IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 10, OCTOBER 2025

5719

A Lightweight Learned Cardinality Estimation Model

Yaoyu Zhu'”, Jintao Zhang

Abstract—Cardinality estimation is a fundamental task in
database management systems, aiming to predict query results
accurately without executing the queries. However, existing tech-
niques either achieve low estimation accuracy or take high in-
ference latency. Simultaneously achieving high speed and accu-
racy becomes critical for the cardinality estimation problem. In
this paper, we propose a novel data-driven approach called CoDe
(Covering with Decompositions) to address this problem. CoDe
employs the concept of covering design, which divides the table
into multiple smaller, overlapping segments. For each segment,
CoDe utilizes tensor decomposition to accurately model its data
distribution. Moreover, CoDe introduces innovative algorithms to
select the best-fitting distributions for each query, combining them
to estimate the final result. By employing multiple models to ap-
proximate distributions, CoDe excels in effectively modeling dis-
crete distributions and ensuring computational efficiency. Notably,
experimental results show that our method represents a significant
advancement in cardinality estimation, achieving state-of-the-art
levels of both estimation accuracy and inference efficiency. Across
various datasets, CoDe achieves absolute accuracy in estimating
more than half of the queries.

Index Terms—Cardinality estimation, tensor decomposition,
covering design.

1. INTRODUCTION

ARDINALITY estimation poses a critical challenge in
C database management systems (DBMS) as it aims to pre-
dict query results accurately without executing the queries. This
task is crucial for query optimization, as it allows the optimizer
to devise the most efficient query plans. Despite numerous
proposed solutions, cardinality estimation remains an unsolved
problem. Two primary approaches have been explored to tackle
this issue: workload-driven methods [17], [32] and data-driven
methods [27], [47], [49].

Motivation: Fig. 1 illustrates the comparison between our
work and the limitations of existing methods. Workload-driven
methods focus on learning patterns from historical workloads
and their corresponding results. While these methods are gener-
ally fast, their accuracy can degrade when workloads change or

Received 2 September 2024; revised 24 June 2025; accepted 12 July 2025.
Date of publication 21 July 2025; date of current version 15 September
2025. This work was supported in part by National Key R&D Program of
China under Grant 2023YFB4503600, in part by NSF of China under Grant
62525202 and Grant 62232009, in part by Shenzhen Project under Grant
CJGJZD20230724093403007, in part by Zhongguancun Lab, and in part by
Beijing National Research Center for Information Science and Technology
(BNRist). Recommended for acceptance by Y. Tong. (Corresponding authors:
Jintao Zhang; Guoliang Li.)

The authors are with the Department of Computer Science and Techno-
logy, Tsinghua University, Beijing 100190, China (e-mail: zyyl8@mails.
tsinghua.edu.cn; zhang-jt24 @mails.tsinghua.edu.cn; liguoliang @tsinghua.edu.
cn; fengjh@tsinghua.edu.cn).

Digital Object Identifier 10.1109/TKDE.2025.3591025

, Guoliang Li

, Fellow, IEEE, and Jianhua Feng

3.0 v ® Cobe
v Naru
23] » DeepDB
v . <« BayesCard
£ 207 Data-Driven m MSCN
§ 15/ E ® LW-XGB
.8 | 2 LW-NN
A0 T N
—
051 CoDe Workload-Driven
004 @ e "
1 2 3 4 5 6 7 8

Median g-error

Fig. 1. Median g-error and latency on DMV dataset.

are randomly generated. This limitation stems from their lack of
direct access to the underlying data and their heavy reliance on
the distribution of past workloads. As aresult, they are positioned
in the bottom-right corner of the graph. On the other hand,
recent advancements in data-driven methods directly learn the
data distribution, significantly improving estimation accuracy.
These approaches prioritize accuracy by leveraging the data
distribution, but this comes at the cost of slower inference speeds
and larger model sizes. Data-driven methods are often orders of
magnitude slower than workload-driven methods, placing them
in the top-left corner of the graph. Achieving both high speed
and accuracy simultaneously is a critical challenge in cardinality
estimation, which our work aims to address.

Recent research, such as UAE [45], has explored hybrid
approaches that combine data and workload information, using
workload patterns to enhance data learning. However, UAE
treats the problem as a two-objective optimization, primarily us-
ing workload information to refine data distribution without fully
analyzing the workload’s inherent patterns. We believe there
is significant potential to further analyze workloads, extracting
insights that go beyond merely improving data distribution.
Such analysis could reveal how queries are formulated, provid-
ing valuable information that cannot be derived from the data
alone.

