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Automatic dialect translation reduces the complexity of database migration, which is crucial for applications
interacting with multiple database systems. However, rule-based translation tools (e.g., SQLGlot, jOOQ,
SQLines) are labor-intensive to develop and often (1) fail to translate certain operations, (2) produce incorrect
translations due to rule deficiencies, and (3) generate translations compatible with some database versions but
not the others.

In this paper, we investigate the problem of automating dialect translation with large language models
(LLMs). There are three main challenges. First, queries often involve lengthy content (e.g., excessive column
values) and multiple syntax elements that require translation, increasing the risk of LLM hallucination. Second,
database dialects have diverse syntax trees and specifications, making it difficult for cross-dialect syntax
matching. Third, dialect translation often involves complex many-to-one relationships between source and
target operations, making it impractical to translate each operation in isolation. To address these challenges,
we propose an automatic dialect translation system CrackSQL. First, we propose Functionality-based Query
Processing that segments the query by functionality syntax trees and simplifies the query via (i) customized
function normalization and (ii) translation-irrelevant query abstraction. Second, we design a Cross-Dialect
Syntax Embedding Model to generate embeddings by the syntax trees and specifications (of certain version),
enabling accurate query syntax matching. Third, we propose a Local-to-Global Dialect Translation strategy,
which restricts LLM-based translation and validation on operations that cause local failures, iteratively
extending these operations until translation succeeds. Experiments show CrackSQL significantly outperforms
existing methods (e.g., by up to 77.42%). The code is available at https://github.com/weAIDB/CrackSQL.
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1 Introduction

Dialect translation aims to transform a SQL query from one database system (e.g., PostgreSQL)
into a functionally equivalent query executable on a target database system (e.g., MySQL). This
capability is crucial for alleviating database migration efforts and supporting applications such as
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: Translate a PostgreSQL query into MySQL's:

: SELECT CAST(CONCAT('Dr.", ' ', name) AS TEXT) AS Res
| .E FROM people WHERE EXTRACT(YEAR FROM

| AN AGE(CURRENT_DATE, birthday)) < 70

: AND name ILIKE 'smith' ... ;

— SQLGlot GPT-40 —
SELECT CAST(... AS CHAR) SELECT CAST(... AS TEXT)
AS Res ASRes X
FROM people WHERE FROM people WHERE
EXTRACT(YEAR FROM TIMESTAMPDIFF(YEAR,
AGE(CURRENT_DATE, birthday)) | | birthday, CURRENT_DATE)
<70 AND ... X <70 AND ...

' Error: Function AGE does @ : Error: Type TEXT is not @ :

I
I not exist in MySQL JI I permitted in CAST

Fig. 1. Translation Example. Existing methods fail to accurately conduct the two translations in the query!.

NL2SQL [22], ORM frameworks [13], ETL processes [13], and cross-database analytics tools [20],
enabling seamless interaction with diverse database systems.

Rule-based Dialect Translation. Despite the importance of dialect translation, automating
this process is challenging, where the dialects of different databases involve unique syntax rules,
reserved keywords, built-in functions, etc. Consequently, existing tools (e.g., SQLGlot [7], jOOQ [3],
SQLines [8]) rely on human engineers to manually identify pairs of equivalent syntax variations and
formalize them into translation rules. However, these tools often struggle to accurately translate
queries in many cases.

(1) Missing Translations: Some query operations should be translated but are not. For instance,
as shown in Figure 1, when translating the example query [26] from PostgreSQL to MySQL, the
AGE function in PostgreSQL, which calculates the difference between two dates is unsupported in
MySQL but cannot be translated by existing translation tools like SQLGlot [7].

(2) Incorrect Translations: Some query operations are translated incorrectly. For instance, SQL-
Glot [7] converts the function JSON_EXTRACT_PATH from PostgreSQL into JSON_EXTRACT for
Oracle, which does not exist. Notably, there are over 200 issues in SQLGlot’s code repository that
have reported incorrect translations caused by problems like improper rule implementation [7].

(3) Version Incompatibility: Translation tools have poor database version support, i.e., the trans-
lated query operations are valid for specific database versions but not others. For instance, when
translating from PostgreSQL to Oracle, SQLGlot (without the version selection option) translates
the query operation “LIMIT 1” into “FETCH FIRST 1 ROW ONLY”. This translated operation is
valid for Oracle 19c, but unsupported for Oracle 11g.

Traditionally, addressing these problems requires human engineers to write extensive code to
handle rule deficiencies and special cases (e.g., 2k+ issues remain open in the code repository of
jOOQ [3]), which is both costly and inflexible, especially when accommodating updates such as the
upgrades of dialect versions.

LLM-based Dialect Translation. Recently, large language models (LLMs) have demonstrated
strong semantic understanding and coding capabilities [25, 33, 44]. They can generate SQL queries
(e.g., NL2SQL [22, 24]), perform query rewrite [29], and interpret documents for tasks like knob

ISee detailed real-world queries successfully translated by CrackSQL at https://github.com/weAIDB/CrackSQL.
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tuning [23, 45, 46] and database diagnosis [48]. This suggests that LLMs could be a promising
solution to the limitations of rule-based database tools.

However, compared with common translation tasks [24, 37], dialect translation poses unique
challenges for LLMs to address and directly leveraging LLMs remains impractical. First, LLMs
often struggle to capture the subtle syntax differences between database dialects and fail to
accurately memorize the syntax specifications, which are critical for accurate translation. For
instance, as shown in Figure 1, GPT-4o fails to translate the query because, without specify-
ing the syntax constraints, GPT-4o cannot recognize that the TEXT data type is not allowed
in CAST function of MySQL. Second, LLMs may inadvertently replace functions with those of
different functionalities or output formats. For instance, Llama3.1 translates the MySQL query
“DATE_FORMAT(CURRENT_TIMESTAMP(), ’%Y’)” into the Oracle query “TO_CHAR(SYSDATE,
‘RR’)”, where *%Y’ returns a four-digit year (“2024”) while ‘RR’ provides a two-digit result (“24”).
Additionally, dialect translation lacks large-scale open dataset of typical SQL translation pairs,
unlike other programming language translations such as Java & C#.

To address the limitations of both rule-based translation tools and LLM, we propose a new dialect
translation paradigm. First, to mitigate the error-prone characteristic, we limit LLM’s involvement
in the translation process. That is, rather than indiscriminately using LLM to translate entire SQL
statements, we focus on specific incompatible operations. Second, to address adaption challenges
like supporting new dialects, we incorporate dialect-specific knowledge (e.g., valid syntax and
specifications in the target database dialect) to enhance LLM translation.

Challenges. To realize the above dialect translation paradigm, there are three main challenges.

C1: How to segment complex and lengthy queries? Queries often involve lengthy content
(e.g., excessive column values in IN clause) and multiple syntax elements that require translation
(e.g., the translations of CAST and AGE functions in the example query of Figure 1), increasing the
risk of dialect translation failures.

C2: How to match functionally equivalent syntax across diverse database dialects? Dialect
translation needs to identify syntax elements with equivalent functionalities across different
database dialects in consideration of both the syntax tree structures and specifications, typically
written in various styles and lengths, making syntax functionality matching a tricky task.

C3: How to conduct many-to-one dialect translation? Two key sub-challenges remain in
dialect translation. First, it is crucial to select as few operations as possible for LLM translation to
minimize the risk of hallucinations. Second, many-to-one translations are inherently complex (e.g.,
mapping multiple operations into one in the target dialect), and determining which operations
should be translated as a whole is challenging. For instance, as shown in Figure 1, the EXTRACT
and AGE operations in PostgreSQL need to be processed together by the LLM, so as to be correctly
translated into TIMESTAMPDIFF in MySQL.

Our Methodology. To address these challenges, we propose an automatic dialect translation
system (CrackSQL). First, we introduce Functionality-based Query Processing, which segments the
input query according to the syntax trees of different functionalities and simplifies the segmented
operations with customized function normalization and irrelevant query abstraction (for C1).
Second, to identify syntactic elements from the target dialect, we develop a Cross-Dialect Syntax
Embedding Model, which effectively calculates functionality embeddings based on both syntax tree
structures and specifications (for C2). Additionally, we employ a Retrieval-Enhanced Contrastive
Learning to effectively train the model using limited positive samples and noisy negative samples.
Third, to achieve accurate dialect translation, we propose a Local-To-Global Translation Strategy,
which focuses on operations that cause local failures (e.g., incompatibilities or those that cannot be

Zhttps://github.com/microsoft/CodeXGLUE
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translated using local single syntax element) through query validation, utilizes translation tools
and target-syntax-augmented LLM to translate these operations, and iteratively extends these
operations for re-translation if translation failures occur (for C3).

