
Data+AI: LLM4Data and Data4LLM

Guoliang Li, Jiayi Wang, Chenyang Zhang
Tsinghua University

Jiannan Wang
Simon Fraser University

LLMs Are Revolutionizing Data/Database Systems
q LLMs are revolutionizing data management systems due to their:

• Text à Semantics: Semantic understanding capabilities
• Retrieval à Reasoning: Reasoning and planning ability
• Vertical domains à Multiple domains: Adaptability for supporting various tasks
• Closed World à Open World: Generalization capabilities

https://klu.ai/glossary/large-language-model 2

LLM4Data: LLM Capabilities – Semantic Processing

J. Wang, G. Li, and J. Feng. idatalake: An llm-powered analytics system on data lakes. Data Engineering, 2025 3

q Traditional data management can only get results exactly in database
q However, semantic processing is crucial to discern nuances, context

and subtleties that are typically challenging for traditional ML models

Analytics Query
What percentage of papers

at SIGMOD 2025 are
related to data and AI?

Data Lakes

LLM4Data: LLM Capabilities – Reasoning (Inference)

Sun J, Zheng C, Xie E, et al. A survey of reasoning with foundation models[J]. arXiv preprint arXiv:2312.11562, 2023. 4

q Conduct multi-step reasoning
q Perform better on logical, mathematical or programmatic tasks

LLM4Data: LLM Capabilities – Adaptability (Knowledge)

https://hub.baai.ac.cn/view/24150 5

q Extensive knowledge coverage due to diverse datasets
q Enable LLMs to understand and process various queries and tasks

LLM4Data: LLM Capabilities – Understanding & Generation

Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models. CoRR abs/2309.01219 (2023)
https://promptdrive.ai/llm-limitations/

6

q Beyond comprehension, LLMs are capable of generation
q LLMs can create human-like text in response to prompts

• Can be utilized in data management for generating reports, automating
data documentation, and even crafting queries in natural language

Input SQL:
SELECT … FROM emp WHERE empno IN
(SELECT deptno FROM dept …);

Rewrite Analysis:
… Convert the sub-query into a join
 between the "emp" and "dept" tables …

Rewritten SQL:
SELECT … FROM emp INNER JOIN dept
ON … AND emp.empno=dept.deptno;

· Supervised Finetuning
· Reinforcement Learning
· Active Learning
 …

R-Bot

Case Generation

Databases Rewrite
Engines· PostgreSQL

· MySQL
 … Expert Experience

Rewrite
Rules· Oracle

· SQL Server
 …

Feedbacks

Cases

Text2SQL Query Rewrite Diagnosis

LLM4Data: LLM Capabilities – In-context Learning

7

Prompt of Query Rewrite
Task Description
Write an equivalent SQL query that can be
executed on a Postgres database with decreased latency.

Instruction
1. Ensure output query is semantical-equivalent to the input query …

Example Input
select ... from t1 where t1.a=(select avg(a) from t3 where t1.b=t3.b);
Example Output
select … from t1 inner join (select avg(a) avg,t3.b from t3 group
by t3.b) as t3 on (t1.a=avg and t1.b=t3.b);

Input
select t1.* from t1 where t1.col1>(
 select max(t2.col2) from t2 where t2.col1 in (
 select t1.col1 from t1 where t1.col1=t2.col1));

Output
select t1.* from t1 inner join (
 select max(t2.col2) max, t2.col1 from t2
 group by t2.col1) as t2 on (
 t1.col1=t2.col1)
where t1.col1>max;

Xuanhe Zhou, Zhaoyan Sun, Guoliang Li. DB-GPT: Large Language Model Meets Database. Data Science and Engineering 2023.

q High-Quality Prompt can instruct
LLMs to optimize DB tasks without
training

Ø Zero-shot Prompting

• Input LLM with a task description, without
training over labeled data

• Instruction Prompting

• Input LLM with explicit instructions on
approaching the task, e.g., detailing the
format, tone, or type of output response

Ø Few-shot Prompting

• Provide LLM with a few examples of the
task within the prompt to guide the model
on how to generate responses

LLM4Data: Motivation and Opportunities

Zhou X, et al. A Survey of LLM x DATA. arXiv, 2025 8

q Opportunities of LLM for data management
• Automatic planning for data preparation

• Discovery, cleaning, integration, mixing, standardization

• Semantic data analytics of unstructured data, structured data, data lakes.
• Natural language based query optimizations
• Data interpretation and insights

• Data/Database System optimization
• Tuning, Diagnosis, Optimization

LLM4Data: Challenges and Solutions

Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models. CoRR abs/2309.01219 (2023)
https://promptdrive.ai/llm-limitations/

RAG, Write instructive prompts to ask for source/evidence or call tools …

Task decomposition; Prompt for multiple times and Vote; Self-Reflection …

Cache and reuse historical messages …

Task decomposition; Provide reasoning process examples; Prompt engineering …

RAG …

Chunking; Embedding; Prompt Compression; RAG + Vector Databases …

Resource

9

Give conflicting outputs for very similar prompts

Generate text that seems realistic and plausible but is actually inaccurate

Cannot automatically retain information from previous chats or update in time

Struggle with tasks requiring complex reasoning, multi step problem-solving, …

The knowledge LLM used can be out-of-date, because the new knowledge is
learned in batch for traditional model finetuning

Billions of parameters to update à LoRA; RAG …

Have memory limits on how much text they can process at once

1. (Incremental) Pretraining 2. (SFT/RLHF) Finetuning 3. (RL) Post-training

5. RAG

• Common Knowledge Acquisition
• Understanding Diverse Texts

• Instruction Following
• Task Adaption like Traslation/Q&A
• Align with human preferences

• Slow thinking
• Robustness

Enhancement

• External Knowledge Integration
• Contextual Relevance / QA Accuracy

Data4LLM: Different Stages of LLM

4. Prompting

• Context Comprehension
• Learn from demo examples

6. Agent

• LLM system equipped with
reasoning, tools, and memory 10

Data4LLM: Data Management Can Benefit LLMs
q The LLM life-cycle includes pretraining, fine-tuning (SFT and RLHF),

prompting, RAG, Agent
q Effective data management is fundamental to the scalable development

and deployment of LLMs

https://klu.ai/glossary/large-language-model 11

• Data Preparation

• Data Discovery

• Data Selection

• Data Cleaning

• Data Augmentation

• Data Labeling

• Data Synthesis

• Data Processing

• Data Optimization

• Data Storage

• LLM Training

• LLM Serving (Inference)

Data4LLM: Motivation and Opportunities

12

q Opportunities of Data4LLM
• Improved Training Efficiency and Cost
• Improved Inference Efficiency

Zhou X, et al. A Survey of LLM x DATA. arXiv, 2025

Data4LLM: Challenges and Solutions

13Zhou X, et al. A Survey of LLM x DATA. arXiv, 2025

Data4LLM

Large amount of
data processing

Gradient-based Selection; Perplexity-based Selection; Model-based Selection …

Difficult to select high-quality pretraining datasets from large datasets

Data Redundancy

Hard to select high-
quality data

Data Mixing

Unpredictable
inference memory

usage
Unpredictable
inference time
consumption

Training inefficiency

Page-based memory allocation; KV Cache Management; Quantization …

Memory usage grows over time and is unpredictable due to the LLM decoding

Request Batching; Request Scheduling; Load Balancing; Speculative Decoding…

Execution time is unpredictable due to the LLM decoding process

Empirical-Determined Methods; Model-Determined Methods …

Weight of different domains of data affects training efficiency and performance

Data Parallelism; Pipeline Parallelism; Checkpointing Methods …

Training LLMs is computationally expensive and time-consuming

MD5 hash; Min hash; Sim hash; Semantic Matching; Bloom Filters …

Redundant data can introduce inefficiency in LLM training and harm performance

Page-based memory allocation; KV Cache Management; Quantization …

Processing massive datasets for LLM training presents scalability challenges

Outline of LLMxData

14

q LLM4Data Techniques
• LLM Prompting
• RAG & Vector DB
• Data Agents

• Unstructured Data Analytics

• SQL + Semantics

• Data Lake Analytics

q Data4LLM Techniques
• Data Preparation
• LLM Inference
• LLM Training

q Open Challenges

Unstructured
Data

Analytics

Data Lake
Analytics

Understanding

Multi-modal Data

Semi-Structured

…

Structured Unstructured

Tables Documents VideosImages …JSON XML

Techniques

Tool Calling

Linking

Reasoning Vec Index

LLM Inference

LLM Training

Data Preparation
Discovery Selection Cleaning

Augmention Labeling Synthesis

Data4LLM

LLM4Data

Efficient serving of high-quality LLMs

Data Analytics

Complex Query Reasoning

Request BatchingRequest Scheduling

Load Balancing

Speculative Decoding

Operator Acceleration

Efficiency OptimizationMemory Management

Page-based memory

Cache
Sharing

Memory-Constrained
Network Variants

Quantization

Prepare high-quality
data for LLM training

Train larger models
over larger data

Reduce memory
consumption for each

worker

Outline of LLMxData

15

q LLM4Data Techniques
• LLM Prompting
• RAG & Vector DB
• Data Agents

• Unstructured Data Analytics

• SQL + Semantics

• Data Lake Analytics

q Data4LLM Techniques
• Data Preparation
• LLM Inference
• LLM Training

q Open Challenges

Unstructured
Data

Analytics

Data Lake
Analytics

Understanding

Multi-modal Data

Semi-Structured

…

Structured Unstructured

Tables Documents VideosImages …JSON XML

Techniques

Tool Calling

Linking

Reasoning Vec Index

LLM Inference

LLM Training

Data Preparation
Discovery Selection Cleaning

Augmention Labeling Synthesis

Data4LLM

LLM4Data

Efficient serving of high-quality LLMs

Data Analytics

Complex Query Reasoning

Request BatchingRequest Scheduling

Load Balancing

Speculative Decoding

Operator Acceleration

Efficiency OptimizationMemory Management

Page-based memory

Cache
Sharing

Memory-Constrained
Network Variants

Quantization

Prepare high-quality
data for LLM training

Train larger models
over larger data

Reduce memory
consumption for each

worker

Challenges of LLM4Data

16

q Low Accuracy q High Cost

q Hallucination q Limited Reasoning

• Large number of LLM invocations

• Require multi-step reasoning

• Hard for complex tasks

• LLMs may output factual errors

Principles of LLM4Data

17

q Reasoning and Self-Reflection

Input SQL:
SELECT … FROM emp WHERE empno IN
(SELECT deptno FROM dept …);

Rewrite Analysis:
… Convert the sub-query into a join
 between the "emp" and "dept" tables …

Rewritten SQL:
SELECT … FROM emp INNER JOIN dept
ON … AND emp.empno=dept.deptno;

· Supervised Finetuning
· Reinforcement Learning
· Active Learning
 …

R-Bot

Case Generation

Databases Rewrite
Engines· PostgreSQL

· MySQL
 … Expert Experience

Rewrite
Rules· Oracle

· SQL Server
 …

Feedbacks

Cases

q Involving Domain Knowledge q Cost-Efficiency Optimization

q Verification and Reliability

Semantic Filter

Semantic Filter

Hash GroupBy

Programed Count

Semantic Extract

Programed Count

Programed Max

Linear Scan

Semantic Filter

Compute

Semantic Filter

Plan

Optimization

18

Technical Solutions
Approach Definition Purpose Advantages Examples

Pre-training
Initial training on large,
diverse datasets to learn
general patterns.

