The VLDB Journal (2021) 30:515-536
https://doi.org/10.1007/s00778-021-00653-w

REGULAR PAPER

Mis-categorized entities detection

Shuang Hao'2 - Nan Tang? - Guoliang Li?

®

Check for
updates

- Jianhua Feng? - Ning Wang'

Received: 11 December 2019 / Revised: 30 May 2020 / Accepted: 14 January 2021/ Published online: 6 March 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Entity categorization, the process of categorizing entities into groups, is an important problem with many applications.
However, in practice, many entities are mis-categorized, such as Google Scholar and Amazon products. In this paper, we study
the problem of discovering mis-categorized entities from a given group of categorized entities. This problem is inherently hard:
All entities within the same group have been “well” categorized by the state-of-the-art solutions. Apparently, it is nontrivial
to differentiate them. We propose a novel rule-based framework to solve this problem. It first uses positive rules to compute
disjoint partitions of entities, where the partition with the largest size is taken as the correctly categorized partition, namely
the pivot partition. It then uses negative rules to identify mis-categorized entities in other partitions that are dissimilar to the
entities in the pivot partition. We describe optimizations on applying these rules and discuss how to generate positive/negative
rules. In addition, we propose novel strategies to resolve inconsistent rules. Extensive experimental results on real-world

datasets show the effectiveness of our solution.

Keywords Mis-categorized entity - Rule-based framework - Signature - Rule generation - Rule inconsistency

1 Introduction

Categorizing entities into sensible groups is a fundamental
mode for many applications. Nevertheless, mis-categorized
entities are pervasive, e.g., there exist others’ publications in
many researchers’ Google Scholar pages. A practical prob-
lem is how to (automatically) discover them?

B Guoliang Li
liguoliang @tsinghua.edu.cn

Shuang Hao
haoshuang @bjtu.edu.cn

Nan Tang
ntang @hbku.edu.qa

Jianhua Feng

fengjh @tsinghua.edu.cn
Ning Wang

nwang @bjtu.edu.cn

School of Computer and Information Technology, Beijing
Jiaotong University, Beijing, China

Department of Computer Science and Technology, Tsinghua
University, Beijing, China

Qatar Computing Research Institute, HBKU, Ar-Rayyan,
Qatar

Example 1 (Mis-Categorized Google Scholar Papers.) Con-
sider Nan Tang’s sample Google Scholar entities in Fig. 1.
Each entity has three attributes: Title, Authors and
Venue. Two entities, e4 and eg, are mis-categorized—they
do not belong to the Nan Tang at QCRI. The e4[Authors]
does not contain a valid name, and the Nan Tang in
es[Authors] is a different person working in chemistry.
[Mis-Categorized Amazon Products.] Consider sample enti-
ties in Amazon’s product category “Router,” as shown in
Fig. 2. Each entity has four attributes: Asin is the ID of
product, Title is its name, Also_viewed contains a list
of products viewed together with it, and Description
describes its features. The entity o3 is mis-categorized, since
it should be in category “Adapter” instead of “Router.”

Entity categorization (EC) is closely related to, but dif-
ferent from, the problem of entity matching (EM). EM is
to determine whether two entities are the same, which is
often solved by comparing aligned attributes symbolically
(or syntactically). EC groups entities more conceptually (or
semantically), e.g., e; and ej, in Fig. 1 are not symbolically
similar in either Title, Authors, or Venue.

Challenge All entities in the same group already use all
attributes of the entities, how can we use the same set of
attributes (or signals) to differentiate them?

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00653-w&domain=pdf
http://orcid.org/0000-0002-1398-0621

516

S.Haoetal.

Title: KATARA: A data cleaning system powered by knowledge bases and crowdsourcing
e1: Authors: Xu Chu, John Morcos, Ihab F. llyas, Mourad Ouzzani, Paolo Papotti, Nan Tang
Venue: SIGMOD 2015
Title: Hierarchical indexing approach to support xpath queries
e2: Authors: Nan Tang, Jeffrey Xu Yu, M. Tamer Ozsu, Kam-Fai Wong
Venue: ICDE 2008
Title: NADEEF: A generalized data cleaning system
es: Authors: Amr Ebaid, Ahmed Elmagarmid, Ihab F. llyas, Nan Tang
Venue: VLDB 2013
Title: Partition based hierarchical index for text retrieval
e4: Authors: Yunging Xia, NJ Tang, Amir Hussain, Erik Cambria
Venue: SIGIR 2005
Title: Win: an efficient data placement strategy for parallel xml databases
es: Authors: Nan Tang, Guoren Wang, Jeffrey Xu Yu
Venue: ICPADS 2005
Title: Extractive and oxidative desulfurization of model oil in polyethylene glycol

ee. Authors: Jianlong Wang, Rijie Zhao, Baixin Han, Nan Tang, Kaixi Li
Venue: RSC Advances 1905

Fig.1 Sample categorized Google Scholar entities

Asin: BOOOBTLOOA
. Title: Linksys WRT54GL Wi-Fi Wireless-G Broadband Router
O1* Also-viewed: "B00004SYNW", "BO0004SYLI", "B00004SB92", “BO0006I5XC"
Description: Shares a single Internet connection with 4 Ethernet wired
Asin: BOO004SYNW
. Title: D-Link DI-701 Ishare Cable/DSL Internet Sharing Router
02} Also-viewed: "BOOOBTLOOA", "B00004SYLI", "B00004SB92", “BO0006I5XC"
Description: Provides 32-user Internet access and file sharing
Asin: BO0004TF4X
. Title: StarTech.com USB to Ethernet LAN Adapter
03: Also-viewed: "B00007LTB6", "B0001PFO3C", "BO0007KDVK", “BO00063XJ7"
Description: Compatible with Gigabit Ethernet networks and powered via USB
Asin: BOO0O04SYLI
. Title: Netgear RT311 DSL/Cable Internet Gateway Router

04> Also-viewed: "BOOOBTLOOA", "B00004SYNW", "B00004SB92", “BO0006I5XC"
Description: Ethernet router allows 32 users to share a single Internet connection

Fig.2 Sample entities in Amazon’s router category

Our Methodology We propose a rule-based framework using
positive and negative rules to tackle this problem. Positive
rules are used to conservatively find disjoint partitions, such
that the entities within the same partition should be catego-
rized together. The partition with the largest size is called
the pivot partition, which is treated as correctly categorized
partition under the practical assumption that the largest one
is correct compared with others with much smaller sizes; that
is, existing algorithms that produce these groups are not that
bad. Negative rules are then used to compare other partitions
with the pivot partition to discover dissimilar entities as mis-
categorized entities, since the violation of positive rules is
not enough to specify these entities should not be catego-
rized together.

Example 2 Consider the entities in Fig. 1 and the follow-
ing positive rules (¢+) and negative rules (¢~). We use
the terms “similar”/“dissimilar” to indicate that two entities
should/should not be in the same category.

(pr: Two entities are similar, if they have > 2 common Authors.

(p2+ : Two entities are similar, if they have overlapping in
Authors and their Venue are in the same field.
¢, : Two entities are dissimilar, if they have no common Author,
¢, : Two entities are dissimilar, if they have < 1 common
author in Authors and their Venue are in different fields.

@ Springer

(1) Positive rules are used in a disjunctive fashion as
<p1+ \Y (p;r : Two entities belong to the same category
if either gor or q); is true. Also, we assume the tran-
sitivity of categorization: Entities (e;, ;) and (e;, ex)
are categorized together implies that (e;, ex) are also
categorized together. We can find three partitions P; :
{e1, e, e3,e5}, P» : {e4}, P3 : {eg}. For example, e]
and e; are categorized together based on gz);r : They have
an overlapping author Nan Tang, and their venues SIG-
MOD in e; and ICDE in e, are in the same field (see
ontology-based similarity in Sect. 3).

(2) The partition P is treated as the pivot partition, because
it has the largest size.

(3) Negative rules are used either individually, e.g., ¢, orin
a disjunction, e.g., ¢; V ¢, : Two entities belong to dif-
ferent categories if either ¢, or ¢, is frue. ¢ discovers
e4 as mis-categorized because e4 does not have overlap-
pingin Authors with any entity in Py. ¢, V¢, further
discovers eg, since eg only has one common author with
the entities in P; and its Venue is in the field of Chemi-
cal Sciences, which is different from the field Computer
Science in P;. Negative rules are used in sequence: We
first use ¢, then ¢, Vv ¢, , and so on, if more negative
rules are available. We provide a scrollbar for the user to
confirm the mis-categorized entities from either ¢, or
¢, V ¢, , as shown in Fig. 3.

We can see from Example 2 that (i) positive rules need
to be conservative, so as not to include mis-categorized enti-
ties in the pivot partition; (i) we apply multiple negative
rules by following the “one does not fit all” philosophy—no
single negative rule can perfectly discover mis-categorized
entities for every given group; and (iii) the purpose to apply
a sequence of negative rules, which ensures that their outputs
are in a monotonic fashion, is user friendly, which allows the
user to easily choose the true ones and early stop the execu-
tion when there is no new satisfied mis-categorized entities
to be discovered.

Applicability First-party tools, developed by the companies,
do their business of improving the quality of their products,
such as Google Scholar papers and Amazon shopping items,
while our techniques actually belong to third-party tools,
which can be treated as add-ons to make first-party tools
more useful. We have released a Chrome extension called
GSCleaner [36] for cleaning Google Scholar pages. Our tech-
niques make it cheaper for users to confirm our suggested
mis-categorized entities than selecting them manually from
the entire group.

Contributions We summarize our major contributions as fol-
lows:

Mis-categorized entities detection

517

Title: Partition based hierarchical index for text retrieval
Authors: Yunging Xia, NJ Tang, Amir Hussain, Erik Cambr

or
Venue: SIGIR 2005 D

Title: Partition based hierarchical index for text retrieval
Authors: Yunging Xia, NJ Tang, Amir Hussain, Erik Cambria
Venue: SIGIR 2005

Title: Extracti
polyethylene
Authors: Jianlong Wang, Rijie Zhao, Baixin Han, Nan Tang, Kaixi Li
Venue: RSC Advances 1905

(b) Author and Venue

of model oil in
glycol

(a) Author

Fig.3 Tuning discovered mis-categorized entities using a scrollbar

(1) Wedefine a problem of discovering mis-categorized enti-
ties (Sect. 3).

(2) We present the solution overview of a novel rule-based
framework to tackle the studied problem (Sect. 4).

(3) We devise signature-based algorithms to improve the
performance of applying positive/negative rules (Sect. 5).

(4) We describe effective algorithms to generate positive and
negative rules from examples (Sect. 6).

(5) We propose two novel strategies to resolve inconsisten-
cies of positive and negative rules (Sect. 7).

(6) We conducted extensive experiments on real-world data-
sets to show that our framework can efficiently discover
mis-categorized entities with high accuracy (Sect. 8).

2 Related work

This work extends our conference version [35] by includ-
ing (1) more detailed explanations of signature-based fast
solution (Sect. 5), providing more insight to the readers; (2)
detailed proofs of all the lemmas and theorems, and some
of the proofs are nontrivial and are interesting in their own
right; (3) formalized the definitions of soft rules and two
strategies to resolve inconsistencies of positive and negative
rules (Sect. 7); and (4) a new empirical evaluation of the
inconsistency solutions (Sect. 8).

Entity Matching (EM) finds pairs of entities that refer to the
same real-world object. EM rules have been widely used [26],
and there are solutions to learn EM rules by examples [53,62].
Generic entity matching that provides abstract functions to
the users is proposed [7]. Collective entity resolution [8] uses
additional information to match entities by an agglomerative
clustering algorithm. Optimizing EM performance has also
been studied [17,43]. Moreover, there are machine learning-
based EM methods [28,54], and different generic methods
for automatically selecting training data have been proposed
[6,44]. Crowdsourcing has also been applied to EM [13,21,
60].

As mentioned earlier, entity categorization (EC) differs
from EM in that entities within the same category typically
refer to different real-world objects. Consequently, the tra-
ditional wisdom of inferring whether entities are the same
cannot be directly applied to our studied problem.

Named Entity Disambiguation (NED) is the task of disam-
biguating named entities mentioned in text of data and link
them to their corresponding entries. Wikipedia or DBpedia
is widely used as an auxiliary source of information for NED
[11,18,30]. Some methods use the graph model to evalu-
ate the relatedness among named entities [3,24,31,34] also
introduce crowdsourcing techniques into NED tasks. More
recently, neural approaches for NED are proposed, which
employ the convolutional neural network model [29,56],
recurrent neural network model [27] and the neural embed-
ding techniques [40,64] to disambiguate named entities.

Note that NED aims to distinguish entities that have the
same name but refer to different real-world entities. In addi-
tion to disambiguation, we also identify entities that have
different names (or references) but should be in the same
category.

Classification Algorithms Another related topic is classifica-
tion, where many kinds of classification algorithms have been
published, including widely used decision tree [49], random
forest [45], native Bayesian classifier [51], SVM [14], neu-
ral network classifier [46] and kNN [19]. Clearly, finding a
“perfect” classification algorithm that computes two parti-
tions for a group, one for correctly categorized entities and
the other for mis-categorized entities, is likely to fail, as will
be empirically verified in Sect. 8.

Outlier Detection is the identification of rare objects which
are significantly different from the majority of the data. Unsu-
pervised outlier detection techniques [2,12,50,65] usually
identify the objects that have few neighbors in an unlabeled
dataset as outliers, such as clustering-based outlier detec-
tion [38] and density-based techniques [10], while supervised
methods [1,48,55,59,63] train a binary classification model
with labeled outliers.