Contributions. In summary, we make the following contributions:

(1) We design an automatic dialect translation system that effectively translates SQL queries for
different dialects (see Section 3).

(2) We propose Functionality-based Query Processing that separates and simplifies complex queries
to reduce the translation difficulty and facilitate accurate translations (see Section 4).

(3) We propose a Cross-Dialect Syntax Embedding Model that aligns the embeddings of equivalent
syntax variants across dialects, enabling more accurate target dialect syntax matching (see Section 5).
(4) We propose a Local-to-Global Dialect Translation strategy that utilizes target-syntax-augmented
LLM to extensively translate problematic operations that cause local failures (see Section 6).

(5) Our extensive experiments on real-world datasets demonstrate significant translation accuracy
improvements over existing methods (see Section 7).

2 Preliminaries
2.1 Database Dialect and Incompatibility

Database Dialect refers to the specific implementation of SQL standards in a database. Syntax
differences between database dialects can cause incompatibility issues, where a SQL query written
for one database may fail to execute correctly on another. Incompatibilities typically arise from
differences in the following five aspects.

(1) Syntax Rules: Databases use distinct syntax rules for common operations such as column
and table annotations and definitions about join and data manipulation. For example, a subquery
without an alias is allowed in Oracle, while MySQL requires that each subquery must be assigned
an alias.

(2) Keywords: Databases contain a set of reserved keywords to support different operations. For
example, PostgreSQL has the keyword FULL OUTER JOIN for fetching all the rows from the joined
tables, while MySQL can only obtain the same functionality combined with the two keywords
LEFT OUTER JOIN and RIGHT OUTER JOIN. Besides, the keyword NULLS LAST in PostgreSQL
specifies the order of null values, which is also not supported in MySQL.

(3) Functions and Operators: Databases implement a series of (customized) functions and operators.
For example, MySQL develops a function “LAST_DAY()” to return the last day of a month, while
PostgreSQL can utilize the “DATE_TRUNC()” function and “+” and “-” arithmetic operators to
achieve the same functionality.

(4) Data Types: Databases may different names for the same or similar data types. For example,
MySQL leverages DATETIME to annotate the date and time type, while Oracle adopts TIMESTAMP.

(5) Others: Databases may handle constraints (e.g., foreign keys, unique columns) and sys-
tem settings differently. For instance, MySQL on Linux is case-sensitive by default (with
lower_case_table_names=0), while PostgreSQL usually converts table and column names to lower-
case, making it case-insensitive.

Note that we use syntax elements to represent keywords, functions and operators in the following
sections without ambiguity.

2.2 Database Dialect Translation

Database Dialect Translation refers to translating a query that causes incompatibility issues by
following the standards of target database dialect to ensure compatibility and equivalent functionality
while executing in the target database system.
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Fig. 2. Error Distribution of Translation from PostgreSQL to MySQL for TPC-DS queries (Others denote
queries that yield different results due to database inner differences, e.g., precision of numeric values).

Definition 2.1 (Functional Equivalence). A query operation g’, which is an implementation of
syntax SiT, in database DT is functionally equivalent to a query operation q? in database DO if it
produces the same execution results or has the same effect as ql.o.

Example 1. In PostgreSQL, the operation CONCAT(‘hello’, NULL) returns “hello”, while in
MySQL, CONCAT(‘hello’, NULL) returns NULL. These operations are not functionally equivalent.
To achieve the same result, the MySQL operation should include a conditional expression, such as
CASE ...WHEN.

Example 2. Within CREATE clause, NUMERIC(10, 2) in PostgreSQL is equivalent to NUMBER(10,
2) in Oracle, both defining a numeric column with up to 10 digits, including 2 decimal places.

Definition 2.2 (Database Dialect Translation). Given a query Q° written in a source database
dialect, Q¥ is composed of one or more operations {¢}. Database Dialect Translation refers to the
process of mapping each operation q? to one or more functionally equivalent operations in the
target database dialect. The translated query Q7 must (1) strictly follow the target dialect syntax
ST and (2) maintain functional equivalence to Q°.

Example 3. As shown in Figure 1, translating a PostgreSQL query that retrieves the names of
people younger than 70 into an equivalent MySQL-compatible query requires separately translating
both the CAST and EXTRACT operations. Specifically, we first resolve the data type incompatibility
by replacing TEXT with CHAR in the CAST operation. Then we modify the EXTRACT operation to
account for MySQL’s lack of support for the AGE function.

In this paper, we mainly consider the common translation types found in existing dialect transla-
tion tools [3, 7, 8], i.e., translating (1) syntax rules, (2) keywords, (3) built-in functions and operators,
(4) data types across different dialects. Note that dialect translation and query rewrite [29, 43] are
two different problems. (1) Query Rewrite transforms queries under the same dialect, while Dialect
Translation converts SQLs of different syntax among different dialects. (2) Query Rewrite modifies
query structures or remove redundant operations for better performance; while Dialect Translation
adjusts queries to match another dialect’s syntax to resolve incompatibilities.

In this paper, we research how to process queries into normalized operations with lower transla-
tion complexity (see Section 4), how to match equivalent syntax elements in the target database
dialect (see Section 5), and how to accurately translate queries from the local operation level to the
global query level (see Section 6).
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2.3 Limitations of Existing Methods

To better understand the limitations of existing methods and motivate the design of our system, we
conducted an experiment (migrating TPC-DS queries from PostgreSQL to MySQL) that reveals the
problems of SQLGlot [7], GPT-40, and Llama3.1 [42] in dialect translation. As shown in Figure 2,
we have three observations.

(Observation 1) Translation Affects Only Small Portions of Lengthy Complex Queries.
Our first observation is that the query operations requiring translation occupy only small parts
of the lengthy TPC-DS template queries. Specifically, the number of words in the experimented
template queries that require translation is 131 on average, while we notice that only the ROLLUP
expressions in most of the template queries require translation (i.e., GROUP BY ROLLUP(col_list)
— GROUP BY col_list WITH ROLLUP). This observation motivates us to focus translation efforts
on certain query operations that require functional equivalence across dialects.

(Observation 2) Failure Due to Lack of Translation Rules and Knowledge. As shown in
Figure 2, ROLLUP and FULL OUTER JOIN account for a large proportion of translation failures.
Specifically, SQLGlot, GPT-40, and Llama3.1 incur translation errors, i.e., 40.74%, 29.63% and 29.63%
respectively, because they fail to handle the translation of ROLLUP and FULL OUTER JOIN. This
indicates that existing rule-based translators lack certain translation rules, and LLMs are unaware of
functionally equivalent specifications, both of which are crucial for successful translation.
(Observation 3) Error-Prone Characteristics of LLMs. We observe that LLMs are prone to
making mistakes due to the hallucination problem. Specifically, both GPT-40 and Llama3.1 might
rename columns to ones that do not exist in the database (e.g., mistakenly changing “ca_state” to
“ca.state” based on their semantic understanding). Furthermore, Llama3.1 makes syntax mistakes
by appending the SELECT clause into the WITH clause as the last common table expression called
“final_result”, which leads to the absence of a SELECT clause. It indicates the necessity of enhancing
the reliability of LLMs when applied in dialect translation with strict grammar requirements.

3 System Overview

To address the above problems in dialect translation, we propose an automatic dialect translation
system (CrackSQL), which is composed of Functionality-based Query Processing, Cross-Dialect Syntax
Embedding, and Local-To-Global Dialect Translation.

Functionality-based Query Processing. LLMs have significant hallucination problems when
handling queries with lengthy content and complex structures, especially for those requiring the
translation of multiple syntax elements. Thus, we first propose a tree-based strategy to segment
the original query Q© by the syntax trees of different functionalities in the source dialect (i.e., the
whole query is transformed into a set of simpler operations {g;}). Next, we further simplify the
query via rules like operation normalization (e.g., converting customized functions into common
ones) and operation abstraction (e.g., replacing translation-irrelevant parts like column and table
names with non-terminal expressions). The entire query processing procedure is automatic by
parsing and traversing the SQL and matching the prepared specifications with the BNF grammar
parser in a depth-first order.

Cross-Dialect Syntax Embedding. Another challenge is how to match equivalent syntax ele-
ments across various target database dialects. To this end, we design a Cross-Dialect Embedding
Model to calculate the functionality embeddings for syntax elements, including (1) code structure
encoding (for various syntax elements in the syntax tree), (2) Mixture-of-Experts (MoE) based
syntax specification encoding (for specifications with diverse styles and lengths), and (3) syntax-
specification aggregation (for aligning specification embeddings with the corresponding syntax
element embedding).
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Fig. 3. System Overview of CrackSQL.

