(

s)

CAL

100 200 300 400 500
#Hops

0.3

1

10

100

BJ

150 300 450 600 750
#Hops

0.3
1

10

100

1000

FLA

Naive-Dijk + Fed-Shortcut + Fed-AMPS + TM-tree
Naive-Dijk + TM-tree + Fed-ALT-Max

Fig. 7: Running time of Fed-SPSP vs. varying query scale.

50 100 150 200 250
#Hops

0.2

1

10

100

Co
m

m
un

ica
tio

n
(M

B)

CAL

100 200 300 400 500
#Hops

1

10

100

1000

BJ

150 300 450 600 750
#Hops

1

10

100

1000

FLA

Naive-Dijk + Fed-Shortcut + Fed-AMPS + TM-tree
Naive-Dijk + TM-tree + Fed-ALT-Max

Fig. 8: Communication of Fed-SPSP vs. varying query scale.

2 4 6 8
#Silo

0.1

1

10

Ti
m

e(
s)

CAL

2 4 6 8
#Silo

0.1

1

10

100

BJ

2 4 6 8
#Silo

0.2

1

10

100

FLA

Naive + Fed-Shortcut + Fed-AMPS + TM-tree

Fig. 9: Time costs of federated SPSP queries vs. varying #silo.
TABLE II: Construction and update time vs. edge percentage
with changed weights of federated shortcut index (minutes).

Dataset 0.1% 1% 10% Construction
CAL 0.06 0.1 0.5 1.3
BJ 1.2 3.7 12 41

FLA 3.5 7.4 37 174

methods significantly improve the query performance in all
datasets, which is consistent with the previous experiments; (2)
For each method, the query time increases nearly linearly with
the number of data silos. This is because the communication
cost for performing a secret comparison can be expressed as
R · (L + S/B), where R is the number of communication
rounds, S is the communication size each round, L is the
network latency, and B is the network bandwidth. The total
number of secret comparisons only depends on the query scale
and the Fed-SPSP algorithm, which is the major focus of
this paper, and is independent of silo scale P . On the other
hand, the underlying secret-sharing protocol determines both
the values of R as well as how S scales with P . Since the
“Temi” protocol [30], [37], [38] (mentioned in Section VIII-A)
has a good scalability with P , the communication cost grows
at a relatively modest rate with the number of silos and our
proposed method is practical with the support of this protocol.
Index Construction & Dynamic Update. We evaluate the
efficiency of construction and dynamic update of federated
shortcut index with a partial update method [11]. As shown
in the Table II, with the support of an efficient index update
algorithm, the federated shortcut index can be updated within
minutes when only a small portion of edge weights change.
In most cases, this update speed is sufficient to accommodate
the frequency of real-world traffic changes.
C. Ablation Study

We perform ablation experiments over several facets of our
federated road network query algorithms on the CAL dataset.
Effect of Fed-SAC. To evaluate the correlation between the
usages of secure comparison operator (Fed-SAC) and the

query costs, we process federated SPSP queries of various
scales (i.e., hops) on CAL by different methods. Note that
all costs are normalized into 0-1 by dividing the max values.
Figure 10 shows that all the query costs are linearly pro-
portional to the usage of Fed-SAC in the query processing.
This observation validates that the MPC operation is the main
bottleneck in federated query processing. Its effects are much
more significant than plain-text computation, memory access,
etc., which are important in single-machine query processing.
Effect of the federated A* lower-bound estimation. To
evaluate different lower-bound estimation methods for feder-
ated A* pruning (Section V), we test their accuracy under
various traffic congestion. For Fed-ALT and Fed-ALT-Max,
we randomly select various numbers of landmarks (i.e., 16,
32 and 64). We also evaluate the accuracy of ALT with 64
landmarks, which use the vertex-landmark distance matrix Φ0