In reality, the mis-categorized entity is not equivalent to
outlier. What we want to capture is the relationship between
the entity and its group. Thus, the mis-categorized entity
may be regarded as inlier which is similar to most entities
in some attributes, and the correctly categorized entity may
be regarded as outlier.

Correlation Clustering is the problem of clustering the data
into the optimal number of clusters based on the similarity
between the data points, which is to minimize disagree-
ments or maximize agreements between clusters. [5] discuss
the NP-completeness proof and present a constant factor
approximation algorithm to find the clusters in this set-
ting. The work on minimizing disagreement is extended in
[23] where an O(log n)—approximation algorithm is pre-
sented for general graph using the linear programming and
region-growing techniques. [15] propose a 4—approximation
algorithm for minimizing disagreements on complete graphs,
and [57] give a 0.7666—approximation algorithm for max-
imizing agreements using semidefinite programming. A
polynomial-time approximation scheme is proved to be exist

@ Springer

518

S.Haoetal.

on complete graphs and fixed number of clusters [42]. The
best polynomial-time approximation algorithm achieves a
2.06—approximation on complete and complete k-partite
graphs by linear programming [16]. Correlation clustering
is the key technique in a scenario where the relationships
between the data points are known.

3 Problem and notation

Problem Given a group G of entities that have been cat-
egorized together by existing algorithms, the problem of
discovering mis-categorized entities is to find the proper sub-
set G’ C G that should not belong to this group.

Next, we define the notations that are used in this paper.

Entities An entity e is defined over a multi-valued relation
R(A1,..., Ay) of m attributes (a.k.a. fields or features).
Each attribute A; of an entity can take a list of values. We
write e[A;] the attribute value of ¢ on attribute A;.

Groups A group G is a set of entities {eq, ..., e,}.

Example 3 (Entities.) Consider entities in Fig. 1, which are
defined over schema (Title, Authors, Venue). Entity ¢
has three attributes, and e [Authors] has multi-values.
[Groups.] Nan’s group is shown in Fig. 1.

Positive Rules A positive rule ¢ (e, €') is a conjunction of
predicates: 9" (e, ¢') = A\ .cg fi(Ai) = 6;, where fi(A;)
is a similarity function and 6; is a threshold. @™ (e, €’) is
evaluated to be true if all predicates f;(A;) > 6; return
true, indicating the two entities ¢ and ¢’ are “similar”
and should be categorized together. Otherwise, ¢ (e, ¢')
returns false, if any of the predicates returns false, indicating
we do not know whether they should be in the same category.

Negative Rules A negative rule ¢~ (e, ') is defined similarly:
¢ (e,) = /\AieR fi(A) < oi. ¢~ (e, €) is evaluated to
be true if all predicates f;(A;) < o; return true, indicating
e and ¢’ are “dissimilar” and should not be categorized
together. Otherwise, ¢~ (e, €’) returns false, if any of the
predicates returns false, indicating we do not know whether
they should be in different categories.

We will simply write ¢ (resp. ¢ ™) as a positive (resp. a
negative) rule, when (e, ¢’) is clear from the context.

Similarity Functions We consider three types of similarity
functions f(-) to quantify the similarity between two values.
(i) Set-based 1t first splits each value into a set of tokens and
then utilizes the set-based similarity to quantify the similarity,
such as overlap and Jaccard similarity.
(ii) Character-based It measures the similarity of two values
based on character transformations, e.g., edit distance.

The above similarity functions have a common limitation
that they mainly use the symbolic (or textual) information,

@ Springer

| Computer Science | - | Chemical Sciences |

| Dataﬁls\ystem | Ifemioikences (general) |

N~ _/

[icpaps |[... | [RSC Advances |

[siamop || vioe |

Fig.4 Google Scholar metrics

while ignoring the semantics, which is important to the entity
categorization problem. To this purpose, we propose to use
ontology to capture the semantic similarity. Many enterprises
are building their own ontologies, such as Google and Ama-
zon. We can use them directly, or build an ontology using
existing knowledge-base construction techniques [37].
(iii) Ontology-based Ontology is usually modeled by a tree
structure; for example, the ontology for venues of publica-
tions provided by Google Scholar Metric! is shown in Fig. 4.
Given two entities, we first map them to tree nodes2. The
ontology similarity is computed based on their lowest com-
mon ancestor (LCA), which is formally defined as follows.

Ontology Similarity Given two entities e and ¢’, let their map-

ping nodes on the ontology tree be n and n’, respectively.
2|LCA(n,n")|
[n]+In']
LCA(n, n’) is the lowest common ancestor of n and »n’, and
|n| is the depth of node n in the tree (the depth of the root is
1). Two entities are similar if their similarity is larger than a

threshold 7.

Their ontology similarity is defined as: , where

Example 4 (Ontology Similarity.) Consider the tree structure
of venues in Fig. 4 and two nodes SIGMOD and VLDB. They
have rather low string similarity. However, they have a high
ontology similarity %, because their depths are both 4 and
their LCA is Database with depth 3.

The rules in Example 2 can be formulated as follows:

(p1+ ! fov(Authors) > 2
@3 : fov(Authors) > 1 A f,u(Venue) > 0.75
¢, : fo(Authors) =0
¢, : fov(Authors) < 1 A fou(Venue) < 0.25

where f,, denotes overlap similarity (common authors in the
above rules) and f,,, indicates ontology similarity.

Mis-categorized entities detection

519

Fig.5 Solution overview: a
rule-based framework

gy e : == . % N P ' :"
¢ . e Per e Q Y Y Y ° ; e1 e 'Q @
H o 1 A . '
e |step 1] .. |step2]; ' step 3 |! sy
es Pes es oAl 1es es) 1 €3 es5 |6 (%]
: i eeeaat T
e ETTETTTTPPPSRAR Qi..' Bivor LIS & L] oot
(a) (b) (c) (d)

Algorithm 1: DIME: Rule-based Framework

Input: a group G = {ey, ..., ey}, a set of positive rules
{of, ... @}, aset of negative rules {¢; , ... ¢y}

Output: mis-categorized entities G~
/ Step 1: Computing Disjoint Partition Set P

1 Construct a graph G = (V,), where V = G, £ = (J;

2 for each entity pair (e, ¢’) € G x G do

3 L if 3(,0,."' such that (pl.'"(e, e') returns true then

4

| €<« €Ul

5 Compute the connected components of G;
6 Let P denote the set of connected components in G;

/ Step 2: Identifying The Pivot Partition P*
7 Let P* P (the one with the largest size) be pivot partition;

/ Step 3: Discovering Mis-Categorized Entities G~
8 for each partition P € P\ {P*} do
9 L if 3(ecP,e*cP*, ¢~ € X7), ¢~ (e, e*) returns true then
10

L G <G UP;
11 return G~

4 A rule-based framework

Our framework DIME is described in Algorithm 1 and
depicted in Fig. 5. In a nutshell, it first uses a set of pos-
itive rules Xt = {p{,---, ¢} as a disjunction (ie,
<p1+ VooV <p;‘) on a group of entities G = {ey, ..., e,}
to compute disjoint partitions (step 1; lines 2-6). The parti-
tion with the largest size is the pivor partition (line 7). Given
asetof negative rules X~ = {¢ , - - -, ¢, '}, we either apply
the first rule ¢, or jointly use ¢, with the other negative
rules in sequence as ¢, V ¢, , ¢ V ¢, V @5, and so on, to
discover mis-categorized entities (lines 8-11).

Step 1: Computing Disjoint Partitions Positive rules are used
to group entities into partitions. Two cases are considered to
put entities e and ¢’ in the same partition. (i) e and ¢’ satisfy a
positive rule; or (ii) e and ¢’ satisfy transitivity—there exists
another entity ¢” such that both (e, ¢”) and (¢’, ¢”) match.
For case (i), we enumerate every entity pair (e, ') and
every rule @7, and check whether ¢ (e, ¢’) returns true. For
case (ii), we first construct a graph, where the vertices are
entities and edges are entity pairs that satisfy a positive rule
(computed from case (i)), and then compute its connected

U https://scholar.google.com/citations ?view_op=top_venues.

2 Here, we use exact string matching for example. We can also use
approximate matching based on similarity functions.

components. Clearly, the entities in the same connected com-
ponent satisfy the transitivity and form a partition.

The complexity of checking whether an entity pair satis-
fies a positive rule depends on the similarity functions used
in the rule. For overlap, the complexity of computing the
similarity is O(|e| + |¢’|), where |e| is the size of e. For
edit distance, the complexity of computing the similarity is
O(® min(|e|, |€'|), where @ is the similarity threshold and |e|
is the length of e. For ontology, the complexity of comput-
ing the similarity is O(|d,| + |d./|), where |d,| is the depth
of e’s corresponding node in the tree structure. For ease of
presentation, suppose the complexity of checking whether an
entity pair satisfies a positive rule is O(v). The time com-
plexity of checking every entity pair and every positive rule
is O(n2v| X)), where n is the number of entities and | X |
is the number of positive rules. The time complexity of com-
puting connected components (e.g., by a depth-first traversal)
is the number of vertices and edges in the graph. Thus, the
overall complexity is O(n?v| X 1]).

Step 2: Identifying the Pivot Partition The pivot partition
P* € P is the one with the largest size, which is treated as
the correctly categorized partition.

Step 3: Discovering Mis-Categorized Entities Given the set
P of partitions and the pivot partition P*, we use the negative
rules to mark whether another partition P € P\ {P*} is a
wrongly categorized partition, such that if P is, all entities
in P are reported as mis-categorized. To discover the mis-
categorized partitions, we enumerate every entity pair (e* €
P*, e € P), and every negative rule ¢~ € X7, if ¢~ (e, €*)
returns true, we mark P as a wrongly categorized partition.
The complexity of this algorithm is O (n?v| X~ |).

The GUI for Scrolling with Multiple Negative Rules Depend-
ing on user’s capacity, we provide user with a GUI to check
manually the outputs of multiple combinations of negative
rules, which works pretty well for Google Scholar [36]. The
benefits are as follows: (1) The positive/negative rules are
provided—the user does not need to know how they are
generated (see Sect. 6 for more details). (2) It is cheaper
to manually check our suggested mis-categorized entities
than checking the entire group, since the number of mis-
categorized entities is typically much smaller than the total
number of entities in a group; that is, |G™| < |G].

@ Springer

https://scholar.google.com/citations?view_op=top_venues.

520

S.Haoetal.

Example 5 (Rule-based Framework.) Consider entities in
Example 1, which are shown in Fig. 5a.

(1) Consider the positive rules (,0fr and <,o£r in Example 2.
Using <p1+ \Y 90; we can find three partitions P;
{e1,er,e3,es5}, Pr : {eq} and P3 : {ec}, as shown in
Fig. 5b.

(2) The pivot partition P* = Py is surrounded by the dashed
rectangle in Fig. Sc.

(3) Using negative rules ¢, Vv ¢, in Example 2, we can
discover mis-categorized entities e4 and eg, as shown in
Fig. 5d (see Example 2 for more explanations about how
negative rules are used and see Fig. 3 for the usage of a
scrollbar that applies either ¢, or ¢, V ;).

Also, it is practical to make the following assumptions.

ASSUMPTIONS. (1) The pivot partition—the partition with
the largest size—only contains truly categorized entities. The
rationality is that compared with other partitions with much
smaller sizes, the pivot partition is more likely to be cor-
rect; that is, existing algorithms that produce these groups
are not that bad. (2) We assume the transitivity: If e and ¢’
should be categorized together, and ¢’ and ¢” should be cat-
egorized together, then ¢ and ¢” should also be categorized
together. The “transitivity” is commonly used as a soft rule
[8,58,61], since this assumption can significantly improve
the computational efficiency without sacrificing much accu-
racy in practice. (3) The positive and negative rules should
be consistent. More concretely, any two entities in the same
partition will not satisfy the negative rules, and any two enti-
ties in different partitions will not satisfy the positive rules.
How to resolve an inconsistent rule set will be discussed in
Sect. 7.

5 Signature-based fast solution

The naive method of applying positive/negative rules is by
enumerating all pairs of entities—evidently an expensive
solution. To cope with this issue, we propose a fast signature-
based framework DIME" (Sect. 5.1). We also study how
to generate signatures (Sect. 5.2). Finally, we present algo-
rithms for processing positive rules (Sect. 5.3) and negative
rules (Sect. 5.4).

5.1 A signature-based framework

We propose a filter-verification framework to efficiently find
entity pairs satisfying given positive or negative rules.

Signatures of Entities Signatures are substrings (or ancestor
nodes in the ontology hierarchy) of entities that can be used to
prune pairs of entities that cannot satisfy a positive/negative

@ Springer

rule. Intuitively, two entities match, only if they share enough
common signatures. For example, consider the three venues
VLDB, PVLDB, SIGMOD, and one predicate requires that
their edit distance is no greater than 1. Then, their 2-length
substrings can be taken as signatures, i.e., {VL, LD, DB},
{PV, VL, LD, DB}, and {SI, IG, GM, MO, OD}. VLDB and
PVLDB are possibly similar since they share 3 signatures;
PVLDB and SIGMOD cannot be similar since they have no
common signature and there is no need to compute their real
similarity.

