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Abstract
Large language models (LLMs) have revolutionized traditional data
management systems by their natural language processing capa-
bilities (e.g., understanding, reasoning, generation, few-shot and
zero-shot learning), while data management techniques play a vital
role in optimizing AI models (e.g., data preparation, data efficient
training and inference). This establishes a two-way relationship
where AI enhances data management, and data boosts AI capa-
bilities. This tutorial covers recent advancements and challenges
at this intersection, focusing on LLM4Data and Data4LLM over
four parts. Initially, we discuss the background and motivations for
integrating data and AI, and present the challenges and principles
of LLM4Data and Data4LLM. We then explore how LLMs optimize
data management by offering practical applications like managing
unstructured data. We also examine how data management opti-
mizes AI, particularly in training and fine-tuning LLMs, showcasing
techniques for data preparation and inference. Finally, we provide
open challenges and future research directions, aiming to drive
innovation in both fields.

CCS Concepts
• Information systems → Data management systems.
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1 Introduction
In the era of big data and artificial intelligence, the synergy between
data management systems and AI techniques is becoming increas-
ingly crucial. The advent of large language models (LLMs) and their
ability to understand and process natural language has opened new
avenues for enhancing traditional database systems. On the other
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Figure 1: An Architecture for Data4LLM and LLM4Data.

hand, data management techniques are also crucial for training
and optimizing AI models, leading to a bidirectional relationship
where AI can enhance data management and data can enhance
AI capabilities. This tutorial aims to systematically analyze this
interaction, focusing on how large language models can optimize
data management processes and vice versa.
Tutorial Overview.This tutorial provides a comprehensive overview
of the latest advancements and challenges at the intersection of
data management and AI, especially LLM4Data and Data4LLM. It
is structured into four parts and intended to last for 1.5 hours.
Background and Motivation (15 minutes). The first part, which will
last approximately 15 minutes, introduces the background and
motivations behind the convergence of data and AI techniques. We
will discuss the transformative impact of this integration.
LLM4Data (15 minutes). The second part, spanning 15 minutes, in-
troduces techniques for optimizing data management processes
with LLMs. We will first summarize the key challenges and design
principles (5 minutes), then examine how LLMs can revolutionize
data analytics on unstructured data and data lakes (10 minutes).
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Data4LLM (50 minutes). The third part, covering 50 minutes long,
discusses how data management techniques can optimize AI, par-
ticularly focusing on the role of data management in training, fine-
tuning LLMs and LLM inference. We will first introduce the LLM
lifecycle and discuss the principles of Data4LLM (10 minutes). We
will then present state-of-the-art techniques for data preparation
(10 minutes), LLM training (10 minutes), and LLM inference (20
minutes).
Open Challenges (10 minutes). The final part, concluding in 10 min-
utes, summarizes the open challenges and future research directions
in this rapidly evolving field. We will outline several fundamental
questions and discuss the potential solutions.
Target Audience. This tutorial is intended for database researchers
with a keen interest in the intersection of databases and LLMs. The
tutorial does not require prerequisites beyond a basic understanding
of databases and LLMs. By the end of this tutorial, participants
will have gained insights into the state-of-the-art techniques and
systems that harness the power of both data and AI, and will be
equipped to explore the cutting-edge research and applications in
this domain.
Related Tutorials. A recent tutorial [31] focuses on leveraging
LLMs to optimize traditional data management tasks, e.g., database
diagnosis and query optimization. In contrast, our tutorial explores
the latest advancements in applying LLMs to enhance unstruc-
tured data analytics and data lake analytics. Additionally, we cover
Data4LLM techniques, which were not addressed in prior work.
This broader perspective provides attendees with deeper insights.