on the static road network G0 (i.e., the traffic congestion level
of “Free”) to estimate a shortest-path distance. Note that the
estimation results of this method can not guarantee to be a
lower-bound if we allow edge weights of silos in the traffic
federation smaller than G0. We report the mean relative errors
of 100 queries of various scales on CAL in Figure 11:
(1) The accuracy of ALT decreases as the edge weights
increase, while the accuracy of all other federated lower-
bound estimation methods does not change significantly. This
is because the joint shortest-path costs increase with edge
weights, but the estimation of ALT remains unchanged, so the
gap between them gets larger. On the other side, the federated
methods are effective in various traffic congestion.
(2) With a larger landmark set, both Fed-ALT and Fed-ALT-
Max have a lower mean estimation error. This is because a
landmark is more likely to provide a tighter lower-bound, so
the maximum among them is more likely to become larger.
However, we also need more space to store the pre-computed
distance matrix, and ALT needs more MPC operations to
compare the joint lower-bounds.
(3) The estimation accuracy of Fed-ALT-Max is almost the
same as Fed-ALT. This validates that for a vertex pair, the
“farthest landmark” with the tightest static lower-bound on
G0 can provide an approximate tightest lower-bound on the
graph with dynamic traffic. Since Fed-ALT-Max avoids using
MPC operations to compare joint costs, it is better than ALT.
(4) Fed-AMPS achieves better estimation accuracy than Fed-
ALT and Fed-ALT-Max. This indicates that the mean partial
shortest-path cost provides a very tight lower-bound than
landmark-based methods. Since the cost to search local

11

0 500 1000
#Fed-SAC

0.0

0.5

1.0

No
rm

al
ize

d
co

st
s Time

Comm Size
Comm Rounds

Fig. 10: Query costs are propor-
tional to the usage of Fed-SAC.

Free Slight Moderate Heavy
Traffic congestion level

0.00

0.05

0.10

0.15

0.20

0.25

Re
la

tiv
e

er
ro

r (
%

) Fed-ALT16
Fed-ALT16-Max
Fed-ALT32
Fed-ALT32-Max
Fed-ALT64
Fed-ALT64-Max
ALT-64
Fed-AMPS

Fig. 11: Accuracy of various federated lower-
bound estimation methods.

Heap L-heap TM-tree
0

100

200

300

400

500

#F
ed

-S
AC

#Push

Build Merge Pop

Fig. 12: The comparison numbers
in different priority queues.

shortest-paths is minor compared to MPC operations and the
benefits of significantly reducing searching iterations, Fed-
AMPS is the better point in the federated lower-bound trade-
off for improving the overall query performance.
Effect of the TM-tree. In Section VI, we introduce the design
choices of the TM-tree to reduce comparisons. To evaluate the
effects of these designs, we investigate three priority queues:
• Heap. The binary heap without batch insertion.
• L-heap. Using the Leftist heap [39] for batch insertion: first

build a sub-heap from bottom to up in O(|N |), then merge
it into the global leftist heap in O(log |Q|).

• TM-tree. The TM-tree with α = 4.
We process 100 queries of various scales on BJ and report the
average usage of Fed-SAC in building sub-queue, merging
to the global queue (considering every push in the Heap as
a merge), and popping. All these priority queues are used
under Fed-Shortcut and Fed-AMPS. We also report the total
number of push operations in the bi-directional A* searching,
which is a lower-bound of the total comparisons. Note that
all these numbers are the sum of the corresponding priority
queues in the two search directions. Figure 12 shows that:
(1) In road network search, the number of push operations
(building + merging) and the associating comparisons are
greater than those of pop operations.
(2) The number of comparisons in sub-heap building in L-
heap is slightly fewer than that in the push of Heap but
becomes greater than it after adding the merge. This indicates
that although the leftist heap batches the insertion of items N
and reduces the heapifying complexity from O(|N | log |Q|)
to O(|N |), since the constant (can be up to 2) is not small
enough, the improvement is minor. Moreover, L-heap intro-
duces extra O(log |Q|) for merging, so the total comparisons
in push operations become more than Heap. On the other
hand, the comparisons in pop operations of L-heap are fewer
than Heap because the skewed structure of the leftist heap
reduces the length of the updating path after popping an item.
(3) TM-tree reduces the average comparisons of each push
operation to almost 1 (very close to the dashed line of #push).
This is because a Tournament-tree uses the least comparisons
|N | − 1 in batch building and O(logα |Q|) for merging, both
of which are significantly lower than those of a leftist heap.