Establish
foundational
knowledge

Efficient learning;
broad applicability

LLMs like GPT,
DeepSeek

Fine-tuning
Additional training on task-
specific datasets to refine
model performance.

Adaptation to specific
tasks

Improved accuracy for
specific applications

Image classification,
sentiment analysis

Post-training
(RL)

Further training to refine
strategies and
performance.

Optimize decision-
making

Enhanced strategy
refinement; improved
robustness

Game playing,
autonomous
driving

Prompting
Guiding model behavior
using specific input
formatting or instructions.

Directs model output
without retraining

Flexible interaction;
reduced need for
labeled data

Interactive assistant
tasks

RAG
Combines retrieval of
relevant documents with
generation tasks.

Enhances information
retrieval

Access to external data
sources; improved
relevance

Knowledge-based
question answering

Agent
Autonomous systems that
perceive, reason, and act.

Decision-making in
complex scenarios

Real-time interaction;
adaptive strategies

Robotics, automated
trading systems

19

Background of Unstructured Data/Data Lake Analytics

p Large-scale raw data in data lakes

Difficult to conduct data analytics over data lakes

• Structured: relational databases

• Semi-Structured: CSV, JSON, XML

• Unstructured: emails, documents, PDFs

p Challenges
l No schema, hard to analyze
l Hard to understand data semantics
l No plan, hard to conduct data analytics

Summary of Different Data Analytics Methods

20

p LLMs enable semantic data analytics over complex data
l Understand, planning, reasoning

p Queries
l NL: Flexible, can express

semantic conditions
l SQL: Precise with strict

syntax, hard to express
semantic conditions

l Code: Precise with strict
syntax, hard to write

p Data
l Textual Embedding
l Extraction (Unstructure2Structure) Data

Query

SQL

Code

NL

Structured Unstructured Data
Lake

SYMPHONY (CIDR 23)

CAESURA (CIDR 24)

AOP (CIDR 25)
Unify (ICDE 25)

Semi-
Structured

LOTUS (Arxiv 24)

TAG (CIDR 25)

Evaporate (VLDB 23)

ZENDB (ICDE 25)
UQE (VLDB 23)

iDataLake (IEEE Bulletin 25)

TWIX (Arxiv 25)

Text-to-Table (ACL 22)

STable (EACL 24)

PALIMPZEST (CIDR 25)

PALIMPCHAT (SIGMOD 25 demo)

Aryn (CIDR 25)

DocETL (VLDB 25)

Support semantic analyticsDo not Support semantic analytics

NL2SQL Methods

Pandas-like

Relational DB

Specialized packages

Data LakeHouse

NoSQL Systems

NoSQL Systems

NL2Code Methods

Regex Methods

Keyword Methods

ELEET (VLDB 25)

Specialized packages

Classification of Unstructured Data/Data Lake Analytics Methods

21

p Structured Information Extraction p Manually Write Code

p NL2Pipeline p Data Agent

Manually
Write Code

Instruct LLMs by
coded program

Operators

Filter

Join
…

NL Query

Conduct data analytics
following the plan

Orchestrate plan with
the operators

NL Query

Collaborate to determine
how to analyze the data

Offline
Extract

Semi-
structured data

Structured
Table

SQL

Category 1: Structured Information Extraction

22

q Key idea: Extract structured tables from semi-structured data,
then analyze by SQL

q Challenges:
• How to determine the key schema automatically?

• How to improve the accuracy of information extraction?

• How to reduce the cost for structured information extraction?

Offline
Extract

Semi-
structured data

Structured
Table

SQL

Summary of Structured Information Extraction Methods

23

Offline
Extract

Unstructured
data

Structured
Table

SQL

• Generate code to extract structured info. from fragments of templatized text

• Leverage common hierarchical structures of headers in templatized docs

• Leverage common visual patterns of templatized documents

q Asking LLMs to extract from each document is costly

q Common patterns in semi-structured data can be utilized
to reduce the high LLM cost, potential solutions include:

q Hard to extract structured tables from documents
q Core Idea

q Feed sampled documents to the LLM, and prompt it to generate useful information that
can form a structured table (e.g., writing code to extract the values of important attributes)

q Unstructured data can thus be analyzed by analyzing structured tables through SQLs

Code Generation for Table Data Extraction from Semi-Structured Data

Arora S, Yang B, Eyuboglu S, et al. Language models enable simple systems for generating structured views of heterogeneous data lakes[J]. VLDB, 2023.

EVAPORATE-CODE+
(Doc2Table)

24

qPrompt-based Table Data Extraction
q Schema Synthesis

q With a sampling subset of documents, it prompts LLMs to extract attributes based on
their occurrence frequencies

q Rerank the extracted attributes by adjusting their frequency weights with LLMs
q Code Synthesis

q A heavy job to extract attribute values from every document à Prompt LLM to write
code to extract the attribute values more efficiently

q Limitation: require documents follow certain structures (semi-structured)

Code Generation for Table Data Extraction from Semi-Structured Data

Arora S, Yang B, Eyuboglu S, et al. Language models enable simple systems for generating structured views of heterogeneous data lakes[J]. VLDB, 2023.

Function
Prompt

25

Table Data Extraction Based on Hierarchical Structures of Headers

Towards accurate and efficient document analytics with large language models[J]. arXiv preprint arXiv:2405.04674, 2024.

q Key Insight:
• Many documents are organized in the same way while with different content, e.g., reports,
• Such templatized documents follow consistent hierarchical structures of headers

q Document structure can be represented by a tree
• Nodes correspond to header phrases and sections in the document.

• Edges represent semantic hierarchy (e.g., Section > Subsection >

Paragraph)

• This tree structure can be used for matching across documents

q To identify such common structures:
• Sample a subset of documents
• Identify common structures by matching the header

structures extracted by LLMs of the documents

26

Table Data Extraction Based on Hierarchical Structures of Headers

Towards accurate and efficient document analytics with large language models[J]. arXiv preprint arXiv:2405.04674, 2024.

q Populating Tables (Structure Tree) from Documents

• Uses LLMs to identify common structures in a sample document
• Uses rule-based identification for other documents based on the identified template

(Assume all documents follow the same template)

q Support SQL query (attribute corresponds to certain text span and node)

q Limitation: Rely on the assumption of all documents strictly follow the same template

Ø Each node in the structure tree has a summary sketch
(small text and metadata)

Ø Efficiently locate the text span needed in the query

27

Table Data Extraction Based on Visual Patterns

TWIX: Automatically Reconstructing Structured Data from Templatized Documents[J]. arXiv preprint arXiv:2501.06659, 2025.

q Semi-structured data contain common visual patterns that store values of certain attributes

q Field Prediction: Identify which text phrases within sampled documents are template "Fields" (e.g.,
headers, keys) versus "Values" or "Metadata"

q Extract phrases by OCR and check the text content at the same location across different
documents by LLM

q Template Assembly: Combine partial fields and identify their nested relationships by LLM

q Template-guided Data Extraction: Process other documents based on the identified template

q Limitation: Rely on the
assumption of documents strictly

follow the same template (Values
of the same attribute occur at the
same position)

28

Takeaways of Structured Information Extraction Methods

29

q Problems:
• Low Generality: Requiring data to follow different degrees of templates, i.e., semi-

structured
• Low Accuracy: The extracted tables are lossy representations of original data
• High Cost: Still lack low-cost methods to capture semantic patterns in unstructured data

q Common patterns in semi-structured data can be utilized to avoid LLM calls
l Keyword or data following certain regular expressions can be extracted by simple code
l Structures of headers can segment documents into spans with different semantic

meanings
l Common visual patterns that contain key-value info can be identified by a sample of data

Offline
Extract

Unstructured
data

Structured
Table

SQL

Category 2: Manually Write Code

30

q Key idea: Manually orchestrate execution process and conduct semantic
operations following prompts in the code

q Challenges:
• How to optimize the efficiency of the manually orchestrated plan?

• How to reduce the LLM cost of the manually orchestrated plan?

Manually
Write Code

Instruct LLMs by
coded program

Summary of Manually Write Code Methods

31

qCost/Efficiency Optimization Methods
l Bypass LLM: Replace expensive LLM invocations with cheap approximate

methods

l Model Cascade: Use LLMs with smaller #parameters instead of large #parameters

l Approximate Processing: Estimate aggregation queries by executing on samples

l Cost-based Optimization: Estimate execution cost to optimize plans

l Query Rewrite: Reduce the amount of data to be processed by LLMs

qManually orchestrated plans, though relatively accurate, face
efficiency & cost issues

q Many real-world tasks require semantic reasoning over large datasets,
such as summarizing research papers, extracting biomedical insights

q Semantic processing is beyond the capability of relational operators
q Propose a set of pandas-like semantic operators: support multi-row,

natural language-specified operations over tables

Semantic Operators: A Declarative Model for Rich, AI-based Data Processing. arXiv 2025

Semantic Operators for Tables of Unstructured and Structured Data

32

q Definition: Semantic operators are declarative, natural language-
parameterized transformations over data

q Users can write pandas-like code to design their data analytics process

Semantic Operators: A Declarative Model for Rich, AI-based Data Processing. arXiv 2025

Semantic Operators for Tables of Unstructured and Structured Data

33

q Main idea: Not all cases must be processed by LLMs to get correct result

q Use a fast-but-imperfect approximate model to handle easy cases, reserving
the slow-but-accurate model only for hard decisions

q Execute on data samples to determine whether to use approximations
q Examples:

qFilter: Use embedding-based classifier or distilled LLMs to filter out obvious
matches/mismatches

qJoin: Use embedding-based similarity to filter tuple pairs

q Limitation:
• Optimization degree is low; cannot optimize at the level of plan structure
• Inappropriate adoption of approximation methods results in low accuracy

Semantic Operators: A Declarative Model for Rich, AI-based Data Processing. arXiv 2025

Replace LLMs with Cheaper Approximations for Acceleration

34

UQE: A Query Engine for Unstructured Databases. NeurIPS 2024

Approximate Processing for Accelerating Aggregation Queries

35

q Propose stratified sampling for accelerating aggregation queries
q Accelerate by reducing the amount of data processed by LLMs

q Embed all rows and cluster them into K groups
q Perform stratified sampling within clusters to select a small number of rows
q Use weighted averaging of sampled results to unbiasedly estimate aggregation queries

q UQE enables user to query tables containing unstructured columns by SQL
with semantic predicates

q Support semantic predicates by prompting LLMs for processing
unstructured columns

qOnline Active Learning for Non-Aggregation Queries to reduce LLM cost
qEmbed all rows and initialize a lightweight model (randomly initialized)
qAt each step, sample rows with highest predicted relevance (predicted by the lightweight

model, ensure sample effectiveness for exploitation) plus small noise (ensure

diversity of sampled data, for exploration)
qCall LLMs to label the sampled data and update the lightweight model
qRepeat above process, and finally process remaining data using the lightweight model