2 Tutorial
2.1 Background and Motivation
The landscape of artificial intelligence has been significantly re-
shaped with the emergence of Large Language Models (LLMs).
These models have revolutionized data management systems due
to their semantic understanding abilities and much higher gener-
alization abilities. Similarly, data management optimizations can
also directly benefit the effectiveness and efficiency of LLMs. In
this section, we explore the compelling opportunities that LLMs
present beyond the scope of conventional ML techniques.
Generalizability (Knowledge Coverage). One of the most profound
aspects of LLMs is their generalizability across a vast expanse of
knowledge. Unlike traditional ML models that are often confined to
the specific domains in which they are trained, LLMs boast an exten-
sive knowledge coverage due to their training on diverse datasets.
This attribute enables them to understand and process a wide array
of queries and tasks, even those that extend beyond their train-
ing data, making them an invaluable asset for data management
systems that require broad semantic understanding.
Reasoning (Inference). LLMs are not merely passive recipients of
data; they possess the capability to reason and infer, a capability that
is crucial for complex data management tasks. Their ability to draw
logical conclusions from given premises allows for enhanced query
processing and optimization, where the model must understand
not just the data, but also the relationships and dependencies that
underlie the data (and even the tasks).
Semantic-aware Processing. Traditional data management employs
a "close-world" model, i.e., it can only get the results that are exactly

in the database. However, in many scenarios, we require "open-
world", i.e., semantic matching between different representations of
the same entity, automatic data transformation, etc. The semantic
prowess of LLMs is a key differentiator, where they can discern
nuances, context, and subtleties that are typically challenging for
traditional ML models. This ability is particularly beneficial in data-
base interactions, where the precision of semantic understanding
can lead to more accurate and efficient data retrieval and analysis.
Understanding and Generation. Beyond comprehension, LLMs are
capable of generation, which is a significant leap from traditional
MLmodels. They can create human-like text in response to prompts,
which can be utilized in data management for generating reports,
automating data documentation, and even crafting queries in natu-
ral language.
In-context Learning. Perhaps one of the most exciting prospects of
LLMs is their ability to perform zero-shot or few-shot learning.
This capability allows them to solve tasks without or with very
little fine-tuning, respectively, which is a significant advantage over
traditional ML models that require extensive amounts of labeled
data for training. In the context of data management, this can lead
to faster deployment of models and quicker adaptation to new
schemas or database structures.

In summary, the opportunities presented by LLMs extend well
beyond the traditional boundaries of ML, offering a new frontier for
data management systems. Their generalizability, reasoning capa-
bilities, semantic understanding, generative abilities, and aptitude
for few-shot learning make them powerful tools for enhancing the
efficiency, accuracy, and versatility of data management processes.
It is these capabilities that form the foundation of our exploration
in this tutorial, as we delve into the practical applications and chal-
lenges of integrating LLMs with data management techniques.