IX. RELATED WORK

A. Federated Computing
To solve the “data isolation” problem, federated computing

has emerged as a hot research topic in the database field [5],
[6]. To satisfy the security constraints, data federation usually

uses MPC techniques [20], [28] to secretly aggregate the
partial results from each owner. SMCQL [8] utilizes MPC to
secretly compute SQL results from multiple private relational
databases. Conclave [9] further improves the performance of
joins and aggregations of federated SQL. Hu-Fu [10] proposes
a federated spatial database. These systems focus on structural
data, where the final results can be computed by secretly
merging the local processing results. Besides, for graph data,
FedGraph [40] proposes a distributed subgraph matching ap-
proach, and Fed-LTD [41] studies distributed bipartite graph
matching. However, these approaches can neither address the
shortest-path problem nor ensure data security. We focus on
secure federated shortest-path query, requiring multiple rounds
of MPC communication. We redesign the algorithms from road
network shortest-path searching to optimize the query cost.

Mechanisms like contribution-based rewards [42] and indus-
try consoria [43] can encourage participation in data federa-
tion. Furthermore, collaboration can be applied in application
within single organizations with distributed branches with bet-
ter reliance. Data federation can enhance availability through
strategies like redundant servers and timeout retries.
B. Shortest Path Searching on Road Networks
Road Network Index. These methods use a pre-processing
phase to build indexes. [23] constructs a set of pre-computed
shortcuts so that the search can skip over “unimportant” ver-
tices. [24] builds a hierarchical balance graph-tree index and
searches for the shortest distance by traversing the correspond-
ing tree nodes. [44] proposes a hierarchical index structure
based on tree decomposition and achieves high performance.
Goal-Directed Pruning. These methods aim to “guide” the
search toward the target and prune vertices that are not in
the direction of it. [25] utilizes a set of landmarks to provide
a lower-bound, which can be utilized in A* search to prune
unpromising vertices safely. Besides, there are approximate al-
gorithms [45], [46] that answer inexact shortest-path distances.

X. CONCLUSION
In this paper, we propose the first secure and efficient frame-

work FedRoad for road network queries over a traffic data
federation. We first implement a secret-sharing-based operator
to securely compare joint path costs, based on which we
can perform a secure federated Dijkstra search. To minimize
the search iterations, we propose a federated shortcut index
to reduce the search space. We also design effective and
efficient federated lower-bound estimation methods. To reduce
the MPC comparisons in each iteration, we further design a
comparison-optimized priority queue TM-tree. Experiments
demonstrate the superior performance of FedRoad.

12

REFERENCES

[1] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[2] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE signal processing
magazine, vol. 37, no. 3, pp. 50–60, 2020.

[3] E. Parliament and T. C. of the European Union, “The general data
protection regulation (gdpr),” 2016. [Online]. Available: https://gdpr.eu/

[4] S. of California Department of Justice, “California consumer privacy
act (ccpa),” 2018. [Online]. Available: https://oag.ca.gov/privacy/ccpa

[5] A. Bharadwaj and G. Cormode, “An introduction to federated com-
putation,” in Proceedings of the 2022 International Conference on
Management of Data, 2022, pp. 2448–2451.

[6] Y. Tong, Y. Zeng, Z. Zhou, B. Liu, Y. Shi, S. Li, K. Xu, and W. Lv,
“Federated computing: Query, learning, and beyond,” 2023.

[7] R. Cramer, I. B. Damgård et al., Secure multiparty computation.
Cambridge University Press, 2015.