Local-To-Global Dialect Translation. To avoid unnecessary translations and enable simulta-
neous consideration of multiple syntax elements required in complex translation, this module
translates the processed operations {q;} to derive the ultimate query QT in the target database
dialect by gradually extending query operations from the local level to the global level. At the
local operation level, we identify operations {q}} that cause local failures: (1) Incompatibilities
identified by the BNF parser and (2) Insufficiencies recognized when translation fails using local
syntax information (e.g., exceeding the maximum LLM trials). For operations with incompatibilities,
we match the target dialect syntax for {q;} using the Cross-Dialect Embedding Model and utilize a
hybrid approach combining rule-based translation tools (e.g., SQLGlot) and LLM to translate these
operations. For operations that are insufficient to translate, we iteratively extend the operation
to include adjacent elements (q}). We continue translating using the above method until, after

replacing the origin query with the translated operations, the query Q7 is syntactically valid and

functionally equivalent to Q°.

Note we only use LLM in translating some segmented SQL operations (corresponding to certain
functionality in the prepared specifications), and resolve the LLM hallucination problem via hybrid

validation mechanisms.

Offline Preparation. In the offline stage, we prepare syntax element specifications and train the
embedding model: (1) We extract syntax elements from database parser files. Each syntax element is
annotated with (i) syntax tree in a unified BNF format and (ii) functionality specification (e.g., from
the official documents). Specifically, we analyze the organization and structure of the SQL syntax
in the documents, which are typically well-maintained (e.g., PostgreSQL provides the grammar
rules and usage for each released version®) and well-structured (e.g., in Oracle, each SQL syntax
is a title, followed by usage descriptions in the underlying paragraphs?). Based on the analysis
over document structure, we compose scripts® to automatically annotate syntax specifications. (2)
To match syntax functionality accurately, we employ Retrieval-Enhanced Contrastive Learning to
effectively train the Cross-Dialect Embedding Model with limited positive samples (i.e., equivalent
syntax elements) and judiciously select negative samples, such as non-equivalent syntax elements
with similar specifications (see Section 5). The generation of training samples is fully automated
without human intervention (see Section 5). For instance, we utilize existing rule-based systems
to produce positive examples that exhibit equivalent functionality for a given syntax element.
Notably, the Cross-Dialect Embedding Model is trained only once, rather than separately for each
translation task (e.g., MySQL to PostgreSQL), enabling it to support translations across various

dialects available in CrackSQL.

Shttps://www.postgresql.org/docs/

4https://docs.oracle.com/cd/E11882_01/server.112/e41084/functions009.htm

Shttps://github.com/code4DB/CrackSQL
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4 Functionality-based Processing

We properly process the input queries with various structures and operations, including syntax
functionality annotation, tree-based query segmentation, and rule-based query simplification.

4.1 Syntax Functionality Annotation

Given a database dialect, we extract the syntax elements from its query parser files (e.g., the gram.y
file in PostgreSQL). For each syntax element S, we require (i) the syntax tree in Backus-Naur Form
(BNF) of S for exact syntax matching and (ii) the specification of S’s functionality for subsequent
translation (see Section 6).

(1) Syntax Tree Generation: Different database parsers follow diverse grammar rules, making
their parsed syntax trees difficult to compare. To enable syntax matching across databases, we
generate syntax trees in a unified BNF format. We maintain and use a series of BNF definitions [18]
to standardize the syntax representation of queries. And, for every database, we derive the syntax
trees of syntax elements in the database, where the leaf nodes represent BNF terminal symbols
(e.g., SQL literals), and the internal nodes represent non-terminal symbols (e.g., SQL clauses or
functions).

(2) Syntax Specification Annotation: For the BNF-based syntax tree of S, we automatically annotate
functionality specifications by exact syntax element matching. We start by comparing the syntax
tree nodes of S with those from syntax elements in sources like official documents (e.g., PostgreSQL,
MySQL, and Oracle separately offer 245, 466, and 490 pages), using a depth-first traversal. Next, we
annotate the matched subtrees (query operations) of S with their syntax trees and specifications,
including (i) functionality, (ii) usage constraints, (iii) arguments and default values, and (iv)
usage examples, all of which are vital for syntax matching and translation. For instance, since
the keyword AS appears in various grammar rules (e.g., in CAST function or as table aliases), we
differentiate specifications for AS by syntax trees.

4.2 Tree-based Query Segmentation

Next, we discuss how to segment queries based on the syntax trees of different functionalities.
There are generally two strategies:

(1) Lexical-Based Segmentation uses regular expressions to split an SQL query based on specific
keywords or patterns. Typical SQL keywords such as SELECT serve as markers to divide the query
into smaller parts. However, it treats the query as a flat sequence of tokens, ignoring the underlying
syntax and the hierarchical relationships in the query (e.g., subqueries within SELECT and WHERE
clauses depend hierarchically on the outer query).

(2) Tree-Based Segmentation conducts an exact matching of sub-trees in the query’s syntax tree
for capturing the query structures.

Lexical-based segmentation struggles with complex queries (e.g., with nested subqueries). For
these queries, the operations derived by lexical-based segmentation may incorrectly span across
multiple clauses. Thus, we adopt tree-based segmentation. Similar to syntax specification annotation,
we traverse syntax tree T< in a depth-first order to match the predefined syntax elements. We
denote the exact matching function as M(¢), which returns TRUE if the substree ¢ matches that
of an element in the dialect syntax S, and FALSE otherwise. If a match is found, we extract the
subtree t rooted at node Nj. This subtree corresponds to the operation that begins at N, such
as the SELECT clause. The tokens contained in t are then converted back into SQL query, i.e.,
q = Unparse(t). In this way, we ensure that all tokens within the subtree t belong to the same
operation (e.g., all tokens in the SELECT clause are kept together).
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After syntax matching, we aggregate these identified operations, i.e., Q = {q; | M(t) = True}.
Each operation g; forms a valid SQL expression annotated with functionality specifications (obtained
in Section 4.1), which can be used in subsequent translation.

4.3 Rule-based Query Simplification

Based on the observation in Section 2, when translating SQL queries between different dialects, it is
essential to simplify operations by (1) replacing customized functions (e.g., LAST_DAY() in MySQL)
with equivalent common ones and (2) focusing on syntax elements that are crucial for accurate
translation. Therefore, we employ predefined rules to further process operations segmented from
the query Q, retaining only the translation-relevant components.

The core principle of this simplification is to ensure that within the syntax subtree of an operation,
no nodes contain customized functions, and any non-leaf nodes that do not affect translation are
replaced with predefined terms or query templates. To this end, we provide simplification rules in
the three main scenarios:

e Case 1: Simplifying Customized Functions. Database systems often implement a variety of cus-
tomized functions to enhance usability (e.g., the LAST_DAY function in MySQL). However, these
functions are often unsupported or exhibit inconsistent behavior in other database systems. To
tackle this issue, we maintain mappings (sourced from SQLGlot and human expertise) of customized
functions to equivalent expressions using common functions (if available) for query normalization.
For example, with the rule “str ILIKE pattern:=LOWER(str) LIKE LOWER(pattern)”, we normalize
PostgreSQL’s case-insensitive ILIKE function into the standard SQL expression by applying LIKE
with lowercase transformations.

o Case 2: Abstracting Irrelevant Expressions. Some functions or expressions nested within an
operation g; are generally not used when translating g;. For instance, consider the operation
“CAST(CONCAT(‘DR. e name) AS TEXT)”, which is matched by the CAST syntax. The inner
CONCAT function does not affect the translation of the CAST operation and can be abstracted
away. As a result, the expression is simplified to CAST(column_expr AS TEXT), where column_expr
represents a non-terminal symbol.

o Case 3: Abstracting Irrelevant Query Clauses. Certain query clauses may not be relevant to the
primary function or behavior of a specific syntax and can be masked. For instance, in the MySQL
query “SELECT * FROM child WHERE age >= 10 LIMIT 2 OFFSET 10”, which is matched by the
LIMIT syntax, the SELECT clause and WHERE condition are not relevant to the translation of the
LIMIT clause. Thus, these parts can be masked, retaining only the LIMIT portion, i.e., select_stmt
LIMIT 2 OFFSET 10.

5 Cross-Dialect Embedding Model

After query processing, another key challenge is matching equivalent syntax in the target database
dialect (e.g., functions with identical functionality but different names). However, most existing
general-purpose embedding models [16] train on paragraphs from the same documents and do
not explicitly consider pairs of cross-dialect specifications. Consequently, they cannot accurately
capture the functional similarities of syntax elements across diverse syntax rules and textual
descriptions (see Figure 8).