2.2 LLM4Data
2.2.1 Challenges and Principles of LLM4Data. We first discuss the
challenges of LLM4Data and then present the design principles and
techniques of addressing these challenges.
Challenges of LLM4Data. Using large language models (LLMs)
directly for data management tasks presents several challenges,
including low accuracy, high computational cost, and hallucination.
Low Accuracy. LLMs generally lack the specialized domain knowl-
edge necessary for accurate data management. Effective data man-
agement requires an in-depth understanding of task-specific re-
quirements, e.g., strict equivalence before and after query rewriting,
and strict correspondence with actual schema in NL2SQL, which
generic LLMs often cannot provide.
High Cost. Data management tasks often involve multiple calls to
LLMs, each of which incurs significant computational costs. This
becomes particularly problematic for tasks requiring repeated in-
teractions with the LLM.
Hallucination. LLMs are prone to generating outputs that appear
plausible but are not grounded in factual data. This introduces
the risk of producing misleading results, highlighting the need for
verifiable outputs.
Limited Reasoning. LLMs find it challenging to handle complex
tasks that involve intricate reasoning (like query rewriting) and
multi-step problem-solving (such as analyzing unstructured data).
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Effective techniques need to be designed to guide LLMs in reasoning
through these tasks.
Principles of LLM4Data. To address these challenges, LLM4Data
is guided by the following principles.
Involving Domain Knowledge.To improve accuracy, LLM4Data should
integrate domain-specific knowledge and task-specific constraints,
ensuring that the model’s output aligns with the requirements of
the data management task.
Cost-Efficiency Optimization. By optimizing the number of LLM
interactions, LLM4Data seeks to reduce the computational cost.
This can be achieved through caching and reducing unnecessary
model invocations.
Verification and Reliability. To mitigate hallucination, LLM4Data
incorporates mechanisms for output verification, ensuring that the
results are not only plausible but also grounded in verifiable facts.
This may involve referencing external data sources for verification.
Reasoning and Self-Reflection. To handle complex tasks, LLMs must
engage in multi-step reasoning, with feedback provided for each de-
cision. Thus, self-reflection is essential for offering precise feedback
on task breakdown and analysis.
Technical Solutions of LLM4Data. To tackle these challenges,
various techniques can be employed, such as automatic prompt
generation, RAG, agents, and fine-tuning.
Prompting. Prompting engineering aims to provide task descrip-
tions, instructions, zero-shot and few-shot learning, in order to
instruct LLMs to understand the underlying tasks. The challenges
include automatic prompting generation, demonstration examples
selection, and prompting compression to reduce the LLMs cost.
RAG. RAG aims to search relevant vertical domain data and feed
them into LLMs in order to avoid hallucination. The challenges
include semantic document segmentation, embedding strategy se-
lection, embedding indexing and searching, and reranking.
Agent. Agents are used for multi-step reasoning to handle complex
tasks. Challenges include understanding the environment, tool
invocation, breaking down tasks into multiple steps, reasoning
through these steps, and self-reflection.
Fine-tuning. Fine-tuning is used for task alignment and instruction
following. Challenges include training data selection and labeling.

2.2.2 LLM4Data Techniques. We summarize recent studies that
utilize LLMs for data analytics over unstructured data and data
lakes.
Unstructured Data Analytics. The emergence of LLMs make
it possible to conduct analytics over unstructured data through
the semantic understanding abilities of LLMs. The data analytics
queries can be divided into two types: (1) point queries that only
require point look-up of relevant data (e.g., RAG); and (2) aggrega-
tion queries that require aggregating a large amount of data and
information to make more complex aggregated inferences.
RAG. To answer questions that exceed the knowledge contained
in the training data of LLMs, RAG has been proposed as a means
to augment LLMs’ capabilities by retrieving semantically relevant
information from an external text corpus [8, 21, 65]. Typically, re-
trieval is performed using dense retrieval methods, where the query
and documents are converted into embedding vectors, followed by

a nearest neighbor search to identify relevant items. In multi-hop
reasoning scenarios, this retrieval process is often iterative [65].
Unstructured Document Analytics. Recent advancements in LLMs
have significantly enhanced the ability to extract valuable insights
from large-scale unstructured datasets [5, 7, 34–36, 43, 58]. Several
systems, such as PALIMPZEST [35], LOTUS [43], ZENDB [34],
and Unify [58] have been developed to address the challenges in
unstructured data analytics.
Schema Extraction. Except retrieving relevant information from the
data collections during inference, extracting structured information
from unstructured data can also be conducted in a pre-processing
step. Someworks [7] automatically extract structured schemas from
unstructured data with the help of LLMs. The extracted schemas can
then be leveraged for answering structured queries in SQL format or
natural language queries via table QA methods or transforming the
NL query into SQL byNL2SQLmethods. Complete reliance on LLMs
for extraction inevitably results in huge and unaffordable costs.
Evaporate [7] leverages weak supervision methods by extracting
a collection of individual rule-based attribute extraction functions
and combining their results with weak supervision.
Data Lake Analytics. Compared with data analytics over specified
unstructured data, data lake analytics requires an additional schema
linking step to associate diverse data relevant to the query and
identifies their relationships.
Schema Linking. Answering analytics queries over large-scale data
lakes requires linking relationships among the data and identifying
those relevant to the query. To address this challenge in hybrid
multi-modal data lakes, AOP [59] leverages the observation that all
data types possess literal descriptions in varying formats: structured
data uses defined schemas with named attributes, semi-structured
data has flexible key paths, and unstructured data inherent has
textual content. AOP converts these descriptions into a unified
semantic embedding space, enabling data linking through simi-
larity measurements between embeddings. Notably, this method
can be combined with the previously introduced structural data
extraction technique to enhance accuracy, as the two methods are
complementary.
Planning. Effective planning is crucial for answering data lake ana-
lytics queries, as accurate results depend on a processing path with
correct reasoning logic. SYMPHONY [15] decomposes queries into
sequences of sub-queries by prompting large languagemodels LLMs
with carefully designed prompts, then evaluates each sub-query
with additional LLM-generated prompts. CAESURA [53] similarly
employs LLMs for planning but integrates tools such as VisualQA,
TextQA, and Python UDFs to support multi-modal data processing.
ELEET [54] introduces a specialized encoder model, a lightweight
language model with 140 million parameters, to enhance efficiency.
It expands traditional relational algebra to express multi-modal
operators and executes queries using an extended algebra. ELEET’s
encoder generates embeddings from inputs, which are processed
by lightweight decoder heads to perform tasks such as value extrac-
tion and deduplication, transforming unstructured data into struc-
tured formats. iDataLake [60] orchestrates plans with predefined
semantic operators. While CAESURA, SYMPHONY, and iDataLake
leverage LLMs to plan and execute queries via NL interfaces, ELEET
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emphasizes efficiency by relying on manually specified execution
plans in its extended algebra framework.

