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Semi-structured tables, widely used in real-world applications (e.g., financial reports, medical records, transac-
tional orders), often involve flexible and complex layouts (e.g., hierarchical headers and merged cells). These
tables generally rely on human analysts to interpret table layouts and answer relevant natural language ques-
tions, which is costly and inefficient. To automate the procedure, existing methods face significant challenges.
First, methods like NL2SQL require converting semi-structured tables into structured ones, which often causes
substantial information loss. Second, methods like NL2Code and multi-modal LLM QA struggle to understand
the complex layouts of semi-structured tables and cannot accurately answer corresponding questions.

To this end, we propose ST-Raptor, a tree-based framework for semi-structured table question answering
(semi-structured table QA) using large language models. First, we introduce the Hierarchical Orthogonal Tree
(HO-Tree), a structural model that captures complex semi-structured table layouts, along with an effective
algorithm for constructing the tree by identifying headers, content values, and their implicit relationships.
Second, we define a set of basic tree operations to guide LLMs in executing common QA tasks. Given a
user question, ST-Raptor decomposes it into simpler sub-questions, generates corresponding tree operation
pipelines, and conducts operation-table alignment for accurate pipeline execution. Third, we incorporate a
two-stage verification mechanism: (1) forward validation checks the correctness of execution steps, while
(2) backward validation evaluates answer reliability by reconstructing queries from predicted answers. To
benchmark the performance, we present SSTQA, a dataset of 764 questions over 102 real-world semi-structured
tables. Experiments show that ST-Raptor outperforms nine baselines by up to 20% in answer accuracy. The
code is available at https://github.com/weAIDB/ST-Raptor.
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Q1:	How	many	students	are	enrolled	in	the
bachelor	CE	sino-foreign	program?
Right:	97			Wrong:	457	(Fail	to	distinguish
different	levels	and	cell	semantics)

Q2:	How	many	Zhang	teachers	are	there?
Right:	1			Wrong:	2	(Wrong	cell	semantics)

Q6:	How	old	was	he	when	he	started	to	be	active?
Right:	36		Wrong:	52	(Incorrect	direct	referencing
of	table	contents)

Q7:	How	many	occupation	did	he	have?
Right:	5		Wrong:	4	(Fail	to	count	cell	contents)

Q8:	How	many	employees	in	department	A	and	C
have	received	a	rating	higher	than	A?
Right:	2		Wrong:	1	(Fail	to	distinguish	merged	cells)

Q9:	Tell	me	the	max	age	of	employees.
Right:	42	Wrong:	None	(Fail	to	locate	Age	column)

Q10:	Summarize	the	basic	information	of	the
company.
Right:	The	company	TD	Tech	has	a	contact	number
13912311231,	a	zip	code	213000,	and	a	contact
person	named	Tim.

Q3:	What's	the	total	expenditure	of	the	third
quarter?
Right:	105509.2			Wrong:	211018.4	(doubled)

Q4:	Which	quarter	has	the	highest	cash
expenditure?
Right:	Forth	Quarter			Wrong:	Whole	Year
(Fail	to	understand	the	hierarchy)

Q5:	What	is	the	depreciation	rate	for	the
first	year	using	the	sum	of	years	method?
Right:	14/105=13.33%			
Wrong:	0.05	(Confusing	depreciation	rate
and	net	residual	rate)

Fig. 1. Example analytical questions over real-world semi-structured tables (e.g., Excel spreadsheets).

ACM Reference Format:
Zirui Tang, Boyu Niu, Xuanhe Zhou, Boxiu Li, Wei Zhou, Jiannan Wang, Guoliang Li, Xinyi Zhang, and Fan
Wu. 2025. ST-Raptor: LLM-Powered Semi-Structured Table Question Answering. Proc. ACM Manag. Data 3, 6
(SIGMOD), Article 364 (December 2025), 27 pages. https://doi.org/10.1145/3769829

1 Introduction
Semi-Structured Tables are a type of data structure that represents the flexible and complex layouts
commonly found in real-world data across a variety of applications [38, 49], such as Word Tables
for financial reports [1], Excel spreadsheets for medical records [2], and PDF Tables for e-commerce
transaction orders [3]. They often serve as the major type in these applications, e.g., accounting for
up to 80% of patient records in Electronic Medical Record (EMR) systems [2].
For better understanding, in Figure 1, we showcase five example semi-structured tables with

corresponding user questions from diverse scenarios (e.g., human resource management, financial
management, and personal information). Considering the bottom-right table (TD-Tech): (𝑖) the
top portion covers the company’s fundamental details, while (𝑖𝑖) the lower portion contains basic
information and performance ratings of employees per department. Different shades of blue in
TD-Tech highlight the nested levels of the table, reflecting relationships like hierarchical headers
(e.g., the “Basic Info” header linked to lower-level headers like “Company” and “TEL”) and header-
to-content (e.g., both “Department” and “Level” headers own the content values of “A”s). Even
human analysts may need to carefully analyze the layout characters to fully understand such
semi-structured tables.

This layout flexibility makes semi-structured table QA extremely challenging and distinguishes it
from other common QA tasks on structured data (e.g., relational tables [12]) and unstructured data
(e.g., textual documents or multimedia files [7]). In Figure 1, we showcase semi-structured table
questions that commonly require the following analysis strategies: (𝑖) Identify the headers based
on the user question to locate the areas of relevant table cells. For instance, 𝑄8 first identifies the
“Level” header in the “Employee Info” sub-table, and then recognizes the “A+” cells. Meanwhile, it
is essential to distinguish that the content value “A” under the “Department” header is different
from “Level A” in the original question. (𝑖𝑖) Leverage the identified cells and the original question
to analyze the surrounding table structures for capturing nested relationships and extracting
additional information. For instance, for 𝑄9, the merged cell “A+” applies to two employees to get
the right answer “2”. (𝑖𝑖𝑖) Explore all potentially relevant header and content cells required to form
an accurate answer. For instance, for 𝑄10, relevant information about the company is needed for
summarization.
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Existing works (including powerful LLMs like GPT4-o[29] and DeepSeek-R1 [13]) face significant
limitations in semi-structured table QA. First, NL2SQL methods [8, 10, 16, 34, 35, 42] generate SQL
statements executed on relational tables to get the final answer. However, it requires converting
semi-structured tables into fully structured formats, causing substantial information loss. Second,
methods like NL2Code [44] generate python code to operate on pandas dataframes. However, they
struggle to understand many complex semi-structured tables and conduct precise information
retrieval. A more promising approach involves converting tables into images for processing with
Vision Language Models (VLM) [20, 48]. But it has three main limitations: (𝑖) Table2image causes
precise loss and often misleads to irrelevant table areas; (𝑖𝑖) It requires extensive fine-tuning on
QA tasks and has poor generalization ability; (𝑖𝑖𝑖) It cannot work for relatively large tables those
with over 100+ rows (see more analysis in Section 2.3).

There are several challenges in achieving automatic semi-structured table QA. First, understanding
the structure of semi-structured tables involves twomain problems: (𝑖) how to distinguish header and
content cells that could distribute in any areas of the table, which involves semantic understanding
(e.g., in the bottom-right table of Figure 1, the “A” cells under “department” and “level” headers) and
cannot be handled by rule-based matching approaches [9]; (𝑖𝑖) how to understand the nested or
containment relationships across the header and content cells, where the same question to different
cell relationships could lead to different answers. For instance, in the bottom-right table of Figure 1,
when splitting the merged cell of department A, the answer to the question “what is the second
department” would be department A instead of B (C1).
Second, due to the complexity of semi-structured table layouts, answering questions over such

tables can be challenging, often requiring a variety of analytical “tricks”. For instance, we may need
to apply both left-to-right and top-to-down lookup strategies (e.g., identifying departments in the
bottom-right table of Figure 1 by referencing the top-level title header, the left “Employee Info”
header, and the nested “Department” header). Conversely, we may sometimes need to examine
the content cells to identify the relevant headers (i.e., bottom-up lookup), which makes the semi-
structured table QA procedure even more complicated (C2).
Third, an effective validation mechanism for semi-structured table QA remains absent, which

is especially crucial for resolving issues such as hallucination in LLMs [10, 34]. In related tasks
like NL2SQL, many methods do not validate the accuracy of generated answers and thus produce
the final result in a single shot. Others merely check whether executing the SQL statements yields
result tables sufficient to answer the question. However, in semi-structured table QA, the retrieved
cells can (𝑖) still involve complex semi-structured layouts (e.g., a single cell may contain multi-row
text or even a nested sub-table) and (𝑖𝑖) be derived through multiple lookups, making it difficult
for general LLMs to verify the accuracy of these retrieved semi-structured table cells (C3).

To address these challenges, we propose a novel semi-structured table QA framework (ST-Raptor).
First, we introduce a graph model (HO-Tree) to represent semi-structured table layouts, with nodes
denoting table headers / content values and edges capturing their hierarchical and containment
relationships. This model also includes nine basic tree operations, covering most common QA
tasks and addressing the structural complexity challenge (for C1). Second, we present an effective
HO-Tree construction strategy: (1) a multi-modal LLM identifies semi-structured table headers,
(2) heuristic rules separate the semi-structured table into basic table units based on the identified
headers, and (3) a depth-first search (DFS) algorithm constructs theHO-Tree. This stage addresses the
difficulty of accurately representing the complex implicit relations of semi-structured tables. Third,
we propose a question decomposition method with two key techniques: (1) semantic alignment
between the input question and the derived operation pipeline, and (2) a column-type-aware tagging
approach that annotates discrete, continuous, and unstructured columns (e.g., listing [man, woman]
for a sex column) to enhance data retrieval accuracy (for C2). Finally, we introduce a two-stage
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QA verification mechanism to ensure solution stability. The first stage checks constraints (e.g.,
non-empty, question-related) to validate the generated operations and their execution results. The
second stage provides a confidence score by comparing the original questions with those derived
from the final answers (for C3).

We summarize our contributions as follows:
(1) We present a novel framework that enables effective and robust semi-structured table QA using
large language models.
(2) We provide a tree-based representation method for semi-structured tables (HO-Tree), and design
basic tree operations in the model to support common QA tasks.
(3) We propose a DFS-based algorithm that combines VLM and heuristic rules to construct HO-Tree
from semi-structured table.
(4)We design a question decomposition strategy that ensures semantic alignment with the generated
operation pipelines, and introduce a column-type-aware tagging strategy to improve lookup
accuracy on relatively large semi-structured tables.
(5) We propose a two-stage QA verification mechanism that conducts constraint examinations and
compares the pipelines of the origin question and those derived from the final answer.
(6) We curate the SSTQA dataset, featuring 102 diverse semi-structured tables and 764 representative
queries commonly found in real-world scenarios.
(7) We conduct thorough evaluations to verify ST-Raptor can effectively tackle the structural and
semantic complexities of semi-structured tables, resulting in improved QA accuracy and reliability.