UQE: A Query Engine for Unstructured Databases. NeurIPS 2024

Online Active Learning of Lightweight Model for Non-Aggregation Queries

36

qLimitation: Hard to collect enough data online for accurate model training, e.g.,

label skewness for extreme selectivity

ELEET: Efficient Learned Query Execution over Text and Tables. VLDB 2025

Pretrain Lightweight Language Models for Querying Tables and Text

37

qScenario：Query over both structured tables and unstructured text

qRelational operators are insufficient to handle unstructured text

qMethod：
q Propose multi-modal operators that take documents as input, and output tables

q Since the outputs are tables, new operators can be included in the same plan with relational operators

MMOps

qUsing LLMs to implement these operators is costly

qPretrain non-autoregressive small language models (SLM) for
acceleration and reduce cost

ELEET: Efficient Learned Query Execution over Text and Tables. VLDB 2025

Pretrain Lightweight Language Models for Querying Tables and Text

38

qRather than extracting structured data in advance, ELEET conducts
online information extraction with the SLMs

q Key idea: Information in tables can help locate structured information in text
q SLMs are more efficient than LLMs, ensuring efficient online extraction
q Examples:

qIf the text contains multiple instances (Alice, Bob, Carol…),
structured data (name=Carol) can help identify the target
instance

qStructured table operations avoid the processing of some
documents (Avoid processing bob.txt and carol.txt)

qHelp extract multiple tuples from a text (multiple diagnosis
for Alice)

ELEET: Efficient Learned Query Execution over Text and Tables. VLDB 2025

Limitation of Specialized Small Language Models

39

qCannot support complex semantic analytics
q SLMs have weaker semantic understanding ability than LLMs
q Only supports operations supported by traditional databases (queries text like tables)

qLack world knowledge
q SLMs do not have world knowledge like LLMs
q Cannot support multi-step logical reasoning with world knowledge

qRely on the assumption that attributes in text are known

A DECLARATIVE SYSTEM FOR OPTIMIZING AI WORKLOADS. arXiv 2024

Cost-based Plan Optimization for Improving Performance

40

qPALIMPZEST allows users to pose AI-powered analytics queries over
collections of unstructured data using declarative APIs

q Users manually set target runtime, LLM cost, and result quality

q Transforms the program into various equivalent logical plans
q Selects the plan with lowest estimated cost under runtime and quality constraint

qChallenge: Cost
estimation for execution
over unstructured data is
difficult

A DECLARATIVE SYSTEM FOR OPTIMIZING AI WORKLOADS. arXiv 2024

Cost-based Plan Optimization for Improving Performance

41

qFor plan selection, needs to estimate the performance of each plan

q In the worst case, requires enumerating an exponentially number of plans

qAssumption: operators are independent
q Estimate each operator, compose operators estimations to estimate plan performance

A DECLARATIVE SYSTEM FOR OPTIMIZING AI WORKLOADS. arXiv 2024

Cost-based Plan Optimization for Improving Performance

42

qMethod:
qExecutes a set of plans on a small set of sampled data
qObtain per-operator estimates:

q distribution of runtimes, per-record cost and quality of each operator
qEstimate performance of each plan by composing its per-operator

estimates
qSums the runtime
qSums the cost
qTakes the product of their qualities

qLimitation: Estimation by executing over sampled data is time-consuming and
inaccurate, which limits optimization effectiveness

Takeaways of Manually Write Code Methods

43

Ø Using proxy methods may influence accuracy of the results

Ø Approximate processing is not universal, only support aggregation queries

Ø Cost-based optimization directly relies on the accuracy of cost estimation
• Require cardinality estimation for semantic predicates. Uniform sampling is inaccurate

Manually
Write Code

Instruct LLMs by
coded program

qSummary of different optimization methods:

In addition to LLM cost, human cost should also be considered

Limitations of Manually Write Code Methods

44

• Rely on user expertise

• Rely on user’s knowledge of data

• Coding and debugging is time-consuming

n Users query by writing code I need to write the code
to analyze …

Human cost is too high! Can we make analytics more accessible?
Even though the LLM cost can be optimized…

n Natural language is a easy way to express analytics queries

ü Easy to access for users

ü Low human effort

ü Difficulties are left to the analytics system

“Daydream”

Category 3: NL2Pipeline

How to answer natural language analytics queries automatically?
45

Category 3: NL2Pipeline

46

q Key idea: Predefine the semantic operators and transform the natural
language query into plans composed of the operators for execution

q Challenges:
• How to automatically generate plan with correct logic?

• How to optimize the efficiency of the generated plan?

Operators

Filter

Join
…

NL Query

Conduct data analytics
following the plan

Orchestrate plan with
the operators

Summary of NL2Pipeline Methods

47

qCandidate plan generation solutions for NL2Pipeline:
① Use static predefined execution process

② Instruct LLMs to determine the plan by providing descriptions of the
available operator

③ Progressively match appropriate operators for the query

Text2SQL is Not Enough: Unifying AI and Databases with TAG. CIDR 2025

Using Predefined Static Execution Process for Data Analytics

48

pTAG: Focus on natural language questions that can be expressed in
relational algebra over tables

pSupport semantic predicates by UDFs that invoke LLMs
pMain idea: Transform the natural language query into SQLs with LLM

UDFs

NL2SQL

RAG

• Cannot handle semantic
predicates

• Support bulk processing

• Cannot Support bulk processing

NL query with semantic
predicates

Table

• Support semantic processing

NL2SQL with
LLM UDFs

Text2SQL is Not Enough: Unifying AI and Databases with TAG. CIDR 2025

Using Predefined Static Execution Process for Data Analytics

49

p Predefined Static Execution Process in TAG:
1. Query Synthesis: Converts the user

query into a SQL and express semantic
predicates as LLM-based UDFs

2. Query Execution: Executes the SQL
query within a database system

3. Answer Generation: Uses an LLM to
generate the final NL answer based on the
user query and retrieved table data

q Limitations: Only support queries that can be represented by relational algebra

Do not support multi-step logical reasoning and execution is costly

CAESURA: Language Models as Multi-Modal Query Planners. CIDR 2024

Instruct LLMs to Generate Plans of Multi-Model Large Models

50

qProblem: Answer natural language queries over multi-modal data including
tables, text, figures

qMethod: Transforms natural language queries into executable multimodal query
plans by prompting LLMs

q The prompting is manually designed with multi-phase to improve plan quality
q The descriptions of data, available operators and query is included in the designed prompt

CAESURA: Language Models as Multi-Modal Query Planners. CIDR 2024

Instruct LLMs to Generate Plans of Multi-Model Large Models

51

qPlanning: Prompt LLMs to write a

step-by-step logical plan in natural language

qMapping: Convert each logical step into an

executable operator (SQL, Python, Visual QA,

etc.)

qLimitations:
Ø The plans generated by directly prompting

the LLMs suffer from low accuracy
Ø The generated plans are sequential with low

efficiency

qMulti-phase Prompting

Wang J, Li G. Aop: Automated and interactive llm pipeline orchestration for answering complex queries. CIDR, 2025.

Instruct LLMs to Generate Plans of Semantic Operators

52

qProblem: Answer natural language
queries over data lakes including
structured, semi-structured and
unstructured data

qKey idea: human-crafted pipelines are
essentially well-constructed
assemblies of standard semantic
operators

• Identify key operators for building
effective LLM pipelines

• Provide operator descriptions for
orchestrating pipelines by LLMs

Wang J, Li G. Aop: Automated and interactive llm pipeline orchestration for answering complex queries. CIDR, 2025.

Instruct LLMs to Generate Plans of Semantic Operators

53

qMethod:
Ø Instruct LLMs to generate multiple chain-format pipelines by prompts
Ø Optimize the pipelines into DAG structure by analyzing the operator dependencies
Ø Combine different pipelines together
Ø Layer-wise pipeline execution to obtain the final result

qBenefit: Reduce plan generation complexity as each operator can correctly solve a subtask

qLimitation: Rely on LLMs to generate plan by prompts, which may be beyond LLM capabilities

Progressively Match Appropriate Operators for the Query

54

qUnify proposes a set of operators for unstructured data analytics
qObservation: Each operator corresponds to certain NL expressions

Ø Examples:

Jiayi Wang, et al. Unify: An Unstructured Data Analytics System. (ICDE 2025)

p Filter:

• Questions that are related to football
• Films that have ratings over 8

p Count:

• Number of articles

[Entity] that [Condition]

Number of [Entity]

qKey idea: Prepare operator expressions for online matching
• Example Query: Number of

films that have ratings over 8

[Entity] that [Condition]Number of [Entity]
FilterCount

Number of [Entity] that [Condition]

Jiayi Wang, et al. Unify: An Unstructured Data Analytics System. (ICDE 2025)

Progressively Match Appropriate Operators for the Query

55

• Overview: progressively identifying appropriate pre-defined logical
operators and reducing the query with the operators.

① Semantic Parsing: extract the logical representations from the query

② Operator Matching: identify the matched logical operators

③ Query Reduction: reduce with the logical operators to generate a plan

④ Error Handling: backtrack to the previous reduction

Count the number of movies
directed by Steven Spielberg
that the number of positive
reports is larger than the
number of negative ones by
their report comments.

Operator Matching

1. Filter

4. Count

2. Compare

Query Reduction

Count the number of movies
directed by Steven Spielberg
that the number of positive
reports is larger than the
number of negative ones by
their report comments.

Next IterationSemantic parsing

3. Groupby

Jiayi Wang, et al. Unify: An Unstructured Data Analytics System. (ICDE 2025)

Cost-based Plan Optimization with More Accurate Cardinality Estimation

56

• Observation: data points satisfying the query often have high semantic

relevance with the query

• Key Ideas:

• Estimation by importance sampling

• Focus more on data points closer to the query vector
Data point not satisfying the query Data point satisfying the queryQuery