Current methods predominantly focus on planning and sup-
pose target data are specified, but the joint optimization of schema
linking and planning remains an open problem. This integration
is crucial for realizing efficient and accurate query execution in
multi-modal data lakes and needs further research.

2.3 Data4LLM
2.3.1 Challenges and Principles of Data4LLM. We discuss the chal-
lenges of Data4LLM and the principles for addressing them. The
LLM life-cycle includes pretraining (and incremental pretraining),
fine-tuning (SFT and RLHF), prompting, RAG, Agent. The first chal-
lenge is to prepare high quality data for pretraining and fine-tuning.
The second challenge is to improve the performance of pretraining
and fine-tuning. The third challenge is to enhance the LLM infer-
ence performance. The techniques include LLM-in-the-loop data
preparation, data parallel and checkpointing for pretraining, and
prefill-decode disaggregation and KV-cache for fast inference.

2.3.2 Data4LLM Techniques. Data4LLM includes automatic data
preparation, efficient LLM pre-training, and fast LLM inference.
Data Preparation. Data preparation includes data discovery, se-
lection, cleaning, augmentation, labeling and synthesis.
Data Discovery. Training data for LLMs often contain mixtures of
data from diverse sources and domains. Establishing an appropri-
ate domain mixture ratio is crucial for effective pretraining [13].
Determining the ratio has been approached through experimen-
tal heuristics and intuitions [16, 20], importance resampling [64],
and gradient-based methods that assess each domain’s contribu-
tion [18]. Systems like Data-Juicer [13] provide an automated eval-
uation framework integrated with LLM training and evaluation
pipelines to identify optimal domain mixture ratios effectively.
Data Selection. Training or fine-tuning LLMs is both costly and
time-intensive, primarily due to the extensive parameter updates
required for models with billions of parameters. These costs are
influenced by two key factors: the size of the model and the volume
of training data. To mitigate these challenges, recent research has
emphasized the importance of data selection as a preprocessing
step before training [9]. The goal of data selection is to identify a
small yet representative subset of the full dataset—referred to as a
coreset [12, 57]—that achieves comparable model performance to
training on the entire dataset. While coreset selection has been ex-
tensively studied for tabular data [11, 12, 57], similar principles are
being adapted for LLMs [67]. For LLMs, data selection techniques of-
ten rely on specific importance metrics, such as perplexity [14] and
influence functions [63], to identify high-value training examples.
Data Cleaning. Effective data cleaning is a cornerstone of building
high-quality datasets for training LLMs, which generally consists of
two aspects: data filtering to remove low-quality or toxic data and
data deduplication to remove redundant data that may harm model
performance [23, 29]. Data filtering aims to remove low-quality,
irrelevant or toxic data that may hinder model training. This is
accomplished through heuristic rules [41, 46], classifiers [10, 62],
metric-based thresholds [39] or their combination. These methods
are applied to identify and exclude noisy or redundant text from
large corpora. Similarly, toxic data filtering can employ heuristic