In terms of accuracy, it’s worth noting that even data-driven
methods encounter limitations, particularly in scenarios where
the dataset is discrete and the query involves equality in the
predicate. We argue that cardinality estimation for discrete and
continuous datasets represents two distinct challenges. Discrete
values, being nominal and orthogonal, result in queries that
only allow equalities in the predicate, evaluating the densities of
individual values. In contrast, continuous values, being ordinal,
give rise to queries involving inequalities in the predicate, which

1041-4347 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0001-4365-6347
https://orcid.org/0009-0001-6114-9429
https://orcid.org/0000-0002-1398-0621
https://orcid.org/0009-0000-0537-7083
mailto:zyy18@mails.tsinghua.edu.cn
mailto:zyy18@mails.tsinghua.edu.cn
mailto:zhang-jt24@mails.tsinghua.edu.cn
mailto:liguoliang@tsinghua.edu.cn
mailto:liguoliang@tsinghua.edu.cn
mailto:fengjh@tsinghua.edu.cn

5720

TABLE I
DISTRIBUTION OF Reg_V alid_Date IN DMV

2013-2016
267784

Year
Records

1972-1973 | 1974-2012
2935 195

2017-2019
11320963

represent the cumulative densities across a range of values.
Consequently, the selection of the query workload becomes
a pivotal factor influencing estimation accuracy. Considering
that real-world datasets often exhibit long-tail distributions, the
continuous case heavily relies on a small group of high-density
values and the values at both ends of the axis, potentially disre-
garding the majority of low-density values. On the other hand,
the discrete case treats every value on the axis equally, making it
amore challenging task. Unlike the continuous case, the discrete
case necessitates an accurate estimation of all values, rather than
just high-density and end-point values. Many existing methods
adopt a continuous perspective of the dataset, thus struggling to
accommodate discrete queries.

Example 1: We summarise the distribution of attribute
Reg_Valid_Date in the DMV dataset as shown in Table I. The
data analysis reveals a notable trend where the highest number
of records is observed between the years 2017 and 2019. In
contrast, the period spanning from 1974 to 2012 shows minimal
records. Consequently, accurate estimation of range queries,
such as determining the number of records after the year 2000,
heavily relies on precise density estimations for the years 2017
to 2019. On the other hand, the densities of the years 1974 to
2012 do not significantly impact these range queries and can be
considered less important in the estimation process.

To address these challenges, we propose a novel data-driven
approach called CoDe (Covering with Decompositions). While
the ultimate goal of cardinality estimation is to capture the joint
distribution of all attributes, i.e., the global distribution, this
distribution is typically too complex to be explicitly modeled.
Instead, previous data-driven methods have employed a single
model to approximate the global distribution. However, this
approach has a limitation: as the domain size of the dataset grows
exponentially, the model must either expand proportionally in
size or suffer a decline in accuracy. Thus, we propose the
covering design technique which uses multiple models, each
responsible for modeling a specific local distribution represent-
ing a perspective of the global distribution. By doing so, we
reduce the dimensionality involved in each model, simplifying
the estimation process.

For each local distribution, we employ the tensor decom-
position method for modeling. It is the reason CoDe can be
fast and accurate. This method involves vector additions and
multiplications, which can be efficiently computed in parallel.
Consequently, CoDe exhibits exceptional speed. Furthermore, to
ensure accuracy in the discrete case, we must treat all attribute
values equally. Through tensor decomposition, each value is
transformed into an entry on a vector. With appropriate train-
ing, we can accurately learn and estimate all values within
the attribute. The sole constraint of tensor decomposition lies
in its sensitivity to the tensor’s size. Fortunately, the covering
design technique adeptly resolves this issue by diminishing the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 10, OCTOBER 2025

TABLE II
TABLE OF NOTATIONS
T, T table and its domain
15, T; attributes and their domains
Q. P(Q) query and its estimation
To set of attributes involved in the query
B; blocks of the covering design
k size of the blocks
t any subset of size ¢ is contained in one block
AT, X tensors
w weight vector of the decomposition
R preset rank of the tensor
A decomposition matrices
iy ig,...im entries of a tensor
X probability density function defined over X
N(x), N(+) number of multiplications and additions

dimensionality, ensuring CoDe’s effectiveness across various
scenarios.

Our contributions can be summarized as follows:

1) Accuracy and Speed: Our method achieves state-of-the-art
levels of both accuracy and speed. We have developed
an approach that excels in accurately estimating cardi-
nality while also delivering exceptional computational
efficiency.

2) Modeling Discrete Distribution: Our method demon-
strates expertise in modeling discrete distributions. Fur-
thermore, we will showcase the capability of our method to
effectively model continuous cases as well. This versatility
allows us to handle a wide range of distribution types
encountered in real-world scenarios.

3) Novelty: To the best of our knowledge, we are the pi-
oneering researchers to tackle the cardinality estimation
problem by employing a combination of the covering
design and tensor decomposition method. This innova-
tive approach sets us apart from existing methodologies
and opens new avenues for addressing this challenging
problem in an entirely unique manner.