2 Preliminaries
In this section, we first explain the typical semi-structured table layouts, followed by the for-
malization of the semi-structured table QA task and a discussion of the limitations of existing
approaches.

2.1 Semi-Structured Tables
Semi-structured tables can be far more complex than structured ones due to the combination of
diverse table layouts. However, compared with other semi-structured data, they still adhere to
stricter layout constraints and may suffer information loss when stored in formats like JSON (e.g.,
splitting merged cells). To preserve their structure, richer formats like HTML [31] are required.
Furthermore, questions over such tables often demand precise layout-aware reasoning (e.g., inter-
preting layout constraints) and operator grounding (e.g., identifying the intersection of relevant
rows and columns).
Core Elements. In a semi-structured table 𝑇 , a table cell is the atomic unit of a semi-structured
table (e.g., the intersection of one row and column). A table header consists of one or more rows
or columns that label the table body. A merged cell spans multiple adjacent rows or columns to
convey hierarchical information. A subtable is a semantically and structurally self-contained table
embedded within a parent table with at least one level of nested headers, rows, and internal layout.
Table Layouts. The semi-structured table 𝑇 (in standard form and ignoring issues likes data
cleaning [6]) can be composed of four typical layouts (independent with each other):
(L.1) Header-Single-Value. The simplest layout pairs a header 𝐻 = ℎ1 with a single content value
𝑉 = 𝑣1, arranged either vertically or horizontal: 𝑇𝑡 = { 𝐻 = ℎ1, 𝑉 = 𝑣1, 𝐻 → 𝑉 } . For instance, in
Table 1, the atomic header “Name” is associated with the single value “Albert”, demonstrating this
minimal semi-structured table layout.
(L.2) Header-Multiple-Values. A more prevalent structure in semi-structured table is an atomic or
hierarchical header 𝐻 = ℎ1 accompanied by a list of values 𝑉 = [ 𝑣1, 𝑣2, . . . , 𝑣𝑛 ]. We represent this
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Table 1. Semi-Structured Table Layouts – Cells marked in blue in examples represent table headers.

Layout Formal Representation Example
L1: Header-
Single-value 𝑇𝑡 = { 𝐻 = ℎ1, 𝑉 = 𝑣1, 𝐻 → 𝑉 } .

Company TD	Tech

(a)	Minimal	Structure
Name Mark

(b)	Basic	Structure
Jone Ray

Zip	Code 213000

(c)	Orthogonal

Company TD	Tech

Contacts Tim
Sex Male

Name Albert
Info

(e)	Nested	Relation

Tim

Albert

City Name

BeiJing

(d)	Containment	Relation

Meta	Info

MS
BS

Name Age
Group

Info

42

25
HR

Mike

Albert

(f)	Hierarchical-Header-Orthogonal-Tables

Company TD	Tech

(b)	Atomic-Header-Multiple-Values

Name Mark

(a)	Atomic-Header-Single-Value

Jone Ray

Mark 22

Name Age
Info

(c)	Atomic-Header-Subtable

Zip	Code 213000

(e)	Orthogonal-Tables

Company TD	Tech

Contacts Tim

Mark 22

Name Age

(d)	Hierarchical-Header-Subtable

Info

L2: Header-
Multiple-Values

𝑇𝑡 = { 𝐻 = ℎ1, 𝑉 = [ 𝑣1, 𝑣2, . . . , 𝑣𝑛 ],
𝐻 → 𝑉 } .

Company TD	Tech

(a)	Minimal	Structure
Name Mark

(b)	Basic	Structure
Jone Ray

Zip	Code 213000

(c)	Orthogonal

Company TD	Tech

Contacts Tim
Sex Male

Name Albert
Info

(e)	Nested	Relation

Tim

Albert

City Name

BeiJing

(d)	Containment	Relation

Meta	Info

MS
BS

Name Age
Group

Info

42

25
HR

Mike

Albert

(f)	Hierarchical-Header-Orthogonal-Tables

Company TD	Tech

(b)	Atomic-Header-Multiple-Values

Name Mark

(a)	Atomic-Header-Single-Value

Jone Ray

Mark 22

Name Age
Info

(c)	Atomic-Header-Subtable

Zip	Code 213000

(e)	Orthogonal-Tables

Company TD	Tech

Contacts Tim

Mark 22

Name Age

(d)	Hierarchical-Header-Subtable

InfoL3: Orthogonal Tables
𝑇 =

{
𝐻 = [𝐻1, 𝐻2, . . . , 𝐻𝑛 ],

𝑇 = [𝑇1,𝑇2, . . . ,𝑇𝑛 ], 𝐻𝑖 → 𝑇𝑖 ,

1 ≤ 𝑖 ≤ 𝑛

}
.

Company TD	Tech

(a)	Minimal	Structure
Name Mark

(b)	Basic	Structure
Jone Ray

Zip	Code 213000

(c)	Orthogonal

Company TD	Tech

Contacts Tim
Sex Male

Name Albert
Info

(e)	Nested	Relation

Tim

Albert

City Name

BeiJing

(d)	Containment	Relation

Meta	Info

MS
BS

Name Age
Group

Info

42

25
HR

Mike

Albert

(f)	Hierarchical-Header-Orthogonal-Tables

Company TD	Tech

(b)	Atomic-Header-Multiple-Values

Name Mark

(a)	Atomic-Header-Single-Value

Jone Ray

Mark 22

Name Age
Info

(c)	Atomic-Header-Subtable

Zip	Code 213000

(e)	Orthogonal-Tables

Company TD	Tech

Contacts Tim

Mark 22

Name Age

(d)	Hierarchical-Header-Subtable

Info

L4: Header-
Orthogonal-Tables

𝑇𝑡 =

{
𝐻 = 𝐻p, 𝑇 = [𝑇1,𝑇2, . . . ,𝑇𝑛 ],

𝐻p→𝑇𝑖 , 1 ≤ 𝑖 ≤ 𝑛

Company TD	Tech

(a)	Minimal	Structure
Name Mark

(b)	Basic	Structure
Jone Ray

Zip	Code 213000

(c)	Orthogonal

Company TD	Tech

Contacts Tim
Sex Male

Name Albert
Info

(e)	Nested	Relation

Tim

Albert

City Name

BeiJing

(d)	Containment	Relation

Meta	Info

MS
BS

Name Age
Group

Info

42

25
HR

Mike

Albert

(f)	Hierarchical-Header-Orthogonal-Tables

Company TD	Tech

(b)	Atomic-Header-Multiple-Values

Name Mark

(a)	Atomic-Header-Single-Value

Jone Ray

Mark 22

Name Age
Info

(c)	Atomic-Header-Subtable

Zip	Code 213000

(e)	Orthogonal-Tables

Company TD	Tech

Contacts Tim

Mark 22

Name Age

(d)	Hierarchical-Header-Subtable

Info

as 𝑇𝑡 = { 𝐻 = ℎ1, 𝑉 = [ 𝑣1, 𝑣2, . . . , 𝑣𝑛 ], 𝐻 → 𝑉 } . For instance, Table 1 presents an example in which
the atomic header “Name” corresponds to multiple values, specifically the list [ “Albert”, “Tim”, “Jack” ].
(L.3) Orthogonal-Subtables. An orthogonal-subtable layout consists of two or more subtables,
whose top-level headers appear at the same level, either horizontally or vertically. The subtables
each contain the same number of rows, forming a parallel structure, while the content values
of these subtables are weakly related or unrelated (e.g., personal information for employees in
two separate departments). Suppose we have 𝑛 such subtables 𝑇1, 𝑇2, . . . , 𝑇𝑛 . We represent their
orthogonal combination as 𝑇 =

{
𝐻=[𝐻1, 𝐻2, . . . , 𝐻𝑛 ], 𝑇=[𝑇1,𝑇2, . . . ,𝑇𝑛 ], 𝐻𝑖→𝑇𝑖 , 1 ≤ 𝑖 ≤ 𝑛

}
. For

instance, as demonstrated in Table 1, the three atomic-header-single-value tables are combined in
Orthogonal-Table layout.
(L.4) Header-Orthogonal-Subtables. Header-Orthogonal-Subtables consists of an atomic or hier-
archical header paired with one or more orthogonal-subtables ((L.3)), which means all orthogonal-
subtables in (L.4) share the same header. Formally, let the grouped subtables be 𝑇1,𝑇2, . . . ,𝑇𝑛 . We
represent this layout as 𝑇𝑡=

{
𝐻=𝐻p,𝑇=[𝑇1,𝑇2, . . . ,𝑇𝑛 ], 𝐻p→𝑇𝑖 , 1 ≤ 𝑖 ≤ 𝑛

}
. For instance, in Table 1,

the header “Info” groups two orthogonal subtables (i.e., “Name” and “Age” subtables) that each follows
the Header-Multiple-Value layout.

A subtable 𝑇sub ⊂ 𝑇 follows one or a combination of the above layouts. Note that: (1) we do not
consider irregular layouts, such as content values presented without corresponding headers [4];
(2) unlike structured tables, common semi-structured tables (e.g., Word tables, transaction records)
are relatively small (e.g., tables with over 100 rows are already considered large); (3) we assume
the tables are error-free, and issues such as table cleaning (e.g., missing value imputation [5]) are
beyond the scope of this paper.
Example 2.1. For the bottom-right semi-structured table in Figure 1, we can extract two or-

thogonal subtables sharing a common header “TD Tech” (𝐿.4→ 𝐿.3). Within the “Employee Info”
subtable, we can extract four header-multiple-values subtables (𝐿.3→[𝐿21, . . . , 𝐿24]). In this way, we
can use the formal expression 𝐿.4→𝐿.3→[𝐿.4→{𝐿.11, . . . , 𝐿.14}, 𝐿.4→𝐿.3→[𝐿.2[1], . . . , 𝐿.2[4]]]
to recursively traverse the entire structures. Furthermore, the one-to-many relationships between
these subtables motivate us to adopt a tree-based strategy to represent semi-structured tables (see
Section 4).