Efficient Algorithms for Positive Rules The “filter” step: We
generate signatures for each entity w.r.z. each positive rule: If
two entities satisfy a positive rule, they must share a common
signature. Thus, we can take the pairs of entities that share
common signatures as candidate pairs (and other pairs that
do not share common signatures can be safely pruned). To
find such candidate pairs, we build a signature-based inverted
index for each positive rule, which keeps a mapping from a
signature to an inverted list of entities that contain the signa-
ture. Then, the entity pair on each inverted list is taken as a
candidate pair. We will describe how to generate signatures
in Sect. 5.2.

The “verification” step: We verify the candidate pairs by
computing their real similarities. We use the transitivity to
avoid computing the similarities of unnecessary pairs: If
(e, €') and (€', ") are categorized together, we can infer that
(e, ") should also be categorized together without further
verifying (e, ¢”"), which will be elaborated in Sect. 5.3.

Efficient Algorithms for Negative Rules A negative rule is
defined on top of partitions. A partition P is dissimilar
with the pivot partition P* if there exists a pair of entities
(e € P, e* € P*) and a negative rule ¢~ such that ¢~ (e, e*)
returns true. To effectively check whether two partitions are
dissimilar, we also utilize the signatures in the “filter” step:
If two entities share common signatures, they may be simi-
lar; if two entities do not share any signature, they must be
dissimilar. So, we generate the signature of a partition which
is the union of signatures of entities in the partition. If two
partitions have no common signatures, they satisfy the neg-
ative rule; otherwise, we verify the pairs of entities across
these two partitions.

The “verification” step: We first verify the entity pair with
large probability to be dissimilar, because once we find a pair
satisfying the negative rule, we do not need to verify the other
pairs, which will be discussed in Sect. 5.4.

A Signature-based Algorithm We present DIME™ in Algo-
rithm 2. It first utilizes the signatures to compute disjoint
partitions (lines 1-11 for step 1). It enumerates every entity
e in G, computes its signature g, and builds inverted list
L o (g) for positive rule (pl.+ , which keeps the list of entities
that contain g (lines 1-2). It then computes the entity pairs
in each inverted list as candidate pairs (lines 3—4). Next it

Mis-categorized entities detection 521
Algorithm 2: DIME™: Signature-based Algorithm 5.2 Signature generation
Input: a group G = {ey, ..., ey}, a set of positive rules) o) o
{of, ... @F}, asetof negative rules {¢; ... ¢} Signatures for Positive Rules Given a positive rule ¢+ =

Output: mis-categorized entities G~

/ Step 1: Computing Disjoint Partitions P
1 for each signature g of each e € G wrt each ¢i+ do
2 L Ly (8) < Lyt (8) U ek

3 for each entity paire, ¢’ € L,+(g) do

4 L C < CU{(e e}

5 sort the candidate set C;

6 build a graph G = (V, £), where V = G, £ = 0J;

7 for each candidate (e, e') € C do

8 if e,¢’ belong to different connect components then
9 if 9T (e, €’) returns true then

10 L add an edge (e, ') to G;

11 P <« the connect components of G;

/ Step 2: Identifying The Pivot Partition P*
12 Let P* € P be the pivot partition; C < ;

I Step 3: Discovering mis-categorized Entities G~
13 for each signature g of each e € P* wrt each ¢; do

W | Ly (P) < Ly (P U gk

5 for each partition P € P\ {P*} do

16 for each signature g of e € P wrt ¢; do
17 L L¢F(P)<—L¢;(P)U{g};

18 if L¢;(P) N L¢;(P*) = () then

19 | G- <G UP;

20 | else add each pair (¢, ¢*) thate € P, e* € P*into C

—

21 sort the candidate set C;

22 for each candidate (e, e*) € C thate € P, e* € P* do
23 if e ¢ G™ and ¢; (e, e*) returns true then

24 L G <G UP;

25 return G~

sorts the candidate pairs and builds a graph (line 5-6). If e
and ¢’ belong to different connected components and satisfy
a positive rule, we add the edge into the graph (lines 7-10).
Then, it computes the connected components (line 11).

It then picks the pivot partition (line 12 for step 2).

Finally, it uses the signatures to discover mis-categorized
entities that are not in the pivot partition (lines 13-24 for
step 3). It generates the signature set of pivot partition P* by
computing the union of signatures of entities in P* for each
negative rule ¢, , denoted by L o (P*) (lines 13-14). For
each partition P, it computes its signature set L . (P) (lines
15-17). If the signature sets of P and P* have no overlap,
P is a mis-categorized partition (lines 18—19); otherwise,
(e, e®) thate € P, e* € P* is a candidate (line 20). Then, it
sorts candidates and checks whether each candidate satisfies
a negative rule (lines 22-24). The mis-categorized entities
are returned (line 25).

/\A,-eRfi(Ai) > 0;, for each predicate f;(A;) > 6;, we
generate a signature set Sigf/)+ (e) for each entity e such
that if two entities, ¢ and ¢/, can satisfy this predicate,
they must share some common signatures, i.e., Sigfp+ (e)N

Sigfp+ (¢') # 0. Conversely, if two entities do not share
any common signature, they must be dissimilar. Note
that a positive rule T is a conjunction of predicates
/\A,-eRfi(Ai) > ¢;, we pick one signature w.rt. each
predicate as the signature w.rt. @t for an entity e, so
Sigyr(e) = {(g' g% . 8") | ' € sigl.(e),8? €

sigl (). . gl e sigg"f‘(e)},where Sigl (e)isthe
signature w.r.t. the ith predicate.

Next we discuss how to generate the signatures Sigfp+ (e).
For set-based and character-based functions, we use existing
techniques to generate signatures [41].

(i) Set-based We first set a global ordering on all the tokens
(e.g., document frequency). Then, for each value v in an
attribute, we sort its tokens based on the ordering. For over-
lap similarity, given the overlap threshold 6, we select the
first |[v| — 6 + 1 tokens in v as the signatures. Obviously,
if two values are similar (with at least &6 common tokens),
they must share a common signature. This can be extended
to other metrics [41]. For example, consider e; in Fig. 1, and
let the overlap threshold on Authors be 2. If we sort the
authors based on their frequency, ej[Authors] = {Xu Chu,
John Morcos, Mourad Ouzzani, Paolo Papotti, IThab F. Ilyas,
Nan Tang}}, and its signatures are the first6 —2 + 1 =5
authors.

(ii) Character-based The gram-based method [33] is widely
used to support character-based similarity functions. Take
edit distance as an example. We generate the g-grams (i.e.,
substring with length ¢) of the value, sort the grams based
on a global ordering, and select the first g6 + 1 grams as its
signatures. Evidently, if two values are similar (within edit
distance of #), they must have common signatures [33]. For
example, given a value Nan Tang and the length of gram
g = 3. We generate a set of 3-grams as {Nan, an_, n_T,
Ta, Tan, ang} where “” denotes the white space. Suppose
that the distance threshold & = 1, then we take the first
3 x 141 =4 grams {Nan, an_, n_T, _Ta} as its signatures.
(iii) Ontology-based For ease of presentation, we use entity
e and its mapping tree node n interchangeably. Given a node
2|LCA(n,n")|

n, if another node n’ is similar to n, we have MILeAG] =
2|LCA(n,n")|

6 0
2l > 6 and |LCA(m, 1) > Sl Let 7, = [
and denote A;, by the ancestor of n at depth 7,. We can
take A;, as a signature of n. Similarly we can take A, as
a signature of n’. If n and n’ are similar, both A;, and A;,

@ Springer

522

S.Haoetal.

are their LCA, and thus, we have A, = .AT”, or one is an
ancestor of the other, as proved in the following Lemma.

Lemma 1 Given two nodes n and n’, if n and n’ are similar,
Az, = Ay, or Ay, is an ancestor or a descendent of A ,.

Proof First, if |n| = |n/|, T, = T (9"”1 We can prove
that A;, = A;, by a contradiction. Suppose A;, # A .
The depth of their LCA must be smaller than t,,. Thus, their

imilarit 2|LCA(n,n")| - z(l—ﬁln\]_l) 0ln| 0. Thi
similarity T = 2n] o—m = is is

contradicted to the assumption that they are 51m11ar.

Second, if |n| < |n’|, we can prove that A, is an ancestor
of A; , by a contradiction. Suppose A, is not an ancestor of
A,n,. The depth of their LCA must be smaller than 7,,. Thus,
their similarity is smaller than 6. This is also contradicted to
the assumption that they are similar.

Third, if [n| > |n'|, we prove A, is a descendent of A, ,
by a contradiction. Suppose A, is not a descendant of A ,.
The depth of their LCA must be smaller than t,,/. Thus, their
similarity is smaller than 6. So there is a contradiction. O

It is very efficient to check whether A;, = A; ,, but it is
not easy to check the ancestor-descendant relationship. We
propose to use node signatures to address this issue.

Node Signature Let 1, ,y = min(z,, 7,7) denote the smaller
depth of nodes A, , A; . If we take the nodes at depth 7,
as a signature of n and n’, they must be the same node when
n is similar to n’. To generate the signature for all nodes, we
set Trin as the minimum depth of their signatures. Then for
each node n, we select A, as its node signature and use
this signature to find similar entities.

Example 6 (Node Signature.) Consider three nodes Com-
puter Science, Database, and VLDB in Fig. 4. Suppose

= 7(2.75. Their 7, are [$222] = 2, [22353] = 2, and
|- *U.

3075 | = 3. Thus, their signatures are Computer Science,
Computer Science, and Database, respectively. Their node
signatures are all Computer Science.

Lemma 2 Given two nodes n and n’, if n and n' are similar,
their node signatures must be the same node.

Proof Suppose their node signatures are not the same node.
The depth of their LCA must be smaller than 7, ,,». Thus, their

20t

n,n’ < 9 o

similarity is smaller than o, =

Example 7 (Signatures for Positive Rules.) Consider e in
Fig. 1 and the positive rules gol , ¢’2 below Example 4. <p1+ has
only one predicate f,, (Authors) > 2, and the signatures of
el w.rt. ‘/’T are Sig(p]+ (e1) = {Xu Chu, John Morcos, Mourad

Ouzzani, Paolo Papotti, Thab F. Ilyas). goi" has two predicates

1: fov(Authors) > 1 and p;3 : fon(Venue) > 0.75. As
for p1, the signatures are all authors. As for p», the node sig-
nature of SIGMOD is Database. Thus, the signature set of

@ Springer

el wW.rt. <p£r is Sig(p;r(el) = {(Xu Chu, Database), (John
Morcos, Database), (Mourad Ouzzani, Database), (Paolo
Papotti, Database), (Ihab F. Ilyas, Database), (Nan Tang,
Database)}.

Signatures for Negative Rules We generate the signature set
for an entity w.r.t. a negative rule similar to the positive rule.
The difference is that the thresholds, 6; and o;, are different.
If two entities e and ¢’ have no common signature in every
predicate, they must satisfy the negative rule ¢~

5.3 Filter and verification for positive rules

Filter Strategy for Positive Rules For each positive rule (pi‘",
we build an inverted index of the signatures of all entities,
where each inverted list maintains a mapping from a signa-
ture to a list of entities that contain the signature—L ot (sig)
contains the set of entities with si g as a signature. Thenl every
entity pair (e, ¢’) on L o (sig)is acandidate pair. Two entities
that are not on the same inverted list cannot be similar—they
do not share any common signature.

Verification Acceleration for Positive Rules It is expensive
to verify whether an entity pair satisfies a positive rule (see
Sect. 4). To address this issue, we can use transitivity to avoid
verifying unnecessary pairs. Given a candidate pair (e, '),
we check whether they are in the same connected component
with a constant time complexity?. If so, we do not need to
verify the pair.

Verification Order of Candidate Pairs The order of verifying
the candidate pairs will affect the performance. If we know
that (e, ¢’) match and (¢’, ¢’’) match, we can infer that (e, e”)
match. Naturally, we can infer the answer of (e, ¢”) based on
those of (e, ¢’) and (¢, ¢”). Wang et al. [61] proved that
it is optimal to ask the candidate pairs sorted by the similar
probabilities in descending order, and they used the similarity
to approximate the probability. The similarity, however, is
expensive to compute. Thus, we propose a new method to sort
the entity pairs taking both computational cost and similar
probability into consideration.

Benefit Order We compute the benefit of verifying a candidate
pair. Suppose that each candidate pair (e, ¢’) has a verification
costC(e, €') and similar probability P (e, ’). We compute the
benefit B(e, ¢') = 75((5 e/)) Obviously, the greater the benefit
of a candidate pair is, the better it is to verify with low cost.
Thus, we compute the benefit for each pair and verify the

candidates sorted by the benefits in a descending order.

3 We assign each entity a partition ID and utilize a union-find data
structure. If ¢ and ¢’ are verified that they satisfy a positive rule, we
update their partition ID to the same ID. Assume the partition ID of e
is i and that of ¢’ is j, and i < j, we change the partition ID of ¢’ to i.

Mis-categorized entities detection

523

Next we discuss how to compute the verification cost and
the similar probability.

Verification Cost The cost of verifying whether (e, ¢’) satis-
fies a positive rule is the sum of the cost of verifying whether
(e, €') can satisfy each predicate. The well-known verifica-
tion algorithm for edit distance (character-based similarity)
is the dynamic-programming algorithm with the time cost
of O(0 min(le|, |€'])), where 6 is the similarity threshold.
The verification algorithm for Jaccard (set-based similarity)
is O(le| +|€']). The verification cost for ontology-based sim-
ilarity is O(|d,| + |d.’|) where d, is the depth of the node in
the tree that entity e matches.