To address this problem, in this section, we propose Cross-Dialect Embedding Model, which
generates syntax functionality embedding based on both the syntax tree structure and syntax
specification features. Additionally, we employ a retrieval-enhanced contrastive learning approach
to effectively synthesize translation samples and train the model with judiciously selected samples
(e.g., operation with different functionality but high similarity).
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Fig. 4. Cross-Dialect Syntax Embedding Model.

5.1 Model Architecture

Given a query syntax S9, the goal of Cross-Dialect Embedding Model is to encode its functional
characteristics by leveraging both syntactic information (i.e., syntax keywords and structures) and
semantic information (i.e., textual specifications). This approach ensures that queries with the same
functionality, despite having different syntax, keywords, or specifications, will produce similar
embeddings and can be effectively matched.

Formally, Cross-Dialect Embedding Model is a function E : S — R¢, where S is the space of
all possible query syntax and d is the embedding dimension. The embedding E(S9) captures the
functionality of the syntax S9. In this paper, we design the model architecture in a hybrid way to
capture different features, which is composed of three main modules:

Syntax Structure Encoder. This module aims to capture the structural features of the query
syntax. We utilize a code-based encoder model, such as StarEncoder [28], which is pretrained on
code data (including SQL queries) to extract a structural representation of the query. For the input
query Q, we first tokenize it into a sequence of tokens t = [t1, £, ..., ;] (e.g., “CONCAT”, “(", ... in
Figure 4). We then feed the token sequence into the code-based encoder to obtain the structural
embedding hflt“”t € R%:

hf;r‘mt = CodeEncoder(t) (1)

The code-based encoder is trained to capture syntactic features of different syntax elements (e.g.,
the CONCAT() function in Figure 4), making it suitable for representing syntax structures.

Syntax Specification Encoder. Since different dialect specifications show diverse writing styles
(e.g., the CONCAT() function in MySQL® is detailed with illustrative examples, while the one

®https://dev.mysql.com/doc/refman/8.4/en/string-functions.html#function_concat
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in PostgreSQL’ is succinct as one row), this module employs multiple natural languages (NL)-
based encoders to capture multi-dimensional features of specifications and acquire a weighted
representation of the specification in a mixture-of-experts (MoE) style.

Let d denote the textual specification associated with the query syntax S. We employ a set of
K NL-based encoders {NLEncoderk}Ik(:l, each capturing different aspects of the specification. For
instance, some encoders can extract information from long passages, while others are skilled at
representing short paragraphs [34]. Each encoders generates an embedding vector, i.e., h‘;;:c =
NLEncoderg(d)(k =1,...,K).

We then aggregate these embeddings using a gating mechanism to obtain the final specification
embedding hgesc:

K
B = " aphe )
k=1
where ay are the gating weights determined by a gate function:
exp(gx(d))
= 3
2j=1 exp(g;(d))

where gi(d) is the output of the gating network for the k-th encoders, allowing the model to
dynamically assign weights based on the input specification. For instance, a higher weight for
encoder specialized in understanding and encoding the detailed illustrations about the CONCAT
function in MySQL.

Structure-Specification Aggregator. Given the syntax structure embedding hgr“t and the
specification embedding hgec, this module combines the two features using a multi-head cross-
attention. It ensures that the model focuses on the most relevant parts of the specification in relation
to the syntax structure, i.e.,

E(q) = CrossAttention(hf]"“Ct, hgesc) (4)

where CrossAttention E(q) =  Concat(head, ..., head,)W?, each head head; =
Attention(hsq” uct WIQ hge‘CWﬁK , hge“W}/). The attention function is defined as

Attention(Q, K, V) = softmax (QKT) 14 (5)
o \C
where W? W{< , WY and WO are projection matrices, and dy is the dimension of the keys.

In this way, we can align and integrate information from both embeddings, effectively filtering
out irrelevant parts of the specification and focusing on syntax-relevant content. Continuing from
previous examples, suppose the specification includes query syntax descriptions and usage hints.
The cross-attention mechanism will assign higher attention weights to relevant parts (e.g., the
example SQL query and its illustrations about CONCAT), integrating them with the structural
embedding to produce the final embedding E(q).

In summary, the advantages are three-fold. (1) Robustness to Syntax Variations: The model
incorporates the functional characteristics of different database dialects, making it resilient to
variations in query syntax elements and rules. (2) Adaptability to Diverse Specifications: Using an
MoE-style Syntax Specification Encoder, we can process specifications of varying lengths and styles
by assigning appropriate weights to different NL-based encoders. (3) Effective Feature Integration:
The multi-head cross-attention integrates only the most relevant descriptive features with syntax
elements, improving the ultimate functionality embedding quality.

"https://www.postgresql.org/docs/14/functions-string html
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5.2 Retrieval-Enhanced Contrastive Learning

Next, we explain how to effectively train Cross-Dialect Embedding Model with limited samples.
Training this model requires a substantial number of positive and negative samples to distinguish
between functionally equivalent syntax elements and those that are not [12]. Positive samples
are pairs of syntax elements with the same functionality, while negative samples are pairs that
differ functionally. However, despite the availability of numerous queries from different dialects,
obtaining equivalent pairs based on their annotated specifications is challenging (e.g., there are
735 candidate PostgreSQL specifications and 532 MySQL specifications). To address this issue, as
illustrated in Figure 5, we first introduce methods to automatically generate these samples as initial
training data. We then present a novel retrieval-enhanced contrastive learning paradigm to train
the model using the generated samples.

5.2.1 Training Sample Generation

For each database system, we collect query syntax trees and specifications from official syntax
documentation (see Section 4.1). We represent each type of query syntax tree as a pair of syntax
elements and specifications, i.e., s; = (Qf, d}), where Q; denotes the query keywords or structure,
and df represents the textual specification. For each syntax element (an anchor element), we
generate positive and negative samples based on the following strategies:

Positive Sample Generation . As shown in Figure 5, we synthesize positive samples using the
following methods.

M1: Self-Augmented Specifications. For a syntax s;, we perform self-augmentation on its specifica-
tion d; by rephrasing sentences, replacing words with synonyms, and permuting sentence order [32].
Each augmented specification d;’ forms a new syntax pair (Q7, d}’). The original syntax pair and
each augmented pair form positive sample pairs, reinforcing the model’s robust understanding of
varying expressions of the same functionality [14, 46].
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M2: Cross-Database Specifications. For a syntax s;, we search for syntax s; in other databases that
has the same keywords of identical functionality but different specifications. For example, built-in
functions in both MySQL and PostgreSQL may have different specification styles discussed in Sec-
tion 5.1. Pairs (s;, s;) form positive samples, helping the model recognize equivalent functionalities
across different database dialects.

M3: Tool-Based Translations. For a syntax s;, we utilize existing dialect translation tools (e.g.,
SQLGIot) to translate the query Qf of syntax s; into other database dialects, producing new queries
Q7. Each translated query combined with its corresponding specification forms a new syntax
sk = (Qy> di)- The pairs (s;, sx) serve as positive samples.

Negative Sample Generation . After generating positive samples, we cluster syntax elements
based on functional equivalence, i.e., syntax elements that are positive samples with each other are
grouped into the same cluster. To construct negative samples, we consider pairs of syntax elements
from different clusters whose size is large than one, which are expected to be functionally different.

By employing above methods (e.g., using deterministic tools and basic synonym transformations),
we can generate high-quality training samples with minimal noise. Moreover, if any noisy samples
lead to inaccurate translations (i.e., mismatching target syntax by the embedding model), such
errors can still be detected through the validation mechanism in Local-To-Global Translation.

5.2.2 Contrastive Model Training

Given the generated samples, contrastive model training aims to (1) reduce the distances between
embeddings of positive samples (pulling them closer), and (2) increase the distances between
embeddings of negative samples (pushing them apart). For any syntax s; as an anchor sample, we
obtain its positive samples P (i) and negative samples N (i). The Cross-Dialect Embedding Model
encodes each syntax s into an embedding vector hy = f(s) and is trained once and works for
translations across different dialects supported.

Hard-Negative Sample Selection. Within the set NV (i), many negative samples are either (1)
already well-distinguished from s;’s embedding (i.e., with low cosine similarity), or (2) introduce
significant noise due to their dissimilarity or irrelevance. To alleviate the efforts spent on such
ineffective samples, we introduce hard negative samples, i.e., samples that (1) have different
functionality from s; but (2) possess embeddings similar to that of s;. For example, the specification
of function A is redundantly referred to by the specification of function B, which leads to the
matching for function A mistakenly occurring for function B. To derive the set of hard negative
samples N’ (i), we first select negative samples whose embeddings are more similar to s; than those
of any positive samples (i.e., they are ranked higher in similarity).