2.2 Semi-Structured Table QA
Given a semi-structured table 𝑇 , the QA tasks aim to answer an input question 𝑄 expressed in
natural language based on 𝑇 [36].
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Fig. 2. Error Distribution – GPT-4o is evaluated on both HTML and structured (JSON) formats; ReAcTable
(NL2SQL) converts semi-structured tables into structured representations; while TableLLaVA utilizes LVM to
process them as images.

Table 2. Comparison of Relevant Methods for Semi-Structured Table QA – More stars indicates better perfor-
mance.

Representation Structure
Information Method Structure

Understanding
Data

Retrieval
Supported
Table Scale

Answer
Accuracy Main Challenge

HTML/JSON/Spreadsheet ✓ NL2SQL - - - - Fail to operate the table.
HTML ✓ NL2Code - - - - Fail to operate the table.

HTML/JSON ✓ LLM ★ ★ ★★ ★ Fail to understand table structure.
JSON/Spreadsheet ✓ NL2Code ★ ★★ ★★ ★★ Fail to understand table structure.

Structured ✗ NL2SQL / NL2Code - ★ ★★★ ★ Structural information loss.
Structured ✗ LLM - ★ ★★ ★ Structural information loss.
Structured ✗ Agent - ★★ ★★ ★ Structural information loss.
Image ✓ Multimodal LLM ★★ ★ ★ ★★ Fail to process big tables.

HO-Tree ✓ ST-Raptor ★★★ ★★★ ★★★ ★★★ Modeling and operation.

Definition 1 (Semi-Structured Table QA). Let 𝑇 be a semi-structured table with a multi-
layered organization, and let 𝑄 be a question that may reference one or multiple subtables in 𝑇 .
Semi-Structured Table QA is defined as a mapping (𝑇,𝑄) ↦−→ 𝐴, where the answer 𝐴 is derived by
identifying the subtables {𝑇sub | 𝑇sub ⊆ 𝑇 } relevant to 𝑄 .

QA Tasks. Commonly, QA tasks in this problem often require understanding the layouts of target
semi-structured tables. Here we showcase three typical QA tasks together with relevant layouts.
(1) Numerical Computation. The question 𝑄9 in Figure 1 requests the age of the oldest employee
(Header-Multiple-Values in L.2). Correctly answering it involves (𝑖) locating the target column “Age”
within the hierarchical header “Info”, (𝑖𝑖) extracting all age values from the corresponding records,
and (𝑖𝑖𝑖) computing the maximum value from the retrieved data. Such QA requires accurate header
identification and data retrieval, upon which we can easily apply basic computational functions to get
accurate results.
(2) Information Extraction. The question 𝑄8 in Figure 1 relies on the “Employee Info” layout
(Header-Orthogonal-Tables in L.4). To derive the correct answer “2”, we must extract the records
of employees meeting the rating condition and aggregate them. Failure to properly interpret the
semantic relationship between the merged cell “A+” and its associated employees may lead to a wrong
answer.
(3) Summarization. The question 𝑄10 in Figure 1 requests a summary of the company’s basic
information (Orthogonal-Tables in L.3). Addressing this question involves two critical steps: (𝑖)
identifying and extracting the semantically relevant table segments corresponding to the question,
and (𝑖𝑖) leveraging the reasoning capabilities of LLMs to generate a coherent summary from the
retrieved data. The key challenge lies in robustly interpreting complex table layouts to ensure precise
alignment between the question intent and the extracted data to generate accurate summaries.
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2.3 Limitations of Existing Methods
In this section, we discuss the limitations and challenges of existing approaches that could potentially
be adapted to semi-structured table QA. As shown in Table 2, these methods can be categorized
based on their table representation strategies (e.g., table serialization [37], HTML/JSON [19]) and
the question comprehension techniques (e.g.,[33]). Figure 2 illustrates the error distribution when
applying typical methods to semi-structured table QA.
(Limitation 1) Poor Table Layout Understanding. The failure in layout understanding indi-
cates that the model incorrectly captures structural evidence, primarily due to the limitations of
semi-structured table representation. Among existing representation methods, structured table
representation (i.e., converting semi-structured tables into fully structured formats) leads to major
loss of layout information. Alternative approaches (e.g., HTML, JSON, Spreadsheet [37]) employ
common serialization strategies that partially preserve structural information in textual form. How-
ever, due to the inherent one-dimensional nature of these formats, LLMs face significant challenges
in effectively interpreting complex table layouts. In contrast, image-based methods exhibit the
lowest layout understanding error among wrong answers (31.58% compared to 35.48% for GPT-4o
with structured input, 44.82% for GPT-4o with HTML input, and 61.67% for NL2Code agent), but
own relatively low overall accuracy caused by the following two limitations. This observation
motivates us to design a proper semi-structured table representation method that simultaneously stores
the structural information and content of semi-structured tables.
(Limitation 2) Inaccurate Table Data Retrieval. As shown in Figure 2, data retrieval errors
constitute a substantial proportion of failures. Specifically, the four methods (i.e., GPT-4o with
structured input, GPT-4o with HTML input, NL2Code agent, and vision-language model) exhibit
retrieval error rates of 55.17%, 54.84%, 76.67%, and 61.84%, respectively, which are primarily due to
their inability to identify question-relevant tabular data. Among these methods, GPT-4o achieves
superior performance, attributable to its advanced contextual comprehension capabilities. In con-
trast, the agent-based approach, which operates on structured table representations using external
tools, incurs significant information loss during structural transformation. We observe that (1) these
methods lack robust data retrieval mechanisms, and (2) vanilla LLMs struggle to accurately locate
target table content, likely due to inherent limitations in semantic understanding. This indicates that
significant improvements remain achievable in accurately locating and retrieving question-relevant
content in semi-structured tables.
(Limitation 3) Question Comprehension Errors. Question comprehension errors occur when
a model misinterprets the semantics of a question and consequently retrieves incorrect answers
from semi-structured tables, often due to inadequate integration of table layout and content. VLMs
demonstrate the weakest performance, mainly due to their weak understanding of rich-text images.
In contrast, both GPT-4o and agent-based methods demonstrate better performance, benefiting from
the advanced reasoning capabilities of LLMs. However, their remaining errors are predominantly
attributable to the failure to align the semantics of the input question with complex semi-structured
table layouts, motivating us to design tailored question decomposition and table semantic alignment
techniques for semi-structured tables.

3 ST-Raptor Overview

Architecture. Figure 3 shows the architecture of ST-Raptor, which consists of four main modules:
(1) Table2Tree converts the given semi-structured table into a Hierarchical Orthogonal Tree (HO-
Tree), which effectively represents the header / content relationships within the original table (see
Section 4.2). Note that the Table2Treemodule is utilized only once when handling multiple questions
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Fig. 3. The ST-Raptor Architecture.

related to the same table. (2) Question2Pipeline transforms complex questions into simpler sub-
questions, from which corresponding operation pipeline are generated for each sub-question (see
Section 5.1). (3) AnswerGenerator then executes these operations to obtain intermediate results
or produce the final answer (see Section 5.2). (4) AnswerVerifier adopts a two-stage validation
strategy. In the forward stage, it checks whether the execution results are non-empty and consistent
with the question; otherwise, the operation is regenerated or terminated early. In the backward
stage, similar questions are generated from the output, and their similarity to the original question
is used to score answer’s reliability (see Section 6).
System Workflow. When a new semi-structured table and its associated questions arrive, Ta-
ble2Tree first preprocesses the table into an HO-Tree and serializes the object into a local file. The
Question2Pipeline then decomposes each question into subquestions and iteratively interacts with
the AnswerGenerator to generate answers for each subquestion. The answer to the final subquestion
serves as the question answer. The AnswerVerifier is involved throughout each step of operation
execution, identifying and discarding incorrect intermediate results, based on which ST-Raptor
iterates until generating correct answer.

4 Tree Model for Semi-Structured Table Representation
As discussed in Section 2.1, semi-structured tables consist of complex combinations of basic table
layouts (e.g., hierarchical headers with nested subtables). Accurately performing question answering
over such tables remains challenging even for advanced LLMs like GPT-4o (see Section 2.3). Thus,
in this section, we study how to effectively represent the layout relationships within semi-structured
tables to enable accurate question answering.

4.1 Hierarchical Orthogonal Tree
Following the recursive definition in Section 2.1, a semi-structured table composed of layouts
𝐿.1–𝐿.4 (Table 1) can be decomposed into two parts: (1) Metadata, which provides high-level
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Fig. 4. An example of constructing a three-level nested Hierarchical Orthogonal Tree (𝐻𝑂-𝑇𝑟𝑒𝑒) – Different
shades of blue highlight the table’s nested levels. For example, in the bottom-right table, the metadata, marked
in dark blue, is constructed top-down into a tree of depth two, while the unshaded data section structured
into a left-to-right tree of depth five.

semantic abstraction (e.g., headers), and (2) Data, which contains the actual content values (e.g.,
the header “sex” associated with [‘female’, ‘male’, ‘female’]). Both metadata and data components
may exhibit hierarchical and orthogonal structures. Given this inherent one-to-many organization,
we model them using trees: one for metadata and one for data. In each, nodes store metadata or
content values, while edges encode containment or orthogonal relationships.

Definition 2 (Hierarchical Orthogonal Tree (𝐻𝑂-𝑇𝑟𝑒𝑒)). Given a semi-structured table 𝑇 ,
we model 𝑇 into HO-Tree that links the metadata with corresponding content values by pointing the
leaf node in the𝑀𝑇𝑟𝑒𝑒 to each level of 𝐵𝑇𝑟𝑒𝑒 , representing the association between metadata and the
corresponding table column:
(1)Meta Tree (𝑀𝑇𝑟𝑒𝑒). It represents the structural information and content of the table’s metadata.
Each path from the root to a leaf corresponds to an abstract description of a specific column. Nodes in
𝑀𝑇𝑟𝑒𝑒 are denoted as𝑀𝑁𝑜𝑑𝑒 ;
(2) Body Tree (𝐵𝑇𝑟𝑒𝑒). It represents the structural information and content of the table body. Each
node corresponds to a single cell value, each path from the root to a leaf represents a row, and each
level of the tree corresponds to a column—aligned with a path in𝑀𝑇𝑟𝑒𝑒 . Nodes in 𝐵𝑇𝑟𝑒𝑒 are denoted
as 𝐵𝑁𝑜𝑑𝑒 .
A single 𝐻𝑂-𝑇𝑟𝑒𝑒 is represented as 𝑇 = {𝑀𝑇𝑟𝑒𝑒 = 𝑀, 𝐵𝑇𝑟𝑒𝑒 = 𝐵,𝑀 → 𝐵}. Within a semi-structured
table, a collection of such 𝐻𝑂-𝑇𝑟𝑒𝑒𝑠 may exist, each comprising an 𝑀𝑇𝑟𝑒𝑒 and a 𝐵𝑇𝑟𝑒𝑒 . Moreover,
hierarchical containment may exist among these trees, where one 𝐻𝑂-𝑇𝑟𝑒𝑒 can serve as the value of a
node within another 𝐵𝑇𝑟𝑒𝑒 .