Similar Probability The probability of whether (e, ¢’) can sat-
isfy a positive rule is hard to compute. To address this issue,
we can use their shared signatures to approximate the prob-
ability, which is the ratio of the number of shared signatures
to their average signature number.

Example 8 (Efficient Checking for Positive Rules.) Given
entities in Fig. 1 and positive rules gor, q); below Exam-
ple 4. We generate two candidates {(eq, e3), (e2, es5)} for (pr
and three candidates {(e1, e2), (e1, €3), (e2, e3)} for (p;.

Then, we decide the order of verification. The cost
of verifying (e, e3) w.rt. <pfr is C(er,e3) = 10, and
the similarity probability is P(e;,e3) = 4—11 = 0.25.
Thus, the benefit of verifying (eq, e3) is 0.025. We com-
pute the benefit for other candidates, and sort them as
{(e2, e5) v, (e1, €3) v, (€1, €3) i, (€2, €3) 1, (€1, €2) ¢). In
this order, we verify (e2, es), (e1, e3) for g01+ and (ey, e3) for
<,0;r ; then, e1, €2, e3, e5 are in the same partition.

5.4 Filter and verification for negative rules

Filter Strategy for Negative Rules After specifying the
pivot partition P*, we utilize the signatures to detect mis-
categorized entities from another partition P € P\ {P*}.
For each negative rule ¢, , it generates the signature set
L¢i-(P*) of P*, and the signature set L¢i—(P) of P. If
L¢; (P*N L¢; (P) = @, P is a mis-categorized partition;
otherwise, we add (e € P, e* € P*) into the candidate set.

Verification Acceleration for Negative Rules It is also inef-
ficient to verify every candidate (e, ¢*). Note that once we
find a dissimilar pair, P is a mis-categorized partition. In
other words, if ¢~ (e, ¢*) returns true, there is no need to
verify other entities from P. Thus, we want to first verify
the pair with the smallest probability in order to prune a par-
tition. In addition, the pair (e, e*) with smaller verification
cost C(e, e*) should be verified first. So, the benefit should
be defined as m Then, we compute the benefit of
each entity pair and verify the pairs sorted by the benefit in
a descending order.

Example 9 (Efficient Checking for Negative Rules.) Follow-
ing the above example, partition P; : {ej, ez, €3, €5} is
regarded as the pivot partition P*. Consider the negative rules
¢, , ¢, below Example 4 and other two partitions P> : {es}
and Pz : {eg}. We can conclude that P, is mis-categorized
partition based on ¢, , because L o7 (Py) = {Yunging Xia,
NJ Tang, Amir Hussain, Erik Cambria} which cannot match
any signature of the entities in P*. In the same way, we can
detect that P; is also a mis-categorized partition based on ¢,
since L¢£(P*) N L¢£(P3) = 0.

6 Rule generation

In practice, it is hard for human to fine tune the param-
eters of all rules, such as similarity functions and their
associated thresholds. Hence, we discuss how to generate
positive/negative rules from examples. A positive/negative
example is a pair of entities that are/are not in the same
category. Note that finding “good examples” is a known chal-
lenging problem in training EM models [52], where the good
examples normally refer to the non-matched pairs that are
likely to be confused as matches. Fortunately, in our case,
it is much easier to find good examples, since we only find
examples within groups and mis-categorized entities can be
paired with any other correctly categorized entities as good
examples. Another challenge, which is not well addressed
before, is how to derive rules only from examples.

6.1 Positive rule generation

Positive Rule Generation Given a multi-valued relation
R(A1, ..., Ap), a set of positive examples ST, a set of nega-
tive examples S™, and a library of similarity functions F, the
problem is to find a set X * of positive rules to maximize a
pre-defined objective function F(X*,S™,S7) and | X] is
minimum among all rule sets that maximize [F.

Objective Function Consider a set of positive rules X+,
Given a rule ¢ € X7, let £,+ be the set of entity pairs
satisfying ¢t and Ex+ = Uwe s+ €(p+. To evaluate the
quality of XT, we focus on a general case of objective
function F(X*, S*, §7): The larger |5+ N ST, the larger
F(X+,87,S7), and the smaller |Ex+ N S™|, the larger
F(X™*,S™,S7). Many functions belong to this general case,
eg, F(ZT,ST,87) = |Ex+ NST| \ [Eg+ NS

From Infinite to Finite A naive method of rule generation is
to enumerate all possible rules and then select some of them
to maximize the objective function. Then, a problem arises:
Whether the number of all possible positive rules is finite?
The answer is yes. Each rule contains at most m predicates,
where m is the number of attributes. For each predicate, there
are | F| similarity functions that can be chosen. Although it

@ Springer

524

S.Haoetal.

seems to have infinite similarity thresholds, we can pick finite
thresholds which can also maximize the objective function.
Next we use an example to illustrate the idea. Consider a rule
@™ with a single predicate f(A) > 0 and another rule ¢’
with a single predicate f(A) > 6, by relaxing 8 to 6, (6, <
61). Obviously, E,+ C &,+. If there is no positive example in
Ept \ Epr, then F(pt, ST, 87) > F(p'*, ST,87), and we
only need to keep 6. Then, a question is which thresholds
affect the number of satisfied positive examples? We com-
pute the similarity for all positive examples on attribute A,
and only these similarities can affect the number of satisfied
positive examples. Thus, the number of possible thresholds
for an attribute is only | F||ST].

Theorem 1 Consider a set of positive examples ST, a set of
negative examples 8™, an objective function F(X+, ST, S7),
and two sets of positive rule X7, E;. Suppose Z’; is trans-
formed from 21+ that only replacing f(A) > 61 in Z‘1+ by
f(A) = 6. If 6, < 61 and there is no positive example in
Exy\Exr, F(X}, P,N) <F(Z, P,N).

The correctness of theorem has been proved in [62]. Based
on this idea, we can generate a finite set of predicates for
each attribute. Let C;‘,‘(A) denote all candidate predicates of
attribute A. For each similarity function f € F and each pair
of positive examples (e, ¢’) from ST, we compute 6 based
on f(A) for e and ¢/, and add f(A) > 0 into C;(A). For all
other thresholds, we can safely prune them since they cannot
provide a higher objective value.

Example 10 (Candidate Predicates.) Consider the entities in
Fig. 1; we have positive/negative examples as follows: ST
= {(e1, €2), (e1,€3), (e1,e5), (e2,€3), (e2,e5), (e3,e5)};
S™ ={(e1, es), (e1, €6), (e2, €a), (e2, €c), (e3, €a), (e3, €6),
(e4, e5), (es,eq)}. Based on Theorem 1, we have the fol-
lowing predicates. For ease of presentation, we use spe-
cific similarity function for each attribute: CI“,L (Title) =
{fi(Title) > 0.3, fj(Title) = 0.07, f;(Title) >
0.05}; Cj(aAuthors) = {fm(Authors) > 2, fu
(Authors) > 1}; Cf (Venue) = {f,n(Venue) > 0.75,
fon(Venue) > 0.5};

Based on the finite set of possible predicates on each
attribute A;, we can generate all possible rules by select-
ing 0-1 predicate from each set C;“(A,-) forl <i <m.Let
Xt denote the set of all possible rules. Then from X, we
aim to find a subset to maximize the objective function. We
prove that this problem is NP-hard by a reduction from the
maximum coverage problem.

Theorem 2 The rule generation problem is NP-hard.

Proof We prove the rule generation problem is NP-hard by a
reduction from the maximum coverage problem [39]. Given

@ Springer

a universal set U = {01, 03, ..., 0,} of n elements, a collec-
tion C = {81, 2, ..., Sp} where S; C U(i € [1, p]), and an
integer k, the maximum coverage problem is to select k sets
from C such that their union has the maximum cardinality.
Then, we reduce the maximum coverage problem to the rule
generation problem.

— Construct a set of positive examples St = U =
{o1, 02, ...,0,} and a set of negative examples S~ =
{on+1, 0n42, ..., 02,} whose elements are not from U'.

— Given the multi-valued relation R(Aq, ..., A;;) and a
library of similarity functions F', generate a finite set of
predicates C;‘ (A;) for each attribute A;.

— Generate all possible rules Xt by selecting 0-1 predicate
from each set C;(A,-) forl <i <m.

— Define the objective function as F(X+,S*,87) =
|Ex+ N ST s.t.|Ex+ N'ST| = 0. This objective func-
tion means that we need maximize the positive examples
X7t can recognize and ensure that no false negative is
exist. Therefore, X contains all rules from X which
satisfy Ey+ N St = ot -
Then, our rule generation problem can be stated as a

maximum coverage problem. The universal set U contains

all positive examples from ST, and the collection C =

{€¢1+, S(p;, ey Ew;+ } where 5¢i+ = 5¢i+ NSt C U. As the

size of final rule set should be minimum among all rule sets
that maximize F, we change k from one to | X}| and select
k sets from C in turn such that their union has the maximum
cardinality until F can not be improved any more. For cer-
tain k € [1, |ZJ;L |1, the problem is NP-hard. Thus, the rule
generation problem is NP-hard. O

6.2 An enumeration-based algorithm

Any subset X7 of XF is a candidate set of positive rules.
We enumerate each subset X in the order of increasing size,
compute its objective-function value, and select the one with
the maximal value. Obviously, there are large numbers of
candidates, i.e., 215 = (9(2|F|m|s+|m), where m is the num-
ber of attributes, | F'| is the number of similarity functions,
and [ST| is the number of positive examples. Clearly, this
enumeration-based method is rather expensive.

Example 11 (Enumeration-based Algorithm.) We enumerate
35 positive rules based on Cf (Title), C;f (Authors) and
C; (Venue) such as:

et fj(Title) > 0.31A fop(Authors) > 2A f,n(Venue) > 0.75
<p+,:fj(Title) > 0.31A fpy(Authors) > 2A fo, (Venue) > 0.5
@t fj(Title) > 0.31A fpy(Authors) > 1 ..

Mis-categorized entities detection

525

Then, we enumerate all combinations of these positive rules
to construct candidate sets of rules. Suppose that X con-
tains the above three rules and the objective function is
F(ZT,8T,S7) = [Ex+ NST| \ [Ex+ NST|. As Exr =
{(e1,e3)}, F(XF,ST,S7) = 1. For other candidates, we
also compute their objective-function value and then select
the one with the maximal value.

6.3 A greedy algorithm

Due to the high computational complexity of the enumeration
algorithm, we propose a greedy algorithm to find a near-
optimal set of rules £+ Initially ¥ = @, and we greedily
choose the currently best rule until the objective-function
value cannot be improved. To generate the best rule ¢+, we
greedily select the best predicate as follows.

Given a set of positive examples S*, a set of negative
examples S, and sets of candidate predicate C; (A;) foreach
attribute A;, we first choose the best predicate to initialize
the rule 9 = f(A) > 0 which has the maximal objective-
function value F(¢™, ST, S7). Meanwhile, we update the
example set ST, S~ to §'T, S~ by removing the examples
that cannot satisfy ¢+.

Afterward, we pick another predicate p’ to join with ¢
which can prune the negative examples that have satisfied
@™ as many as possible (smaller |€,, N S7]) and keep the
positive examples as many as possible (larger |£, N St).
Thus, we select the one with the maximal objective-function
value F(p’, S't, ') and update the positive rule as ¢ =
f(A) =0 A f'(A) > 0. Another predicate will be chosen
until F(p™, ST, §7) cannot be improved and we get ¢ ™.

We generate a set of rules T on the basis of the steps
stated above. After ¢ is added into T, we should update
the example set ST, S~ to S”*, §”~ by removing the exam-
ples that satisfy ¢ and make use of 8", S”~ to measure
the performance of other positive rules. The algorithm ter-
minates when F(X*, ST, S™) cannot be improved.

Example 12 (Greedy Algorithm.) Consider the entities in
Fig. 1. The positive examples, negative examples, all predi-
cates and the objective function are the same with the above
example.

At first, we compute the score of the objective function for
all predicates. Let p; denote the predicate f,, (Authors) >
2.As&, = {(e1, e3), (e2,e5)}, F(p1,ST,87)=2-0=2.
Actually, it is the predicate whose objective value is max-
imum. So we first initialize the rule (p1+ = p1 and update
the example set as S'* = {(e1, e3), (e2,e5)} and S'~ = 0.
Since the set of negative examples is empty, we generate one
positive rule <p?‘: fov(Authors) > 2.

Next, we update the example set by removing the exam-
ples that satisfy (pfr. Then, S"* = {(e1, e2), (e1,es5),
(e2,€3), (e3,e5)} and 8"~ = {(e1, e4), (e1,¢6), (e2,¢€4),

(e2, e6), (€3, eq), (€3, €6), (e4, e5), (es5, eg)}. We re-evaluate
the values of objective function for all predicates, and gen-
erate another positive rule <p; . foo(Authors) > 1 A
fon(Venue) > 0.75.

6.4 Negative rule generation

The goal of negative rules is to identify mis-categorized par-
titions. We want to select the negative rules ¥~ to cover
more negative examples (larger |Ex- N S7|) and less posi-
tive examples (smaller |£x- N S*). The objective function
shouldbe F(X~,S*,87) = [Ex- NST| \ |Ex- NST, or
other functions that can measure the target. Theorem 1 can be
utilized to generate a finite set of predicates for each attribute.
Let C; (A) denote all candidate predicates of attribute A. For
each similarity function f € F and each pair of negative
examples (e, ¢’) from S™, we compute o = f(e[A], ¢'[A])
andadd f(A) < o into C; (A).Recall that in each step of our
greedy algorithm, we generate a negative rule ¢~ with the
maximal score based on F(¢~, ST, S7). Thus, these rules
can be applied in the order of generation.