II. PRELIMINARIES

In this section, we introduce the framework of the cardinality
estimation problem and the two building blocks of our method
CoDe, i.e.,tensor decomposition and covering design. Capturing
the distribution of the data is the critical point of cardinality esti-
mation. There are various ways of learning the distribution. We
argue that rather than learning itself, accurately reconstructing
the data is more important for the problem. Thus we choose
tensor decomposition as our learning model. Furthermore, the
idea of covering design is to reduce the exploding dimensions
of the data, so that the distribution can be captured easier. The
table of notations are illustrated in Table II.

A. Cardinality Estimation

LetT = {Ty,Ts,...,T,} be a table with n attributes T;, 1 <
i1 <n,andlet T=T; x Ty x ... x T,, be the domains of the
table and its attributes, respectively. There exists a probability
density function fr : T — [0, 1]. We aim to find the number of
records that satisfy the conditions of query () in 7', which is

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: LIGHTWEIGHT LEARNED CARDINALITY ESTIMATION MODEL

Table Tensor of

P.D.F

Coll Col2 Col3

[|
(5
] |
[|
[|

Fig. 2. Tensor decomposition.

denoted as ¢(Q):

Q) =P| (| To=1i; | -IT| = fro(-)|T]

T; ETQ

where Ty C T'is the set of attributes which @) has constraints
on, and fTQ is the local distribution defined on T(y. We omit the
expression inside the bracket for convenience purposes, which
will be discussed later. The problem of cardinality estimation is
equivalent to estimating fr,,.

The multi-table task is considered the same as the single-table
scenario, where the distinction lies in the fact that multiple tables
are pre-joined into a unified larger table beforehand.

B. Tensor Decomposition

In broad terms, tensors can be considered as a general-
ization and extension of matrices into higher dimensions as
shown in Fig. 2. Dimensionality reduction plays a vital role
in enhancing performance while maintaining expressive capa-
bilities. Tensor decomposition algorithms provide a means of
representing tensors using low-dimensional vectors or matrices.
Several well-known tensor decomposition techniques include
CANDECOMP/PARAFAC (CP) decomposition [33], Tucker
decomposition [42], and tensor train decomposition [37]. For
our research, we select CP decomposition due to its simplicity
and ease of reconstruction. Furthermore, our method can readily
be extended to support other decomposition techniques, offering
flexibility and adaptability in future works.

Let A € R¥1xd2xxdm be 3 m-way tensor, then it can be
expressed as the linear combination of I rank-1 tensors:

A= [[w; AW AR A(m)]]

= Zw[r] . A(l)[:ﬂ’} ® A(Q)[:7T] R ® A(m)[:,r] (1)
r=1
where ® represents the outer product. A tensor is a rank-1
tensor if it can be decomposed into the outer product of multiple
vectors.
Example 2: A two-way tensor (i.e., a matrix) can be decom-
posed as follows:

1 2 3 0 2 11
2 3 4|1 =10 21 +12 2 2
3 5 7 0 2 3 3 3

5721

In this example, the rank of the original matrix is 2, and therefore
it can be expressed as the sum of two rank-1 matrices.

The rank of a tensor is defined as the smallest number of
rank-1 tensors required to achieve equality in (1). Unfortunately,
computing the exact rank is NP-hard. Consequently, researchers
often determine an empirical rank, denoted as R. Additionally,
in this paper, the decomposition matrices A) are normalized, so
that >~ w = > A. The rationale behind this normalization will
be elaborated upon in Section V, where we provide a detailed
explanation for this choice.

The CP algorithm suggests that by optimizing the following
problem, the decomposition of X" can be seen as the approxima-
tion of the decomposition of A:

R m
i - = @
m/énHA Xl st X le[r]@ifl [:,7] 2)
r= Jj=
where || - || is the Frobenius norm. Such an optimization problem

is often solved by the alternating least squares (ALS) technique,
which alternatively updates one of the decomposition matrices
AU) while keeping the others fixed.

With the decomposition, we can compute any entry in the
tensor.

R m
Wiy ig, iy — Z w[r] H A(j)[ija 7"] (3)
r=1 j=1

@iy is,...in, indicates the (i1, 72, . . ., i,)th entry in the tensor.

C. Covering Design

The domain size of the dataset grows exponentially as the
number of attributes increases. This poses a challenge for the
tensor decomposition algorithm, which may encounter difficul-
ties when dealing with excessively wide tables. In such cases,
it becomes crucial for the covering design to come into play
and provide a solution. The covering design, as a mathematical
concept, plays a pivotal role in our approach by facilitating the
selection of multiple subsets of the table 7" in a strategically
meaningful manner. This enables us to effectively decompose
the original wide table 7" into multiple narrower tables, each of
which represents a distinct perspective of the overall data. It is
formally defined as follows:

Definition 1: Given a finite set V' = {1,2, ..., v}, blocks are
a collection of k-element subsets of V. A C(v, k,t) covering
design is a set of blocks such that any ¢-element subset (¢ < k)
is contained in at least one block.