Example 4.1. The right part of Figure 4 illustrates an example of a HO-Tree, where “TD Tech”
serves as the top-level cell. This cell is stored in a single-node𝑀𝑇𝑟𝑒𝑒 , which points to the remaining
structure stored in a 𝐻𝑂-𝑇𝑟𝑒𝑒 . The subsequent𝑀𝑇𝑟𝑒𝑒 contains two𝑀𝑁𝑜𝑑𝑒 instances (i.e., “Basic
Info” and “Employee Info”), each referencing a distinct 𝐵𝑁𝑜𝑑𝑒 , with each 𝐵𝑁𝑜𝑑𝑒 storing a sub
𝐻𝑂-𝑇𝑟𝑒𝑒 .

4.2 HO-Tree Construction
Based on the definition, constructing an HO-Tree from a given semi-structured table requires
precisely identifying (1) meta-information (table headers), (2) content values, as well as (3) the
relationships between subtables. Two main challenges remain. First, headers and content cells can
appear in arbitrary positions, making it difficult to distinguish between them. Second, understanding
the nested or containment relationships among these cells is non-trivial, especially given the flexible
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Table 3. Table of Atomic Operations.
Operation Formal Representation Description
Children 𝐶𝐻𝐿(𝑉 ) Get children based on the given value.
Father 𝐹𝐴𝑇 (𝑉 ) Get Father based on the given value.
Value 𝐸𝑋𝑇 (𝑉1,𝑉2) Get the cross of two values.
Condition 𝐶𝑜𝑛𝑑 (𝐷, 𝐹𝑢𝑛𝑐) Filter values based on the function.
Calculation 𝑀𝑎𝑡ℎ(𝐷, 𝐹𝑢𝑛𝑐) Calculate result based on the function.
Compare 𝐶𝑚𝑝 (𝐷1, 𝐷2, 𝐹𝑢𝑛𝑐) Compare values based on the function.
Execute 𝐹𝑜𝑟𝑒𝑎𝑐ℎ(𝐷, 𝐹𝑢𝑛𝑐) Apply function to the given values.
Align 𝐴𝑙𝑖𝑔𝑛(𝑃, 𝐻𝑂-𝑇𝑟𝑒𝑒) Operation-Table alignment.
Reason 𝑅𝑒𝑎(𝑄,𝐷) Reasoning based on LLMs.

and irregular structure of semi-structured tables. Thus, next we introduce the detailed steps in
HO-Tree construction.

Algorithm 1: HO-Tree Construction (HOTC)
Input: A Semi-Structured Table 𝑇
Output: Extracted HO-Tree 𝐻𝑂𝑇𝑟𝑒𝑒

1 𝑀𝑒𝑡𝑎𝐼𝑛𝑓 𝑜 ← 𝑀𝑒𝑡𝑎𝐼𝑛𝑓 𝑜𝐷𝑒𝑡𝑒𝑐𝑡 (𝑇 );
2 𝑇𝑙𝑖𝑠𝑡 ← 𝑇𝑎𝑏𝑙𝑒𝑃𝑎𝑟𝑡 (𝑇,𝑀𝑒𝑡𝑎𝐼𝑛𝑓 𝑜);
3 𝐻𝑂𝑇𝑟𝑒𝑒𝑙𝑖𝑠𝑡 ← [];
4 for 𝑇𝑠𝑢𝑏 in 𝑇𝑙𝑖𝑠𝑡 do
5 switch 𝑡𝑦𝑝𝑒 (𝑇𝑠𝑢𝑏) do
6 case 𝐿1, 𝐿2, 𝐿4 do
7 𝐻𝑂𝑇𝑟𝑒𝑒𝑙𝑖𝑠𝑡 .𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝐶𝑜𝑛𝑠𝑇𝑟𝑒𝑒 (𝑇𝑠𝑢𝑏));
8 case 𝐿3 do
9 𝐻𝑂𝑇𝑟𝑒𝑒𝑙𝑖𝑠𝑡 .𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝐻𝑂𝑇𝐶 (𝑇𝑠𝑢𝑏));

10 end
11 end
12 return 𝐶𝑜𝑛𝑠𝑇𝑟𝑒𝑒 (𝐻𝑂𝑇𝑟𝑒𝑒𝑙𝑖𝑠𝑡 );

4.2.1 Meta Information Detection Unlike structured tables with fixed schemas, semi-structured
tables often exhibit complex and irregular nesting, posing challenges for meta-information ex-
traction. Rule-based approaches fail to capture such nuances, especially when similar structural
patterns represent different semantics. Serializing tables (e.g., as images or structured formats)
allows prompting models for metadata extraction or format generation. However, LLMs trained on
1D text struggle with 2D tables [23], often exhibiting issues like hallucination and the “Lost in the
Middle” effect [27], undermining consistency and reliability.
To overcome these limitations, we adopt a hybrid method that combines rule-based matching

with LLM-based reasoning. As shown in Figure 4, given a semi-structured table in Excel format,
we first convert it to HTML, render it using a headless browser, and capture a high-resolution
screenshot as input image for the VLM. Then, we prompt the VLM to output all possible keys
that would be present in a JSON-formatted representation of the table as the candidate meta-
information cell values. Subsequently, we calculate similarity scores between candidates and all
table cells using embedding-based similarity metrics. Cells exceeding a predefined threshold are
identified as meta-information, and their positions guide the subsequent table partitioning process.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 364. Publication date: December 2025.



ST-Raptor: LLM-Powered Semi-Structured Table Question Answering 364:11

4.2.2 Table Partition Principles We introduce three principles to guide the HO-Tree construction
process by interpreting different layouts in semi-structured tables:
(Principle 1) Top-Level Header Identification. If a merged cell spans an entire row or column,
it is treated as a header in a Header-Orthogonal-Tables layout (𝐿.4), and adjacent cells (below or to
the right) are interpreted as a subtable.
(Principle 2) Header-Content Differentiation. When both top-aligned and left-aligned headers
are present, the one with more cells is selected to construct the𝑀𝑇𝑟𝑒𝑒 , while the other is integrated
into the 𝐵𝑇𝑟𝑒𝑒 .
(Principle 3) Orthogonal Table Identification. When Orthogonal-Tables (𝐿.3) are detected, we
segment them and process each subtable recursively and sequentially.
As illustrated in Figure 4, applying these principles enables table partitioning based on meta-

information locations and the recursive construction of HO-Trees for semi-structured tables.

4.2.3 DFS-based Tree Model Construction An HO-Tree is then constructed for each subtable
according to its identified layout type: for layouts 𝐿.1 and 𝐿.2, the HO-Tree is built directly;
otherwise, a recursive DFS is applied. For example, in Figure 4, the vertically structured semi-
structured tables demonstrate a top-down alignment of metadata and content.

Based on the detectedmetadata, the table is partitioned into a list of subtables following predefined
principles. An HO-Tree is then constructed for each subtable according to its identified layout type:
for layouts 𝐿.1 and 𝐿.2, the HO-Tree is built directly; otherwise, a recursive DFS is applied. Take
the vertically structured semi-structured tables where metadata and content are aligned top-down
in Figure 4 as an example: (1) In the𝑀𝑇𝑟𝑒𝑒 , each root-to-leaf path represents a column, and the
tree grows vertically to reflect vertical relationships among metadata. (2) In the 𝐵𝑇𝑟𝑒𝑒 , each path
represents a row, with horizontally aligned attributes, so the tree grows horizontally. Each leaf
node in the𝑀𝑇𝑟𝑒𝑒 points to a corresponding level in the 𝐵𝑇𝑟𝑒𝑒 , linking metadata to the associated
content column.

During DFS backtracking, we model Orthogonal-Tables and Header-Orthogonal-Tables layouts
(i.e., 𝐿.3 and 𝐿.4). In such cases, a node in the 𝐵𝑇𝑟𝑒𝑒 may recursively contain another HO-Tree as
its value.
Algorithm 1 outlines the HO-Tree construction process. VLMs identify table headers via the

𝑀𝑒𝑡𝑎𝐼𝑛𝑓 𝑜𝐷𝑒𝑡𝑒𝑐𝑡 function (Section 4.2.1). Using the extracted metadata and predefined principles,
the table is partitioned into subtables through the 𝑇𝑎𝑏𝑙𝑒𝑃𝑎𝑟𝑡 function (Section 4.2.2). To address
structural complexity, each subtable is transformed into an HO-Tree via the 𝐶𝑜𝑛𝑠𝑇𝑟𝑒𝑒 function
(Section 4.2.3) and recursively merged using depth-first search to reconstruct the full structure of
the original semi-structured table.

Example 4.2. Figure 4 illustrates the construction of a three-level nested HO-Tree. The “Basic Info”
subtable is initially misidentified by the VLM as “Basic Information” and corrected by alignment.
Metadata is used to identify the 𝐿.4→ 𝐿.3 layout, guiding the partition of the “Basic Info” subtable
into𝑀𝑁𝑜𝑑𝑒 and a sub-𝐻𝑂-𝑇𝑟𝑒𝑒 (constructing 𝐿.4). Finally, the leaf nodes of the𝑀𝑇𝑟𝑒𝑒 in subtree
link to corresponding levels of the 𝐵𝑇𝑟𝑒𝑒 (constructing 𝐿.3).

5 Pipeline-basedQuestion Answering
With the HO-Tree model in place, it poses three key challenges in question answering over semi-
structured tables. First, such questions often require multi-hop reasoning rather than one-shot
retrieval, and unlike NL2SQL tasks, lack a standardized operation set for pipeline construction.
Second, answering necessitates hybrid traversal strategies (e.g., left-to-right, top-down, bottom-up)
to locate relevant content. Third, the large number of cells in some semi-structured tables complicates
the precise identification of question-relevant information.
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Fig. 5. Question Decomposition and Pipeline Generation.