7 Resolving inconsistent rules

Although not desired, conflict may exist between positive
and negative rules. In this section, we first define the consis-
tency of positive and negative rules based on the transitivity
assumption for positive rules and discuss how to check
the consistency of a set of rules (Sect. 7.1). However, the
transitivity assumption is sometimes violated by real-world
cases. Hence, we propose soft positive/negative rules that
weaken the transitivity assumption, which can better capture
real-world cases (Sect. 7.2). Finally, we present two novel
strategies to discover mis-categorized entities by using a set
of soft rules (Sect. 7.3).

7.1 Checking consistency

Rule Consistency Given a set X+ of positive rules, a set X'~
of negative rules, and a group G of entities, we say that X
and X' are inconsistent w.r.t. G, if there exist two entities e
and ¢’ from G, such that

1. there have a positive rule 9 € X and a negative rule
¢~ € ¥, whereboth o™ (e, ¢’) and ¢~ (e, €) return true;
or

2. ¢ (e, €') returns false for any ¢t (e, ¢’) € X and there
exists a negative rule ¢~ (e, ¢’) that returns true, but ¢ and
¢’ satisfy transitivity: There exists another entity ¢” such
that both (e, ¢”) and (¢’, ") match.

@ Springer

526

S.Haoetal.

7.1.1 A brute-force solution

We can first compute disjoint partitions P of G by using
positive rules X+ and applying transitivity (see more details
in Sect. 4, Step 1). Given a partition P € P, we enumerate
every entity pair (e, ¢’) in P, and check whether ¢~ (e, ¢')
returns true for each negativerule ¢~ € X~ . If any ¢~ (e, ¢’)
returns true, X'+ and X~ are inconsistent, by definition.

Example 13 (Checking Consistency.) Consider the positive
and negative rules in Example 2 and suppose that there is
another positive rule:

[0 : fon(Title) > 0.5 A fou(Venue) > 0.75 j

which says that two entities are similar, if they have sim-
ilar topic and their Venue are in the same field. We then
check whether T+ = {9,), 07} and T~ = {¢]. ¢}
are consistent within the entities e; to eg in Example 1.

The sorted candidate pairs which may satisfy a positive
rule are C = {(e2, e5) .+, (€1, €3) 4, (€2, €4) i, (€1, €3) 1,
(eq, eg)w;, (e, e3)¢;, (eq, ez)w;}. After we verify the first
two candidates, there are three connected components:
{e1, e3}, {eq} and {ey, es}. Since the third candidate (e, e4)
can satisfy (p;' , before merging these two connected com-
ponents {e4} and {e>, e5}, we should check whether (e, e4)
and (e4, e5) will satisfy a negative rule. We first test (e, e5)
which has lower verification cost, and ¢ (es, es) returns true.
Thus, X is inconsistent with X ~.

7.1.2 A signature-based fast solution

A smarter and more efficient approach is to push the consis-
tency check down to the computation of disjoint partitions P,
by using signatures introduced in Sect. 5. Recall that in the
“filter” step, we generate signatures for each entity w.r.t. each
positive rule and take the pairs of entities that share common
signatures as candidate pairs C (lines 1-4 of Algorithm 2).
Then in the “verification” step, if a candidate pair (e, ¢') € C
is evaluated to be true and these two entities belong to differ-
ent connected components (lines 7-9 of Algorithm 2), before
putting e and ¢’ into the same partition, we first enumerate
every entity pair across these two connected components,
and verify whether they can satisfy a negative rule. The pair
with the lower similar probability and verification cost will
be checked first. Once we find a dissimilar pair, the rules are
inconsistent.

A potential performance bottleneck is that we can only
draw the conclusion for rule consistency when all entity
pairs which are grouped together cannot satisfy negative
rules. Apparently, this is time consuming when there is a
large amount of entities. To cope with this, one approximate
yet effective strategy is to leverage the positive and negative
examples that are used for rule generation. Alternatively, after

@ Springer

computing disjoint partitions P, we only check whether the
entity pairs with lower similar probability would satisfy the
negative rules. If the rules are consistent, we can utilize the
framework in Sect. 4 to discover mis-categorized entities.
Otherwise, we will describe how to handle harder cases in
the following of this section.

7.2 Soft positive and negative rules

As mentioned earlier, the transitivity assumption may be vio-
lated by real-world cases. In other words, this assumption
puts a large burden of rule generation algorithms to precisely
capture real-world scenarios. Hence, we propose soft positive
rules and soft negative rules to deal with this case.

Soft Positive Rules A soft positive rule ¥ (e, €') is formal-
ized as [pT (e,), w,+], where ¢ (e, ¢') is a positive rule
and W+ is a rule weight in [0, 1]. ¥t(e, ¢) is evaluated to
be true if ¢ (e, ') returns true, indicating the two entities
e and ¢’ are “similar” and are likely to be categorized
together. Otherwise, ¥ (e, ¢’) returns false, if ¢ (e, €')
returns false, indicating we do not know whether they should
be in the same category.

Soft Negative Rules A soft negative rule @~ (e, €') is defined
similarly: @~ (e, e’) = [¢p™ (e, €'), wy-1, where ¢~ (e, &) is
anegative rule and wg- is arule weightin [—1, 0]. @~ (e, e)
is evaluated to be frue if ¢~ (e, €’) returns true, indicat-
ing ¢ and ¢’ are “dissimilar” and possibly should not be
categorized together. Otherwise, @ ~ (e, ¢’) returns false, if
¢~ (e, €) returns false, indicating we do not know whether
they should be in different categories.

Rule Weights The weight of a rule measures how accurate
the rule is to be used to group entities. It can be obtained
with the positive and negative examples for rule generation.
We first take the positive rule as an example here. Concretely,
given a set of positive example ST, a set of negative examples
S~ and a positive rule ¢ learned from S and S~ let £+

be the set of entity pairs satisfying ¢ ™. Then, the precision
E,+NST . E,+NST
“’g —, and the recall is “";Jr .

is the harmonic mean of precision and recall, which can be
regarded as the weight of corresponding rule. For negative
rule, it only needs to take the opposite value of F-measure as
the rule weight.

of rule ¢t is F-measure

Example 14 (Soft Rules.) Here, we have three soft positive
rules and two soft negative rules.

Ut [fou(AButhors) > 2,0.5]

Wt [fou(AButhors) > 1 A fo,(Venue) > 0.75, 0.67]
lI/;r [fon(Title) > 0.5 A fon(Venue) > 0.75, 0.25]
@[i [fo(Authors) = 0, —0.2]

@, :[fow(Authors) < 1A f,u(Venue) < 0.25, —0.67]

Mis-categorized entities detection

527

Given the positive examples ST and the negative examples
S~ in Example 10, the rule weight in l,I/]+ will be 0.5. This is
because £+ = {(e1, e3), (e2, es)}, the precision of of is 1

and the recall is % Thus, the F-measure of (pfr is 0.5 which
can also be assigned to the weight of gof.

7.3 Discovering mis-categorized entities by soft
rules

This section discusses how to utilize soft rules to identify
pivot partition and discover mis-categorized entities. Note
that the previous framework cannot work here, because mis-
categorized entities may be grouped into the pivot partition if
we only consider soft positive rules when computing disjoint
partitions, e.g., entity e4 will be grouped into the pivot par-
tition because of (p;' . Thus, we propose two novel strategies
to discover mis-categorized entities by soft rules: the cor-
relation method (Sect. 7.3.1) and the partition split method
(Sect. 7.3.2).

7.3.1 Correlation partition

As we state above, only considering soft positive rules is
not enough to group entities. Here, we utilize the correlation
clustering [5] to compute disjoint partitions. That is, we apply
the soft positive and negative rules at the same time, and find
the partitions which can make more soft positive/negative
rules be satisfied.

Given a group of entities G = {ey, ..., e,}, a set of soft
positive rules X" and a set of soft negative rules X, we first
build a weighted undirected graph G(V, &) for all entities in
G. Each vertex v € V is an entity, and if two entities satisfy
a positive rule in X;F or a negative rule in X, there is an
edge between them. Each edge is associated with a weight,
which is the sum of weights of the soft rules these two entities
can satisfy. Specifically, if two entities either satisfy positive
rules only or the total weight of positive rules is larger than the
absolute value of the total weight of negative rules they can
satisfy, then edge (u, v) has a positive weight !, , indicating
the two entities are likely to be grouped together. Otherwise,
edge (u,v) has a negative weight w,,, indicating the two
entities possibly should not be grouped together. Then, the
goal of correlation clustering is to find a clustering either
maximizes agreements (the sum of positive weights inside
clusters plus the absolute value of the sum of negative weights
between clusters) or minimizes disagreements (the absolute
value of the sum of negative weights inside clusters plus the
sum of positive weights between clusters).

It has been proved that the problem of minimizing
disagreements, or equivalently, maximizing agreements, is
NP-hard by a reduction from the multiway cut problem
[5,22]. The majority of approximate algorithms can only

apply to the complete graph. Thus, here we adopt [22] which
is an O(log n) —approximation algorithm of correlation clus-
tering in general weighted graph. The algorithm first solves
an integer program and the results are interpreted as distances
between vertices: d,, = 0 if u and v are in the same cluster,
and d,, = 1 if u and v are in different clusters. Here, d,,
denotes the distance between u and v, and they satisfy the
triangle inequality constraints. Concretely, let £ and £~ be
the set of edges with positive and negative weights, respec-
tively, then we can relax the integrality constraints and obtain
the following linear program:

min Z wl dyy + Z [wy | (1 = i)
(u,v)e€E+ (u,v)e€E~
s.t. dyy €10,1],dyy + dyy > dyw

After finding the valid assignment of d,,,,, the algorithm then
uses region-growing techniques to group close vertices and
thus round the fractional variables. Before introducing the
techniques, we first give some related concepts. A region
R(u, r) consists of all vertices around u such that their dis-
tances are no larger than r. The cut of region R (u, r), denoted
by cut(R), is the sum of weights of positive edges with exactly
one endpoint in R, and the volume of region R (u, r), denoted
by vol(R), is the weighted distance of the positive edges in R
plus the fractional weighted distance of positive edges leav-
ing R. Now, we will introduce the steps of region-growing.
The algorithm randomly picks a vertex # €)V and initializes r
to zero. Each region has a initial volume, which is the volume
of the entire graph divided by the number of vertices. Then,
it grows r so that R(u, r) includes at least another new ver-
tex, and repeat this step until cut(R) < Aln(n+1) xVvol(R)*.
R (u, r) is returned as one of the clusters in G. Meanwhile, all
vertices in R(u, r) and the corresponding edges are removed
from G. The algorithm picks another vertex next and grow
its region. This process will be repeated until G is empty.
Lastly, the largest cluster of G is regarded as pivot partition.
All entities in the clusters which connect to the pivot partition
with negative edges are reported as mis-categorized entities.

Example 15 (Correlation Partition.) Given the entities in
Fig. 1 and the soft positive and negative rules in Example 14,
we first build a weighted undirected graph for all the entities
in Fig. 1, which is shown in Fig. 6a-1. The black edge has
a positive weight, indicating the two entities are likely to be
grouped together. The red edge has anegative weight, indicat-
ing the two entities possibly should not be grouped together.
The weight of edge (e1, e3) is 1.42. This is because e and e3
can satisfy all three positive rules and the sum of rule weights
is 0.5 + 0.67 + 0.25 = 1.42. The weight of edge (e2, e4) is

4) is a constant that determines the approximation ratio. It has been
proved in [22] that A must be greater than 2.

@ Springer

528

S.Haoetal.

Fig.6 Soft rule application

(1)

0.05, because both l1/3+(e2, e4) and @, (e, eq) return true
and the sum of rule weights is 0.25 4+ (—0.2) = 0.05.

After substituting all edge weights into the linear pro-
gram, we can get djp = di3 = dy3 = dos = 0 and dj4 =
dig = dyg = dag = d3g = dz¢ = dys = dys = ds¢ = 1,
which is shown in Fig. 6a-2. Next, we utilize region-growing
techniques to group vertices. If we first choose e; and ini-
tialize r to zero, then we have Ri(e1,0) = {ey, e2, €3, es}.
At this time, cut(R1) = 0.05, vol(R;) = 0.008, if A = 4,
cut(R1) < Aln(n + 1)xvol(Ry) is satisfied. Thus, region
R1(e1, 0) will be returned as a cluster. After removing Ry,
only e4, eg and the edge (e, e¢) are left. Ro(eq, 0) = {es}
and cut(Ry) = 0. cut(Ry) < Aln(n 4+ 1)xvol(R3) is satis-
fied and R, will be returned as another cluster. As a result,
the entities are grouped into {ey, ez, €3, es}, {e4} and {eg} as
shown in Fig. 6a-3.

7.3.2 Partition split

The correlation partition method is time-consuming: When
the amount of entities increases, the rapid growth of the num-
ber of variables and constraints makes its performance drop
rapidly. Besides, the value of A need to be carefully designed.
If we set A = 3, cut(R1) < Aln(n + 1)xvol(Ry) is just hold
when R is growninto Ry (e1, 1) = {eq, e2, €3, e4, €5, e6} and
all entities are grouped into the same cluster. In the follow-
ing, we propose a new method which first computes disjoint
partitions and then checks whether each partition should be
split.

Soft positive rules are first used to group entities into par-
titions. Due to the inconsistency of rules, there must exist two

@ Springer

ﬁ Y
Y
Y
Y
.