Example 3: Letv =T,k =4,t =2, then C(7,4,2) is a set
of 4-element subsets of V' = {1,2,...,7} that covers all 2-
elements subsets of V. A possible set of blocks of C(7,4,2)
are:

{1’ 27 374}’ {1747 576}’ {17 5) 67 7}7 {27 3747 7}7 {2737 57 6}

There is a vast amount of work studying the lower bound
of covering designs and corresponding blocks [13], [16], [21].
Many of the best solutions are collected by Dan Gordon [20].

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

5722

III. CoDE OVERVIEW
A. High Level Idea

Rather than capturing the entire distribution within a singular
expansive model, our approach employs a multi-model strategy
to collectively encompass the joint distribution. Each smaller-
scale model is tasked with representing the discrete probability
density function defined on a subset of attributes, achieved
through the tensor decomposition technique. The selection of
these attribute subsets is determined by the covering design
methodology.

B. Pipeline of Training and Estimation

For offline training, unlike traditional approaches that rely on
a single large-scale model to learn the distribution, the CoDe
method adopts the covering design that incorporates multiple
distinct local distributions to capture diverse perspectives of the
global distribution. The table is divided into multiple smaller
overlapping tables, each comprising k attributes representing
a local distribution of 7. The covering design methodology
ensures that any query involving no more than ¢ filters (where
t < k) can be resolved by a single local distribution. Since the
table is discretized, the probability density function (P.D.F) of a
local distribution takes the form of a k-dimensional tensor. These
local distributions are organized based on attribute correlation,
prioritizing closely related local distributions for selection dur-
ing estimation. The CoDe method decomposes these P.D.F
tensors into decomposition matrices using the CP algorithm,
with the results stored for online processing. All decomposition
matrices are normalized with L1 distance for the convenience
of calculation. Section IV introduces the model training.

For online cardinality estimation, given a specific query,
CoDe first identifies the most relevant local distributions that
align with the query. When the number of filters is sufficiently
small, a single local distribution is often adequate. The ten-
sor decomposition method offers a straightforward approach
for computing individual tensor entries. Query estimation is
achieved by summing a sequence of tensor entries. However,
if a single local distribution is insufficient to cover the query
adequately, multiple local distributions can be selected simul-
taneously. In this case, attributes that are not covered by the
same local distribution are assumed to be independent. CoDe
optimally minimizes the number of selected local distributions
and the associated independence assumptions. Probabilities for
each local distribution are calculated individually and then
combined using Bayes’ theorem to produce a comprehensive
estimation. Notably, CoDe showcases its proficiency in han-
dling continuous datasets as well. Section V introduces query
estimation.

C. Necessity of Covering Design and Tensor Decomposition

Covering design is essential because, like conventional par-
titioning methods, it reduces dimensionality—a critical step
for subsequent processing. However, covering design possesses
unique capabilities that partitioning methods lack. Traditional
partitioning divides attributes into non-overlapping or minimally

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 10, OCTOBER 2025

overlapping blocks, which can result in queries involving at-
tributes scattered across multiple blocks. For optimal perfor-
mance, all attributes in a query should ideally be addressed by
a single model; otherwise, determining their joint probability
requires impractical independence assumptions. This limitation
explains the inaccuracies observed in prior approaches. In con-
trast, covering design guarantees that any combination of up to ¢
attributes can be resolved within a single block, a condition that
encompasses most real-world queries. This structural advantage
is the foundation of CoDe’s exceptional performance, enabling
an unprecedented 50% absolute improvement in accuracy com-
pared to existing methods.

While tensor decomposition may not be the most accurate
method in isolation, its integration with dimensionality reduc-
tion via covering design enables substantial improvements in
accuracy across various methods, including tensor decompo-
sition itself. Beyond accuracy, computational efficiency is a
critical consideration for our task, and tensor decomposition
excels in this regard. Although it demands significant offline
training time, it achieves exceptionally fast online inference—a
trade-off whose complexity we rigorously analyze in Section V.
The synergy between covering design and tensor decomposition
is pivotal. For high-dimensional datasets, tensor decomposition
alone faces scalability challenges due to its training complexity,
which grows with the domain size of the data. However, when
preceded by dimensionality reduction through covering design,
tensor decomposition becomes both computationally tractable
and highly accurate. This combination thus offers an optimized
solution, balancing speed and precision effectively.

D. CoDe’s Specialty

We summarize CoDe’s key strengths as follows: (1) It
achieves both high accuracy and fast inference. (2) It prioritizes
categorical data while remaining effective with numerical data.
(3) It significantly mitigates the curse of dimensionality. (4) It
effectively recognizes and handles zero-queries. (5) It performs
well on skewed data distributions.