To address these challenges, we propose a pipeline-based QA strategy centered on a set of tree-
specific operations that cover most QA scenarios: (1) a question decomposition method for complex
multi-hop queries, (2) an operation generation mechanism with parameter-content alignment, and
(3) a column-type-aware tagging mechanism that annotates columns based on data characteristics,
enabling efficient and accurate retrieval from large, complex tables.

5.1 Basic Operations over HO-Tree
We design a suite of atomic operations to enable structured and interpretable QA over the𝐻𝑂-𝑇𝑟𝑒𝑒 .
These operations support both precise tree traversal and auxiliary tasks correspond to common semi-
structured table sub-tasks. The operations fall into four categories: (1) Data Retrieval Operations,
which retrieve relevant values from the tree; (2) Data Manipulation Operations, which process or
transform retrieved data; (3) Alignment Operations, which align operation parameters with table
content; (4) Semantic Reasoning Operations, which invoke LLMs for contextual inference.
For any user question, we first decompose it into one or more sub-questions, each resolved

through a sequence of operations to retrieve relevant information or derive the answer. Ideally, the
generated operation pipeline includes: (1) retrieval to collect non-redundant data, (2) manipulation
to structure the data into a model comprehensible form, (3) alignment to ensure question-content
alignment, and (4) reasoning to produce the final answer. In worst-case scenarios, the model may
retrieve nearly the entire table and rely heavily on reasoning, highlighting the need for fine-grained,
modular operation design.
Data Retrieval Operation. These operations are responsible for extracting relevant table content
from the 𝐻𝑂-𝑇𝑟𝑒𝑒 based on arguments derived from the user question.
• Children Retrieval (𝐶𝐻𝐿(𝑉 )) This operation retrieves all successor nodes of any node whose
value matches 𝑉 . If multiple such nodes exist, each set of successors is returned separately. Use
the 𝐻𝑂-𝑇𝑟𝑒𝑒 in Figure 4 as an example, 𝐶𝐻𝐿(𝐵𝑎𝑠𝑖𝑐 𝐼𝑛𝑓 𝑜) returns the 𝐻𝑂-𝑇𝑟𝑒𝑒 containing the
company information.
• Father Retrieval (𝐹𝐴𝑇 (𝑉 )) This operation is used to obtain the set of ancestor nodes of a given
tree node. For instance, in Figure 4, 𝐹𝐴𝑇 (𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡) would return the 𝐻𝑂-𝑇𝑟𝑒𝑒 containing the
employee information.
• Value Retrieval (𝐸𝑋𝑇 (𝑉1,𝑉2)) This operation is used to find nodes in a certain layer of 𝐵𝑇𝑟𝑒𝑒
pointed to by a 𝑀𝑇𝑟𝑒𝑒 leaf node, while giving them a common ancestor 𝐵𝑁𝑜𝑑𝑒 as a filtering
criterion. Specifically, one of 𝑉1 and 𝑉2 needs to be a 𝑀𝑁𝑜𝑑𝑒 value, and the other needs to be a
𝐵𝑁𝑜𝑑𝑒 value. Assume that𝑉1 is the𝑀𝑁𝑜𝑑𝑒 value and𝑉2 is the 𝐵𝑁𝑜𝑑𝑒 value, the operation returns
a set of node values that satisfy the following: (1) The 𝐵𝑁𝑜𝑑𝑒 is in the𝑀𝑇𝑟𝑒𝑒 column𝑉1 (2) 𝐵𝑁𝑜𝑑𝑒

with value 𝑉2 is an ancestor of the 𝐵𝑁𝑜𝑑𝑒 in𝑀𝑇𝑟𝑒𝑒 column.
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Data Manipulation Operation is used to perform specific operations on the data, including
filtering based on conditions, performing calculations, and making comparisons.
• Condition (𝐶𝑜𝑛𝑑 (𝐷, 𝐹𝑢𝑛𝑐)) filters a data set 𝐷 using a predicate function 𝐹𝑢𝑛𝑐 and returns the
filtered values or a new𝐻𝑂-𝑇𝑟𝑒𝑒 . For instance,𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝐸𝑋𝑇 (𝐿𝑖𝑙𝑦,𝐺𝑟𝑎𝑑𝑒), 𝑑𝑒 𝑓 (𝑥) : 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥 <

60) retrieves Lily’s grades that are less than 60.
• Calculation (𝑀𝑎𝑡ℎ(𝐷, 𝐹𝑢𝑛𝑐)) applies a numerical computation function 𝐹𝑢𝑛𝑐 over a data set 𝐷 .
For instance,𝑀𝑎𝑡ℎ(𝐶𝐻𝐿(𝑃𝑟𝑖𝑐𝑒), 𝑑𝑒 𝑓 (𝑥) : 𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑢𝑚(𝑥)) returns the sum of the column “Price”.
• Compare (𝐶𝑚𝑝 (𝐷1, 𝐷2, 𝐹𝑢𝑛𝑐)) compares two data sets 𝐷1 and 𝐷2 us-
ing a function 𝐹𝑢𝑛𝑐 , and returns the boolean result. For instance,
𝐶𝑜𝑚𝑝𝑎𝑟𝑒 (𝐸𝑋𝑇 (𝐿𝑖𝑙𝑦,𝐺𝑟𝑎𝑑𝑒), 𝐸𝑋𝑇 (𝐶𝑖𝑛𝑑𝑦,𝐺𝑟𝑎𝑑𝑒), 𝑑𝑒 𝑓 (𝑥1, 𝑥2) : 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥1 > 𝑥2 returns the
truth value of the statement “Lily’s grade is greater than Cindy’s”.
• Execute (𝐹𝑜𝑟𝑒𝑎𝑐ℎ(𝐷, 𝐹𝑢𝑛𝑐)) applies a function 𝐹𝑢𝑛𝑐 to each element in data set 𝐷 and returns
the resulting set. For instance, 𝐹𝑜𝑟𝑒𝑎𝑐ℎ(𝐸𝑋𝑇 (𝐿𝑖𝑙𝑦,𝐺𝑟𝑎𝑑𝑒), 𝑑𝑒 𝑓 (𝑥) 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥 − 10) retrieves all Lily’s
grades and returns the values after minus ten.
Alignment Operation aims to ensure consistency between operation parameters and the content
of the 𝐻𝑂-𝑇𝑟𝑒𝑒 .
• Align (𝐴𝑙𝑖𝑔𝑛(𝑃, 𝐻𝑂-𝑇𝑟𝑒𝑒)) This operation aligns the parameters 𝑃 in a given operation with
the nodes in the 𝐻𝑂-𝑇𝑟𝑒𝑒 using an embedding-based similarity model [40]. The process involves
computing embeddings for the parameters and table content:

𝐸𝑎 = 𝐸𝑚𝑏𝑒𝑑 (𝑎1, 𝑎2, . . . , 𝑎𝑛) (1)
𝐸𝑐 = 𝐸𝑚𝑏𝑒𝑑 (𝑐1, 𝑐2, . . . , 𝑐𝑚) (2)

𝑆𝑖𝑚𝑀𝑎𝑡𝑟𝑖𝑥 = 𝐶𝑜𝑠𝑆𝑖𝑚(𝐸𝑎, 𝐸𝑐 ) (3)

where 𝑎𝑖 represents the 𝑖-th parameter and 𝑐 𝑗 denotes the content of the 𝑗-th node in the tree, with
𝑚 representing the total number of nodes. Cosine similarity (𝐶𝑜𝑠𝑆𝑖𝑚) is used to identify the most
semantically aligned table node for each parameter, which is then used for downstream operations.

Example 5.1. For the operation𝐶𝐻𝐿(𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛), if the meta-information of the table is [‘ID’,
‘Name’, ‘Age’], the alignment operation 𝐴𝑙𝑖𝑔𝑛(𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝐻𝑂𝑇𝑟𝑒𝑒) attempts to output “ID” to
align the operation parameter to the table content.

Semantic Reasoning Operation leverages LLMs for high-level reasoning over retrieved data.
• Reason (𝑅𝑒𝑎(𝑄, 𝐷)) This operation takes the original question 𝑄 and the data 𝐷 obtained from
prior operations, and uses an LLM to generate the final answer. In cases where the question
is decomposed into multiple sub-questions, semantic reasoning can also be used to aggregate
intermediate answers into a final response.

5.2 Question Decomposition and Pipeline Generation
Figure 5 illustrates the overall process of question decomposition, operation generation, and step-
by-step data retrieval via both top-down and bottom-up strategies.
Step 1: Question Decomposition. As shown in Figure 5, upon receiving a user question, we

first utilize the semantic understanding capabilities of an LLM to decompose complex multi-hop
questions into multiple simpler, single-step sub-questions. Specifically, we prompt the LLM with
the input question, sampled table content as semantic supplements, and example decomposition
cases that are dynamically retrieved based on question similarity to generate sub-questions. These
sub-questions are often interdependent: some can be directly resolved using the 𝐻𝑂-𝑇𝑟𝑒𝑒 , while
others rely on intermediate results produced by earlier sub-questions. For example, a question such
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Fig. 6. Characteristic-based Grouping Mechanism

as “What is the total salary for 2021 and 2022?” can be decomposed into three sub-questions: (1)
retrieve the 2021 salary, (2) retrieve the 2022 salary, and (3) compute the sum of the two. For table
operation generation, we prompt the LLMs with a predefined set of operations and illustrative
examples.

Step 2: Relevant Data Retrieval. Each sub-question is then answered independently through a
combination of top-down and bottom-up retrieval. ST-Raptor always starts with top-down retrieval
and switches to bottom-up retrieval when the former fails. The left section of Figure 5 shows this
iterative process. For each sub-question, the LLM first generates an operation statement based on
the sub-question content and the meta-information extracted from the 𝐻𝑂-𝑇𝑟𝑒𝑒 . Executing this
operation yields intermediate results (i.e., sub-trees), which are then used to inform subsequent
operation generation.

We employ the Align operation for two purposes: (1) Operation-Table Alignment, applied upon
each operation’s generation to align sub-questions with the corresponding table content, and (2)
Relevant Content Match, invoked when the number of data nodes is large, to extract key entities
from the question and constrain the search space within the HO-Tree.

Step 3: Answer Generation Once the relevant sub-data is retrieved, each sub-question is resolved
via the Reason operation, and all sub-answers are aggregated to produce the final answer.