(2)

(b) Partition Split

entities (e, ') that belong to the same partition but also sat-
isfy a soft negative rule. In this situation, we need to consider
whether these two entities should be separated into different
partitions.

Give a partition P, a set of soft positive rules X" and a set
of softnegative rules X', we first build a weighted undirected
graph G(V, £) for P. Then, given (¢ € P,e € P) that
¢ (e, €) returns true, if the following conditions are satisfied,
we separate the two entities into different partitions.

— The weight of edge between e and ¢’ is negative. That is to
say,ifbothp™ (e, ') and ¢ (e, ¢') returntrue, wy- > w,,-
must hold.

— For each positive path (every edge in the path has a pos-
itive weight) between e and €', the absolute value of the
weight of edge (e, ¢’) is greater than the smallest edge
weight in the path.

If e and ¢’ are separated, we generate two new partitions P’
and P”,and put these two entities into different partitions. For
another entity ¢” € P,letprob(e”, P’) denote the probability
of entity ¢” belonging to partition P’, which is the largest
value of the minimum weight in each positive path between
eand ¢”. Then if prob(e”, P') > prob(e’, P"), entity ¢” will
be added into partition P’. Otherwise, ¢” will be added into
P’

After checking all negative edges, we get the final parti-
tions. The largest one is regarded as the pivot partition, which
can be used to discover mis-categorized entities.

Mis-categorized entities detection

529

Example 16 (Partition Split.) Given the entities in Fig. 1 and
the soft positive and negative rules in Example 14, we first
use soft positive rules to group entities into two partitions
P1 : {e1,e2,e3,eq,e5}, P> : {eg}, as shown in Fig. 6b-2.
Then, we build a weighted undirected graph for Pj.

After building the graph model, we check each negative
edge in turn. Given the edge (es, e5), we find that [we,e; |
is greater than the smallest edge weight in the positive path
e4 — ey — es. Thus, e4 and es should be separated into dif-
ferent partitions. Suppose that Pz = {e4} and Py = {es},
considering entity ez, since prob(ez, P4) = Weyes > Wepey =
prob(ea, P3), ez should be added into Ps. As for ey and e3, the
weights of (e1, e4) and (e3, e4) are negative. On the contrary,
prob(e1, P4) = Weyes = 0.5 and prob(ez, Py) = Weyes =
0.5. Thus, P4 = P4 U {e1, e3} = {ey, 2, 3, e5} and no neg-
ative edge exist. P is splitinto P3 and P4. The final result is
shown in Fig. 6b-3.

8 Experiments

We conduct experiments to answer the following questions
for discovering mis-categorized entities: (Exp-1) How good
is our approach compared with entity matching solutions?
(Exp-2) How good is our approach compared with machine
learning approaches? (Exp-3) How good is our approach
compared with outlier detection methods? (Exp-4) What
is the effect of multiple negative rules? (Exp-5) What is
the effect of positive rules? (Exp-6) How efficient is our
signature-based algorithm? (Exp-7) How good are the gen-
erated rules? (Exp-8) How good is our method to resolve
inconsistent rules?

8.1 Experimental setup

Datasets (1) Google Scholar. We crawled 200 Google
Scholar pages (i.e., groups), with the average number of
340 entities in a group, all from SIGMOD/VLDB/ICDE PC
members °. Each entity consists of eight attributes: Tit1e,
Authors, Date, Venue, Volume, Issue, Pages and
Publisher. (2) Amazon Product. We downloaded the
data from http://jmcauley.ucsd.edu/data/amazon/links.html
[47]. We used 4286 product categories and each product
has 8 attributes: Asin, Title, Brand, Also_bought,
Also_viewed, Bought_together, Buy_after
_viewing and Description.

Mis-categorized Entities We did not inject mis-categorized
entities to Google Scholar because they were dirty

> We gathered the Google Scholar data at the end of the year 2016,
which may be dirtier than the current Google Scholar pages. However,
mis-categorized entities still exist in the current version due to the paper
assignment method applied in Google Scholar.

originally. Their ground truth was manually verified. For
Amazon Product, we injected some products from simi-
lar categories to a group as mis-categorized entities for better
testing the performance w.r.t. different error rates under a
more controlled evaluation. The errors were produced with a
rate e%, i.e., the percentage of the number of mis-categorized
entities over all entities.

Ontologies Ontologies are not available for all attributes. For-
tunately, some are publicly available, e.g., Google Scholar
Metrics for Venue (see Sect. 3). For the attributes that do not
have ontologies in presence, we can build them. For instance,
for product description, we utilized Latent Dirichlet Alloca-
tion (LDA) [20] to learn a hierarchy structure as follows.
Given a set S of product descriptions, we first learned k top-
ics from S using LDA, and categorized each document to
the most likely topic. The set S was divided into {Sy, ..., Sk}
Then, for each subset S;, we continued to learn m topics from
S; and divideditinto {S;,, ..., S;,, }. Then, we had three layers:
The root was a dummy node; the second layer had k nodes
corresponding to the k topics learned from S, and the third
layer had k x m nodes learned from each S;. If there were
still many documents in a topic, we would further split it.

Positive/Negative Rules The positive/negative rules used in
Exp-1 to Exp-6 were generated as described in Sect. 6 which
are consistent. For Google Scholar, we used two posi-
tive rules and three negative rules, learned from 229 positive
examples and 201 negative examples.

<p1+ : fov(Authors) > 2
(p;' . fov(Authors) > 1 A f,,(Venue) > 0.75
¢, : fov(Authors) =0
¢, : fov(Authors) < 1A fp(Venue) < 0.25
@5 : fov(Authors) < 1A fp(Title) <0.25

Three positive rules and two negative rules were applied
in Amazon Product, learned using 247 positive examples
and 245 negative examples. The entities associated with these
training examples were removed for testing data.

go;r : fov(Also_bought) > 2 A foy(Also_viewed) > 2

@y fov(Bought_together) > 1 A fy,(Description) > 0.75
@5 - fov(Buy_after_viewing) > 1 A fyon(Description) > 0.75
. fov(Also_bought) =0 A fyp(Description) < 0.5

: fov(Also_viewed) = 0 A fyp(Description) < 0.5

Algorithms We have implemented the following algorithms.
(1) DIME: the basic algorithm in Sect. 4; (2) DIME™: the
signature-based fast algorithm in Sect. 5; (3) Corr: the cor-
relation method in Sect. 7.3.1; and (4) Split: the partition
split method in Sect. 7.3.2.

@ Springer

http://jmcauley.ucsd.edu/data/amazon/links.html

530

S.Haoetal.

For comparison, we have implemented (5) CR [8], which
is a collective relational entity linkage solution based on
the hierarchical clustering; (6) Dedupalog [4], which is
a constraint-based collective deduplication method; (7) SVM
[9], a machine learning (ML) approach for classifying entity,
and (8) LOF [10], one of the most popular unsupervised
outlier detection methods. For rule generation, we com-
pared with (9) DecisionTree [32], which is a ML-based
rule generation method; and (10) SIFI [62], a heuristic-
based approach that searches optimal similarity functions
and thresholds.

Algorithm Parameters For CR, we picked three thresholds
0.5, 0.6, 0.7 and show the best results. That is, when the
minimum distance between two groups was larger than the
thresholds, CR stopped merging groups and terminated. We
used SVM with linear kernel and balanced class weights to
optimize F-measure. As for LOF, if the LOF score of an entity
is larger than 1, it was regarded as mis-categorized entity.
Since the score of each entity is determined by the average
local density of its k nearest neighbors, we tried different k in
[5,10] and report the best results. DecisionTree was run
with maximum depth 4, and for STFI, we asked an expert
to formulate the structure of rules.

Effectiveness Metrics We used precision, recall, and F-
measure to measure the effectiveness. The precision is the
ratio of mis-categorized entities we correctly identified to
the number of all discovered mis-categorized entities. The
recall is the ratio of mis-categorized entities correctly identi-
fied to the number of actual mis-categorized entities. And the
F-measure (or F; score) is the harmonic mean of precision
and recall.

Experimental Environment We implemented DIME, DIME',
Corr, Split, CR, Dedupalog and LOF in Java, and
obtained the Java implementation of SVM from Bilenko et
al. [9]. DecisionTree and SIFI were acquired from the
authors. All tests were conducted on a PC with a 2.80GHz
Intel CPU and 16GB RAM.

8.2 Experimental results

Exp-1: Comparison with EM Approach We first compared
with CR, which is a hierarchical clustering-based EM algo-
rithm that group entities based on their distances. In our
experiments, we first ran CR to group entities and then
regarded the entities which did not belong to the maximal
group as mis-categorized entities. Figure 7 reports the results
of comparison about the accuracy. Since Google Scholar
was dirty originally, we only varied the error rate of
Amazon from 10% to 40%. We used three negative rules
for Google Scholar and two negative rules for Amazon.
In this part, we report the best precision and recall, when the

@ Springer

0.5

a
T —— |
025 [¥ CR >

o SVM

Quality
Precision

© Dedupalog
LOF

Precision Recall F-measure 10 20 30 40

Error Rate(%)
(b) Amazon (Precision)

Effectiveness Metrics

(a) Scholar

Recall
o
o
F-measure

© DIME

% CR

025 |1 o svm

< Dedupalog
4 LOF

10 20 30 40 10 20 30 40
Error Rate(%) Error Rate(%)
(¢) Amazon (Recall) (d) Amazon (F-measure)

Fig.7 Comparison with state-of-the-art algorithms

Quality
Precision

F-measure 10 20 30 40
Error Rate(%)

(b) Amazon (Precision)

Precision Recall

Effectiveness Metrics

(a) Scholar

Recall
F-measure

10 20 30 40
Error Rate(%)

(d) Amazon (F-measure)

Error Rate(%)

(¢) Amazon (Recall)

Fig.8 Effectiveness of scrollbar

user dragged the scrollbar. For CR, we tried three thresholds
and reported the best.

Figure 7 shows that our method achieved higher precision
and recall than CR and certainly higher F-measure. The
reason is that (1) some correct entities appeared in small par-
titions. Without the help of negative rules, these entities were
regarded as mis-categorized entities in CR. That is why EM
approaches cannot be directly applied to solve our problem.
(2) We used ontology similarity to measure the similarity
in attribute Venue and Description rather than tradi-
tional string similarity, which resulted in higher accuracy.
For example, given two entities with venue “International
Conference on Very Large Data Bases” and “ACM Transac-
tions on Database Systems,” respectively, CR may put them
into different groups because of low string similarity. On the

Mis-categorized entities detection 531

(71 : Paper * (ID,ID’) <« Refs(ID,—,Authors,—,—,—,—,—,—), Refs(ID’,—,Authors’,—,—,—,—,—,—), TwoCommonAuthor(Authors,Authors’))

2 : Paper * (ID,ID’) <> Refs(ID,—,Authors,—,Venue,—,—,—,—), Refs(ID’,—, Authors’,— ,Venue’,—,—,—,—), OneCommonAuthor(Authors,

Authors’), VenueSimilar(Venue,Venue 2)
v3 : —Paper * (ID,ID’) < Refs(ID,—,Authors,—,—,—,—,—,—), Refs(ID’,—,Authors’,—,—,—,—,—,—), NoCommonAuthor(Authors,Authors’)
~4 : —Paper * (ID,ID’) <« Refs(ID,—,Authors,—,Venue,—,—,—,—), Refs(ID’,— Authors’,—,Venue’,—,—,—,—), LessThanTwoCommonAuthor
(Authors,Authors’), VenueDissimilar(Venue,Venue’)
w5 : —Paper * (ID,ID’) < Refs(ID,Title,Authors,—,—,—,—,—,—), Refs(ID’,Title’ ,Authors’,—,—,—,—,—,—), LessThanTwoCommonAuthor
(Authors,Authors’), TitleDissimilar(Title,Title’)

71 : Product * (Asin,Asin’) < Refs(Asin,—,—,Also_bought,Also_viewed,—,—,—), Refs(Asin’,—,—,Also_bought’,Also_viewed’,—,—,—),
TwoCommonAlsoBought (Also_bought,Also_bought’), TwoCommonAlsoViewed(Also_viewed,Also_viewed’)

72 : Product * (Asin,Asin’) <> Refs(Asin,—,—,—,—,Bought_together,— Description), Refs(Asin’,—,—,—,— Bought_together’,—,
Description’), OneCommonBoughtTogether(Bought_together,Bought_together’), DescriptionSimilar
(Description,Description’)

n3 : Product * (Asin,Asin’) < Refs(Asin,—,—,—,—,—,Buy_after_viewing,Description), Refs(Asin’,—,—,—,—,—,Buy_after_viewing’,
Description’), OneCommonBuyAfter(Buy,after,viewing,Buy,after,viewing’), DescriptionSimilar
(Description,Description’)

74 : —Product * (Asin,Asin’) < Refs(Asin,—,—,Also_bought,—,—,—,Description), Refs(Asin’,—,—,Also_bought’,—,—,— Description’)

NoCommonAlsoBought(Also_bought,Also_bought’), DescriptionDissimilar(Description,Description’)
75 : —Product * (Asin,Asin’) < Refs(Asin,—,—,—,Also_viewed,—,—,Description), Refs(Asin’,—,—,—,Also_viewed,—,—,Description’),
NoCommonAlsoViewed(Also,viewed,Also,viewed’), DescriptionDissimilar(Description,Description’))

\

Fig.9 Constraints used in Dedupalog

other hand, we can judge that these two venues belong to the
same field. (3) CR started with the resolutions that only con-
sidered attribute string similarity. As an iterative method, one
incorrect decision in CR lead to more errors in the following
iterations.