Loss Function Design. Using the samples in (i) and N’ (i), we design the contrastive loss
function for s; as:

1 exp(zip)
Li=- - lo (
TP sze%.) &\ exp(ap) + Sorenr o) exp(zim)

where z;; denotes the scaled cosine similarity between embeddings hy, and hg > le, zij =
sim(hy,;, hs;)/7. 7 is a temperature hyper-parameter controlling the concentration level of the
distribution. z;, is the scaled similarity of s; with a positive sample, and z;, is the scaled similarity
of s; with a hard negative sample.

This loss function encourages the model to maximize the similarity between the anchor sample
and its positive samples while minimizing the similarity with hard negative samples.
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Algorithm 1: LocalToGlobalDialectTranslation

Input: Origin Query Q; source_dialect; target_dialect
1 Initialize the translated query Q’ as Q;
2 repeat

3 incompatible_ops = DetectIncompatibility(Q’, target_dialect);
4 foreach op in incompatible_ops do

5 repeat

6 translated_op = Translate(op, target_dialect);

7 if translated_op is not None then

8 L Replace op with translated_op in Q’;

9 else

10 L Extend op to include more operations in Q’;
11 | until translated_op is not None or cannot extend op;

12 until no incompatibility warnings or arriving maximal trials;
13 if Q' is valid and equivalent to Q then
14 L return Q’ ; // Translation successful

15 return “Cannot Translate” ; // Translation failed

Function DetectIncompatibility(Q, target_dialect)

Input: Query Q; target_dialect
1 Generate the syntax tree of Q in target_dialect BNF definitions;
2 Collect incompatibility warnings;
3 Identify the operations causing each warning;
4 return list of operations causing incompatibility warnings;

Function Translate(op, target_dialect)

Input: Operation to translate op; target_dialect
1 Match op with relevant syntax in target_dialect;
2 Use LLM to translate op within maximal trials;
3 if translated_op is valid and equivalent to op then
4 L return translated_op

5 return None ; // Translation failed

6 Local-To-Global Translation

To translate queries with various syntax elements, in this section we propose Local-To-Global
translation (see Algorithm 1) that achieves two main objectives: (i) avoids unnecessary translations
of SQL operations that are already compatible with the target dialect, and (ii) supports complex
translations, such as those involving multiple origin SQL operations to achieve a functionality
within the target dialect (e.g., translating the combined EXTRACT and AGE function in PostgreSQL
into the TIMESTAMPDIFF function in MySQL).

Validation-Guided Operation Selection. Since not all the query operations require translation
(discussed in Section 2), we identify query operations that are (1) incompatible with the target
database dialect or (2) cannot be correctly translated with its local syntax tree and specification.
(1) Incompatibility Warning Detection. We try to generate the syntax tree for the input query Q
based on the BNF definitions in the target dialect. Any query operation that raises incompatibility
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warnings (identified by the BNF grammar parser) during the tree generation is flagged to be
translated. For instance, consider the PostgreSQL SQL in Figure 3, the “CAST(CONCAT(’Dr., ”) AS
TEXT)” casts the result of CONCAT function into the TEXT type. However, the TEXT type is not
allowed in the CAST function of MySQL. Thus, the query operation of CAST function raises an
error and is flagged.

(2) Operation Selection. The operations raising the incompatibility warnings are isolated as
translation units. Continuing the above example, the problematic query operation is the CAST
function. We select this operation for exclusive translation. Operations such as different built-in
functions are typical candidates for isolation.

(3) Operation Extension. For the selected operation g;, if the LLM fails to translate ¢; within
maximal trials (i.e., having parsing errors in the revised query Q’), we denote the current operation
q; as insufficient and dynamically extend the operation to include adjacent operations that might
assist the translation. This extension allows for a wide scope of translation. For example, if the
CAST function is not successfully translated within maximal trials, we expand it to the select_stmt
to perform translation over a wider scope with more query operations involved.

Syntax-Augmented Translation. For each identified problematic operation, we employ LLM
informed by specifications via model-based syntax matching to perform translation. This ensures
the translated operations are syntactically correct in the target dialect and maintain the original
query’s intent (functionality equivalent).

(1) Model-Based Syntax Matching: For each identified operation Q;, we employ the Cross-Dialect
Embedding Model to align syntax elements in the target dialect (see Section 5.2). For instance,
the CAST function in PostgreSQL is mapped to the CAST function in MySQL. Then, both the
specifications about CAST function in PostgreSQL and MySQL serve as the input to instruct LLM
for accurate translations.

(2) Iterative LLM Translation: Given the input SQL, its specification, and the matched specifications
in the target dialect, we employ LLM (e.g., GPT-40) to perform iterative translations. In each iteration,
the LLM considers both the operation and its matched syntax elements to progressively refine the
translation.

(3) Hybrid Query Validation: We adopt a hybrid strategy to validate the translated operations.
We design a two-step validation mechanism to utilize local failures and specifications to perform
syntactically correct and functionally equivalent translations.

e Step 1: Syntactic Validation. The translated operations replace the identified ones to derive
the translated query Q’. Then, we generate the syntax tree of Q" with the BNF definitions in the
target dialect and observe whether incompatibility warnings persist.

e Step 2: Semantic Validation. Once the translated query Q’ is syntactically correct (i.e., no
incompatibility error exists), we instruct LLM to reflect whether the translation is successful. Our
intuition to adopt LLMs for semantic validation is that they showcase good code understanding to
write SQL queries [22]. Specifically, we provide LLM with the specifications of the identified and
the translated query operations as well as the input query Q and translated query Q’, instructing its
reasoning about the equivalence judgment of two queries (typically easier than conduct translation).

The validation is conducted between the above syntactic and semantic validation in multiple
rounds until no error is detected. With this two-step validation, we can effectively evaluate the
functionality equivalence of the translated query (see Table 1) and do not need to actually execute
in the database (which is generally not allowed in real scenarios).
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7 Experiments

In this section, we first introduce a dialect translation dataset collected from mainstream sources.
Then, we use the dataset to conduct extensive experiments to evaluate the performance of CrackSQL
and compare it with state-of-the-art methods.

7.1 Experimental Setup

Baselines. We compare three popular translation tools and LLMs in the experiments: (1) SQL-
Glot [7] is an open-sourced translation engine that supports common database dialects and transla-
tion rules (e.g., it defines 13, 16, 22 data type translation rules for MySQL, PostgreSQL, and Oracle,
respectively); (2) jOOQ [3] is an open-sourced translation engine that integrates empirical rules
like SQLGlot; (3) SQLines [8] is a close-sourced translation tool; (4) LLMs: We also evaluate several
LLMs, including GPT-4o [2], CodeLlama-7B [1], and L1ama3.1-8B-Instruct [4]. CrackSQL uti-
lizes GPT-4o0 as the translation model by default, and the other two LLMs are evaluated in Section
7.5.3. Each LLM performs dialect translations based on the given problem instructions®.
Evaluation Metric. We adopt three evaluation metrics: (1) Executable Ratio (Accgx): The ratio
of the translated queries that are executable in the target database without raising incompatibility
error (e.g., incorrect data types or functions); (2) Result Accuracy (Accrgs): The ratio of the
translated queries that return the strictly identical results in the target database as the origin
queries in the source database, including the returned data format, precision, and displayed order;
(3) Retrieval Precision: The success ratio of syntax specification retrieval by embedding models
(see Section 7.5.2).

Implementation. The tested database systems include MySQL v8.0, PostgreSQL v14, Oracle 11g.
We utilize the vector database ChromaDB to conduct syntax specification retrieval. The workstation
setup is two Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz, 256 GB main memory, and four GeForce
RTX 3080 Ti graphics cards.

Hyper Parameters. For Cross-Dialect Embedding Model, we adopt StarEncoder pretrained over the
SQL corpus as syntax structure encoder; and bge-large-en-v1.5, all-MiniLM-L6-v2, stella_en_400M_v5
from the MTEB leaderboard as syntax specification encoders, with only few parameters required to
be fine-tuned. The number of retrieved syntax specifications k equals 3 by default. The fine-tuned
LLMs adopt LoRA by default; and hyper-parameters like learning rate and training epoch are set to
le-4 and 50 respectively.