5.3 Relatively Large Table QA Enhancement
The abundance of available BNodes poses challenges in selecting accurate operation parameters. To
address this, we introduce a data grouping strategy that leverages inherent structural and semantic
features, combining top-down grouping based on data characteristics with parallel grouping via
tree structure traversal.
1. Characteristic-based Grouping. The top-down grouping process is performed during HO-
Tree construction, clustering data based on column characteristics. As shown in Figure 6, column
values are classified by data type (e.g., Numeric, Datetime, Unstructured String) and then further
categorized as follows: Discrete — columns with a limited set of values (e.g., grades [‘A’, ‘B’, ‘C’,
‘D’] or binary options [Yes, No]); Continuous — columns with numeric values spanning a range
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(e.g., height or temperature); and Unstructured — columns with free-form text (e.g., comments or
descriptions). A rule-based classifier performs this categorization to reduce complexity in tables
with numerous similar cells. With clearly defined rules, it achieves near-perfect accuracy.

Each category is then grouped using tailored strategies: (1) Discrete values are clustered by
exact matches (e.g., students with Grade A); (2) Continuous values are sorted and partitioned into
fixed intervals to preserve numeric order (e.g., stress levels by range); and (3) Unstructured values
are grouped via embedding-based clustering to capture semantic similarity.
As shown in Figure 6, a column with values like Grade (A+, A, A-, ...) is classified as Discrete,

allowing identical values to be grouped. Queries such as “fetch all students with Grade A” can then
be resolved efficiently within the corresponding group.
2. Group-based Data Retrieval. The parallel-direction grouping leverages structural relationships
within the 𝐻𝑂-𝑇𝑟𝑒𝑒 . After locating the target node(s) based on content, the tree is traversed
to retrieve related information by: (1) searching upwards for ancestor nodes and (2) searching
downwards for descendant nodes.
This bi-directional traversal allows for the reconstruction of a minimal sub-tree that contextu-

alizes the target node, revealing the complete information associated with the same entity (e.g.,
retrieving all attributes of a specific student or transaction).

6 Two-Stage QA Verification
Robust validationmechanisms are essential for the reliability of semi-structured table QA, particularly
given that existing solutions (e.g., NL2SQL [24, 42]) often lack comprehensive answer verification.
The main challenge arises from the fact that, different from structured table QA, the retrieved
result cells in semi-structured table QA often exhibit complex layouts and may be derived through
multi-step lookup processes, which is tricky for general LLMs to verify. To address this problem, we
propose a two-stage verification framework that integrates both forward and backward validation
to enhance the robustness and trustworthiness of the final answers.
Forward Verification. The first stage focuses on validating the correctness of intermediate
operations and execution results during the QA process. Specifically, at each step of generating and
executing operations, we verify whether the parameters produced by LLM are consistent with the
actual contents of the table (e.g., when asking for company information and the given data only
contain employee information, we stop the process). This involves directly matching generated
parameters against table cells to ensure semantic and syntactic alignment.
After executing each operation over the HO-Tree, the general LLM evaluates whether the

resulting data sufficiently answers the corresponding sub-question. If the result is found to be
inadequate, a new operation statement is generated to continue the reasoning process. Notably, real-
world queries often lack sufficient information to be answered directly from the table, which may
cause the model to hallucinate incorrect answers. To mitigate this issue, the forward verification
mechanism allows the model to halt the pipeline and return an “unanswerable” signal when it
detects that the answer cannot be reliably inferred. Furthermore, when operation statements are
found to misalign with the table content, the system triggers a regeneration process to refine and
correct the statements, thereby improving both the data retrieval accuracy and efficiency.
Backward Verification. In the second stage, we evaluate the correctness of the generated operation
pipeline by verifying it against alternative reasoning paths. Notably, different questions over the
same semi-structured table may yield identical answers via distinct yet similar pipelines (e.g.,
“Who is the highest-paid employee?” vs. “Who leads the technical department?”). Leveraging this
property, we perform backward verification by generating alternative questions with the same
answer, deriving corresponding pipelines, andmeasuring their similarity to the original. The average
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similarity serves as an implicit indicator of pipeline and answer reliability. Specifically, we employ
few-shot learning, retrieving question-similar examples to guide the generation of alternative
questions to solve the problem that questions with the same answers may show tremendous
difference in their operation pipeline.

7 Experiments
7.1 Experiment Setup

LLMs. We use InterVL2.5 26B [11] as the vision language model, Deepseek-V3 [14] as the general
LLM, and Multilingual-E5-Large [40] as the semantic embedding model.
Evaluated Methods. The evaluated methods include: (1) NL2SQL. OpenSearch-SQL [42] employs
a dynamic few-shot learning strategy (Query-CoT-SQL) and introduces an SQL-Like intermediate
language to optimize reasoning chains. (2) Foundation Model. GPT-4o [30], the cutting-edge
LLM developed by OpenAI, and DeepSeekV3 [14], a strong Mixture-of-Experts LLM developed
by DeepSeek-AI is evaluated. (3) Fine-tuning based Methods. TableLLaMA [45] is a fine-tuned
version of LLaMA-2 7B tailored for tabular data processing across eight table-specific tasks. The
model handles various table types, including Wikipedia tables and spreadsheets. TableLLM [46]
is a 13B-parameter LLM designed for tabular data manipulation tasks, which is fine-tuned on a
diverse mix of table-centric datasets in processing document tables and spreadsheets, making it
well-suited for real-world office scenarios. (4) Agent based Methods. ReAcTable [47] is an agent-
driven approach that integrates reasoning and action-based decision-making for table question
answering. It iteratively generates operations, updates the table, and constructs a reasoning chain
as a proxy for intermediate thought processes through prompting LLMs and in-context learning.
TAT-LLM [50] extracts relevant segments from the context, generates logical rules or equations,
and then applies these rules or executes the equations to derive the final answer through LLM
prompting. (5) VLM based Methods. TableLLaVA [48] extends the training of LLaVA-7B/13B on 150K
table recognition samples, allowing the model to align table structures and elements with textual
modality. We choose the 7B version in our experiment. mPLUG-DocOwl1.5 [20] is a fine-tuned VLM
with 8B parameters. It incorporates a spatial-aware vision-to-text module designed to represent
high-resolution, text-rich images while preserving structural information and reducing the length
of visual features.
Input Formats. NL2SQL and agent-based methods take structured tables as input, typically stored
in databases or CSV files. Fine-tuning-based approaches operate on structured tables in Markdown
format, while VLM-based methods accept table images as input. Foundation models generally
utilize the HTML representation of tables. ST-Raptor currently supports Excel as the input format
and is compatible with all lossless table representations like HTML.
Benchmarks. We evaluate nine baselines and ST-Raptor on three benchmarks: (𝑖) WikiTQ,
featuring Wikipedia tables with complex natural language questions, (𝑖𝑖) TempTabQA, targeting on
temporal question answering over semi-structured tables, and (𝑖𝑖𝑖) SSTQA, our proposed dataset
detailed in Section 7.2. Since the table formats in other datasets do not fully adhere to the definition
of semi-structured tables, we select a subset of tables that meet the criteria and denote them as
WikiTQ-ST and TempTabQA-ST, respectively.

7.2 SSTQA Benchmark
Existing semi-structured table datasets face two key limitations: (1) they consist of small, structurally
simple tables that fail to evaluate a model’s capacity to comprehend complex semi-structured tables;
and (2) their queries are misaligned with practical applications, limiting real-world utility. For
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Table 4. Characteristics of SSTQA Benchmark.

Dataset Nesting Depth Merge Ratio Cell
Count

Avg. length
of Contents

WikiTQ 1.2970 0.0091 178.3564 1.9568
TEMPTABQA 2.0000 0.1780 44.8350 3.6696
INFOTABS 2.0000 0.0548 23.6683 2.0769
SSTQA 2.5196 0.0544 147.4608 2.7287

example, although WikiTQ [31] includes a large number of semi-structured tables from Wikipedia,
these tables typically exhibit simple layouts with merged cells and are converted into structured
formats as part of the benchmark preprocessing. Meanwhile, TempTabQA [17] consists solely of
shallowly nested tables with fewer than five columns, lacking the structural complexity commonly
observed in real-world datasets.

To fill the gap, we introduce SSTQA, a dataset specifically designed to evaluate a model’s ability
to conduct Semi-Structured Table Question Answering task in real-world scenarios. As shown in
Table 4, WikiTQ has the highest cell count but the shallowest nesting depth. In contrast, SSTQA
exhibits the deepest nesting and the relatively large table size among the existing semi-structured
table benchmarks.
Data Collection. The 102 tables in SSTQA are carefully curated from over 2031 real-world tables
coverage across 19 representative real scenarios (e.g., administrative and financial management)
by considering tables featuring semi-structured formats, such as nested cells, multi-row/column
headers, irregular layouts, which ensures the representativeness both in structure and information.
For question-answer pair generation, we employ a two-stage approach. First, we augment the

question set by extracting information from tables as answers, then generating corresponding
questions to enhanceQA pair alignment. Second, we sample question templates and prompt a LLM to
generate open-ended question-answer pairs based on the table and template. To ensure data quality,
we implement a two-step verification process. Initially, a LLM validates the alignment between
tables, queries, and answers. This is followed by manual inspection to verify answer correctness
by 11 professional annotators, which results in a high-quality dataset of 764 meticulously curated
table-based QA pairs.
Table Complexity.We categorize table difficulty based on a weighted combination of three key
features: (i) nesting depth (0.5), (ii) structural irregularity, including the number of header rows
and column spans (0.3), and (iii) average cell content length (0.2). After z-score normalization and
feature aggregation, SSTQA tables are grouped into 59 simple, 33 medium, and 10 hard instances.
Table + QA Complexity. Table-question difficulty varies with the combination of table structure
and query complexity. Accordingly, we categorize Table+QA tasks into three levels: (i) simple,
where answers can be directly retrieved from the table; (ii) medium, requiring logical inference
or conditional operations; and (iii) hard, where answers are not explicitly present and demand
semantic reasoning. We obtain 299 simple, 284 medium, and 178 hard cases. The corresponding
experimental results are presented in section 7.3.
Evaluation Metrics.We adopt two primary evaluation metrics: Answer Accuracy (Acc), following
prior work [23, 45], and ROUGE-L to accommodate summarization-style questions in SSTQA. To
address the limitations of exact string matching, we further employ general-purpose LLMs to
compare model predictions and ground-truth answers, enabling a more nuanced evaluation.
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Table 5. Overall Performance Comparison.