rule-based methods [30] or n-gram hashing techniques [46]. For
deduplication, n-gram hashing techniques [24, 46, 52] at both the
line [52] and document levels [24] are employed.
Data Augmentation. Data augmentation is used to increase the di-
versity of training dataset by applying various transformations
to the existing data. This can help improve the performance and
generalization of machine learning models. The techniques include
data linking, synonym replacement, etc.
Data Labeling. Data labeling is the process of annotating data with
tags or labels that define its characteristics, making it suitable for
use in supervised machine learning models. The techniques include
crowdsourced labelling, weak supervision, model-based labelling,
transfer learning, active learning, etc.
Data Synthesis. Data synthesis aims to generate artificial data that
mimics the properties and distribution of real-world data. The tech-
niques include statistical methods, generative Models (e.g., GANs,
VAEs), rule-based methods, etc.
LLM Training. We summarize checkpointing for LLM training
recovery and data parallelism for accelerating LLM training.
Checkpointing. During the pretraining and fine-tuning phases of
LLMs, the training state needs to be saved and persisted using check-
pointing techniques. These saved checkpoints can later be retrieved
for continued training or analysis. Additionally, the parallel config-
uration may change during training, necessitating checkpoint re-
sharding to redistribute the saved distributed checkpoints. Systems
such as PyTorch Distributed Checkpoint (DCP) [51], DeepSpeed
Universal Checkpointing (UCP) [33], and ByteCheckpoint [56] sup-
port checkpoint resharding. Checkpoints can be stored in several
formats, including array-based [1, 2, 50], file-based [49, 56], and
disaggregated formats [51]. Various optimization techniques for
checkpointing have been proposed, such as pipeline checkpoint-
ing with computation [27, 38, 56], differential checkpointing [17],
quantization [17], determining checkpointing frequency [38], and
asynchronous checkpointing [27, 37, 38, 61].
Data Parallelism. Training large models typically involves various
parallelism techniques, including data parallelism, pipeline par-
allelism, tensor parallelism, and sequence parallelism, which are
often used in combination [26, 40, 48]. We briefly introduce several
optimized data parallelism methods. DeepSpeed ZeRO [6, 47] is a
memory optimization technique designed to eliminate memory re-
dundancies during large language model (LLM) training using data
parallelism. PyTorch’s Fully Sharded Data Parallel (FSDP) [68] tech-
nique shards model parameters and applies several optimization
strategies to enable efficient training. Colossal-AI [32] improves
the tensor sharding and offloading mechanism.
LLM Inference. LLMs are primarily based on the Transformer
architecture [55], with notable examples including OpenAI’s GPT-3
and GPT-4, Google’s BERT, T5, and BLOOM. The inference pro-
cess in LLMs built on the Transformer generates text based on a
given input prompt. This process involves key steps. First, the input
text is converted to tokens. Each token is then mapped to a high-
dimensional vector through embedding layers. Following this, the
model enters the prefill stage of the attention mechanism, which
computes three vectors for each token: the query, key, and value vec-
tors. These vectors are used to calculate the attention scores. Next,
the model uses these attention scores to produce a context-sensitive
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representation of each token passed through multiple layers. The
model then generates the next token. This process continues se-
quentially during the decoding stage, where the model predicts one
token at a time based on the previous tokens. The LLM uses key and
value vectors of all previous tokens to compute the attention scores
and generates the next token. The KV cache mechanism is proposed
to store these vectors to avoid repeated calculation of key and value
vectors. KV cache enables faster and more efficient inference. The
inference process is typically measured by Service Level Objectives
(SLOs), typically including Time to First Token (TTFT) and Time
Between Tokens (TBT). TTFT demonstrates the performance of the
prefill stage, while TBT reflects the performance of the decoding
stage. Next, we introduce prefill and decoding design, KV cache
data management, and vector databases for LLM inference.
Prefill and decoding design. Batching is a common technique in ma-
chine learning inference that processes multiple requests at once
to improve computational efficiency and throughput. Continuous
batching [66] is an optimization technique designed to address
LLMs’ dynamic input and ouput. Instead of waiting for the comple-
tion of a batch, continuous batching starts a new request once an
old request is finished. The prefill stage handles the input prompt,
leading to a long computing time. In contrast, a decoding step
generates one token at a time, which consumes much less time.
Batching a prefill stage with a decoding step stalls the decoding.
The chunked-prefill [4, 25] technique is proposed to solve the prob-
lem. It splits the prefill stage into chunks and batches a chunk of
prefill with a decoding step. Some research works find that pro-
cessing prefill and decoding of a request on one GPU use exces-
sive computing resources to meet SLOs. They propose two-stage
disaggregation [25, 44, 45, 69], which splits prefill and decoding
computation on different GPUs.
KV cache Data Management. Traditional KV cache storage, a fixed
amount of space is pre-allocated for each request [66], correspond-
ing to the maximum capacity of the KV cache. This strategy, how-
ever, leads to several issues: it limits the system’s ability to handle
very long inputs, and it also wastes a significant amount of memory
for shorter inputs. To address these challenges, vLLM [28] proposes
a shared prefix, an optimization technique to reduce redundant
computation. It reserves a set of memory blocks for predefined
shared prefixes, and the shared prefix will be computed only once.
Prompt Cache [22] precomputes and stores the attention states
of frequently text segments and reuses the attention states across
different requests. TensorRT-LLM [3, 42] also involves the KV cache
reuse technique and allows developers to determine the block size
of the KV cache between 64 to 2 tokens. This fine-grained method
optimizes memory usage and reuse rates. AttentionStore [19] de-
velops a hierarchical KV cache storage system. KV cache eviction
and transmission are also important. Cache eviction algorithms
such as LRU (Least Recently Used) and LFU (Least Frequently Used)
are commonly used. vLLM [28] employs an all-or-nothing eviction
policy that evicts all or none of the blocks of a sequence. Moon-
cake [45] proposes a heuristic-based automated KV cache migration
method. AttentionStore [19] proposes scheduler-aware fetching
and eviction schemes to place the KV cache for faster inference.
TensorRT-LLM [3] includes an intelligent eviction algorithm that
forms a tree-like structure of dependencies for KV cache blocks.