[8] J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho, and J. Rogers, “Smcql:
Secure query processing for private data networks.” Proc. VLDB Endow.,
vol. 10, no. 6, pp. 673–684, 2017.

[9] N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and
A. Bestavros, “Conclave: secure multi-party computation on big data,”
in Proceedings of the Fourteenth EuroSys Conference 2019, 2019, pp.
1–18.

[10] Y. Tong, X. Pan, Y. Zeng, Y. Shi, C. Xue, Z. Zhou, X. Zhang, L. Chen,
Y. Xu, K. Xu et al., “Hu-fu: Efficient and secure spatial queries over
data federation,” Proceedings of the VLDB Endowment, vol. 15, no. 6,
p. 1159, 2022.

[11] D. Ouyang, L. Yuan, L. Qin, L. Chang, Y. Zhang, and X. Lin, “Effi-
cient shortest path index maintenance on dynamic road networks with
theoretical guarantees,” Proceedings of the VLDB Endowment, vol. 13,
no. 5, pp. 602–615, 2020.

[12] A. Sharma, V. Ahsani, and S. Rawat, “Evaluation of opportunities and
challenges of using inrix data for real-time performance monitoring and
historical trend assessment,” 2017.

[13] “Tomtom white paper.” [Online]. Available:
https://download.tomtom.com/open/crm/lib/docs/download/HDT White Paper.pdf

[14] Z. Shang, G. Li, and Z. Bao, “Dita: Distributed in-memory trajectory
analytics,” in Proceedings of the 2018 International Conference on
Management of Data, 2018, pp. 725–740.

[15] H. Hu, G. Li, Z. Bao, Y. Cui, and J. Feng, “Crowdsourcing-based
real-time urban traffic speed estimation: From trends to speeds,” in
2016 IEEE 32nd International Conference on Data Engineering (ICDE).
IEEE, 2016, pp. 883–894.

[16] “Google map.” [Online]. Available: https://www.google.com/maps
[17] “Uber.” [Online]. Available: https://www.uber.com/
[18] V. Primault, A. Boutet, S. B. Mokhtar, and L. Brunie, “The long road

to computational location privacy: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 3, pp. 2772–2793, 2018.

[19] A. Sealfon, “Shortest paths and distances with differential privacy,” in
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, 2016, pp. 29–41.

[20] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty compu-
tation from somewhat homomorphic encryption,” in Annual Cryptology
Conference. Springer, 2012, pp. 643–662.

[21] H. Bast, S. Funke, P. Sanders, and D. Schultes, “Fast routing in road
networks with transit nodes,” Science, vol. 316, no. 5824, pp. 566–566,
2007.

[22] P. Sanders and D. Schultes, “Highway hierarchies hasten exact shortest
path queries,” in European Symposium on Algorithms. Springer, 2005,
pp. 568–579.

[23] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction
hierarchies: Faster and simpler hierarchical routing in road networks,”
in Experimental Algorithms: 7th International Workshop, WEA 2008
Provincetown, MA, USA, May 30-June 1, 2008 Proceedings 7. Springer,
2008, pp. 319–333.

[24] R. Zhong, G. Li, K.-L. Tan, L. Zhou, and Z. Gong, “G-tree: An
efficient and scalable index for spatial search on road networks,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27, no. 8, pp.
2175–2189, 2015.

[25] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A
search meets graph theory.” in SODA, vol. 5, 2005, pp. 156–165.

[26] J. Bater, X. He, W. Ehrich, A. Machanavajjhala, and J. Rogers,
“Shrinkwrap: efficient sql query processing in differentially private data
federations,” Proceedings of the VLDB Endowment, vol. 12, no. 3, 2018.

[27] J. Bater, Y. Park, X. He, X. Wang, and J. Rogers, “Saqe: practical
privacy-preserving approximate query processing for data federations,”
Proceedings of the VLDB Endowment, vol. 13, no. 12, pp. 2691–2705,
2020.