7.2 Dialect Translation Dataset
Existing database performance benchmarks [10, 11, 19] cover limited syntax elements, with few
query templates suitable for dialect translation. For instance, in TPC-H [11], only queries with

8The detailed LLM instruction prompts are provided at https://github.com/weAIDB/CrackSQL.
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Table 1. Translation Accuracy (%) of Different Methods (-’ denotes translation is not supported in Ora2Pg).
PG - MySQL MySQL - PG PG — Oracle Oracle - PG MySQL — Oracle Oracle -» MySQL

Method ACCEX ACCRES ACCEX ACCRES ACCEX ACCRES ACCEX ACCRES ACCEX ACCRES ACCEX ACCRES
SQLGlot [7] 7419 7097 6032  60.32  55.81 5349 5385  46.15  29.27 20.73 73.33 66.67
jOOQ [3] 70.97 70.97 39.68 39.68 62.79 60.47 84.62 53.85 47.56 35.37 80.0 53.33
Ora2Pg [5] - - 33.33 3333 - - 76.92  46.15 - - - -
SQLines [8] 9.68 9.68 31.75 31.75 53.49 48.84 61.54 38.46 39.02 32.93 80.0 60.0
GPT-40 [2] 61.29 6129 50.79 4444 6047 5581  84.62  53.85 12.2 10.98 80.0 73.33

CrackSQL (Ours) 87.1 74.19 85.71 79.37 69.77 67.44 9231 6154 59.76 42.68 93.33 80.0

timestamp expressions (e.g., the INTERVAL keyword) are applicable for dialect translation. And the
dozens of translatable queries in TPC-DS [10] are insufficient for comprehensive testing. Therefore,
we spent around 6 human months preparing a dataset of typical dialect translation pairs from the
following sources:

e Open-Source NL2SQL Benchmark. We collect translation pairs from the open-source NL2SQL
benchmarks, which consist of complex queries reflecting heterogeneous user questions daily. For
instance, we collect the queries provided in the BIRD benchmark [27], where each user question
is associated with queries written for both MySQL and PostgreSQL. We de-duplicate the queries
originating from the same query template (i.e., only differ in the parameters) and expand these
queries to Oracle during our experiments (i.e., verify and collect the successfully translated queries).

o Public Code Repository. We collect translation pairs from actively maintained Github reposi-
tories (e.g., SQLGlot, jOOQ) in two ways: (1) We extract and collect the queries from the relevant
GitHub issues (e.g., the ones including the translation keywords), which are well-formatted in the
SQLGlIot repository. (2) We extract the test cases involved in the code of repositories like SQLGlot.

e Online Code Website. We turn to the dumped data of websites like StackExchange [9] to
extract the queries from the questions tagged with PostgreSQL / MySQL / Oracle. Since questions
on these websites are typically lengthy with multiple responses, we utilize LLM (i.e., GPT-40) to
help us extract the relevant queries.

Dataset Statistics. (1) Translation Samples: From above sources, we gain 248, 142 and 111 query
pairs for PG <> MySQL, PG < Oracle and MySQL «> Oracle respectively®. As shown in Figure 6, it
showcases distinct features for the dialect translation problem, including the typical translation
types discussed (see Section 2). (2) Syntax Specifications: Moreover, we collect 524, 735, and 332
functionality specifications from parser files and documents for MySQL, PostgreSQL, and Oracle,
respectively (see Section 4.1).

7.3 Performance Comparison

With the translation dataset, we separately test CrackSQL and the baselines in six translation
scenarios of the three database systems.

Translation Accuracy. As shown in Table 1, CrackSQL outperforms the baselines in all the
scenarios. For instance, CrackSQL achieves 3.22%-21.95% result accuracy improvement than SQLGlot,
3.22%-39.69% than jOOQ, 9.75%-64.51% than SQLines, 7.69%-34.93% than GPT-40. The reasons are
two-fold.

First, GPT-40 achieves relatively good performance in scenarios like translating among Post-
greSQL and Oracle (53.85%-84.62%), but easily makes mistakes and has extremely low accuracy in
some scenarios (e.g., 10.98% Accggs for MySQL—Oracle). As shown in Figure 7 (c), GPT-40 can
hardly translate queries with relatively complex syntax structures, which take up 64.21% transla-
tion failures in MySQL—Oracle. Instead, CrackSQL processes the queries before translation and
retains only the necessary syntax elements for LLM to translate with minimal changes required.

The evaluation set and the translation result have been released at https://github.com/weAIDB/ CrackSQL.
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Besides, CrackSQL achieves much more robust performance by resolving the potential errors in
intermediate steps (e.g., Cross-Dialect Syntax Matching and Local-To-Global Translation) through
its hybrid validation mechanism. For instance, CrackSQL incorrectly translates TO_TIMESTAMP
in PostgreSQL to UNIX_TIMESTAMP, based on the retrieved specification in MySQL. However,
semantic validation identifies this as the opposite operation of the correct FROM_UNIXTIME
function.

Second, rule-based translation tools not only perform worse than CrackSQL, but demonstrate less
stability in different dialect translation scenarios. For example, SQLGlot behaves well in translating
among MySQL and PostgreSQL, i.e., performing worse than CrackSQL but with 9.68%-15.88% higher
Accgrgs than GPT-40. However, SQLGlot is nearly the worst in translating among PostgreSQL and
Oracle. The unstable performance is caused by the different rule complexity and development
levels. For instance, we can find some mistakes in the built-in rules of SQLGlot: It converts the
function JSON_EXTRACT_PATH() in PostgreSQL into the not-existing function JSON_EXTRACT()
in Oracle. Instead, CrackSQL can flexibly translate queries based on the matched syntax (in any
target database dialect with specifications) using the cross-dialect syntax embedding model, In this
way, it can automatically accumulate new translations with minor human intervention.

7.4 Finer-Grained Analysis

Furthermore, we conduct finer-grained analysis in different metrics (see Table 1) and error distribu-
tions (see Figure 7). Table 3 showcases the valuable translation examples that are supported by
CrackSQL but not adequately handled by these translation tools.

Metric Discrepancy. We further investigate the discrepancy between Accgx and Accggs, i.e., why
the syntactically correct queries produce inconsistent results. We find that most of these cases are
attributed to the inner difference of the underlying databases. For example, the numeric results
are returned with different digit numbers due to the precision of the implemented data types (e.g.,
DECIMAL for PostgreSQL and DOUBLE for MySQL), and the same result sets are displayed in
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Table 2. Ablation Study of Three Main Components.

Component Oracle = PG Oracle — MySQL
Functionality-based
Query Processing Accgx Accres Accpx  ACCREs
Query Query
Segmentation Simplification
x x 76.92 30.77 46.67 33.33
x v 76.92 46.15 53.33 33.33
v x 84.62 61.54 73.33 60.0
Embedding Model /0P Accurs Accpx Aces
x 84.62 53.85 57.14 28.57
Local-To-Global
Dialect Translation ACCEX ACCRES ACCEX ACCRES
Syntactic Semantic
Validation Validation
x x 53.85 46.15 57.14 28.57
x v 61.54 61.54 57.14 42.86
v x 84.62 53.85 86.67 66.67
CrackSQL (Ours) 92.31 61.54 93.33 80.0

different orders due to the absence of the ORDER BY clause. In these cases, CrackSQL is useful to
iteratively explore the potential translations (i.e., local operations to global query).

Translation Error Distribution. We analyze the translation errors according to the categories in
Table 3 and identify what factors contribute to a successful translation.

e Syntax Rules. Although it is fundamental to ensure the translated queries strictly adhere to the
syntax rules, SQLines and GPT-4o still present many syntactically incorrect queries (i.e., 35.53%
for SQLines and 64.21% for GPT-40 in MySQL—Oracle). For example, SQLines fails to convert the
double quotes to backticks for columns or tables (PG — MySQL) and remove AS for their alias
(PG — Oracle). In contrast, CrackSQL processes queries to keep the unnecessary syntax elements
unchanged. And the validation mechanism in CrackSQL ensures the translated queries strictly
adhere to the target syntax rules.

e Keywords. As shown in Figure 7, translation tools generally make fewer mistakes in keyword
handling, e.g., with error rates below 20% for jOOQ and SQLines. However, some implicit keywords
still require attention. For example, in MySQL, query “ORDER BY col ASC” ranks null values first
by default, but when translating to PostgreSQL, NULLS FIRST keyword must be explicitly added.
e Functions & Operators. Real queries involve customized functions and operators that are
not supported by other databases. As shown in Figure 7, the built-in function is the primary
translation error type (i.e., taking over 55.56% in the three scenarios) of jOOQ. These functions
either remain unchanged or trigger a parsing error during the translation by jOOQ. For example,
jOOQ cannot translate the combined operation of EXTRACT and AGE function in PostgreSQL to
TIMESTAMPDIFF function in MySQL. Instead, CrackSQL normalizes customized functions into
common ones, which can then be more easily translated with the retrieved function specifications
and LLM knowledge.

o Data Types. As shown in Figure 7, data types occupy a large proportion in the translation errors
of SQLGIot (e.g., 48% for MySQL—PostgreSQL). The data type errors are mainly caused by (1)
inconsistent function names and (2) incorrect input data types for the functions. For example, since
SQLGlot is a no-dependency SQL parser, it fails to capture the data types of columns or expressions
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Table 3. Translations Errors Fixed by CrackSQL (S, K, F, D denotes translation type of Syntax Rule, Keyword,
Function & Operator and Data Type respectively. Expressions are abstracted, where only the keywords and
functions are highlighted in bold).

