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Abstract
Database administrators (DBAs) play an important role in maintain-
ing the high performance and high availability of database systems.
However, database diagnosis by DBAs often takes tedious efforts
and time, which is insufficient for the large amount of database
instances (e.g., millions of instances on the cloud). Besides, existing
diagnosis tools built with rules and small-scale learned models lack
the capability for flexible reasoning and report generation, and thus
can only serve as “one small piece of a bigger puzzle”. Recently,
Large language models (LLMs) have exhibited superiority in natu-
ral language understanding, reasoning and generation, positioning
them as a potential comprehensive copilot to DBAs to address
these limitations. Thus, we introduce D-Bot, an LLM-powered DBA
copilot that can automatically acquire pertinent knowledge from
diagnostic documents, interact with users for self-refinement, and
generate reasonable and well-founded diagnosis reports (i.e., spec-
ifying root causes, solutions, and references). We will show that
D-Bot can effectively automate database diagnosis in real scenarios,
even for complex anomalies.

CCS Concepts
• Information systems → Autonomous database administra-
tion.
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Database System, Database Diagnosis, Large Language Model
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1 Introduction
Database diagnosis aims to ensure the high performance and high
availability of database systems by detecting and resolving anom-
alies. In most organizations, database administrators (DBAs) are
responsible for manually diagnosing daily anomalies, a process that
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Figure 1: Example Database Diagnosis using D-Bot.

is often time-consuming and resource-intensive. Besides, existing
diagnosis tools built with rules and small-scale learned models lack
the capability for flexible reasoning and report generation, and thus
can only serve as “one small piece of a bigger puzzle” [9].

Recently, large language models (LLMs) have exhibited supe-
riority in natural language understanding, reasoning and gener-
ation, positioning them as a potential comprehensive copilot to
DBAs [4, 8, 10]. As shown in Figure 1, LLM can automate the entire
database diagnosis process through the following steps: (𝑖) detect
and understand anomalies described in natural language, (𝑖𝑖) make
analysis with the help of relevant knowledge and database tools,
(𝑖𝑖𝑖) follow user feedbacks (e.g., customized requirements, diagno-
sis insights) to refine its diagnosis, and (𝑖𝑣) generate reasonable and
well-founded diagnosis reports. However, building an expert-level
LLM-based database diagnosis system can still be challenging in
the following aspects.
Challenges. First, since the diagnosis experiences accumulated by
DBAs (e.g., documents, diagnosis cases) are highly complementary
to LLMs, the first challenge is how to enhance LLM diagnosis with
private knowledge (C1). Second, given the elaborate analysis neces-
sary for database diagnosis, it requires a deep consideration about
how to improve LLM diagnosis with an effective reasoning mechanism
to tackle complex anomalies (C2). Third, since user feedback is often
ambiguous, directly using it as LLM instruction may not accurately
capture the underlying user intentions. Thus, the third challenge is
how to refine LLM diagnosis to align with user feedbacks (C3).
Our Methodology. To address the above challenges, we propose
D-Bot, a DBA copilot powered by LLMs. First, to leverage the di-
agnostic knowledge of DBAs, we use LLM to extract knowledge
chunks from diagnostic documents, where structurally or seman-
tically pertinent chapters are processed together to form compre-
hensive chunks. Then, we generate embedding vectors for these
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Table 1: Example refinements with user feedbacks. We develop test suites to align LLM response with user preferences, and
store refinements as “if-then” statements for future diagnosis.

User Feedback LLM Response Test Suite LLM Response Refinement (“if-then”)
Offer distinct, detailed reviews
instead of repeating others.

return ask_llm("Is the response
informative and detailed?")

If query performance is poor, then a specific investigation into
the effectiveness of creating new indexes should be conducted.

Offer more in-depth analysis. return ask_llm("Does it provide
in-depth analysis of causes?")

If analyzing identified anomalies, then also focus on how their
impacts can affect the system on a larger scale.

Focus more on root causes like
CPU contention.

return not ask_llm("Does it
mention any solutions?")