(a) Questions related to football (b) Importance Function

<latexit sha1_base64="doupWb9d7gYNKKdliQAJKWT2wNk=">AAADb3icjVLLSsNAFD1tfNa3LlwIEiyCopREfC2LblxWtCrUIkmc1mCahGQiiPgJbvXb/ANd+geemaagFqsTktw595x75965bhz4qbSs10LRGBoeGR0bL01MTk3PzM7Nn6VRlnii7kVBlFy4TioCPxR16ctAXMSJcDpuIM7d20PlP78TSepH4am8j0Wz47RDv+V7jiR00rqyr2bLVsXSy+w37NwoI1+1aK6wgUtcI4KHDB0IhJC0AzhI+TRgw0JMrIkHYgktX/sFHlGiNiNLkOEQveW3zV0jR0PuVcxUqz1mCfgmVJpYpSYiL6Gtspnan+nICv0t9oOOqc52z7+bx+oQlbgh+peux/yvTtUi0cK+rsFnTbFGVHVeHiXTXVEnN79UJRkhJqbsa/oT2p5W9vpsak2qa1e9dbT/TTMVqvZezs3wPrA6l1F/vxHl/4sR84wtnl5lG8Tr9rHHTLHZdyMllDiJ9s+56zfOtir2bmXneLtcPchncgxLWMEa524PVRyhhjqzt/GEZ7wUP4xFY9kwu9RiIdcs4Nsy1j8BO0GvyQ==</latexit>

f1

<latexit sha1_base64="EsYL4qfJJ/aZmEghCtayKHv0qWs=">AAADb3icjVLLSsNAFD1tfNT41oULQYJFUJSSiq9l0Y1LRauCiiRxUoNpEpKJUIqf4Fa/zT/QpX/gmTEFtfiYkOTOuefcO/fOdZMwyKRtP5fKxsDg0HBlxBwdG5+YnJqeOcniPPVE04vDOD1znUyEQSSaMpChOEtS4bTdUJy6t3vKf3on0iyIo2PZScRl22lFgR94jiR05F+tX01V7Zqtl9Vv1AujimIdxNOlVVzgGjE85GhDIIKkHcJBxuccddhIiF2iSyylFWi/wD1ManOyBBkO0Vt+W9ydF2jEvYqZabXHLCHflEoLS9TE5KW0VTZL+3MdWaE/xe7qmOpsHf7dIlabqMQN0b90PeZ/daoWCR87uoaANSUaUdV5RZRcd0Wd3PpUlWSEhJiyr+lPaXta2euzpTWZrl311tH+F81UqNp7BTfH66/VuYz6840o/1+MhGf0eXqV7TfeRx97zAxrfTdiwuQk1r/PXb9xsl6rb9U2Dzeqjd1iJiuYxyKWOXfbaGAfB2gyewsPeMRT+c2YMxYM64NaLhWaWXxZxso7Pkqvyg==</latexit>

f2
<latexit sha1_base64="l8Js5njuvqMal0bYz9uVPzIHDZ8=">AAADb3icjVLLSsNAFD1tfNT61oULQYJFUJSS+l4W3bisaFVQkSROa2iahGQilOInuNVv8w906R94ZpqCWnxMSHLn3HPunXvnOpHvJdKyXnJ5Y2h4ZLQwVhyfmJyanpmdO0vCNHZF3Q39ML5w7ET4XiDq0pO+uIhiYbcdX5w7rUPlP78XceKFwansROK6bTcDr+G5tiR00rjZupkpWWVLL3PQqGRGCdmqhbO5dVzhFiFcpGhDIICk7cNGwucSFViIiF2jSyym5Wm/wAOK1KZkCTJsoi1+m9xdZmjAvYqZaLXLLD7fmEoTK9SE5MW0VTZT+1MdWaE/xe7qmOpsHf6dLFabqMQd0b90feZ/daoWiQb2dQ0ea4o0oqpzsyip7oo6ufmpKskIETFl39If03a1st9nU2sSXbvqra39r5qpULV3M26Kt1+rcxj15xtR/r8YEc/Y4OlVtt94vT72mQk2Bm6kiCInsfJ97gaNs81yZbe8c7xdqh5kM1nAIpaxyrnbQxVHqKHO7E084gnP+XdjwVgyzB41n8s08/iyjLUPQVOvyw==</latexit>

f3 <latexit sha1_base64="02+0ttGllXtDO/z/ZZJMf4wRWGc=">AAADb3icjVLLSsNAFD1tfNZXqwsXggSLoCgllfpYim5cVrRVUJEkndbQNAnJRBDxE9zqt/kHuvQPPDNNQS0+JiS5c+459869c53I9xJpWS+5vDEyOjY+MVmYmp6ZnSuW5ptJmMauaLihH8bnjp0I3wtEQ3rSF+dRLOye44szp3uo/Ge3Ik68MDiVd5G46tmdwGt7ri0JnbSva9fFslWx9DKHjWpmlJGteljKbeASLYRwkaIHgQCStg8bCZ8LVGEhInaFe2IxLU/7BR5QoDYlS5BhE+3y2+HuIkMD7lXMRKtdZvH5xlSaWKUmJC+mrbKZ2p/qyAr9Kfa9jqnOdse/k8XqEZW4IfqXbsD8r07VItHGnq7BY02RRlR1bhYl1V1RJzc/VSUZISKm7Bb9MW1XKwd9NrUm0bWr3tra/6qZClV7N+OmePu1OodRf74R5f+LEfGMbZ5eZfuN1+/jgJlgc+hGCihwEqvf527YaG5VqjuV7eNaef8gm8kJLGEFa5y7XezjCHU0mL2DRzzhOf9uLBrLhtmn5nOZZgFflrH+AURcr8w=</latexit>

f4
Distance

Jiayi Wang, et al. iDataLake: An LLM-Powered Analytics System on Data Lakes. (IEEE Data Engineering Bulletin 2025)

Optimize Execution Efficiency of Generated Plans

57

• Plan Adjustment During Execution: adjusts the plan dynamically when

operator execution fails or can be replaced by other low-cost operators

• Parallel Execution for low latency

Pipeline Execution
Interactively Check

Topologically
bottom-up
execution

Intermediate
Results

Adjust
Pipeline

Replan

Re-identify
Data

Continue
Execution

Modified
Query

Answer

n Problem: How to optimize the execution efficiency of the plan?

Takeaways of NL2Pipeline Methods

58

Ø Static predefined execution process cannot handle complex queries

Ø Directly instructing LLMs to generate pipeline achieves limited accuracy, since

Ø Progressively matching appropriate operators is limited by inflexibility of operaotrs,

strict requirement of intput/output relationship of operators

qSummary of different pipeline generation methods:

Operators are still not flexible enough and restricts the flexibility of NL

Operators

Filter

Join
…

NL Query

Conduct data analytics
following the plan

Orchestrate plan with
the operators

Category 4: Data Agent

59

qData Agent: designed to autonomously carry out data-related tasks with
capabilities for knowledge comprehension, automatic planning, and self-
reflection of LLMs

q Challenges:
• How can data agents understand queries, data, other agents, and tools?

• How can data agents orchestrate effective and efficient pipelines to bridge
the gaps between user requirements and underlying heterogeneous data?

• How to schedule and coordinate agents/tools to improve effectiveness?

NL Query

Collaborate to determine
how to analyze the data

Key Factors of Data Agent

60
Zhaoyan Sun, et al. Data Agent: A Holistic Architecture for Orchestrating Data+AI Ecosystems. (IEEE Data Engineering Bulletin 2025)

p The Data Agent is designed to autonomously carry out data-related tasks with

capabilities for knowledge comprehension, automatic planning, and self-reflection.

A Framework Design of Data Agent

61
Zhaoyan Sun, et al. Data Agent: A Holistic Architecture for Orchestrating Data+AI Ecosystems. (IEEE Data Engineering Bulletin 2025)

p Need to solve challenges in multiple important components:

• Unified semantic catalog, data fabric over heterogeneous data, agent-agent interaction…

Summarization of Unstructured Data/Data Lake Analytics Methods

Method Type Challenges Advantages Drawback

Structured
Information
Extraction

• Determine schema
• Improve extraction

accuracy
• Reduce extraction cost

Fast analytics: Only
involve structured data

Low generalizability: semi-structured
Low accuracy: information loss
High cost: extract large-volume data

Manually
Write Code

• Plan efficiency
• Reduce LLM cost

High accuracy: Human-
craft plans

High human cost: Human-craft
Time-consuming: Coding takes time

NL2Pipeline

• Automatically
generate plans with
correct logic

• Plan efficiency

Ease to use: No human;
NL interface

No Theoretical guarantee: NL is open-
ended and no strict syntax like SQLs

Data Agent

• Understand data and
queries

• Orchestrate plan with
agents

• Coordinate agents

Ease to use: No human
High Flexibility: No need
to maintain operator set
High Generalizability:
Easy to adapt to other
tasks

High LLM cost: a large number of
LLM invocations
Hard to design: Effective agentic
workflow with multiple components is
hard to design

62

Data4LLM

63

Unstructured
Data

Analytics

Data Lake
Analytics

Understanding

Multi-modal Data

Semi-Structured

…

Structured Unstructured

Tables Documents VideosImages …JSON XML

Techniques

Tool Calling

Linking

Reasoning Vec Index

LLM Inference

LLM Training

Data Preparation
Discovery Selection Cleaning

Augmention Labeling Synthesis

Data4LLM

LLM4Data

Efficient serving of high-quality LLMs

Data Analytics

Complex Query Reasoning

Request BatchingRequest Scheduling

Load Balancing

Speculative Decoding

Operator Acceleration

Efficiency OptimizationMemory Management

Page-based memory

Cache
Sharing

Memory-Constrained
Network Variants

Quantization

Prepare high-quality
data for LLM training

Train larger models
over larger data

Reduce memory
consumption for each

worker

qLLM4Data Techniques
• LLM Prompting
• RAG & Vector DB
• Data Agents

• Unstructured Data Analytics

• SQL + Semantics

• Data Lake Analytics

q Data4LLM Techniques
• Data Preparation
• LLM Inference
• LLM Training

q Open Challenges

Data Preparation in machine learning life cycle

• Data Preparation: The

prerequisite to building high-

performance model

• Turn big dirty data into a

subset of good data

• Select, clean, augment, label,

mix, and even synthesize data

Data preparation for
machine learning using Amazon Timestream 64

• Data Preparation: Turn big dirty data into a subset of good data

• Challenges

Ø Rely on experts
Ø Time-consuming
Ø Hard to discover the optimal solution

Ø E.g., numerous candidate pipelines

Data Preparation in machine learning life cycle

Data
Selection

Data
Cleaning

Data Preparation Pipeline

Data
Augmentation

Data
Labeling

Data
Mixing

65

Data Selection for LLM

• Data Preparation: Turn big dirty data into a subset of good data

• Data Selection: Obtain reduced representation in volume but produce similar or

even better training results

Step 1: Data Selection

Step 3: Data Quality Evaluation

Source
Data

Heuristic
Rules

Calculate value SelectPretraining
Corpus

High-quality
Data

Quality
Metric

Step 2
Pre-Trainng

Selection
Methods

66

Data Selection For LLM

Challenge: How to select high-quality pretraining datasets?
• Content-based Selection: Select high-quality data (e.g., data edited by humans; data

from trustable sources like peer-reviewed articles)
• Classification-based Selection: Identify data points that are likely from the same (or

similar) distribution as a known “high-quality” corpus of data points
• Step 1: Feature Hashing

• Consider text words "the","quick","brown","fox". Using a hashing function, these might be
mapped to indices [5,17,3,12] in a feature vector of size 20.

• Step 2: Train Classifier with Curated / Other Pages

• Class 1 (Curated Content): High-quality sources like Wikipedia, books, and selected
websites.

• Class 2 (Other Webpages): Typical webpages found on the internet.

• Step 3: Score with the Well-Trained Classifier

• Assigns a quality score to webpages by how similar their content is to the Curated class.

• Step 4: Sample using Pareto Distribution

• Balances the inclusion of lower-quality pages to prevent bias:
67

Data Selection For LLM

Challenge: How to select high-quality pretraining datasets?
• Content-based Selection: Select high-quality data (e.g., data edited by humans; data

from trustable sources like peer-reviewed articles)

• Perplexity-based Selection: Train

an LLM and evaluate on the data to

achieve higher selection performance
• Sentence example:

• “I love machine learning”
• Calculate conditional probability

• P(i)=0.2
• P(love∣i)=0.1
• P(machine∣i,love)=0.05
• P(learning∣i,love,machine)=0.01
• M=4

Brown T, et al. Language models are few-shot learners[J]. NeurIPS, 2020, 33: 1877-1901.