Methods WikiTQ-ST TempTabQA-ST SSTQA
Acc Acc ROUGE-L Acc

OpenSearch-SQL [42] 38.89 4.76 23.87 24.00
TableLLaMA [45] 35.01 32.70 26.71 40.39
TableLLM [46] 62.40 9.13 2.93 7.84
ReAcTable [47] 68.00 35.88 7.49 37.24
TAT-LLM [50] 23.21 61.86 19.26 39.78
TableLLaVA [48] 20.41 6.91 5.92 9.52
mplug-DocOwl1.5 [20] 39.8 39.80 28.43 29.65
GPT-4o [30] 60.71 74.83 43.86 66.45
DeepSeekV3 [14] 69.64 63.81 46.17 63.22
ST-Raptor (Ours) 71.17 77.59 52.19 72.39
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Fig. 7. Evaluation Results under Different Table Difficulty.

7.3 Overall Performance Comparison
We conduct a comprehensive evaluation of ST-Raptor against nine state-of-the-art table question
answering (QA) methods, spanning five technical paradigms, i.e., NL2SQL, fine-tuning based
methods, agent based methods, VLM based methods, and foundation LLMs. The general accuracy
of these methods across three semi-structured table QA benchmarks is shown in Table 5. Then, we
further classify the difficulty of semi-structured tables into Simple, Medium, and Hard tiers, and
visualize the accuracy variation upon different table difficulties, which is shown in Figure 7.
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Overall Accuracy. Experiments show that ST-Raptor consistently outperforms all nine base-
lines across the evaluated WikiTQ-ST, TempTabQA-ST and SSTQA benchmarks. Table 5 shows
ST-Raptor achieves the highest accuracy, exceeding the second-best method by 10.23% on SSTQA
benchmark. This consistent outperformance can be attributed to three folds.
First, ST-Raptor leverages the HO-Tree to represent semi-structured tables, enabling explicit

structural modeling while decoupling layout understanding from question answering. This design
allows the general-purpose LLM to operate without directly parsing complex table layouts. Instead,
given JSON-formatted header information, ST-Raptor generates atomic operations and executes
them on the HO-Tree for relevant data retrieval. In contrast, most methods, excluding vision-
language models (VLMs) which can directly perceive layout information from table images, struggle
to capture two-dimensional semantics using linear text representations.

Second, ST-Raptor incorporates a novel question decomposition mechanism that breaks complex
queries into simpler sub-questions, followed by precise operation-table alignment. This improves
both operation generation accuracy and execution reliability, thereby improving overall question
answering performance.

Third, ST-Raptor dynamically combines top-down and bottom-up retrieval strategies based on
question characteristics, enabling robust handling of diverse semi-structured table QA scenarios.
When the top-down retrieval fails or a question lacks explicit header references, bottom-up re-
trieval is employed. This flexible approach allows the system to effectively navigate complex table
structures, outperforming other methods in challenging scenarios.

Additionally, we observe performance increase (around 3%) even on the simple tables of WikiTQ-
ST and TempTabQA-ST. For WikiTQ, where the majority of tables are fully structured, ST-Raptor
outperforms the second-best model by around 2%. This modest improvement reflects ST-Raptor’s
specialization for semi-structured tables with complex nested hierarchies. In contrast, on TempT-
abQA, where all tables are semi-structured but exhibit only shallow nesting and small sizes,
ST-Raptor achieves around 3% improvement over the second-best approach. While our model
could effectively models such structures, the overall retrieval pipeline remains relatively simple,
limiting the performance gap over LLMs like Deepseek-V3 which can directly interpreting relevant
information.
Meanwhile, the experimental results highlight significant performance variations among the

methods. NL2SQL-based approaches perform the worst on the SSTQA and TempTabQA dataset but
achieve better results onWikiTQ, as the SQL generation paradigm is ill-suited for non-relational data,
making it ineffective for semi-structured tables. TableLLM ranks second-lowest on SSTQA due to
two main limitations: (1) its training is restricted to structured datasets, reducing its generalizability
to semi-structured formats, and (2) it struggles with large-scale tables and complex layouts due
to limited context length and one-dimensional semantic reasoning. Its improved performance on
WikiTQ can be attributed to task-specific fine-tuning on this dataset. Agent-based methods perform
better on SSTQA due to their integration of external tools, but they fail to operate directly on
semi-structured tables. The transformation of semi-structured data into structured formats results in
the loss of critical layout information, reducing their effectiveness. TAT-LLM exhibits unexpectedly
strong performance on the TempTabQA dataset. We attribute this to its fine-tuning on a large
volume of financial data, which shares similarities with the temporal question types prevalent
in TempTabQA, thereby contributing to its effectiveness. Vision-language models excel at layout
recognition through visual encoding but underperform in text-dense scenarios due to limited textual
comprehension, especially in tables requiring strong semantic understanding. Foundation models,
while not explicitly designed for table-related tasks, achieve the second-best performance on SSTQA
dataset. This is attributed to their robust contextual reasoning and semantic interpretation abilities,
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Table 6. Analysis of Table + QA Difficulty on SSTQA.

Methods (Acc) Simple Medium Hard
DeepseekV3 92.94% 61.83% 47.19%
GPT-4o 86.64% 59.75% 43.26%
ST-Raptor 93.97% 62.66% 58.43%

enabling accurate answer inference especially when tabular layout understanding is secondary to
interpreting textual content.
Accuracy under Different Table Difficulties.We categorize tables in SSTQA benchmark into
three levels of difficulty (i.e., Simple, Medium, Hard) by layout complexity and content length.
Figure 7 presents the comparative performance evaluation across these difficulty levels. Three key
observations emerge from our analysis.
First, both ST-Raptor and foundation models exhibit progressively decreasing performance as

table difficulty increases, underscoring the inherent challenges posed by complex layouts and large-
scale semi-structured tables. In contrast, other methods demonstrate only marginal performance
variation across difficulty levels. We posit that these models primarily address questions with less
table structure comprehension. Consequently, performance differences among them are largely
driven by architectural variations rather than structural modeling capabilities.

Second, although ST-Raptor shows a modest performance decline on hard-level tables, it consis-
tently outperforms all methods by a substantial margin (e.g., exceeding the second-best model by
over 20% on the SSTQA dataset). The reasons are three-fold: (1) the hierarchical HO-Tree representa-
tion, which facilitates efficient processing of large tables; (2) the question decomposition mechanism,
which simplifies complex queries into tractable sub-questions; and (3) the operation-table alignment
strategy, which ensures accurate and context-aware data retrieval.

Third, performance differences across models are less pronounced. This can be attributed to three
key factors: (1) the smaller table sizes, which reduce structural complexity; (2) the predominance
of semantically driven questions that require less explicit layout reasoning; and (3) the dataset’s
focus on temporal question answering within a single scenario, which limits question diversity and
diminishes the impact of advanced structural modeling.
Analysis on Table + QA Difficulty. We categorize the Table+QA tasks into three difficulty levels.
As shown in Table 6, ST-Raptor outperforms all baselines across these levels.While both foundation
models and ST-Raptor perform well on simple cases, accuracy drops as difficulty increases. Notably,
ST-Raptor demonstrates superior performance on hard cases, attributed to its HO-Tree-based
representation and operation-pipeline-driven QA strategy.
We categorize Table+QA tasks into three difficulty levels (Table 6). ST-Raptor consistently

outperforms all baselines across these levels. While both foundation models and ST-Raptor perform
well on simple cases, accuracy drops as difficulty increases. Notably, ST-Raptor excels on hard
cases, benefiting from its HO-Tree representation and operation-pipeline-driven QA strategy.

7.4 Fine-grained Analysis
In this section, we discuss the quality of meta-information detection, analyze question answering
latency, and examine the impact of pipeline errors.
Quality of Meta Information Detection. We evaluate the Table2Tree module’s accuracy in
converting semi-structured table into HO-Tree. Experiment results show that the untuned VLM
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Table 7. Ablation Study on ST-RaptorModules

Model SSTQA
Acc ROUGE-L

Full Model (DeepseekV3) 72.39% 52.19%
GPT-4o 62.12% 43.86%
DeepseekV3 62.26% 46.17%
w/o Table2Tree 57.24%(-15.15%) 41.55%(-10.64%)
w/o Question Decomposition 68.06%(-4.33%) 48.09%(-4.10%)
w/o Operation-Table Alignment 71.07%(-1.32%) 50.86%(-1.33%)
w/o Data Manipulation Operation 65.09%(-7.30%) 47.13%(-5.06%)
w/o Answer Verifier 66.10%(-6.29%) 47.46%(-4.73%)

achieves 93.14% on SSTQA, 94.32% on TempTabQA and 92.31% on WikiTQ, which is sufficiently
high for accurate HO-Tree construction.
Analysis of Backward Verification.

To assess the potential negative impact of generating suboptimal question alternatives on question
answering accuracy, we quantify the number of such bad alternatives and their corresponding
answers on the SSTQA dataset. Experimental results show a false negative rate of 4.78% under the
few-shot learning setting, indicating that misjudgments in backward verification have minimal
impact on table QA performance.
Latency Analysis. The runtime of ST-Raptor is primarily influenced by the cost of accessing the
LLM, largely due to network latency. As ST-Raptor performs question answering via pipeline-based
operation generation, the runtime per query is inherently unstable. ST-Raptor requires around 30
seconds per question (ignoring bias caused by factors like network communications), with 2.89
pipeline operations on average. This is substantially faster than the agent-based method, which
incurs higher latency due to a greater number of operations with more API calls, and slightly slower
than the fine-tuning approach, which benefits from local deployment and direct reasoning.
Effects of Pipeline Mistakes. Pipeline Mistakes Analysis.Mistakes in the ST-Raptor pipeline
primarily arise from two sources. First, mistakes in meta-information detection by the VLM can
lead to incorrect HO-Tree representations, resulting in more complex data retrieval paths (e.g.,
locating related data dispersed across different subtrees) and reduced overall efficiency (e.g., from
10 to 40 seconds). Second, semantic misinterpretations by the LLM, such incorrectly splitting a
combined address-phone entry into separate fields, can trigger unnecessary lookups and potentially
yield incorrect answers, leading to additional verification and iteration, and thereby diminishing
efficiency.