Source

GPT-40

Dialect

Target

SQLGlot

jO0Q

SQLines

CrackSQL |

1/ col 1/ NULLIF(col, 0) v x x x v MySQL — PG

S2 tbl AS tbl_alias tbl tbl_alias v v x v v PG — Oracle
S3 FROM sub_query FROM sub_query AS query_alias x v v x v Oracle — MySQL

S4 HAVING ... GROUP BY ... GROUP BY ... HAVING ... v v x v v Oracle — PG

K1 GROUP BY ROLLUP(col_list) GROUP BY col_list WITH ROLLUP x v x x v PG — MySQL

... tbl1 LEFT OUTER JOIN tbl2 ON ...
UNION ALL
K2 ... tbl1 FULL OUTER JOIN tb]2 ON ... ... tbl1 RIGHT OUTER JOIN tbl2 ON ... v x v PG — MySQL
‘WHERE NOT EXISTS
(SELECT 1 FROM tbl1 WHERE ...

K3 LIMIT numl, num2 LIMIT num2 OFFSET num1 v v x v v MySQL — PG

K4 ‘WHERE ROWNUM <= num LIMIT num x v x x v Oracle - PG

K5 FROM DUAL / x v v x v Oracle — PG

F1 | EXTRACT(unit FROM AGE(timel, time2)) TIMESTAMPDIFF(unit, time2, timel) x x x x 7 PG — MySQL

F2 str1 ILIKE str2 LOWER(str1) LIKE LOWER(str2) v v x x v PG — MySQL

F3 TO_TIMESTAMP(unix_time) FROM_UNIXTIME(unix_time) v x x v v PG — MySQL

Fa CURDATE() CURRENT_DATE x 7 x 7 7 MySQL — PG

DATE_TRUNC(MONTH’, time) + . -

s LAST_DAY(time) INTERVAL 1 MONTH - INTERVAL 1 DAY | ¥ - - v v MySQL = PG

D1 CAST(col AS bytea) CAST(col AS BINARY) x x * 7 7 PG — MySQL

DATE_FORMAT(time1, unit_format] EXTRACT(unit FROM time1) - .

b2 - I)ATEJ-‘ORMA’l{(timeZ, umtiformaz) EXTRACT((unit FROM limeZ)) ) ) ) ) v/ MySQL — PG
D3 date_obj = time date_obj = TO_DATE(time, format) * x 7 7 MySQL — Oracle
D4 DATETIME TIMESTAMP x v v v v MySQL — Oracle
DS SUM(bool_expr) SOV 1 psm o ppy < v v v v | MySQL - Oracle

and conduct proper type conversion. In contrast, CrackSQL retrieves specifications that clarify
the input data types. And CrackSQL can utilize the type information in our BNF tree to check the
validity of each component in the syntax elements.

7.5 Ablation Study

We conduct ablation studies to verify the effectiveness of the main components in CrackSQL,
including 7 variants over the three main components. The results in Table 2 demonstrate that all
the designs in these components contribute to the effectiveness of CrackSQL.

7.5.1 Functionality-based Processing

We investigate the effectiveness of the Functionality-based Query Processing component by assessing
the translation accuracy of three variants, including (1) CrackSQL w/o Query Segmentation, (2)
CrackSQL w/o Query Simplification, and (3) CrackSQL w/o Query Segmentation and w/o Query
Simplification. The results are shown in Table 2, and we have the following observations.

First, Query Segmentation significantly enhances translation accuracy (by 48.91% on average). It
breaks down the lengthy query into multiple succinct segments, allowing LLM to focus on translat-
ing each segment independently while ignoring irrelevant parts (e.g., translating the DATE_FORMAT
function within a complex MySQL query). Second, Query Simplification also improves translation
accuracy (by 11.74% on average). It simplifies customized functions into common ones for easier
function matching (e.g., replacing the unique ILIKE function in PostgreSQL with common LOWER
and LIKE functions) and converts indispensable parts within segments into simplified formats,
thereby reducing translation complexity (e.g., abstracting the subquery as table_id).

7.5.2 Cross-Dialect Embedding Model

We first verify the effectiveness of Cross-Dialect Embedding Model. As shown in Table 4, CrackSQL
with the embedding model achieves 45.95% higher translation accuracy on average. This im-
provement can be attributed to the translation knowledge that LLM lacks but is retrieved by the
embedding model, including the usage of equivalent keywords and built-in functions. For instance,
the TO_TIMESTAMP function in PostgreSQL is equivalent to the FROM_UNIXTIME function in
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Fig. 8. t-SNE of Embedding Models (Same markers denotes functionally equivalent specifications).

Table 4. Precision (%) of Different Embedding Models.

Model PG — MySQL MySQL — PG Oracle — PG
k=1 k=3 k=5 | k=1 k=3 k=5 | k=1 k=3 k=5
BM25 35.71 4694 55.61 | 53.92 66.67 71.57 4.29 15.71 5143
StarEncoder 11.73 18.88 2347 | 1.96 2.94 2.94 0.0 0.0 0.0

all-MiniLM-L6-v2 38.27 54.08 61.73 | 43.14 69.61 7549 | 24.29 41.43 51.43
stella_en_400M_v5 43.88 68.37 71.43 | 50.98 79.41 83.33 | 53.66 76.83 84.15
stella_en_1.5B_v5 39.29  60.20 64.29 | 3431 48.04 53.92 | 19.51 28.05 31.71
MultiEmbed 4592 60.71 6735 | 50.98 74.51 85.29 | 30.0 51.43 61.43
Cross Dialect (Ours) | 74.49 89.29 9541 | 76.47 90.20 94.12 | 61.43 85.71 91.43

MySQL, which have different names but the same functionality. By leveraging this knowledge,
LLMs can be guided to perform more accurate translations.

We then compare Cross-Dialect Embedding Model with the following baselines for a more fine-
grained analysis. (1) BM25: a lexical-based keyword search method that ranks the specifications
based on the query terms in the set of all the documents; (2) StarEncoder: a transformer-based
model [28] trained on 80+ programming languages (including SQL); (3) al1-MinilM-L6-v2: the
default embedding model utilized in a LLM system framework (i.e., the langchain project); (4)
stella_en_400M_v5: the top-1 embedding model in the MTEB leaderboard whose parameters
volume is less than 1B; (5) stella_en_1.5B_v5: a larger version of stella with 1.5B parameters; (6)
MultiEmbed: directly concatenate the embeddings generated by the above model. We evaluate the
precision of the retrieved top-k specifications (i.e., from 1 to 5) by performing a similarity search
with the embeddings generated by these models.

Retrieval Precision. As shown in Table 4, our embedding model obtains the highest precision
values when k varies from 1 to 5, which is 86.34% higher than others on average. The code-only
model (StarEncoder) cannot retrieve the equivalent specifications and causes low precision (lower
than 20%). It indicates the effectiveness of the fusion of multiple embeddings in our model, where
each query specification is associated with the syntax tree elements and textual illustrations. Thus,
the embeddings considering both syntax tree and specification factors help to achieve more accurate
equivalent syntax matching.
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Table 5. Translation Accuracy (%) v.s. Underlying LLM.

Oracle - PG Oracle — MySQL

Method Accpx Accres Accpx AcCCREs
CodeLlama-7B 7.69 7.69 0.0 0.0

CrackSQL (CodeLlama-7B) 38.46 30.77 50.0 42.86
Llama3.1-8B 76.92 46.15 73.33 53.33
CrackSQL (Llama3.1-8B) 92.31 61.54 93.33 73.33
GPT-40 84.62  53.85 80.0 73.33
CracksSQL (GPT-40) 92.31 61.54 93.33 80.0

Table 6. Translation Accuracy (%) with Finetuning (SFT-SELF: Training over MySQL — Oracle data samples;
SFT-BRIDGE: Training over MySQL — PG and PG — Oracle data samples).