Scoring model

High-quality
data

low-quality
data

Descrimitive
Model

0/1

sampled
curpus data

Generative
Model

PPL score

Large Corpus
High-quality

Corpus

A model with probability distribution P predicting a sequence of N
words w1, w2, …, wN

Lower perplexity means the model's probability distribution is
closer to the true data distribution

68

logP i = log0.2

 logP love|i = log0.1
 logP machine|i, love = log0.05
 logP learning|i, love,machine = log0.01
!
" (7890.2 + 7890.1+ 7890.05+ 7890.01) ≈ −2.8782

Data Selection For LLM

Challenge: How to select high-quality pretraining datasets?
• Content-based Selection: Select high-quality data (e.g., data edited by humans; data

from trustable sources like peer-reviewed articles)

• Perplexity-based Selection:
• Calculate the average value of
 logarithmic probabilities

• Calculate perplexity

Scoring model

High-quality
data

low-quality
data

Descrimitive
Model

0/1

sampled
curpus data

Generative
Model

PPL score

Large Corpus
High-quality

Corpus

A model with probability distribution P predicting a sequence of N
words w1, w2, …, wN

17.77 is low perplexity (compared to 77.9) and indicates a high-
quality sample

@ABC7ADEFG @ = exp(− −2.8782) ≈ 17.77

Brown T, et al. Language models are few-shot learners[J]. NeurIPS, 2020, 33: 1877-1901.
69

Data Selection For LLM

Challenge: How to select high-quality pretraining datasets?
• Content-based Selection: Select high-quality data (e.g., data edited by humans; data

from trustable sources like peer-reviewed articles)

• Model-based Selection: Use Model to rate multiple documents along various dimensions
of perceived quality à Capture human intuitions about data quality

• Quality Criteria:

• Writing style: With polished or beautiful words

• Expertise: The difficulty level of the corpus

• Facts & Trivia: With high density of long-tail factual knowledge

• Educational value: Includes clear explanations, step-by-step reasoning, or

questions and answers

70

Data Selection For LLM

Challenge: How to select high-quality pretraining datasets?
• Content-based Selection: Select high-quality data (e.g., data edited by humans; data from

trustable sources like peer-reviewed articles)

• Model-based Selection: Use Model to rate multiple documents along various dimensions of

perceived quality

• 1. Sample text pairs (A, B) from a vast collection of documents

• 2. With the criteria and a pair (A, B), LLM (e.g., GPT3.5) gives a confidence of B is better
than A, i.e.,

• 3. Generate a dataset of judgement

• 4. Fine-tune a 1.3B Sheared-Llama

• Predict quality ratings under the four criteria

71

Gradient-based Data Selection

• Algorithm: stochastic gradient decent

• Data: Coreset

• Given a large train set D, Coreset C(D) is a core subset of D, which is selected to
represent D such that M(C(D))≈M(D), denoting that C(D) has the same performance
theoretically with D.

72

Gradient-based Data Selection

• Intuitive baselines (sequential)

Challenge
• Computing a good coreset from dirty data is to accurately estimate the ground truth of

each missing value, which has multiple possible repairs.
• The combinations of all possible repairs constitute a huge search space.

73

Gradient-based Data Selection

Key idea of GoodCore

• Model the combinations of possible repairs as possible worlds of the original dirty data D
• Selecting an expected optimal coreset that can represent the possible worlds of D via

gradient approximation without training in advance

D à G(D): Very Time-consuming

74

Data Cleaning For LLM

Data Preparation: Turn big dirty data into a subset of good data
• Data Cleaning: Remove duplicate records; Remove (noise) outliers; Resolve

inconsistencies; Fill in missing values (generally not conducted in LLM)

• Data Deduplication: Training on identical documents slows down training and may
harm the performance à Identify same/similar documents and retain one

• Exact Matching: Leverage MD5 hashing
to ensure documents are identical.

• Near Matching: Use min-hash/sim-hash
to locate overlapped text, measured by
jaccard similarity scores

• Semantical Matching: Clustering
documents with pretrained embeddings

75

Data Cleaning For LLM

Challenge: How to select high-quality pretraining datasets?
• Rule-based Cleaning: Remove undesirable data with Heuristic Rules

Rae J W, Borgeaud S, Cai T, et al. Scaling language models: Methods, analysis & insights from training gopher[J]. arXiv preprint arXiv:2112.11446, 2021.

Goals Heuristic Rules
Ensure Text Quality Word Count: 50 - 100,000 words

Proper Word Length Mean Length: 3 - 10 characters

Manage Symbol Use Symbol Ratio: <0.1 for # and ...

Limit List Formatting List Control: <90% bullets start, <30% ellipsis end

Require Alphabetic
Words Alphabet Presence: 80% of words

Filter Non-Coherent
English Stop Words: Must have at least two common words

Ensuring data is coherent, contextually rich, free of bias

76

Data Cleaning For LLM

Motivation: Pretraining prefers to remove duplicates, ensuring greater
coverage with less redundancy
• Data Deduplication: Remove duplicates to enhance training performance
• Exact Matching Techniques:

• 1. URL Deduplication: Remove data that shares the same URL
• Individual web pages may appear multiple times

77

Data Cleaning For LLM

Motivation: Pretraining prefers to remove duplicates, ensuring greater
coverage with less redundancy
• Data Deduplication: Remove duplicates to enhance training performance
• Exact Matching Techniques:

• 2. Hash Functions: Guarantee to find all exact matches

(1) Initialize a Set for Hashes
A set ~ The hashes of encountered text entries.

(2) Hash Each Text Entry
For each text entry, compute a simple hash (e.g.,

the sum of ASCII values of its characters).

(3) Check for Duplicates
If the hash of the current entry is already in the set, it is a duplicate and will be ignored.

If the hash is not in the set, add the hash to the set and keep the entry.

78

Data Cleaning For LLM

Motivation: Pretraining prefers to remove duplicates, ensuring greater
coverage with less redundancy
• Data Deduplication: Remove duplicates to enhance training performance
• Exact Matching Techniques:

• 2. Hash Functions: Guarantee to find all exact matches

(1) Initialize a Set for Hashes
A set ~ The hashes of encountered text entries.

(2) Hash Each Text Entry
For each text entry, compute a simple hash (e.g.,

the sum of ASCII values of its characters).

(3) Check for Duplicates
If the hash of the current entry is already in the set, it is a duplicate and will be ignored.

If the hash is not in the set, add the hash to the set and keep the entry.

Efficient and Fast, but may find false positives due to hash
collisions and remove non-matching documents 79

Data Cleaning For LLM

Motivation: Pretraining prefers to remove duplicates, ensuring greater
coverage with less redundancy
• Data Deduplication: Remove duplicates to enhance training or sometimes improve

accuracy
• Exact Matching Techniques:

• Bloom Filters: Space-efficient method using bit arrays for document comparison.

1
80

Data Cleaning For LLM

Motivation: Pretraining prefers to remove duplicates, ensuring greater
coverage with less redundancy
• Data Deduplication: Remove duplicates to enhance training or sometimes improve

accuracy
• Exact Matching Techniques:

• Bloom Filters: Space-efficient method using bit arrays for document comparison.

1

Highly space-efficiency

But can incorrectly identify
non-duplicate documents

as duplicates

81

Data Cleaning For LLM

Motivation: Pretraining prefers to remove duplicates, ensuring greater
coverage with less redundancy
• Data Deduplication: Remove duplicates to enhance training or sometimes improve

accuracy
• Approximate Matching Techniques:

• 1. String Metric Method
• S1: Use MinHash to approximate the Jaccard Index:

• di: The n-grams of document I
• High Jaccard Index indicates high text similarity

82

Data Cleaning For LLM

Motivation: Pretraining prefers to remove duplicates, ensuring greater
coverage with less redundancy
• Data Deduplication: Remove duplicates to enhance training or sometimes improve

accuracy
• Approximate Matching Techniques:

• 1. String Metric Method
• S1: Use MinHash to approximate the Jaccard Index:
• MinHash: Construct document signatures by sorting
 each n-gram via a hash function; Then keep only the
 k smallest hashed n-grams.

83

Data Cleaning For LLM

Motivation: Pretraining prefers to remove duplicates, ensuring greater
coverage with less redundancy
• Data Deduplication: Remove duplicates to enhance training or sometimes improve

accuracy
• Approximate Matching Techniques:

• 1. String Metric Method
• S1: Use MinHash to approximate the Jaccard Index:
• MinHash: Construct document signatures by sorting
 each n-gram via a hash function; Then keep only the
 k smallest hashed n-grams.

• These MinHash fingerprints are then partitioned
 into r bucket (with b hashes per bucket).
• In each bucket, the b hashes are augmented into one value.

• If two documents have the same value in at least one
bucket, they’ll be marked as a potential match.

84

Data Cleaning For LLM

Motivation: Pretraining prefers to remove duplicates, ensuring greater
coverage with less redundancy
• Data Deduplication: Remove duplicates to enhance training or sometimes improve

accuracy
• Approximate Matching Techniques:

• 1. String Metric Method
• S1: Use MinHash to approximate the Jaccard Index:
• MinHash: Construct document signatures by sorting each n-gram via a hash

function; Then keep only the k smallest hashed n-grams.

• S2: For each “potentially similar” pair, compute edit similarity

• E.g., two documents are similar if EditSim is greater than 0.8

85

Data Cleaning For LLM

Motivation: Pretraining prefers to remove duplicates, ensuring greater
coverage with less redundancy
• Data Deduplication: Remove duplicates to enhance training or sometimes improve accuracy

• Approximate Matching Techniques:

• 2. Model-based Method: Use pretrained models for semantic deduplication

• S1: Leverage embedding spaces created by pre-trained LLM, providing a semantically

meaningful distance metric for identifying duplicates

• S2: Each data point is embedded using the LLM

• S3: The embedded data points are clustered using k-means

• S4: Within each cluster, pairwise cosine similarities between

 data points are calculated.

• S5: For identified duplicates within a cluster, only the point with

 the lowest cosine similarity to the cluster centroid is kept, and the others are removed.

86

Data Augmentation For LLM

Data Preparation: Turn big dirty data into a subset of good data
• Data Augmentation: Find auxiliary data which most resembles the distribution of desired

data distribution (e.g., medicine or law).

87

Data Augmentation For LLM

Challenge: How to select high-quality pretraining datasets?
• Data Augmentation: The goal is to find the auxiliary data which most resembles the

distribution of in-domain data.

• Domain-Specific Selection: Let I be in-domain dataset, N be general purpose dataset, NI
be a subset of N that is in-domain that we wish to discover. The probability of “a data
point x(i) drawn randomly from N being in NI” is:

• Train models to estimate for P(x(i)|I) and P(x(i)|N) on I and a sample of N

• is approximated by , i.e., the cross-entropy loss from
models trained on I and N.