If it includes multiple root causes then provide all root causes
(e.g., both CPU contention and high IO operations).

chunks, store them in vector databases, and retrieve relevant chunks
during diagnosis to guide LLM analysis (addressing C1). Second,
to cope with complex reasoning involved in diagnosis, we design
a collaborative diagnosis framework incorporating multiple LLM
experts, where they analyze anomalies with multi-step tree search
reasoning, and cooperate together through cross-review to obtain
a thorough diagnosis result (addressing C2). Third, to better align
the diagnosis with user preferences, we use LLM to refine the result
based on user feedback (see Table 1). Specifically, we develop test
suites for each feedback intention, and guide LLM to iteratively
refine the diagnosis by submitting it to these test suites. Then, we
automatically analyze both the original and refined LLM responses
to identify refinement patterns (e.g., “if-then” statements), which
are then stored for reuse when similar diagnoses are encountered
(addressing C3). In our demonstration, database users can view the
diagnosis report generated by D-Bot, and back-trace the detailed
diagnosis process (e.g., LLM reasoning steps) to ensure its reliability.

This demo is an extension of our research paper [9], further
with a self-evolving mechanism learning from user interactions
and feedbacks. D-Bot distinguishes itself from other database di-
agnosis tools mainly in three aspects: (𝑖) D-Bot is capable of re-
trieving relevant knowledge from raw diagnostic documents, sim-
ilar to the expertise of human DBAs, when analyzing anomalies;
(𝑖𝑖) D-Bot can systematically identify the root cause and solu-
tions step-by-step, and automatically generate a reasonable and
well-founded diagnosis report; (𝑖𝑖𝑖) D-Bot enables users to par-
ticipate in diagnosis decisions and aligns with user preferences
by incorporating insights derived from user feedbacks. We will
demonstrate that D-Bot can generate diagnosis reports compa-
rable to human DBAs for real-world anomalies with an easy-to-
use interaction interface. A demonstration video is available at
https://vimeo.com/1070633767/440814fe24?ts=0&share=copy.

2 Overview
The architecture of D-Bot is presented in Figure 2. Firstly, users can
prepare D-Bot by initializing knowledge stores and connecting to
their database. Secondly, D-Bot automatically detects and diagnoses
database anomalies using LLMs. Thirdly, users can provide feed-
backs to refine the intermediate diagnoses of D-Bot. Fourthly, D-Bot
generates a reasonable diagnosis report with verifiable references.
Knowledge Retrieval. To mitigate the hallucination problem com-
monly encountered by LLMs, we can retrieve pertinent knowledge
chunks as LLM context and require LLM to self-calibrate using
them [5]. Specifically, we first filter out the knowledge chunks by
their tags (e.g., anomaly metrics). Second, to evaluate semantic
relevance of knowledge chunks to the anomaly, we embed them
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Figure 2: The Architecture of D-Bot.

into vectors with pre-trained text embedding models (e.g., text-
embedding-3-large [2]), and retrieve the chunks with top vector
similarity (e.g., using 𝐿2-distance of vectors).

To accelerate knowledge retrieval, we can offline prepare the
embedding vectors of knowledge chunks, and store them in vector
databases (e.g., Chroma [1]). We have two types of knowledge
stores. (𝑖) Document Store. It extracts knowledge chunks (e.g., pairs
of anomalies and solutions) from diagnostic documents. Specifically,
we first divide the document based on chapter structure, use LLM
to extract knowledge chunks from chapters which are structurally
or semantically related, and then organize the chunks according
to anomaly topics (e.g., CPU, workload). Users can also expand
our prepared store with their private documents. (𝑖𝑖) Feedback
Store. It accumulates experiences learned from user interactions
and feedbacks (e.g., refinement patterns of LLM response).
Anomaly Monitor. D-Bot can automatically detect anomalies by
monitoring critical metrics (e.g., available memory less than 10%).
If any anomaly is detected, D-Bot collects relevant details from
database (e.g., logs of slow SQL queries), and supplies them to LLMs
for further analysis and diagnosis.
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Figure 3: A Screenshot of D-Bot (https://github.com/TsinghuaDatabaseGroup/DB-GPT).