IV. MODEL TRAINING

A. Tensor Decomposition

CoDe operates by representing the distribution of the table
T as a high-dimensional tensor denoted as 7. For categorical
attributes, each unique value is treated as an entry on the tensor
axis. However, for numerical or ordinal attributes with a large
number of distinct values, we discretize the data into appropriate
intervals, assigning each interval a unique entry on the tensor
axis.

Ideally, there should exist a natural decomposition of 7.
However, finding such adecomposition is incredibly challenging
due to the potentially high dimensionality and immense rank of
the joint distribution.

Let’s first address the rank problem. Notably, 7~ comprises
integer entries since the number of records must be a whole
number. The CP algorithm, along with (2), approximates the
decomposition by performing the decomposition on a tensor

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: LIGHTWEIGHT LEARNED CARDINALITY ESTIMATION MODEL

5723

Coll Col2 Col3 Col4 Cols
e SELECT COUNT(*) FROM Table WHERE
_f [BGIT=8] AND [Col3>b] AND [Col4=¢}
53 % BN]] .
°£E B[] .
e B[] .
B][]
A C(5, 3, 2) Covering Desig-
Coll Col2 Col3 Coll Col4 Col5 Col2 Col3 Col4 Col2 Col3 Col5
< (BRI (R || | .
S
s 5 () N) ().
[Sae)
st (OO R (R (.
(2]
ST |
Reorder by
S % % Correlation ‘
8 i
g £
E G
§ 2 P(>b [E8) ~(B8 >b)
[
P(>b)
(a) Training (b) Estimation
Fig. 3. An example of the workflow of CoDe. (a) Offline training process. (b) Online estimation process.

X that is sufficiently close to 7. More precisely, we can find
a tensor X € R™ satisfying max(|7 — X|) < 0.5, where |- |
denotes absolute values. Any real entry in X will be rounded to
the integer represented by 7. The rank of X" can be considerably
smaller than that of 7. Consequently, by selecting a relatively
small value for R, A" can be rounded to approximate 7.

Example 4: Consider the matrix provided in Example 2,
which consists of integer values and has arank of 2. Remarkably,
it is possible to find a real matrix that closely approximates the
original matrix while possessing a lower rank of 1.

1 2 3 1 18 26 1 1
2 3 4|~ |16 288 4.16| = |1.8| ® [1.6
3 5 7 2.8 5.04 T7.28 2.6 2.8

Next, let’s address the challenge of high-dimensional joint
distributions. We define the domain size, denoted as 7(.S), for a
subset S C T as follows:

n(s) =[] I

T;€S

We assume that the difficulty of decomposing a tensor over S
is proportional to its domain size 7)(S). Hence, there exists an
upper bound, denoted as M}, beyond which the decomposition
process fails due to the excessive dimensions, i.e., n(.S) < Mj.
In practice, M}, is often determined by the memory of the device.

B. Covering Design

The graph depicted in Fig. 3(a) highlights the significance
of the covering design concept in simplifying the intricate dis-
tribution of the table 7'. Rather than attempting to learn the
complex joint distribution of 7', we adopt an approach where the
attributes of 7" are distributed across multiple blocks. To learn the
local distribution specific to each block, we aggregate the dataset
according to the block to acquire the P.D.F tensor of that block.
We then use the CP algorithm to decompose these tensors. This
methodology enables us to effectively capture the distribution
of T from diverse perspectives. One notable advantage of this
approach is that any query involving constraints on no more than
t attributes can be accommodated within a single block.

Example 5: Fig. 4 visually demonstrates the relationship
between the number of filters in the predicate and the possibility
of a zero query result in the DMV dataset. The findings indicate
that when the number of filters exceeds 5, the likelihood of a
randomly generated query returning a non-zero value diminishes
significantly, with a high probability of yielding a result of 0.
In the upcoming experiment section, we will provide empirical
evidence supporting the notion that estimating a zero-query with
CoDe is relatively straightforward. Consequently, our primary
objective is to accurately estimate queries with fewer filters.

Fortunately, the implementation of the covering design tech-
nique assures us that any subset of size ¢ will be covered by at
least one block. This important guarantee implies that queries
involving a smaller number of filters are more likely to be

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

5724

CoDe (99.1%)
100 - F 100
99.62%

80 1 F 80
8 S
2 60 60 O
J ES A— oeepoz B |7
?]
8 1 L v]
& 40 Naru 0 g

BayesCard
- I I 20
0 T T T T y -0
2 4 6 8 10
filters
Fig. 4. Possibility queries returns zero answer (curve), and methods accuracy

on zero-queries (histogram).

covered by a single block. This simplifies the estimation process,
as the relevant information necessary for accurate estimation can
be contained within a single block.