We then compared with Dedupalodg, a constraint-based
EM method which aims to generate a set of partitions of the
input records that minimizes the number of soft constraints
that are violated, while ensuring that no hard constraint is
violated. We designed similar constraints for Dedupalog
which are shown in Fig. 9 (y) — y5 for Google Scholar
and n; — ns5 for Amazon Product). Since the type of rules
must be defined and at least one soft-complete rule is required
in Dedupalog, we specified that the first positive rule was a
hard rule that must be satisfied in any legal clustering and then
the second one was a soft-complete rule. The next positive
rule was a soft-incomplete rule and all negative rules were
hard rules. Here, two entities being clustered together by
Dedupalog did not mean that they were deduplicated but
should be categorized together following our setting.

From Fig. 7, we can see that our method achieved much
higher precision andrelatively lower recall which led
to higher F — measure. It is because Dedupalog would
assign each pair of entities with one of the labels {[=]: should
be clustered together, [#]: should not be clustered together}
after hardening, and generated smaller partitions than DIME.
When we also regarded the largest partition as correctly cat-
egorized partition, every entity that did not belong to this
partition were recognized as mis-categorized entity due to
the “[#]” edge connected to the largest partition. That is
why the recall of Dedupalog was almost 1 with the
similar positive rules. As a tradeoff, the precision of
Dedupalog was very low since lots of correctly catego-
rized entities were not in the largest partition which would

be mistakenly regarded as mis-categorized entities. On the
contrary, DIME can carefully distinguish whether entities not
in the largest partition were mis-categorized entities with the
help of negative rules.

Exp-2: Comparison with ML Approach We also compared
with a ML-based method SVM, which has been shown to
outperform other machine learning techniques for classi-
fication. We trained two SVM models. The first extracted
features from entities and converted each entity to a vec-
tor for classification. The positive examples were taken as
the entities that should be in the category and the negative
examples were mis-categorized entities. In the second one,
the features in positive/negative examples were the similari-
ties between two entities that should/should not in the same
category. Then, it grouped entities and regarded the entities
not in the maximal group as mis-categorized entities. Since
the similarities between examples were rather important, the
latter model was better. Thus, we used the latter in SVM. Fig-
ure 7 shows that our method had higher precision and recall
than SVM in Google Scholar. In Amazon dataset, we
achieved a little higher precision than SVM but had much
higher recall, which is often favored in such applications of
discovering mis-categorized entities. When putting together,
our method achieved much higher F-measure. It is notewor-
thy that when error rate ¢% increased, the precision of our
method moderately increased. This was because when more
mis-categorized entities existed in the group, we found that
LDA worked better to differentiate the product description
of correct entities from mis-categorized entities. Thus, less
false positive would exist. As e% increased, the recall of all
methods decreased. The reason is that more mis-categorized
entities were injected into the dataset as noise which had sim-

@ Springer

532 S.Haoetal.
; B Negative Rule 1 M Negative Rule 2 Negative Rule 3
c 0.75
o
2
g os
=
o
0.25
0
Jeffrey Wenfei Nan Cong Zhifeng Divyakant Francesco Samuel Tamer Uliman Divesh Guatavo Jennifer Anhai Torsten Marcelo Nikos Tim Laks
(a) Precision
; M Negative Rule 1 B Negative Rule 2 Negative Rule 3
0.75
®
8
0.5
o
0.25
Jeffrey Wenfei Nan Cong Zhifeng Divyakant Francesco Samuel Tamer Ullman Divesh Guatavo Jennifer Anhai Torsten Marcelo Nikos Tim Laks

(b) Recall

Fig. 10 Effectiveness of scrollbar (Google Scholar details)

ilar buying behavior and product description. Thus, it became
harder to detect them.

Exp-3: Comparison with Outlier Detection Method Here, we
compared our framework DIME with one of the most popular
unsupervised outlier detection method LOF, which is ade-
quate for the general case when clusters of different densities
exist. The degree of an entity being an outlier depend on how
isolated it is with respect to the surrounding neighborhood.
We followed the paper [25] to generate the vector represen-
tation of each entity, and regarded the entities whose LOF
scores were larger than a given threshold as mis-categorized
entities. The best results are reported in Fig. 7 after trying
different parameter values.

Figure 7 shows that DIME had higher precision and
recall, and certainly higher F-measure than LOF. This
confirms that the mis-categorized entity is not equivalent to
outlier. Concretely, some correctly categorized entities would
be regarded as outliers by LOF especially those scattered in
small partitions, which led to lower precision. Besides,
the mis-categorized entity might be regarded as inlier by LOF
which was similar to most entities in many attributes, e.g., e4
in Fig. 1. Thus, outlier detection methods cannot be directly
applied to our problem.

Exp-4: Effectiveness of Tuning Negative Rules In this set
of experiments, we studied the effect of tuning nega-
tive rules. Recall that we used three negative rules for
Google Scholar and two negative rules for Amazon. By
default, we showed the user the discovered mis-categorized
entities by the first negative rule, and the user can then drag
the scrollbar to see the results using other negative rules.

@ Springer

The average results of applying three negative rules for
Google Scholar are shown in Fig. 8a, and the results of
applying two negative rules for Amazon in different error
rates are presented in Fig. 8b—d. The recall value increased
when applying more negative rules, which was expected
because more mis-categorized entities could be captured. As
atrade-off, the precision value decreased, since some correct
entities which were not so similar with others were regarded
as mis-categorized (Fig. 9).

We present the specific results of 20 Google Scholar pages
in Fig. 10, as different groups have different performances
when tuning negative rules. For precision, the first negative
rule was the best, which verified that our choice using only
author names as the default discriminative attribute in the
first negative rule was valid. A further observation is that in
most cases, using the default negative rule can get the best
precision and close to the best recall. Thus in most cases,
the user did not need to touch the scroll bar at all. How-
ever, there were several cases, such as Nan Tang, Cong Yu,
that needed to use more negative rules to find more mis-
categorized entities. It deserves to notice that our tool only
suggests mis-categorized entities. It was up to the user to
decide which ones to remove from their own group. Hence,
the high recall and good precision together made our pro-
posal an ideal tool for cleaning mis-categorized entities.

Exp-5: Effectiveness of Positive Rules We tested the good-
ness of our positive rules of grouping entities, which can
better understand the reported results in the above experi-
ments. We omitted the result for Amazon as the result was
equally good. Table 1 shows statistics of 20 Google Scholar
pages after applying our positive rule to form initial dis-

Mis-categorized entities detection 533
Table 1 Effect of positive rules
Size [1,10) [10, 100) [100, 1000)

#-partitions #-entities #-errors #-partitions #-entities #-errors #-partitions #-entities #-errors
Divyakant 104 147 104 2 35 21 2 480 0
Jeffrey 1608 2334 2234 8 158 148 2 508 199
Wenfei 224 348 307 3 138 0 0 0 0
Nan 51 65 55 4 52 11 0 0 0
Cong 50 78 46 2 67 0 0 0 0
Zhifeng 30 48 23 1 50 0 0 0 0
Francesco 60 74 29 2 45 0 1 111 0
Samuel 64 93 18 3 136 0 0 0 0
Tamer 123 173 28 4 75 0 1 109 0
Juliana 64 93 21 3 47 0 1 137 0
Ullman 177 220 40 5 97 0 1 223 0
Anhai 36 45 9 2 102 0 0 0 0
Divesh 67 95 29 2 50 0 1 369 0
Gustavo 116 161 27 8 268 0 0 0 0
Jennifer 71 88 18 2 73 0 1 162 0
Torsten 20 30 4 1 50 0 0 0 0
Marcelo 62 107 8 3 95 0 0 0 0
Nikos 41 76 9 1 55 0 0 0 0
Tim 10 10 3 1 75 0 0 0 0
Laks 64 99 6 4 58 0 1 96 0

joint partitions in step 1 (refer to Fig. 5 for more details).
The table reads as follows, taking Divyakant for instance.
Given 652 publications in Divy’s Google Scholar page, we
computed 104 partitions whose sizes were < 10, the num-
ber of total entities in these 104 partitions was 147 that
contained 104 mis-categorized entities. Also, there were 2
partitions whose sizes were in [10, 100) that contained 35
entities where 21 were mis-categorized entities. Moreover,
there were 2 partitions whose sizes were in [100, 1000) that
contained 480 entities without any mis-categorized entities.
All numbers about mis-categorized entities were highlighted
in red. Table 1 first tells us that most mis-categorized entities
appeared in small partitions, which verified the effectiveness
of our conservative positive rule that successfully isolated
them. This also helps to explain why our negative rules can
discover mis-categorized entities in the above experiments.

Exp-6: Efficiency Study We compared the efficiency of our
algorithms with the baselines CR, Dedupalog, SVM and
LOF. We sampled six Google Scholar pages by varying the
number of tuples from 500 to 3000. For Amazon Product,
we picked five categories with error rate 40% and var-
ied the number of entities from 2000 to 10,000. Figure 11
shows the running time. Our algorithms were faster than
CR, Dedupalog and SVM, because in each iteration, CR
re-evaluated the attribute distance and reference distance
between two groups and selected the closest pair to merge.

It was time-consuming; especially, the size of dataset was
large. Our efficiency was higher than Dedupalog mainly
because every pair of entities must be measured with each
constraint in Dedupalog. As for SVM, we used part of the
dataset as training data and the remaining dataset as testing
data. It took lots of iterations for many entities. LOF ran faster
than DIME with much simpler algorithmic logic, where each
entity only needed to be compared with its neighbors.

Impact of Indices With the signature-based framework, the
efficiency was significantly improved. As shown in Fig. 11,
DIME™T was2—10x faster than DIME. For Google Scholar,
when there were 3000 entities, the runtime of DIME was 11 s,
but 2.3 s for DIME'. For Amazon, when there were 10,000
entities, the runtime of DIME was 936 s, but 77 s for DIME™.
The results showed the superiority of our pruning techniques.
In reality, the size of group is unlikely to be so large after a
former cluster algorithm. But we still utilized a data genera-
tor DBGen (http://www.cs.utexas.edu/users/ml/riddle/data)
to generate some large groups with the number of entities
from 20 to 100 k to test the efficiency of our algorithms. We
used two positive rules and two negative rules and the results
are shown in the table below. Our signature-based algorithm
DIMET can run for 100 k entities in 175 s, which was 15x
faster than DIME.

@ Springer

http://www.cs.utexas.edu/users/ml/riddle/data

534

S.Haoetal.

Time(s)

50 1000 1500 2000 2500 3000 2, ,000 6,000 8,000 10,000

#-Tuple #-Tuple

(b) Time (Amazon)

(a) Time (Scholar)

Fig. 11 Efficiency

09 ﬂ—v—vW?

0.8

F-measure
F-measure

07
{5 DiliE-Rie
i o sk

1% Decision Tree

0.6

0.5
2 3 4 5 6 7 8 9 10

#-Folds #-Folds
(a) F-measure (Scholar) (b) F-measure (Amazon)

Fig. 12 Effectiveness of rule generation

i W Unresoived W CorrH Spiit "M Unresoived M CorrH Spiit !

F-measure

Precision Recall Precision Recall

F-measure

Effectiveness Metrics

(b) Amazon

Effectiveness Metrics

(a) Scholar

Fig. 13 Effectiveness of inconsistency solution

Gen Gen Gen Gen Gen

(20k) (40k) (60k) (80k) (100k)
DIME 430 619 891 1723 2610
DIME' 39 52 69 133 175

Exp-7: Comparison with Rule Generation Methods We com-
pared our greedy rule generation algorithm DIME-Rule with
existing ML methods DecisionTree and heuristic-based
approach SIFI. We made cross-validation on the training
set, and Fig. 12 reports F-measure values by varying the
number of folds. Note that for SIFI, we asked an expert
to formulate the structure of rules who was familiar with
similarity functions and our datasets. Figure 12 shows that
our method can get higher F-measure thanDecisionTree
and SIFI. DecisionTree failed to find the optimal sim-
ilarity functions with considerable depth when there were a
lot of options, and in SIFT, it was hard for expert to always
provide the optimal structure of rules and suitable similarity
functions.

Exp-8: Experiments with Inconsistent Rule Set The soft pos-
itive/negative rules used in this set of experiments were

@ Springer

11000

nresolved |

i © Unresolved }

4 Corr i o Corr i
Lo.splt

8800 =R —

6600

Time(s)
Time(s)

4400

2200

0
50 100 150 200 250 300 200 400 600 800 1000
#-Tuple #-Tuple

(a)Scholar (b)Amazon

Fig. 14 Efficiency of inconsistency solution

modified from the consistent rule set above, and the rule
weights were calculated based on the positive and negative
examples. For Google Scholar, we used one soft positive
rule and three soft negative rules.

@t [fou(Authors) > 1,0.83]

@, : [fov(Authors) =0, —0.82]

@, :[fov(Authors) < 1A fy(Venue) < 0.25, —0.79]
@5 : [fov(Authors) < 1 A fon(Title) <0.25, —0.69]

Three soft positive rules and two soft negative rules were
applied in Amazon Product.