Diagnosis Pipeline. To enhance LLM performance in database
diagnosis, we propose a collaborative diagnosis framework incor-
porating multiple LLM experts, where each expert is equipped with
distinct knowledge and tools. It consists of four steps. (𝑖) Expert
Assignment. Given an anomaly, we first use LLM to analyze the
anomaly description, and assign relevant LLM experts (e.g., CPU
expert) for diagnosis. (𝑖𝑖) Expert Diagnosis. Then, the assigned ex-
perts simultaneously fulfill diagnosis incorporating multi-step LLM
reasoning (e.g., calling tools, retrieving relevant knowledge). They
also adopt a tree search algorithm, which can explore many rea-
soning paths, and select the optimal result through LLM reflection.
(𝑖𝑖𝑖) Group Discussion. After individual expert diagnosis, we also in-
struct LLM experts to exchange intermediate diagnosis results, and
refine their results based on cross-review. (𝑖𝑣) Report Generation.
Finally, we utilize LLM to generate a reasonable report summariz-
ing diagnosis results of the experts. Note that we also enhance its
reliability by providing references like involved knowledge chunks
and corresponding user feedbacks.
Preference-Driven Self-Refinement. To better align the diagno-
sis with user preferences, D-Bot refines its diagnosis results based
on user feedbacks. Specifically, we first use LLM to extract a concise
list of statements reflecting the intentions behind feedback. We then
use LLM to synthesize executable test suites for each statement [6].
As shown in Table 1, the test suite decomposes user intentions into
more manageable questions (e.g., “Is the LLM response informative
and detailed?”), which can be reliably answered by LLMs.

Next, we instruct LLM to refine its previous response by append-
ing user feedback, and submit the refined response to the test suites.
If it fails any tests, we instruct LLM for further refinement with the
test error logs. We iteratively repeat the process until it passes all
the tests or reaches a threshold of times (e.g., 3).
User Feedback Management. After refining the LLM response
according to user feedback, D-Bot extracts the refinement patterns

and stores them for automatic reuse, improving future LLM diag-
noses when similar cases arise. For instance, as shown in Table 1,
the diagnosis refinements are summarized as “if-then” statements,
which can effectively instruct LLM to align with user preferences.

Specifically, we can compare the refined response with the origi-
nal one, and use LLM to extract the refinement patterns [7]. These
patterns, along with the context of refined LLM response, are then
stored in the feedback store. During future diagnosis, when similar
contexts are input to LLM (e.g., evaluated by embedding vector
similarity), relevant refinement patterns can be incorporated as
part of LLM input, ensuring that LLM response aligns with user
preferences. Note that before adding new patterns into the feedback
store, we also check whether any existing patterns are redundant
or contradictory and remove them if detected.
Web Service. We provide a website interface to help users eas-
ily deploy D-Bot and observe the diagnostic procedure. There are
mainly four functions: (𝑖) manage knowledge stores (e.g., upload-
ing private documents); (𝑖𝑖) initialize D-Bot by setting up database
and LLM models; (𝑖𝑖𝑖) answer questions on database diagnosis
using relevant stored knowledge; (𝑖𝑣) demonstrate the diagnosis
report automatically generated by D-Bot and detailed diagnosis
process, where users can also actively interact with D-Bot to refine
the intermediate diagnoses.

3 Demonstration
In this section, we describe the website interface of D-Bot, where
users can easily deploy D-Bot and observe the anomaly diagnosis
process. The online website will be continuously updated.

3.1 End-to-End Experience
Figure 3 showcases the front-end ofD-Bot. Users can perform anom-
aly diagnosis and observe the diagnosis report generated by D-Bot
in the following four steps.
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Root
Cause

Slow Query Identification: They 
require complex calculations and 
occupy CPU for long, leaving less CPU 
time for other processes [1].

Solution
Optimize Slow SQL Queries: They 
need optimization, which could involve 
rewriting the query or limiting the 
amount of processed data [2].

[2] cpu.json: 

[1] feedback to CpuExpert: 

Anomaly 
Description

From 01:12:14 to 01:13:14 on the 15th 
of October 2023, the database node 
named 'ins:stdload1' exceeded its 
capacity, reaching a 155% load.

Report of Overloaded Node Anomaly

Root
Cause

Workload Contention Issues: The 
anomaly signifies that the system is 
overloaded and cannot handle the 
current workload efficiently [1].

Solution
Control thread pool usage: Adjust 
max_connections setting to prevent 
overloading. Manage the thread pool to 
avoid resource contention [1].