To optimize efficiency, our goal is to maximize the coverage
of subsets while minimizing the number of blocks required.
This means we aim for large values of both k£ and ¢t. When
the domain size of a block is sufficiently small, we can com-
pute its decomposition. Therefore, the selection of a covering
design is constrained by the parameter M},. In other words, we
strive to find the highest value of k that satisfies the condition
n(B;) < My, forall blocks B; inthe set C'(n, k, t). The choice of
t is determined empirically, allowing flexibility in its selection,
as long as it ensures the number of blocks does not become
excessively large.

Building upon our previous approach, we take a significant
leap forward in addressing the challenges posed by attributes
with varying domain sizes. We have observed that attributes ex-
hibit substantial differences in their domain, ranging from only
two distinct values to several hundred. Consequently, the domain
sizes of blocks may vary significantly, potentially differing by
orders of magnitude.

Considering that the domain size directly influences the train-
ing difficulty, we recognize that the choice of k is primarily
limited by the block with the largest domain size. In our algo-
rithm, we also acknowledge that the blocks do not need to be of
equal size, allowing for variations in k across different blocks.
This realization leads us to reframe the problem statement: Can
we identify a set of blocks B; with different sizes, yet similar
domain sizes, satisfying n(B;) < M}, Vi? Furthermore, can we
ensure that every subset with a domain size smaller or equal to
M, is contained within at least one block? Here, M; represents
a generalization of the constant ¢, which defines the domain size
of the subsets to be covered.

However, it is important to note that this problem is NP-hard.
As aresult, we propose a heuristic solution to tackle it effectively.
Our approach involves combining multiple inferior attributes
through the Cartesian product, creating a new superior attribute.
Subsequently, we apply a classic covering design strategy to this
new set of attributes. By employing this method, we can achieve

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 10, OCTOBER 2025

TABLE III
AN EXAMPLE OF DOMAIN SIZES

attributes 1 2 3145617
domain sizes 0|11 [3[4[7]2]2

TABLE IV
AN EXAMPLE DOMAIN SIZES OF JOINT ATTRIBUTES
attributes 1 2 3x6 [4x7 |5
domain sizes | 10 | 11 6 8 7

a reduction in the number of blocks required, accompanied by
smaller %k values, thus optimizing the overall efficiency of our
approach.

Example 6: Consider a table with 7 attributes that have do-
main size shown in Table III, it has a covering design shown in
the example 3. We join attribute 3 with 6, and 4 with 7, then
we have domain sizes shown in Table IV, and apply a C(5, 3, 2)
covering design on it, giving 4 blocks as follows:

{1,2,3,6},{1,4,5,7},{2,3,4,6,7},{2,3,5,6}

After the process, we have one block less than the previous
covering.

We summarize the procedure for the covering design as fol-
lows: (1) Combining Attributes (if necessary): This step involves
merging attributes, as illustrated in Example 6. Whether or not
this step is applied, the parameter v remains fixed. (2) Choosing
k: The value of k is generally preferred to be as large as possible.
However, it is constrained by memory capacity. During training,
the size of a tensor block equals the product of the number of
distinct values across the k selected attributes. We recommend
selecting the largest possible k that allows the tensor to fit within
the available memory. (3) Choosing ¢: A larger ¢ results in more
blocks being trained. Users can select ¢ based on a manageable
number of blocks for their specific requirements. (4) Extraction
and Training: Given C(v, k, t), we can search for the covering
design using existing solutions [20]. Subsequently, for each
block, we extract the relevant set of attributes from the dataset
and train a minor model based on it.

C. Updates

When updates occur in the dataset, the approach to updating
the model depends on the extent of the changes. Two distinct
methods can be employed.

For minor updates, where the dataset undergoes relatively
small changes, we can assume that the distribution of the dataset
remains constant after updating. Therefore, it suffices to only
update the weights, denoted as w, for each model. The values of
w are adjusted proportionally to maintain the equality > w =
> T, ensuring consistency with the updated dataset. i.e.,

#present total records

Wpew = Wold 4
e old #previous total records @

This approach allows us to incorporate the changes efficiently
without the need for a complete model retraining process.

In the case of major updates, where more significant changes
are introduced to the dataset, it becomes necessary to update not

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: LIGHTWEIGHT LEARNED CARDINALITY ESTIMATION MODEL

only the weights but also the decomposition matrices. Lever-
aging the capabilities of the CP algorithm, we can continue
training the model using the previous results as a starting point
after updating the weight. It’s important to note that while this
approach may allow for time savings compared to complete
model retraining, achieving optimal results might still require
considerable iterations due to the algorithm’s convergence prop-
erties.

V. QUERY ESTIMATION

In this section, our focus centers on the algorithms utilized in
the cardinality estimation procedure. First, we present the com-
putations required within each individual block, subsequently
delving into the process of merging multiple blocks. These
processes give rise to two crucial criteria that guide the con-
struction of our block selection algorithm. Finally, we discuss
the scenarios involving range queries on continuous attributes.