7.5 Ablation Study on ST-RaptorModules
In this section, we perform an ablation study on ST-Raptor from five perspectives. Results are
reported in Table 7.
Without Table2Tree.We disable the Table2Tree module and instead apply ST-Raptor directly
to raw semi-structured tables, which evaluates the importance of explicit table layout modeling.
The removal leads to the most significant degradation (an absolute accuracy drop of 15.15%),
demonstrating the critical role of HO-Tree-based structural representation in handling complex
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Table 8. Case Study on SSTQA Dataset.

Table
Id

Table
Difficulty Layout Representation Question TableLLaMA ReAcTable mPLUG-

DocOwl1.5 GPT-4o ST-Raptor

5 Simple 𝐿.4→ 𝐿.3→ [𝐿.21, . . . , 𝐿.212 ]
Summarize the reimbursement
activities of Tian Xiaohong. % % % % %

19 Simple 𝐿.4→ 𝐿.3→ [𝐿.21, . . . , 𝐿.23 ]
What are the components of employee
compensation? % % ! ! !

15 Simple 𝐿.4→ 𝐿.3→ [𝐿.21, 𝐿.22, 𝐿.23 ]
What documents must a Continuity and
Availability Planner submit to the IT
Service Management Committee?

% ! ! ! !

20 Simple
𝐿.4→ 𝐿.3→ [{𝐿.4
→ 𝐿.3→ [𝐿.21, . . . , 𝐿.26 ] }1,
{𝐿.4→ [𝐿.21, . . . , 𝐿.26 ] }2 ]

What are the categories of variable
manufacturing overhead? ! % % ! !

4 Medium 𝐿.3→ [{𝐿.4→ [𝐿.21, 𝐿.22, 𝐿.23 ] }1,
. . . , {𝐿.4→ [𝐿.21, 𝐿.22, 𝐿.23 ]6 } ]

How many items are there in
drawing technology? % % % % !

95 Medium 𝐿.4→ 𝐿.3→ [𝐿.21, . . . , 𝐿.28 ]
Which employees in the table have 18
years of service? % % % % !

100 Medium 𝐿.4→ {𝐿.4→ 𝐿.3→
[𝐿.11, 𝐿.12, . . . , 𝐿.134 ] }

What is the net cash flow generated
from investing activities? ! ! ! % !

87 Medium 𝐿.4→ 𝐿.3→ [𝐿.21, . . . , 𝐿.210 ]
What are the evaluation criteria for
work attitude? % % % ! !

1 Hard
𝐿.4→ [𝐿.1, {𝐿.4→ {𝐿.3
→ [𝐿.11, 𝐿.12 ] } }1, {𝐿.4→ {𝐿.3
→ [𝐿.21, . . . , 𝐿.24 ] } }2, . . . ]

How many secondary indicators are
included under the performance
metric’s efficiency indicators?

% % % % !

10 Hard 𝐿.3→ [{𝐿.4→ [𝐿.21, 𝐿.22 ] }1,
. . . , {𝐿.4→ [𝐿.21, 𝐿.22 ]4 } ]

How many phases are included in the
Change Phase Code Table? % % % ! !

91 Hard 𝐿.4→ 𝐿.3→ [𝐿.21, . . . , 𝐿.28 ]
What are the beginning and ending
balances of total assets? % % % ! !

30 Hard 𝐿.3→ [𝐿.1, 𝐿.21, . . . , 𝐿.26 ]
How many categories are there for service
sub items with service number ’XX-R-I-4’? % % % % !

semi-structured tables. This also highlights that foundation models alone struggle to capture intricate
layout semantics without explicit structural guidance.
Without Question Decomposition.We remove the question decomposition module, requiring
ST-Raptor to process complex queries in a single step. This results in a 4.33% accuracy drop, con-
firming the necessity of decomposition for effective multi-hop reasoning. Without decomposition,
the ST-Raptor fails to isolate intermediate steps, leading to compounding errors in reasoning
chains.
Without Operation-Table Alignment.We omit the operation-table alignment mechanism to
test whether the LLM in ST-Raptor can inherently align operations with table content. A 1.32%
performance decline is observed, indicating that while LLMs possess semantic reasoning ability,
explicit alignment could still improve execution precision. This suggests that structural grounding
remains beneficial even for advanced models with strong language understanding capabilities.
Without DataManipulation Operations.We restrict ST-Raptor to data retrieval, alignment, and
reasoning operations, disabling data manipulation functions. This leads to a 7.30% accuracy drop,
underscoring the frequent necessity of manipulation operations and validating the completeness
of our atomic operation set. Many questions inherently require operations such as filtering and
calculation, which cannot be bypassed through reasoning alone.
Without Answer Verifier. To evaluate the impact of self-verification, we remove the answer
verifier module. Accuracy drops by 6.29%, suggesting that the verifier plays a vital role in detecting
and correcting execution errors, thereby enhancing output reliability. This module is especially
useful when wrong intermediate results or final answer are generated during multi-step execution.
Collectively, these results demonstrate that each module in ST-Raptor addresses distinct yet

complementary challenges in semi-structured table QA, and their synergistic integration is vital for
effectively tackling the layout-intensive questions in SSTQA.
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7.6 Case Study on SSTQA Dataset
For each table difficulty level in the SSTQA dataset, we select four representative question-answering
cases. Table 8 presents the abstract semi-structured table layout representations, the corresponding
questions, and the results from five selected methods. The layout representations follow the table
definitions introduced in Section 3, where 𝐿.1 denotes a Header-Single-Value structure, 𝐿.2 denotes
Header-Multiple-Value, 𝐿.3 denotes Orthogonal Tables, and 𝐿.4 denotes Header-Orthogonal-Tables.
A rightward arrow indicates the construction of a layout. For example, 𝐿.4→ 𝐿.2 indicates that
headers are added to the 𝐿.2 layout.

Two key observations emerge from the Table 8: (1) In terms of structural complexity, tables with
complex layouts (e.g., Tables 20, 4, 1, 10) often lead to errors for most methods except ST-Raptor.
(2) Regarding questions, those requiring math operations (e.g., Tables 4, 1, 30) demand a deeper
understanding of table structure, where ST-Raptor consistently excels other methods.

Regarding limitations, ST-Raptormay occasionally irregular layout patterns, such as erroneously
treating horizontally merged content cells as headers, which can negatively affect the QA accuracy.
Besides, both ST-Raptor and the baselines face challenges in decomposing questions involving
complex pipelines (e.g., resembling multi-level nested SQL queries), requiring techniques such as
specialized LLM fine-tuning. Nonetheless, such cases are infrequent in semi-structured table QA
tasks.

8 Related Works
8.1 Structured Table QA.
Mainstream approaches can be categorized into NL2SQL, NL2Code and vision-language model
based methods. NL2SQL [16, 24, 42] focuses on translating natural language queries into structured
SQL commands by leveraging techniques such as (1) schema linking, which aligns user intents
with database schema to resolve ambiguities, and (2) content retrieval, which dynamically extracts
relevant information from the database to refine query generation. VLM based methods [20, 48]
transform the table into image for analysis and question answering.

8.2 Semi-Structured Table QA.
Semi-structured tables bring a large challenge for table understanding and render traditional
Text2SQL strategy ineffective. To address the issue, numerous excellent research efforts have been
carried out [21, 26, 32, 39]. For instance, Wang et al. proposed an end-to-end system [39] that
uses semi-structured tables as knowledge sources by first finding the most similar tables and then
selecting the most relevant table cells to derive the answer. Additionally, Liu et al. proposed the
GrabTab method [26] featuring a Component Deliberator that efficiently leverages multiple table
components without requiring complex post-processing, for addressing the challenge of recognizing
complex and irregular table structures. Inspired by NL2SQL techniques, Lu et al. [28] propose to
convert natural language queries into NoSQL ones, but only produce intermediate results, lacking
the end-to-end semi-structured table QA capability like ST-Raptor. Moreover, Gupta et al. built a
TEMPTABQA dataset [18] from 1,208 Wikipedia Infobox tables to evaluate the temporal reasoning
capabilities, and found that even top-performing LLMs fall behind human performance by over
13.5 F1 points. Some works conduct information extraction over semi-structured data. TWIX [25]
assumes that many semi-structured data is generate from one similar layout template and proposes
a method that first reconstruct the template than extract the content. However, it lacks support for
merged cells and cannot be readily transformed into HO-Trees within our problem scope. Another
approach is convert the semi-structured data into structured formats for downstream analysis [6].
However, this conversion process can introduce information loss and reduce answer accuracy.
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Overall, these findings highlight that despite significant advancements, substantial challenges
remain in effectively addressing semi-structured table QA.

8.3 In-Context Table QA.
Although table-based reasoning has shown remarkable progress with the emergence of LLMs [15],
table QA solutions encounter significant performance degradation when confronted with the rich
and diverse evidence present in tables. To enable LLMs to sufficiently understand both the tables
and question information, decomposition plays a pivotal role in table QA [22, 24, 41, 43, 47]. Ye et
al. [43] introduces a method that effectively leverages LLMs to decompose large tables into relevant
sub-tables and complex questions into simpler sub-questions through in-context prompting. In
addition to in-context learning from data sources, the ReAcTable framework [47] proposed by
Zhang et al. aims to improve complex table QA performance by incorporating execution feedback.
This feedback mechanism, rooted in the ReAct framework, enables the system to dynamically adjust
its operations based on the results of previous actions and addresses challenges such as interpreting
complex data semantics, handling generated errors, and performing intricate data transformations.

9 Conclusion
In this paper, we introduced ST-Raptor, a tree-based framework aimed at addressing the critical
challenges of automating question answering over semi-structured tables. Central to our approach is
the Hierarchical Orthogonal Tree (HO-Tree), a formal representation capable of capturing complex
table layouts, including hierarchical headers, merged cells, and implicit relationships. We designed
a set of basic tree operations over HO-Trees to enable LLMs to perform layout-aware tasks. Given
a user question, ST-Raptor decomposes it into simpler subquestions, constructs corresponding
tree-operation pipelines, and executes them to retrieve relevant information or derive the final
answer. To ensure both execution correctness and answer reliability, we proposed a two-stage
verification mechanism combining forward constraint checking and backward answer validation.
Additionally, we constructed the SSTQA benchmark, consisting of 764 questions over 102 real-world
semi-structured tables. Experimental results demonstrate that ST-Raptor outperforms all baselines
by up to 20% in answer accuracy.
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