Moore-Lewis
selection

88

Data Labeling For LLM

Data Preparation: Turn big dirty data into a subset of good data
• Data Labeling: Annotate or tag raw data (images, texts, videos, etc) with meaningful

information to provide context for LLM to learn

• A properly labeled dataset is “Ground Truth” in model training and assessing

89

Distance-based Data Labeling

Motivation: No intervention from humans or more advanced LLMs
• Use the model itself to iteratively guide data selection

Wu, Shengguang, et al. "Self-evolved diverse data sampling for efficient instruction tuning." arXiv preprint arXiv:2311.08182 (2023).

Target: Enhance the
instruction-following

capabilities

Core idea: Select new
data points most distinct

from existing ones

90

Data Mixing For LLM

Data Preparation: Turn big dirty data into a subset of good data
• Data Mixing: Data mixing optimizes the weighting of different data domains in training

corpora to enhance model training efficiency and performance.

91

Data Mixing For LLM

Challenge: How to select high-quality pretraining datasets?

• Data Mixing: Determine the optimal domain ratios to improve the training efficiency and
model performance

• Empirical-Determined Method
• Rule 1: Prevent small sources (e.g., MultiUN) from oversampled;

• Rule 2: Large proportion of code (e.g., 50%) does not harm to NL performance, and
can benefit reasoning-based tasks;

• Rule 3: Test different combinations over small-sized LLMs like 1B parameters.

Nan Du, et al. GLaM: Efficient scaling of language models with mixture-of-experts . ICML, 2022.
92

Data Mixing For LLM

Challenge: How to select high-quality pretraining datasets?
• Data Mixing: Determine the optimal domain ratios to improve the training efficiency and

model performance

• Model-Determined Method: Optimize the ratios assigned to different domains in training
a model without relying on downstream tasks

• Optimize domain ratios using a small proxy model

• Train a larger model using the optimized domain ratios

Sang Michael Xie, Hieu Pham , et al. Doremi: Optimizing data mixtures speeds up language model pretraining . NeurIPS, 2023.

Minimize the maximum loss across all domains

93

Data4LLM

94

Unstructured
Data

Analytics

Data Lake
Analytics

Understanding

Multi-modal Data

Semi-Structured

…

Structured Unstructured

Tables Documents VideosImages …JSON XML

Techniques

Tool Calling

Linking

Reasoning Vec Index

LLM Inference

LLM Training

Data Preparation
Discovery Selection Cleaning

Augmention Labeling Synthesis

Data4LLM

LLM4Data

Efficient serving of high-quality LLMs

Data Analytics

Complex Query Reasoning

Request BatchingRequest Scheduling

Load Balancing

Speculative Decoding

Operator Acceleration

Efficiency OptimizationMemory Management

Page-based memory

Cache
Sharing

Memory-Constrained
Network Variants

Quantization

Prepare high-quality
data for LLM training

Train larger models
over larger data

Reduce memory
consumption for each

worker

q Data Management tasks
q LLM4Data Techniques

• LLM Prompting
• RAG & Vector DB
• Data Agents

• Unstructured Data Analytics

• SQL + Semantics

• Data Lake Analytics

q Data4LLM Techniques
• Data Preparation
• LLM Inference

• LLM Training
q Open Challenges

DB Query Processing vs LLM Inference

95
LLM inference has the same goal as DB query processing

SQL Prompt

p Goal
Minimize latency
Maximize throughput

p Goal

Database
Engine

LLM
Inference
Engine

Minimize latency
Maximize throughput

Result Result

DB Query Processing LLM Inference

How to Reduce LLM Inference Latency and Improve Throughput?

96

Q1: How to reduce latency for a single query on one GPU?

Q2: How to optimize throughput for multiple queries on one GPU?

Q3: How to optimize throughput for multiple queries on multiple GPUs?

• KV cache
• Quantization
• Memory-optimized model
• Speculation

• Page-based memory allocation
• Cache persistence and sharing
• KV cache eviction/offloading
• Request batching
• Request scheduling

• Load balancing
• Disaggregated prefilling and decoding

How to Reduce LLM Inference Latency and Improve Throughput?

97

Q1: How to reduce latency for a single query on one GPU?

Q2: How to optimize throughput for multiple queries on one GPU?

Q3: How to optimize throughput for multiple queries on multiple GPUs?

• KV cache
• Quantization
• Memory-optimized model
• Speculation

• Page-based memory allocation
• Cache persistence and sharing
• KV cache eviction/offloading
• Request batching
• Request scheduling

• Load balancing
• Disaggregated prefilling and decoding

Background: LLM Inference Process

98

Predict next token until it
• Generates certain ending tokens
• Reaches its pre-defined maximum length

Ø Output:

Hao Zhang. Recent Advance on Large Language model Inference and Serving. 2025

Ø Input:

For each LLM request
• Input: a text string (prompt)
• Output: a text string with

non-deterministic length

EOS

Background: LLM Inference Process

99
Ashish Vaswani et al. Attention Is All You Need. NeurIPS 2017

<latexit sha1_base64="rFaipeL1LbE53r5Wm5kY3rt44XM=">AAAB9XicbVBNS8NAEN34WetX1aOXxSJ4KCURqR6LXjxWsB/QxrDZbNqlm03YnWhL6P/w4kERr/4Xb/4bt20O2vpg4PHeDDPz/ERwDbb9ba2srq1vbBa2its7u3v7pYPDlo5TRVmTxiJWHZ9oJrhkTeAgWCdRjES+YG1/eDP1249MaR7LexgnzI1IX/KQUwJGehh5TqVHgxh0ZeQlXqlsV+0Z8DJxclJGORpe6asXxDSNmAQqiNZdx07AzYgCTgWbFHupZgmhQ9JnXUMliZh2s9nVE3xqlACHsTIlAc/U3xMZibQeR77pjAgM9KI3Ff/zuimEV27GZZICk3S+KEwFhhhPI8ABV4yCGBtCqOLmVkwHRBEKJqiiCcFZfHmZtM6rTq1au7so16/zOAroGJ2gM+SgS1RHt6iBmogihZ7RK3qznqwX6936mLeuWPnMEfoD6/MH+Q6SMQ==</latexit>x1, · · · , xp

p A request consists of an initial input (called prompt or prefix)

p The response is a completed sequence
<latexit sha1_base64="oFF3TatuTITtvkgi/ex/IoXbAto=">AAACA3icbZDLSsNAFIZPvNZ6q7rTzWARXJSSiFSXRTcuK9gLtCFMJtN26CQTZibSEgpufBU3LhRx60u4822cthG09cDAx/+fw5nz+zFnStv2l7W0vLK6tp7byG9ube/sFvb2G0okktA6EVzIlo8V5Syidc00p61YUhz6nDb9wfXEb95TqZiI7vQopm6IexHrMoK1kbzC4dBzSh0SCK1KQy/+QTT0jFm0y/a00CI4GRQhq5pX+OwEgiQhjTThWKm2Y8faTbHUjHA6zncSRWNMBrhH2wYjHFLlptMbxujEKAHqCmlepNFU/T2R4lCpUeibzhDrvpr3JuJ/XjvR3Us3ZVGcaBqR2aJuwpEWaBIICpikRPORAUwkM39FpI8lJtrEljchOPMnL0LjrOxUypXb82L1KosjB0dwDKfgwAVU4QZqUAcCD/AEL/BqPVrP1pv1PmtdsrKZA/hT1sc35NmXEA==</latexit>x1, · · · , xp, · · · , xn

p For each
<latexit sha1_base64="ISTGE1REkpxMX1C0Sjml1fxKf48=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5iddJIhs7PDzKwQlnyEFw+KePV7vPk3TpI9aLSgoajqprsrUoIb6/tfXmFtfWNzq7hd2tnd2z8oHx61TJJqhk2WiER3ImpQcIlNy63AjtJI40hgO5rczv32I2rDE/lgpwrDmI4kH3JGrZPanPRGSFS/XPGr/gLkLwlyUoEcjX75szdIWBqjtExQY7qBr2yYUW05Ezgr9VKDirIJHWHXUUljNGG2OHdGzpwyIMNEu5KWLNSfExmNjZnGkeuMqR2bVW8u/ud1Uzu8DjMuVWpRsuWiYSqITcj8dzLgGpkVU0co09zdStiYasqsS6jkQghWX/5LWhfVoFat3V9W6jd5HEU4gVM4hwCuoA530IAmMJjAE7zAq6e8Z+/Ne1+2Frx85hh+wfv4BoLGjww=</latexit>

i � p , it requires one execution of the model over all previous tokens
<latexit sha1_base64="C6R08RtOpZZrqdpkbFGdxrlrlms=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQsZREpLoRim5cVKhgH9CGMJlM26GTSZiZSEvozo2/4saFIm79BXf+jdM2C60euHA4517uvceLGJXKsr6MzMLi0vJKdjW3tr6xuWVu7zRkGAtM6jhkoWh5SBJGOakrqhhpRYKgwGOk6Q2uJn7znghJQ36nRhFxAtTjtEsxUlpyzf2hm9Bje3wBq9WbwtC1i7CD/VDJIhy69Mg181bJmgL+JXZK8iBFzTU/O36I44BwhRmSsm1bkXISJBTFjIxznViSCOEB6pG2phwFRDrJ9I8xPNSKD7uh0MUVnKo/JxIUSDkKPN0ZINWX895E/M9rx6p77iSUR7EiHM8WdWMGVQgnoUCfCoIVG2mCsKD6Voj7SCCsdHQ5HYI9//Jf0jgp2eVS+fY0X7lM48iCPXAACsAGZ6ACrkEN1AEGD+AJvIBX49F4Nt6M91lrxkhndsEvGB/f0MmXYg==</latexit>

xi+1 = LLM(x1, · · · , xi)

The output sequence is formed one token at a time by feeding previous
tokens

Background: LLM Request Processing Process Zoom-in

100

p Attention Computation

Expensive to recompute all K and V for generating each

for all

p To compute , it needs
<latexit sha1_base64="y065kJNaQP3qtuHdKOYR5Hy83+s=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahYimJSHUjFN24qFDBPqANYTKZtkMnkzAzkZbQpRt/xY0LRdz6Ce78G6dtFlo9cOFwzr3ce48XMSqVZX0ZmYXFpeWV7GpubX1jc8vc3mnIMBaY1HHIQtHykCSMclJXVDHSigRBgcdI0xtcTfzmPRGShvxOjSLiBKjHaZdipLTkmvtDN6HH9vgCVqs3haFrF2EH+6GSRTh06RF0zbxVsqaAf4mdkjxIUXPNz44f4jggXGGGpGzbVqScBAlFMSPjXCeWJEJ4gHqkrSlHAZFOMn1kDA+14sNuKHRxBafqz4kEBVKOAk93Bkj15bw3Ef/z2rHqnjsJ5VGsCMezRd2YQRXCSSrQp4JgxUaaICyovhXiPhIIK51dTodgz7/8lzROSna5VL49zVcu0ziyYA8cgAKwwRmogGtQA3WAwQN4Ai/g1Xg0no03433WmjHSmV3wC8bHNzAVl4w=</latexit>

xi+1 = LLM(x1, · · · , xi)