MySQL — Oracle MySQL — PG
ACCEX ACCRES ACCEX ACCRES
CodeLlama-7B 17.07 7.32 17.46 17.46
CodeLlama-7B (SFT-SELF) 29.27 20.73 44.44 42.86
CodeLlama-7B (SFT-BRIDGE)  43.9 34.18 52.46 45.9

CrackSQL (CodeLlama-7B) 48.78 36.59 60.32 57.14

Method

Llama3.1-8B 17.07 17.07 58.73  50.79
Llama3.1-8B (SFT-SELF) 29.27 20.73 3333 3333
Llama3.1-8B (SFT-BRIDGE) 29.27 20.73 42.86  42.86
CrackSQL (Llama3.1-8B) 53.16 36.59 72.88 54.24

Functionality Embeddings. We further investigate the embeddings generated by different models
by projecting them into the 2-D space with t-SNE [41]. As shown in Figure 8, the embeddings
generated by our model can cluster the specifications by their functionalities better than other
methods. It validates the effectiveness of the proposed retrieval-enhanced contrastive learning. Our
contrastive learning bridges the gap between different dialects by leveraging a series of dialect-
specific query specification samples to pulls in the functionally equivalent ones while pushes apart
the others among the dialects. In contrast, existing embedding models typically only consider
the correlation within one dialect independently and do not exclusively attempt to identify the
connections among dialects.

7.5.3 Local-To-Local Translation

We explore effectiveness of CrackSQL variants by changing two validation mechanisms (i.e., Syn-
tactic Validation and Semantic Validation) separately for syntactic and semantic checking in Local-
To-Global Translation. As shown in Table 2, we notice that: (1) Syntactic Validation improves the
translation accuracy, especially for the executable ratio (Accgy), by 57.13% on average. It locates and
identifies the segments that violate the dialect standards and provides LLM with explicit feedback
to handle these segments (e.g., function CURDATE() does not exist in PostgreSQL); (2) Semantic
Validation helps to achieve a 20.12% higher translation accuracy, especially for the result consistency
(Accgrgs), on average. Because it complements and figures out the subtle semantic differences not
detected by grammar checking in syntactic validation. For instance, MySQL functions CURDATE
and CURRENT_TIMESTAMP return current time with different units and formats.
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Table 7. Accuracy (%) with Execution Feedback.

P e

80 -7 ’ y ?
Method PG — MySQL MySQL — PG g < /

Accgx  Accres  Accgx  Accres ::;60 ? ’ / /
Llama3.1-8B (w/o feedback) 61.29 35.48 68.25 58.73 ] 0 / ’ / /
Llama3.1-8B (w/ feedback) 67.74 45.16 69.84 60.32 § ’ / ‘ ’
GPT-40 (w/o feedback) 61.29 6129 5079 4444 * 2 ’ ’ / /
GPT-40 (w/ feedback) 64.52 51.61 76.19 68.25 4 4 ’

oL o4 i i = |
CrackSQL (Ours) 87.1 74.19 85.71 79.37 1 3 5 7

Maximal Trial
7.5.4 LLM Settings Fig.9. Accuracy (%) v.s. Maximum Trials.

We validate the effectiveness of CrackSQL with different LLM settings, including (i) various LLM
types, (ii) with / without the execution feedback, and (iii) the maximum trial numbers.

LLM Types. We test two localized LLMs: (1) CodeL1ama-7B: A Llama2 model finetuned for code
synthesis and understanding [1]; (2) L1ama3.1-8B-Instruct: A general-purpose Llama3 model
optimized for multilingual cases [4].

As shown in Table 5, CrackSQL obviously improves LLM’ts dialect translation performance, i.e.,
achieving 6.67%-13.33% accuracy improvement for GPT-40, 15.39%-20% for L1ama3.1-8B-Instruct,
and 23.08%-50% for CodelL1lama-7B. The reasons are two-fold. First, with techniques like query
processing and cross-dialect syntax matching, CrackSQL reduces the dependency on the LLM
by using it only to ensure target syntax adherence during the transformation of partial syntax
elements. Second, CrackSQL (L1ama3.1-8B-Instruct) achieves performance similar to CrackSQL
(GPT-40), with only 6.67% worse in Accrgs of Oracle—=MySQL. This verifies CrackSQL is robust
across different LLMs and does not heavily depend on the advanced skills like reasoning, making it
a versatile solution for dialect translation.

LLM Finetuning. We also evaluate the impact of supervised fine-tuning (LoRA) on two datasets
with SQLs translated by SQLGlot. (1) SFT-SELF: a training dataset with 528 distinct MySQL—Oracle
samples, and (2) SFT-BRIDGE: a training dataset with 864 distinct MySQL—PG and PG—Oracle
samples. None of the samples in the evaluation set is included in the training datasets.

As shown in Table 6, CrackSQL obtains a stable 38.91% higher accuracy over all the dialect
pairs on average. Instead, the fine-tuning methods are less stable. For example, the training of
SFT-BRIDGE over other data samples exhibits higher translation accuracy than exclusive training
of SFT-SELF over the MySQL—Oracle data samples. Moreover, Llama3.1-8B after fine-tuning (i.e.,
38.10% accuracy on average) even performs worse over MySQL—PG data samples than the original
version (i.e., 54.76% accuracy on average). Because fine-tuning can negatively affect the model’s
generalizability [21], leading to errors in translations that were previously handled correctly (e.g.,
mistakenly assume the MySQL data type DATETIME also exists in PostgreSQL).

Execution Feedback. We investigate the impact of providing LLM with the execution feedback
(i.e., execution errors of the translated query) on the translation accuracy. As displayed in Table 7,
LLMs with feedback from the execution environment still have problems in accurate dialect
translation, where simply offering the execution feedback to LLM still cannot make all the queries
executable (i.e., Accgx is lower than 100%). It can be attributed to (1) failing to accurately locate
the target segments with the execution feedback, and (2) missing critical dialect knowledge (e.g.,
the correct usage of function arguments in the target dialect). In contrast, CrackSQL effectively
locates the necessary segments through Functionality-based Query Processing and Cross-Dialect
Syntax Matching, and enables robust translation under the hybrid validation mechanism.

Trial Numbers. We investigate the impact of different maximum trial numbers (ranging from 1 to
7) for LLM translation. As shown in Figure 9, the translation accuracy of CrackSQL converges when
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the maximal trial arrives 3, which is a suitable hyper-parameter value to balance the translation
performance and cost. Besides, it also reflects CrackSQL can accurately translate most queries
within limited trials, where additional attempts are unnecessary once the incompatible operations
are accurately translated.

8 Related Work

Dialect Translation Engines. Existing dialect translation engines [3, 7, 8] integrate limited
translation rules maintained by humans and cannot translate in many cases (see Table 3).

Logical Query Rewrite. (1) Rewrite Rule Discovery: Existing methods [31, 38, 39, 43] identify
rewrite rules that can be integrated in engines like Calcite [15]. For instance, the most recent
work [43] identifies rules by heuristically searching for equivalent queries in single database dialect.
These rewrite rules cannot be reused in dialect translation and do not involve cross-dialect syntax
alignment. (2) Rewrite Rule Order Selection: Tools like ARE-SQL [17] and SOAR [6] recommend
appropriate rules by database statistics. Further, the method [47] explores beneficial rewrite orders
using a tree search-based strategy. Instead, dialect translation is rule order insensitive.

LLM for Databases. (1) LLM for rule discovery: The vision paper [36] utilizes LLMs to generate
translation rules in text rather than formalized code. There lack necessary technical details (e.g., how
to use the textual rules) and experiment analysis. Similarly, the work [29] utilizes course learning
and RAG techniques to improve LLMs’ ability to determine optimal sequences for applying rewrite
rules. (1) LLM for task-solving: Works like [30, 40, 48] prompt or finetune LLMs to fulfill database
tasks. For database diagnosis, the works [40, 48] utilize (multiple) LLMs to analyze abnormal metrics
and activities and report root causes. They are augmented with diagnosis expertise like documents.
For query rewrite, the work [30] leverages LLM to rewrite queries via iterative self-reflection.

9 Conclusion

Automatic dialect translation is essential in many real applications. In this paper, we introduced
a query processing method that segments and simplifies input queries to facilitate translation.
We developed Cross-Dialect Embedding Model, a model that computes functionality embeddings
based on syntax elements and specifications to effectively match syntax variants. We proposed
the Local-to-Global Translation Strategy, which enhances translation accuracy by constraining
target-syntax-enhanced LLM during the translation of limited query operations. Experimental
results demonstrated the effectiveness of our approach over baseline methods.

Despite its effectiveness, CrackSQL has three main limitations. First, the translation types sup-
ported by CrackSQL are constrained by the available BNF grammar. We plan to explore automatic
grammar integration methods [35] to accommodate a broader range of translations (e.g., for UDFs
and stored procedures). Second, while CrackSQL achieves significantly higher translation accuracy
than the baselines, its accuracy could be further enhanced (e.g., resolving the potential precision
loss issues like DOUBLE v.s. DOUBLE PRECISION). Third, CrackSQL requires human intervention
when dealing with new dialects that involve incomplete or poorly structured documents. For
instance, some dialect documents may only list function names or combine multiple specifications
within single paragraphs, necessitating manual annotation and clarification.
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