This algorithm evicts dependent nodes first, even if they have more
recent reuse counters. To reduce KV cache transmission overheads,
overlapping the transmission with the GPU computation is a com-
mon method [19, 45].

2.4 Open Challenges
LLM Inference. Leveraging LLM inference is crucial for unlocking
the potential of data, especially in areas like RAG and analytics
on unstructured data. However, conventional LLM inference tech-
niques often fall short in utilizing data-level optimization strategies.
Techniques such as query batching and scheduling, frequent token
caching, managing data placement among GPU and CPU memory,
and separating prefill from decoding are not fully exploited.
LLM-in-the-loop Data Preparation System. Current data prepa-
ration systems rely on several independent tools for tasks like data
discovery, selection, cleaning, integration, and generation. How-
ever, there’s a need for a comprehensive, end-to-end solution that
can tackle these processes with a unified approach. Incorporating
LLMs into the data preparation process is essential for enhancing
accuracy while maintaining manageable overhead.
Data Flywheel. The data flywheel is a self-reinforcing cycle where
data collection, analysis, and application continuously enhance
model accuracy and serving quality, while in turn driving further
data generation and business growth. There are some challenges
including ensuring data quality, integrating diverse systems, scal-
ing infrastructure, maintaining privacy and security, generating
actionable insights, and designing effective feedback loops.
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