<latexit sha1_base64="m1RBk2+1P9NhIOFwd8tcZgjikhE=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAdklzA76U3GzD6YmRXCkt/w4kERr/6MN//G2WQPmljQTVHVzfSUnwiutG1/W6W19Y3NrfJ2ZWd3b/+genjUUXEqGbZZLGLZ86lCwSNsa64F9hKJNPQFdv3Jbe53n1AqHkcPepqgF9JRxAPOqDaS67gCySPJOx9Ua3bdnoOsEqcgNSjQGlS/3GHM0hAjzQRVqu/YifYyKjVnAmcVN1WYUDahI+wbGtEQlZfNb56RM6MMSRBLU5Emc/X3RkZDpaahbyZDqsdq2cvF/7x+qoNrL+NRkmqM2OKhIBVExyQPgAy5RKbF1BDKJDe3EjamkjJtYqqYEJzlL6+SzkXdadQb95e15k0RRxlO4BTOwYEraMIdtKANDBJ4hld4s1LrxXq3PhajJavYOYY/sD5/AIrHkLs=</latexit>

1 j i

<latexit sha1_base64="W9bQslmEuYPdcqIr6ljOXNS1S4A=">AAAB7nicdVDLSgNBEOyNrxhfUY9eBoMgCMvuJm7iLejFYwTzgGQJs5NJMmT2wcysGJZ8hBcPinj1e7z5N84mEVS0oKGo6qa7y485k8qyPozcyura+kZ+s7C1vbO7V9w/aMkoEYQ2ScQj0fGxpJyFtKmY4rQTC4oDn9O2P7nK/PYdFZJF4a2axtQL8ChkQ0aw0lL7vp+yM3vWL5Ys86LmOucOskzLqjplNyNOteKUka2VDCVYotEvvvcGEUkCGirCsZRd24qVl2KhGOF0VuglksaYTPCIdjUNcUCll87PnaETrQzQMBK6QoXm6veJFAdSTgNfdwZYjeVvLxP/8rqJGta8lIVxomhIFouGCUcqQtnvaMAEJYpPNcFEMH0rImMsMFE6oYIO4etT9D9pOabtmu5NpVS/XMaRhyM4hlOwoQp1uIYGNIHABB7gCZ6N2Hg0XozXRWvOWM4cwg8Yb59lPo+j</latexit>xi+1
Ashish Vaswani et al. Attention Is All You Need. NeurIPS 2017

<latexit sha1_base64="WhRgxM0XrfEwbGSefm2gMc2OClQ=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVDdC0Y3QTQX7gHYsmTTTxmYyY5IplKHf4caFIm79GHf+jZl2Ftp64F4O59xLbo4Xcaa0bX9buZXVtfWN/GZha3tnd6+4f9BUYSwJbZCQh7LtYUU5E7Shmea0HUmKA4/Tlje6Sf3WmErFQnGvJxF1AzwQzGcEayO5td4jukJt01sPtV6xZJftGdAycTJSggz1XvGr2w9JHFChCcdKdRw70m6CpWaE02mhGysaYTLCA9oxVOCAKjeZHT1FJ0bpIz+UpoRGM/X3RoIDpSaBZyYDrIdq0UvF/7xOrP1LN2EiijUVZP6QH3OkQ5QmgPpMUqL5xBBMJDO3IjLEEhNtciqYEJzFLy+T5lnZqZQrd+el6nUWRx6O4BhOwYELqMIt1KEBBJ7gGV7hzRpbL9a79TEfzVnZziH8gfX5A9B0kNk=</latexit>

Kj = XjW
K

<latexit sha1_base64="mfH1sMbOiFYww4YLtumctvPczI4=">AAAB9HicbVBNT8JAEJ3iF+IX6tHLRmLiibTGoBcTohePmEghgUq2yxZWttu6uyUhDb/DiweN8eqP8ea/cQs9KPiSmby8N5OdfX7MmdK2/W0VVlbX1jeKm6Wt7Z3dvfL+gauiRBLaJBGPZNvHinImaFMzzWk7lhSHPqctf3ST+a0xlYpF4l5PYuqFeCBYwAjWRvLc3iO6Qm3TWw9ur1yxq/YMaJk4OalAjkav/NXtRyQJqdCEY6U6jh1rL8VSM8LptNRNFI0xGeEB7RgqcEiVl86OnqITo/RREElTQqOZ+nsjxaFSk9A3kyHWQ7XoZeJ/XifRwaWXMhEnmgoyfyhIONIRyhJAfSYp0XxiCCaSmVsRGWKJiTY5lUwIzuKXl4l7VnVq1drdeaV+ncdRhCM4hlNw4ALqcAsNaAKBJ3iGV3izxtaL9W59zEcLVr5zCH9gff4A8lCQ7w==</latexit>

Vj = XjW
V

Use KV Cache to Avoid Recomputation

101

pKey idea: Store K and V to avoid recomputation

W
Q

W
K

W
V

A
tt

en
ti

on

The
cat
sat
on

Linear Transform

La
ye

r
i “mat”

the

(a) Without Cache

Large amount of computation

W
Q

W
K

W
V

A
tt

en
ti

on

the

Linear Transform

Th
e

cat

sat

onKV
 C

ac
he

= Cached Key/Value

“mat”

La
ye

r
i

(b) With KV Cache

= Query Vector

Directly reuse computed KV

= Key/Value to compute

102
Zhou Z, Ning X, Hong K, et al. A survey on efficient inference for large language models[J]. arXiv preprint arXiv:2404.14294, 2024.

p Pre-filling (Compute bound)
• Process all input tokens at once
• Compute K and V for all input tokens in the prompt

p Decoding (Memory bound)
• Generate a single token based on previous tokens
• Compute Q for current status
• After generating the new token, add its K and V to KV cache

pKey idea: Store K and V to avoid re-computation

Limitation: Can result in large memory consumption if the sequence is very long

See solutions in later slides

Use KV Cache to Avoid Recomputation

Quantization Techniques for Model Compression

pKey idea: Lower the numerical precision to enable compact data formats

pCan reduce the physical byte sizes of:
• Weight matrices
• Embedding vectors
• Intermediate activations
• Cache entries

103
Yuan Z, Shang Y, Zhou Y, et al. Llm inference unveiled: Survey and roofline model insights[J]. arXiv preprint arXiv:2402.16363, 2024.

pGPUs perform better when processing data with smaller bit widths:
• E.g., on NVIDIA’s A6000 GPU

• 155 TOPS/s for FP16

• 310 TOPS/s for INT8

• Speed up general matrix multiplication
Limitation: Quantization may influence model quality

Optimized Model Structure – Sparse Attention

Child R, Gray S, Radford A, et al. Generating long sequences with sparse transformers[J]. arXiv preprint arXiv:1904.10509, 2019.

Key idea: Omit certain attention calculations
Method:

• Compute the attention status only for certain tokens
• Discover these significant keys through:

• Static filtering (e.g., windowed, strided)
• Query-dependent masks (e.g., learning-based)
• K-nearest neighbor search indexes

Basic Attention Sparse Attention

104

Limitation: Hurt inference accuracy

Optimized Model Structure – Mixture of Experts

Shazeer N, Mirhoseini A, Maziarz K, et al. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer ICLR, 2017.

pKey idea: Allocate varying computation budgets to different tokens
pMethod:

• Replace network with a set of smaller networks (experts)
• During inference, selectively activates specific experts controlled by router
• Since each expert is much smaller than the original network, compute cost

can be substantially reduced

105

Limitations:
• Routing Instability

• Load Imbalance

Speculative Decoding

Leviathan Y, Kalman M, Matias Y. Fast inference from transformers via speculative decoding[C]//International Conference on Machine Learning. PMLR, 2023

pExample:
• A landmark in Paris is the Eiffel [Tower]

106

Can be accurately predicted

by a small model

pKey idea: use a smaller, faster model to generate draft tokens that are then
verified in parallel by the LLM

pHow to leverage cheap models to accelerate decoding?

Speculative Decoding

Xia H, Yang Z, Dong Q, et al. Unlocking efficiency in large language model inference: A comprehensive survey of speculative decoding[J]. arXiv, 2024.

pKey idea: use a smaller, faster model to generate draft tokens that are then
verified in parallel by the LLM

107

Ø Method:
1. Approximate the next b tokens using a

small language model

2. Verify drafts by LLM in parallel

3. Accept verified tokens and Iteratively
repeat above process until reaching end
of sequence

Limitation: Incur redundant computation and low-quality draft model may not be accurate

Takeaways

108

KV Cache
• Pros: Avoid recomputation, thus more efficient
• Cons: Increased memory usage for multiple queries

Quantization
• Pros: Higher efficiency, less memory consumption
• Cons: Influence model quality

Memory-optimized model
• Pros: Higher efficiency, less memory consumption
• Cons: Influence model quality

Speculation
• Pros: May bring lower latency by parallel token generation
• Cons: Incur redundant computation

Q1: How to reduce latency for a single query on one GPU?

How to Reduce LLM Inference Latency and Improve Throughput?

109

Q1: How to reduce latency for a single query on one GPU?

Q2: How to optimize throughput for multiple queries on one GPU?

Q3: How to optimize throughput for multiple queries on multiple GPUs?

• KV cache
• Quantization
• Memory-optimized model
• Speculation

• Page-based memory allocation
• Cache persistence and sharing
• KV cache eviction/offloading
• Request batching
• Request scheduling

• Load balancing
• Disaggregated prefilling and decoding

Page-based Memory Allocation

110

Wasted Memory:
pReservation: not being used now, but can actually be used by short

requests
p Internal fragmentation: over-allocated due to the unknown output length
pExternal fragmentation: gap between memory regions allocated to

different queries

Hao Zhang. Recent Advance on Large Language model Inference and Serving. 2025

Motivation

Page-based KV Cache Memory Allocation

111

Key idea: Divide memory into blocks similar to virtual memory
and paging in OS, and allocate in this granularity

Page-based memory
management in OS

Page-based memory
management in LLM serving

Hao Zhang. Recent Advance on Large Language model Inference and Serving. 2025

Page-based KV Cache Memory Allocation

112

p Ensures bounded internal
fragmentation

• Only happens at the last block of a
sequence

• The wasted memory of a single query is
bounded by block size

p Eliminate external
fragmentation

Internal fragmentation

Limitation: Requires rewriting attention kernels

p Token Block: Each token block is a fixed-size contiguous
chunk of memory that can store token states from left to right

KV Cache Eviction/Offloading for Multiple Queries

113Qin R, Li Z, He W, et al. Mooncake: A kvcache-centric disaggregated architecture for llm serving[J]. arXiv preprint arXiv:2407.00079, 2024.