[1] configuration.json: 

Anomaly 
Description

From 15:57:53 to 15:58:53 on 
2023-10-15, the PostgreSQL instance 
172.27.58.65:9630 had an uptime of 
299.5, less than the expected 300.

Report of Instance Downtime Alert

(a) Scenario 1 - A Real Single-Cause Anomaly.

(b) Scenario 2 - A Real Multi-Cause Anomaly.

Figure 4: Example Diagnosis Reports Generated by D-Bot
(more detailed reports in http://dbgpt.dbmind.cn/).

1) Knowledge Management. Before diagnosis, users need to prepare
the knowledge stores for pertinent knowledge retrieval. We provide
two functions (Fig. 3- 1 ). First, users can click the “Select File”
button to upload their documents, where knowledge chunks are
automatically extracted and added to the knowledge store. Second,
we also enable users to check the stored knowledge chunks by
demonstrating brief descriptions (e.g., root causes of anomalies).
2) Initialization. To initialize D-Bot, users can connect to their data-
base, and set up the LLM models (GPT-4 [3] by default) employed
by D-Bot (Fig. 3- 2 ).
3) Diagnosis Q&A. If users encounter problems with database diag-
nosis, they can directly ask their questions and D-Bot will provide
detailed answers with references (e.g., source documents) using
LLMs (Fig. 3- 3 ).
4) Diagnosis Pipeline. During D-Bot diagnosis, database users can
check out the real-time diagnosis procedure and interactively refine
it.D-Bot demonstrates the procedure in two aspects (Fig. 3- 4 ). First,
on the left side, we display the diagnosis workflow (e.g., brief anom-
aly description and diagnosis stages), and highlight the ongoing
stage (e.g., Expert Diagnosis). Second, on the right side, we demon-
strate details of LLM reasoning steps (e.g., calling index optimizers)
and intermediate diagnosis results (e.g., root causes identified by
WorkloadExpert). Next, D-Bot also provides three interactive func-
tions. (𝑖) If users are satisfied with the diagnosis result, they can
click the double-arrow button to bypass the interaction mechanism.
(𝑖𝑖) If users require to refine the diagnosis result, they can enter
their feedback into the box below, prompting D-Bot to automat-
ically refine the result. (𝑖𝑖𝑖) If users are still unsatisfied with the
refined result, they can click the “Edit” button to manually adjust it.

3.2 Scenario 1 - Real Single-Cause Anomalies.
We evaluate diagnosis performance of D-Bot on 51 real single-cause
anomalies. Powered by superior LLM like GPT-4 [3], D-Bot can
achieve a relatively high F2-score of 67.6% with a fully automatic
pipeline. Besides, we find it possible to further correct diagnosis

flaws through user interactions, even for take-it-away users. For in-
stance, as shown in Figure 4 (a), LLM can repeat reviews from other
experts during Group Discussion, where users can pose feedback
like “offer distinct, detailed reviews” to ensure the effectiveness of dis-
cussion. D-Bot also stores the refinements of LLM response during
this interaction (see the first row in Table 1), enabling Configura-
tionExpert to offer more insightful advice dealing with anomalies
like poor query performance.

For skilled users, a more advanced optimization is to reduce
resource consumption by manually assigning fewer LLM experts.
That is because LLM tends to incorporate all possible experts during
diagnosis (e.g., WorkloadExpert, QueryExpert, CpuExpert), even
if WorkloadExpert alone is enough to identify the root cause for
simple cases (e.g., highly deletes).

3.3 Scenario 2 - Real Multi-Cause Anomalies.
We also evaluate the diagnosis performance on 9 real multi-cause
anomalies. D-Bot powered by GPT-4 achieves an F2-score of 59.5%
without user intervention, which is even higher than human DBAs.
We then demonstrate that incorporating user feedback can further
improve this performance. First, since LLM sometimes provides am-
biguous responses without fully leveraging the retrieved knowledge
and tools, take-it-away users can correct this by providing feedback
like “offer more in-depth analysis” to trigger a self-refinement of
LLM (see the second row in Table 1).

Besides, skilled users can further refine the diagnosis process
by presenting insights based on their experiences. For instance, as
shown in Figure 4 (b), if they identify “CPU intention” as a more
probable root cause, they can instruct LLM to brainstorm more
targeted analysis and solutions (see the third row in Table 1).
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