A. Reconstruct Tensor

We start with the case when there is only one block, i.e.,
k = n. We have a decomposition of the tensor representing the
entire table 7', i.e., T = fr - |T| = [w; AD, A®) .. A(M)],
The density of @ is the sum of all entries that are restricted by
Q. To be precise, it is an integral (or sum) of entries along the
dimensions T"\ T¢,. Recall that the density of an entry is given
by (3), the estimation of query @, which is denoted as (Q), is
the sum of entries a;, 4,,...,;, Where i; is either determined by
the query or it is a random variable that we will sum up all the
distinct values. Hence ®((Q)) is expressed as follows:

>

Vi €T, T;eT\Tq

R n
> (w[r] [T4® [ihﬂ“]>
h=1

Vi €T, T;€T\ T T=1

Q) =

iy yig,...pin

R
=S wlr] I[A%l I D. AY0;7)

T}LETQ TjET\TQ ij ET]‘
®)

It is crucial that the decomposition should be normalized with
L1-distance, i.e., Zij eT; AWi;, r] = 1Vj,r. Hence a massive
number of calculations can be omitted, and we have:

?(Q) :Zw[r] H AN [y, 7] (6)

r=1 TheTq

We can see that the estimation of ®(Q)) only consists of multi-
plications and additions, which all can be computed in parallel.
Furthermore, the number of multiplications N (x) and additions
N(+) are given as follows:

N(x)=|To| - R
N(+)=R-1 (7

5725

wr] T, er, AWM [y, 7] requires | T | multiplications and no
addition (w[r] also need one multiplication). For R iterations and
summing up, it gives the result as in (7).

Consequently, our algorithm exhibits a notable advantage in
terms of computational efficiency, with a total number of cal-
culations generally lower than many other existing algorithms.
Notably, the algorithm entails significantly more multiplications
than additions. Both multiplications and additions scale in pro-
portion to the rank R. The number of multiplications is also
influenced by the number of filters in the query.

B. Fusion of Blocks

The covering design technique proves highly effective when
|To| < t. However, The algorithm fails to provide a complete
solution when T(cannot be covered by any single block. There-
fore we propose to use multiple blocks to estimate ®(Q)).

We start from the case that two blocks By and By cover the
T Let the set of common attributes of B; and B be Sy. Thus
there exist mutually disjoint subsets S, So and Sy, such that
By = 51U Syand By = S5 U Sy. We have the probability den-
sity functions fp, = fs, s, and fp, = fs,,s,. The probability
density function fg, can be derived from any of the two functions
fB, and fp, as it is the marginal distribution of the two. We
estimate the joint distribution over B U By as follows:

fBiuB, = Tsuso fa50 (8)
fs0

The formula relies on the conditional independence assump-
tion: S7 and Sy are independent given Sy. Mathematically, this
means: fg, .15, ~ [fs,|s, * fs,|s,- Therefore, by Bayes Theo-
rem, we have:

IB1UBy = 51,582,580 = fs1,5.150 * fs0
~ fsu150 * fs2150 * fso

_ fsi.80 [s2.50
— REL- (I,

Iso fso

fs1,50 * [s2,5
= 21,90 /92,90 9
o &)

In practice, we must make an assumption that all attributes in
S1 are independent of attributes in S5 under the condition .Sy.
There are in total |\Sy| - |S2| such independence to be made.

In general, a density function requiring multiple blocks is
estimated as follows:

fB iNT
fTQ ~ H i1

Bj st. ToCUB, JU, <, BanBinTo

(10)

for the first block Bj; covering Tg, the denominator
fUh<j B,NB;NT, 18 defined to be 1, in particular, Uh<j By, is
considered as an empty set. The formula iteratively constructs
J1,- It starts with the first block By, contributing fp,~r,. For
each subsequent block B;, the result is multiplied by the con-
ditional probability deduced from B;. In detail, the numerator
is the probability of attributes covered by B; in Ty, and the
denominator is the probability of overlapping attributes which
also covered by previous blocks. The multiplication can be

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

5726

made because of the assumption of conditional independence
illustrated in (8).

Finally, we analyze the computational complexity of (10).
The equation involves only multiplications, additions, and a few
divisions, and their upper bounds are calculated as follows:

N(x)<2-N(B)-|Tg|- R+ N(B) —1
N(+)=2-N(B) - (R—1)

N(+) = N(B) (11)

where N (B) is the minimum number of blocks required to cover
T¢. As shown in (7), each probability density function requires
fewer than |T(| - R multiplications and R — 1 additions. With
N (B) iterations, each connected by multiplications, an addi-
tional N (B) — 1 multiplications are introduced. Each iteration
involves two probability density functions and one division. It
is important to note that this upper bound for multiplications is
relatively loose, as most probability density functions typically
consider far fewer blocks than T},.