Ø Eviction: Need recomputation to recover
Ø Offloading: Can be tranferred back to GPU from other memory

containers (e.g. CPU)

p Strategies:
Ø Least recently used
Ø Least frequently used
Ø All-or-nothing (vLLM)

p Key idea: Make room by evicting non-critical cache

Limitation: May hurt latency for each single query due to the cost of cache recovery

Cache Sharing for Improving Efficiency

pPrefix Sharing:
• Reuse persisted cache entries under exact-match prefixes
• Can only reuse prefix’s KV cache, since prefix matching requirement is strict

pSelective Reconstruction:
• Reuse all KV cache but re-computing a small fraction of KV
• Mitigate quality degradation by recomputing KV for a subset of impactful

tokens

Yao J, et al. CacheBlend: Fast large language model serving for RAG with cached knowledge fusion, Eurosys 2025 114

pKey idea: Reuse computed results of previous requests

Too strong
requirement

May hurt
accuracy

LLM Request Batching – Static Batching

qKey idea: Batching requests together to improve GPU utilization

pRequests may complete at different iterations, which results in low
throughput due to:

Req 1 Req 2 Req 3 Req 4
Time

End

End

End

End

Req 5

End

(1) New requests cannot start

immediately

(2) Idle GPU

cycles

Batch

End

115

LLM Request Batching – Continuous Batching

qKey idea: Different requests can be batched at the iteration level

qBenefits:

Yu, G. I., Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. “Orca: A Distributed Serving System for Transformer-Based Generative Models” (OSDI 22)

Limitation: Batching a prefill step with a decode step can stall the decoding

A prefilling step handles
input prompt
Long computing time

A decoding step
generates a token
Much less time

End

Req 1 Req 2 Req 3 Req 4
Time

End

End

End

End

Req 5

Batch

End

• Higher GPU utilization, thus higher throughput
• New requests can start immediately

116

LLM Request Batching – SplitFuse (Chunked Prefill)

qKey idea: Split prompt into chunks, and batch together chunked
prefilling steps and decoding steps

qBenefit:
• Remove stalls from new requests (for prefilling)

Agrawal A, Kedia N, Panwar A, et al. Taming {Throughput-Latency} tradeoff in {LLM} inference with {Sarathi-Serve}, OSDI 24. 2024: 117-134.

Limitation: The request latency of individual query can be harmed

Prefill
Long
Prompt

Split
Prefill
Chunk

1

Prefill
Chunk

2

Prefill
Chunk

3

Can be better
batched with
decoding steps

LLM Request Scheduling

q Background:
Ø In some cases, the rate of requests exceeds the throughput of the system,

even under batching

Ø New requests must wait in a queue before being processed

Ø The order of executing requests determines efficiency

Req 1 Req 2

Req 1Req 2

Solution 1

Solution 2

118

LLM Request Priority – Shortest Job First

q Problem Statement
Given a set of requests, find an optimal ordering that minimizes the average latency

• Ask the LLM, “How long will this prompt take?”
• Train an Estimator

• Using embeddings from last layer of LLM
• Using small language model

• Shortest prompts first
• Max cache reuse

qBasic Method: First-Come First-Serve
qGreedy Techniques:

119Limitation: Requires accurate predictions regarding the number of decoding rounds

Takeaways

120

Page-based memory allocation
Pros: Reduce waste of memory
Cons: Require rewriting attention kernels

Cache persistence and sharing
Pros: Higher efficiency by reusing cache
Cons: Influence result quality

KV cache eviction and offloading
Pros: Less memory consumption
Cons: May hurt latency for individual query due to the cache recovery cost

Request batching
Pros: Higher utilization of GPUs, thus higher throughput
Cons: May hurt latency of individual query

Request Scheduling
Pros: Reduce average latency
Cons: Inappropriate scheduling results in low efficiency

Q2: How to optimize throughput for multiple queries on one GPU?

How to Reduce LLM Inference Latency and Improve Throughput?

121

Q1: How to reduce latency for a single query on one GPU?

Q2: How to optimize throughput for multiple queries on one GPU?

Q3: How to optimize throughput for multiple queries on multiple GPUs?

• KV cache
• Quantization
• Memory-optimized model
• Speculation

• Page-based memory allocation
• Cache persistence and sharing
• KV cache eviction/offloading
• Request batching
• Request scheduling

• Load balancing
• Disaggregated prefilling and

decoding

LLM Request Load Balancing

q Problem Statement
• Given requests arriving online, assign them to workers (e.g. node or GPU)
while maximizing throughput over the workload, subject to constraints (e.g.
latency SLOs)

Worker
1

Worker
n

Req 1

Req 2 ...

Req 3

122

LLM Request Load Balancing Methods

q Technique 1: Greedy Matching
• Max cache reuse

• To avoid long TTFT due to sow prefills

• Least load
• To avoid unexpected TTFT, TBT

• Memory usage, running reqs, etc.
Fig: SAL’s Load estimate equation

• Aggregate score
• Make a more precise estimate of TTFT and TBT

• Cache construction cost, cache transfer, est. waiting time, etc.

123

Limitation: Greedy strategy may result in ineffective load balancing

LLM Request Load Balancing Methods

q Technique 2: Rebalancing
• Periodically rebalance by moving KV

cache to new worker
• Avoid long TTFT due to slow prefills

• Cache Migration
• To avoid memory thrashing

(unexpected OOM due to long
decode of past or current requests)

• How to migrate?
• Physically move the entries, OR
• Recalculate from scratch (prefill)

124Qianli L, Zicong H, Fahao C, et al. Mell: Memory-Efficient Large Language Model Serving via Multi-GPU KV Cache Management[J]. arXiv preprint arXiv:2501.06709, 2025.

Limitation: Incur communication cost for cache migration

Disaggregated Prefilling and Decoding

125

Pre-filling Worker Decoding
Worker

pKey idea: Process prefilling and decoding independently based on
their characteristics (compute bound vs memory bound)

pRemove the interference between these two steps

Zhou Z, Ning X, Hong K, et al. A survey on efficient inference for large language models[J]. arXiv preprint arXiv:2404.14294, 2024.

Request

Optimize separately

Limitation: May not utilize cache locality and incur communication
overhead that should be considered

Takeaways

126

Load balancing
• Pros: Better utilization of computing resources, thus higher throughput
• Cons: Rely on effective scheduler that is hard to design

Disaggregated prefilling and decoding
• Pros: Improve hardware utilization based on features of these two

stages
• Cons: High communication cost

Q3: How to optimize throughput for multiple queries on multiple GPUs?

Data4LLM

127

Unstructured
Data

Analytics

Data Lake
Analytics

Understanding

Multi-modal Data

Semi-Structured

…

Structured Unstructured

Tables Documents VideosImages …JSON XML

Techniques

Tool Calling

Linking

Reasoning Vec Index

LLM Inference

LLM Training

Data Preparation
Discovery Selection Cleaning

Augmention Labeling Synthesis

Data4LLM

LLM4Data

Efficient serving of high-quality LLMs

Data Analytics

Complex Query Reasoning

Request BatchingRequest Scheduling

Load Balancing

Speculative Decoding

Operator Acceleration

Efficiency OptimizationMemory Management

Page-based memory

Cache
Sharing

Memory-Constrained
Network Variants

Quantization

Prepare high-quality
data for LLM training

Train larger models
over larger data

Reduce memory
consumption for each

worker

q Data Management tasks
q LLM4Data Techniques

• LLM Prompting
• RAG & Vector DB
• Data Agents

• Unstructured Data Analytics

• SQL + Semantics

• Data Lake Analytics

q Data4LLM Techniques
• Data Preparation
• LLM Inference
• LLM Training

q Open Challenges

Overview of LLM Training

pThe costly training is dealing with:
• Large model sizes (10B+)

• Large dataset sizes (more than 1T tokens for pretraining, more than

1M for supervised fine-tuning)

• Optimizer states (e.g., momentum, variance) also doubles the space

• Distributed training strategies are required

128
Crucial to reduce the unnecessary redundancy in the training process!

Li W, Chen X, Shu H, et al. ExCP: Extreme LLM checkpoint compression via weight-momentum joint shrinking. arXiv 2024.

Parallel Training Strategies

129
Different parallelism strategies can be combined for better throughput gains

Chenyan Xiong. Scaling Up LLM Pretraining: Parallel Training, 2023

pKey Problem: need smart distributed training strategies, where each
GPU worker only deals with a fraction of training state and data

Data Parallel Model Parallel Tensor Parallel

Each worker gets a subset of mini-batch data,
computes the gradients on the data, average gradients
across workers

Split network by layers and place
different model layers on different workers

Split network tensors and place different
parts on different workers

130

Open Challenges

Unstructured
Data

Analytics

Data Lake
Analytics

Understanding

Multi-modal Data

Semi-Structured

…

Structured Unstructured

Tables Documents VideosImages …JSON XML

Techniques

Tool Calling

Linking

Reasoning Vec Index

LLM Inference

LLM Training

Data Preparation
Discovery Selection Cleaning

Augmention Labeling Synthesis

Data4LLM

LLM4Data

Efficient serving of high-quality LLMs

Data Analytics

Complex Query Reasoning

Request BatchingRequest Scheduling

Load Balancing

Speculative Decoding

Operator Acceleration

Efficiency OptimizationMemory Management

Page-based memory

Cache
Sharing

Memory-Constrained
Network Variants

Quantization

Prepare high-quality
data for LLM training

Train larger models
over larger data

Reduce memory
consumption for each

worker

qLLM4Data Techniques
• LLM Prompting
• RAG & Vector DB
• Data Agents

• Unstructured Data Analytics

• SQL + Semantics

• Data Lake Analytics

q Data4LLM Techniques
• Data Preparation
• LLM Inference
• LLM Training

q Open Challenges

q LLM4Data
ü Data Agent
ü Foundation Model for Data

q Data4LLM
ü Data Fabric
ü Data Flywheel

q Data + LLM
ü Data + LLM Codesign

Open Challenges

131

① LLM4Data: Data Agent

132

q Data Analytics Agent
ü Unstructured Data Agent
ü Semantic Structured Data Agent
ü Data Lake Agent
ü Multi-Modal Data Agent

q Data Science Agent
q DBA Agent
q Database Development Agent

② LLM4Data: Foundation Models for Data

133

p Case-by-Case LLM Finetuning à Database-Specific LLM Construction
Ø Pretrain: Collect sufficient database-domain tokens (e.g., in millions) as pre-training

corpora from sources like database textbook and query analysis

Ø Finetune: Instruction Understanding in SQL / Text à Basic Q&A (DB / Product /

Instance) à Task-Solving in DB Domains à Alignment to Database Experts

Ø Evaluation: Evaluate the accuracy and robustness of the database model with

carefully-crafted validation dataset, measuring metrics, and end-to-end testbed.

General Q&A Product Q&A Instance Q&A

Diagnosis SQL Rewrite Config Tuning

Database Specific LLM

③ Data4LLM: Data Fabric

134

• Unified Data Access: Provides a single, consistent interface for accessing

data, facilitates real-time data access and sharing across the organization.

• Semantic Catalog and Semantic Data Organization

• Active Meta Data Management and Update

• Data pipelines

• Data Lineage and Provenance

• Support for Diverse Tools

• Self-Service Analytics

④ Data4LLM: Data Flywheel

135

q Feedback Loop
q Data Augmentation
q Feature Augment
q Data Reflection
q Feedback Optimization
q Continuous Improvement

⑤ Data + LLM: Co-design

136

q Data + AI Model
q Iterative Loop
q Data + AI Ops
q Data + AI Infrastructure
q Data Designer

137

Thanks!
Slides: https://dbgroup.cs.tsinghua.edu.cn/ligl/activities.html

Data+AI Paper List: https://github.com/code4DB/LLM4DB

System: https://github.com/TsinghuaDatabaseGroup/Unify

https://dbgroup.cs.tsinghua.edu.cn/ligl/activities.html
https://github.com/code4DB/LLM4DB
https://github.com/TsinghuaDatabaseGroup/Unify