[28] A. C. Yao, “Protocols for secure computations,” in 23rd annual sympo-
sium on foundations of computer science (sfcs 1982). IEEE, 1982, pp.
160–164.

[29] M. Keller, “MP-SPDZ: A versatile framework for multi-party
computation,” in Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, 2020. [Online]. Available:
https://doi.org/10.1145/3372297.3417872

[30] “Multi-protocol spdz.” [Online]. Available:
https://github.com/data61/MP-SPDZ/

[31] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pa-
jor, P. Sanders, D. Wagner, and R. F. Werneck, “Route planning in
transportation networks,” Algorithm engineering: Selected results and
surveys, pp. 19–80, 2016.

[32] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou, “Shortest
path and distance queries on road networks: An experimental evalua-
tion,” arXiv preprint arXiv:1201.6564, 2012.

[33] S. Jung and S. Pramanik, “An efficient path computation model for
hierarchically structured topographical road maps,” IEEE Transactions
on Knowledge and Data Engineering, vol. 14, no. 5, pp. 1029–1046,
2002.

[34] M. Holzer, F. Schulz, and D. Wagner, “Engineering multilevel overlay
graphs for shortest-path queries,” Journal of Experimental Algorithmics
(JEA), vol. 13, pp. 2–5, 2009.

[35] A. V. Goldberg and R. F. F. Werneck, “Computing point-to-point shortest
paths from external memory.” ALENEX/ANALCO, vol. 2, 2005.

[36] O. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2009.

[37] R. Cramer, I. Damgård, and J. B. Nielsen, “Multiparty computation
from threshold homomorphic encryption,” in Advances in Cryptol-
ogy—EUROCRYPT 2001: International Conference on the Theory and
Application of Cryptographic Techniques Innsbruck, Austria, May 6–10,
2001 Proceedings 20. Springer, 2001, pp. 280–300.

[38] M. Keller and K. Sun, “Secure quantized training for deep learning,”
in International Conference on Machine Learning. PMLR, 2022, pp.
10 912–10 938.

[39] C. A. Crane, Linear lists and priority queues as balanced binary trees.
Stanford University, 1972.

[40] Y. Yuan, D. Ma, Z. Wen, Z. Zhang, and G. Wang, “Subgraph matching
over graph federation,” Proceedings of the VLDB Endowment, vol. 15,
no. 3, pp. 437–450, 2021.

[41] Y. Wang, Y. Tong, Z. Zhou, Z. Ren, Y. Xu, G. Wu, and W. Lv, “Fed-ltd:
Towards cross-platform ride hailing via federated learning to dispatch,”
in Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022, pp. 4079–4089.

[42] Y. Wang, K. Li, Y. Luo, G. Li, Y. Guo, and Z. Wang, “Fast, robust and
interpretable participant contribution estimation for federated learning,”
in 2024 IEEE 40th International Conference on Data Engineering
(ICDE). IEEE, 2024, pp. 2298–2311.

[43] I. I. Consortium, “Design considerations and guidelines for
implementing federated learning in smart manufacturing applications,”
2022. [Online]. Available: https://www.iiconsortium.org/news-
pdf/joi-articles/2022-March-JoI-Design-Considerations-and-Guidelines-
for-Implementing-Federated-Learning-in-Smart-Manufacturing-
Applications.pdf

[44] D. Ouyang, L. Qin, L. Chang, X. Lin, Y. Zhang, and Q. Zhu, “When
hierarchy meets 2-hop-labeling: Efficient shortest distance queries on
road networks,” in Proceedings of the 2018 International Conference
on Management of Data, 2018, pp. 709–724.

[45] J. Sankaranarayanan and H. Samet, “Query processing using distance
oracles for spatial networks,” IEEE Transactions on Knowledge and
Data Engineering, vol. 22, no. 8, pp. 1158–1175, 2010.

[46] S. Huang, Y. Wang, T. Zhao, and G. Li, “A learning-based method for
computing shortest path distances on road networks,” in 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 2021,
pp. 360–371.

13