‘I/2+ :[fov(Also_bought) > 2 A fop(Also_viewed) > 2,0.77]
l1/3+ . [fov(Bought_together) > 1 A fyp(Description) > 0.75,0.63]
lll4+ [fov(Buy_after_viewing) > 1,0.58]

: [fov(Also_bought) =0 A fyu(Description) < 0.5, —0.81]

<1)5_ [fov(Also_viewed) = 0 A fon(Description) < 0.5, —0.77]

We picked smaller groups from Google Scholar and
Amazon Product because of the time-out which may
be caused by the correlation method on large datasets,
and the experimental results are reported in Figs. 13,
14. Here, Unresolved denotes the framework in Algo-
rithm 1. Figure 13 shows that Corr and Sp1lit have higher
precision and recall than the method without consid-
ering the inconsistency between positive and negative rules.
The reason is that a negative pair (a pair of entities that
should not be in the same category) would also satisfy the
positive rules. Corr can recognize this negative semantics,
such that when splitting these two entities it can make more
rules to be satisfied. Split would put them into different
partitions when the weight of negative rule they can satisfy
is larger than the possibility of putting them into the same
partition. However, in Unresolved, mis-categorized enti-
ties would be assigned to the pivot partition in Steps 1-2
of Algorithm 1. Even worse, the entities that are dissimi-
lar to real mis-categorized entities in the pivot partition may
be wrongly reported as mis-categorized entities in Step 3 of
Algorithm 1. We also tested the performance of our algo-

Mis-categorized entities detection

535

rithms in the case where a positive pair (a pair of entities that
should be in the same category) would satisfy the negative
rules. The effectiveness of Unresolved was not affected
a lot because positive rules were applied first. Corr and
Split can alsorecognize this positive semantics in most sit-
uations. Corr had alittle higher precisionand recall
than Split. This is because Corr resolved the inconsis-
tency from a global perspective. However, from Fig. 14, we
can see that Corr was much slower than Split even when
there were a few entities in a category. Note that we do not
present the running time of Corr in Fig. 14 when the num-
ber of tuples exceeded 150 since the runtime had reached to
10,309 s when #-Tuple = 150.

9 Conclusion

In this paper, we have proposed a new problem that discov-
ers mis-categorized entities. We have presented a general
rule-based framework to solve this problems in different
applications. We have also proposed a signature-based algo-
rithm to efficiently apply the rules. We have formulated the
rule-generation problem, proved that it is NP-hard and pro-
posed exact and approximate solutions. We have discussed
how to resolve the inconsistent positive and negative rules.
Finally, we have demonstrated both the effectiveness and effi-
ciency of our approach on real datasets.

Acknowledgements This work was supported by NSF of China (Grant
Nos. 61902017, 61925205, 61632016, 61521002, 61661166012),
Huawei, TAL Education Group, China Postdoctoral Science Foundation
(2019M650468) and China Scholarship Council. Note that Ning Wang’s
partial work was supported by National Key R&D Program of China
(2018YFC0809800) National Basic Research Program of China (973
Program) (Grant No. 2015CB358700), Fundamental Research Funds
for the Central Universities (Grant No. 2019RC015).

References

1. Abe, N., Zadrozny, B., Langford, J.: Outlier detection by active
learning. In: SIGKDD (2006)

2. Aggarwal, C.C.: Outlier ensembles: position paper. ACM SIGKDD
Explor. Newslett. 14(2), 49-58 (2013)

3. Alhelbawy, A., Gaizauskas, R.: Graph ranking for collective named
entity disambiguation. In: Annual Meeting of the Association for
Computational Linguistics (2014)

4. Arasu, A, Ré, C., Suciu, D.: Large-scale deduplication with con-
straints using dedupalog. In: ICDE (2009)

5. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach.
Learn. 56(1-3), 89-113 (2004)

6. Bellare, K., Iyengar, S., Parameswaran, A.G., Rastogi, V.: Active
sampling for entity matching. In: SIGKDD (2012)

7. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang,
S.E., Widom, J.: Swoosh: a generic approach to entity resolution.
VLDB J. 18(1), 255-276 (2009)

8. Bhattacharya, I., Getoor, L.: Collective entity resolution in rela-
tional data. TKDD 1(1), 5 (2007)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using

learnable string similarity measures. In: SIGKDD (2003)
Breunig, M.M., Kriegel, H., Ng, R.T., Sander, J.: Lof: identifying
density-based local outliers. In: SIGMOD (2000)

Bunescu, R.C., Pasca, M.: Using encyclopedic knowledge for
named entity disambiguation. In: EACL (2006)

Campos, G.O., Zimek, A., Sander, J., Campello, R.J., Micenkov4,
B., Schubert, E., Assent, 1., Houle, M.E.: On the evaluation of
unsupervised outlier detection: measures, datasets, and an empiri-
cal study. Data Min. Knowl. Discov. 30(4), 891-927 (2016)

Chai, C., Li, G., Li, J., Deng, D., Feng, J.: Cost-effective crowd-
sourced entity resolution: a partial-order approach. In: SIGMOD
Chang, C.-C., Lin, C.-J.: Libsvm: a library for support vector
machines. ACM TIST 2(3), 27 (2011)

Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative
information. J. Comput. Syst. Sci. 71(3), 360-383 (2005)
Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.:
Near optimal lp rounding algorithm for correlation clustering on
complete and complete k-partite graphs. In: Proceedings of the
Forty-Seventh Annual ACM Symposium on Theory of Comput-
ing, pp. 219-228. ACM (2015)

Chu, X., Ilyas, I.F., Koutris, P.: Distributed data deduplication. In:
PVLDB (2016)

Cucerzan, S.: Large-scale named entity disambiguation based on
wikipedia data. In: EMNLP-CoNLL (2007)

Cunningham, P., Delany, S.J.: k-nearest neighbour classifiers. Mul-
tiple Classif. Syst. 34(8), 1-17 (2007)

Das, R., Zaheer, M., Dyer, C.: Gaussian LDA for topic models with
word embeddings. In: ACL (2015)

Das, S., GC, P.S., Doan, A., Naughton, J.F., Krishnan, G., Deep,
R., Arcaute, E., Raghavendra, V., Park, Y.: Falcon: Scaling up
hands-off crowdsourced entity matching to build cloud services.
In: SIGMOD (2017)

Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation
clustering in general weighted graphs. Theor. Comput. Sci. 361(2—
3), 172-187 (2006)

Demaine, E.D., Immorlica, N.: Correlation clustering with partial
information. In: Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, pp. 1-13. Springer
(2003)

Demartini, G., Difallah, D.E., Cudré-Mauroux, P.: Zencrowd:
leveraging probabilistic reasoning and crowdsourcing techniques
for large-scale entity linking. In: WWW (2012)

Ebraheem, M., Thirumuruganathan, S., Joty, S., Ouzzani, M., Tang,
N.: Distributed representations of tuples for entity resolution. In:
VLDB (2018)

Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record
detection: a survey. IEEE Trans. Knowl. Data Eng. 19(1), 1-16
(2007)

Eshel, Y., Cohen, N., Radinsky, K., Markovitch, S., Yamada, I.,
Levy, O.: Named entity disambiguation for noisy text. In: CoNLL
(2017)

Fellegi, 1., Sunter, A.: A theory for record linkage. J. Am. Stat.
Assoc. 64(328), 1183-1210 (1969)

Francis-Landau, M., Durrett, G., Klein, D.: Capturing semantic
similarity for entity linking with convolutional neural networks. In:
Proceedings of the Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, pp. 1256-1261 (2016)

Gabrilovich, E., Markovitch, S. et al.: Computing semantic relat-
edness using wikipedia-based explicit semantic analysis. In: IICAI
(2007)

Gentile, A.L., Zhang, Z., Xia, L., Iria, J.: Graph-based semantic
relatedness for named entity disambiguation. In: International Con-
ference on Software, Services and Semantic Technologies (2009)

@ Springer

536

S.Haoetal.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Gokhale, C., Das, S., Doan, A., Naughton, J.F.,, Rampalli, N.,
Shavlik, J., Zhu, X.: Corleone: Hands-off crowdsourcing for entity
matching. In: SIGMOD (2014)

Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukr-
ishnan, S., Srivastava, D. et al.: Approximate string joins in a
database (almost) for free. In: VLDB (2001)

Hakimov, S., Oto, S.A., Dogdu, E.: Named entity recognition
and disambiguation using linked data and graph-based centrality
scoring. In: International workshop on semantic web information
management. ACM (2012)

Hao, S., Tang, N., Li, G., Feng, J.: Discovering mis-categorized
entities. In: ICDE (2018)

Hao, S., Xu, Y., Tang, N., Li, G., Feng, J.: Cleaning your wrong
google scholar entries. In: ICDE demo (2018)

Hazman, M., El-Beltagy, S.R., Rafea, A.: A survey of ontology
learning approaches. Database 7, 6 (2011)

He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers.
Pattern Recognit. Lett.. 24(9-10), 1641-1650 (2003)

Hochba, D.S.: Approximation algorithms for np-hard problems.
ACM Sigact News 28(2), 40-52 (1997)

Hu, Z., Huang, P., Deng, Y., Gao, Y., Xing, E.: Entity hierarchy
embedding. In: ACL (2015)

Jiang, Y., Li, G., Feng, J., Li, W.: String similarity joins: an exper-
imental evaluation. In: PVLDB (2014)

Karpinski, M., Schudy, W.: Linear time approximation schemes
for the Gale-Berlekamp game and related minimization problems.
In: Proceedings of the Forty-First Annual ACM Symposium on
Theory of Computing, pp. 313-322. ACM (2009)

Kolb, L., Thor, A., Rahm, E.: Dedoop: efficient deduplication with
hadoop. In: PVLDB (2012)

Kopcke, H., Rahm, E.: Training selection for tuning entity match-
ing. In: Program Committee Workshop on Management of Uncer-
tain Data, p. 3 (2008)

Liaw, A., Wiener, M., et al.: Classification and regression by ran-
domforest. R News 2(3), 18-22 (2002)

Lippmann, R.P.: Anintroduction to computing with neural nets.
IEEE ASSP Mag. 4(2), 4-22 (1987)

McAuley, J., Targett, C., Shi, Q., Van Den Hengel, A.: Image-based
recommendations on styles and substitutes. In: SIGIR (2015)
Phua, C., Alahakoon, D., Lee, V.: Minority report in fraud
detection: classification of skewed data. ACM SIGKDD Explor.
Newslett. 6(1), 50-59 (2004)

Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier,
Amsterdam (2014)

@ Springer

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for
mining outliers from large data sets. In: ACM Sigmod Record,
vol. 29, pp. 427-438. ACM (2000)

Rish, I. et al.: An empirical study of the Naive Bayes classifier. In:
IJCAI workshop (2001)

Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using
active learning. In: KDD (2002)

Singh, R., Meduri, V.V., ElImagarmid, A.K., Madden, S., Papotti, P,
Quiané-Ruiz, J., Solar-Lezama, A., Tang, N.: Synthesizing entity
matching rules by examples. In: PVLDB (2017)

Singla, P., Domingos, P.: Entity resolution with Markov logic. In:
ICDM (2006)

Steinwart, I., Hush, D., Scovel, C.: A classification framework for
anomaly detection. J. Mach. Learn. Res. 6(Feb), 211-232 (2005)
Sun, Y., Lin, L., Tang, D., Yang, N., Ji, Z., Wang, X.: Modeling
mention, context and entity with neural networks for entity disam-
biguation. In: IICAI (2015)

Swamy, C.: Correlation clustering: maximizing agreements via
semidefinite programming. In: Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 526-527.
Society for Industrial and Applied Mathematics (2004)
Vesdapunt, N., Bellare, K., Dalvi, N.N.: Crowdsourcing algorithms
for entity resolution. In: Proceedings of VLDB Endow (2015)
Vilalta, R., Ma, S.: Predicting rare events in temporal domains. In:
ICDM (2002)

Wang, J., Kraska, T., Franklin, M.J., Feng, J.: Crowder: crowd-
sourcing entity resolution. In: PVLDB (2012)

Wang, J., Li, G., Kraska, T., Franklin, M. J., Feng, J.: Leveraging
transitive relations for crowdsourced joins. In: SIGMOD (2013)
Wang, J., Li, G., Yu, J. X., Feng, J.: Entity matching: How similar
is similar. In: PVLDB (2011)

Weiss, G. M., Hirsh, H.: Learning to predict rare events in event
sequences. In: KDD (1998)

Yamada, I., Shindo, H., Takeda, H., Takefuji, Y.: Joint learning
of the embedding of words and entities for named entity disam-
biguation. In: The SIGNLL Conference on Computational Natural
Language Learning (2016)

Zimek, A., Campello, R.J., Sander, J.: Ensembles for unsuper-
vised outlier detection: challenges and research questions a position
paper. ACM SIGKDD Explor. Newslett. 15(1), 11-22 (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

	Mis-categorized entities detection
	Abstract
	1 Introduction
	2 Related work
	3 Problem and notation
	4 A rule-based framework
	5 Signature-based fast solution
	5.1 A signature-based framework
	5.2 Signature generation
	5.3 Filter and verification for positive rules
	5.4 Filter and verification for negative rules

	6 Rule generation
	6.1 Positive rule generation
	6.2 An enumeration-based algorithm
	6.3 A greedy algorithm
	6.4 Negative rule generation

	7 Resolving inconsistent rules
	7.1 Checking consistency
	7.1.1 A brute-force solution
	7.1.2 A signature-based fast solution

	7.2 Soft positive and negative rules
	7.3 Discovering mis-categorized entities by soft rules
	7.3.1 Correlation partition
	7.3.2 Partition split

	8 Experiments
	8.1 Experimental setup
	8.2 Experimental results

	9 Conclusion
	Acknowledgements
	References