C. Selection of Blocks

Queries have the potential to involve numerous combinations
of attributes. Therefore it is essential to select proper blocks
for different queries. Our primary concern is to minimize errors
arising from the tensor decomposition and fusion of these se-
lected blocks. The error resulting from tensor decomposition is
inevitable and thus can be neglected, leaving us to focus on the
error caused by the fusion of blocks. To address these concerns,
we propose two essential criteria for our algorithm:

1) First, the algorithm must minimize the number of inde-

pendence assumptions made.

2) Second, the algorithm should select independence as-

sumptions that minimize errors.

However, simultaneously satisfying both criteria presents a
challenging optimization problem. To tackle this complexity,
we propose a greedy algorithm as a practical solution. First,
let’s focus on the second criterion of selecting the independence
assumptions with minimal errors. In this context, we achieve
this goal by breaking the link only between attributes exhibit-
ing the lowest correlation, thereby giving preference to blocks
consisting of highly correlated attributes.

One way of measuring the correlation is to evaluate the
marginal error resulting from the assumption of independence
between two attributes. From the (8), the marginal error is
defined to be:

e = q (fr, 1150 1150 - f10150)
~q (frym., fr, - fr,)
~ > frym — oy ol) frm,

T;,Th T;,Th

Z |fT_7‘,Th

T;,Th

= fr, - [z 12)

We first assume the correlation between two attributes remains
the same under any condition Sy. Next, computing the relative

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 10, OCTOBER 2025

Algorithm 1: Ordering Blocks by Importance.

1: Input: fr: the table with its records;

{By}: unordered list of blocks

Output: { B, }: reordered blocks

for each T}, 1}, € T do
COTj.p <= ZTJ-,’]F;L fT_;’,Th,
corj; <1

end for

for each B; € {B;} do

9: T 4— ﬁ ZTj,ThEBl corjp

10: end for

11: {B;} < reorder { B;} based on

12: return {B;}:

- fT, 'fTh|

error of an entry in ij,Th can be complicated. Instead, we
consider the sum of the absolute error divided by the sum of
f1;,1,- This ratio enables us to estimate the average relative
error effectively. With the marginal error, we are able to evaluate
the cost of the independence assumption, and hence rank the
importance of the blocks.

Algorithm 1. Ordering Blocks by Importance: The algorithm
takes as input the local distributions of the table and the list
of blocks, and it produces an output comprising reordered
blocks ranked by importance. Initially, it computes the marginal
error between every pair of attributes using (12) (lines 3-6).
Subsequently, for each block, the average marginal error of
all possible pairs of attributes is calculated (lines 7-9). This
calculation reveals how attributes are correlated within each
block, serving as an indicator of their relative importance, which
directly addresses the second criterion. By reordering the blocks
based on these importance scores, the blocks at the top of the
reordered list gain higher priority for selection (line 10). It is
important to note that this entire process is independent of the
query, making it feasible to perform offline during the training
process.

On the other hand, in order to reduce the number of indepen-
dence assumptions, it is necessary to efficiently cover T with
blocks, ensuring the densest coverage using the fewest blocks
possible.

Example 7: Let us adopt the covering design stated in
Example 3. Consider a query involving attributes {1, 3,5, 7}.
The query requires at least two blocks to be covered. One way
is to cover the query with blocks {1,4,5,6} and {2,3,4,7}.
By doing so, we assume that attributes {1,5} are independent
of attributes {3, 7}, which yields 4 independence assumptions.
The other way is to cover the query with blocks {1,2,3,4}
and {1,5,6,7}. By doing so, we assume that attribute {3} is
independent of attributes {5, 7} under the condition {1}, which
yields 2 independence assumptions. We conclude that the latter
is the better solution.

Algorithm 2. Selection of Blocks: The algorithm takes the
query as input and generates a set of blocks that efficiently cover
T(,. It begins by initializing the scores for each block to be 0, an
empty set C' to store selected blocks, a set remains to record
the uncovered attributes in T¢), and a decay rate « set to 0.01.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: LIGHTWEIGHT LEARNED CARDINALITY ESTIMATION MODEL

Algorithm 2: Selection of Blocks.

1: Input: {B;}: list of blocks with order;

2: Tgq: the set of attributes that the query has constraints
on

3: QOutput: C": selected covering blocks

4: Initialize: {score;} = 0; C = 0); remains = Tg;
a=0.01

5: while [remains| > 0 do

6 score <— score - o

7. foreach B, € {B;} do

8.

9

score; <— score; + |Bl N remains

: end for
10: high < index of upmost score
11: C«+Cu Bhigh
12: Temains <— remains \ Bhrign
13: end while
14: return C:

The algorithm iterates continuously as long as remains is not
empty (lines 4—-12). During each iteration, it counts the number
of common attributes between each block and the attributes
in remains. For each common attribute, the corresponding
block’s score is incremented by 1 (lines 6-8). The algorithm
then selects the block with the highest score. If multiple blocks
have the same score, the algorithm selects the one with the
highest priority from the list, adhering to the second criterion
(lines 9-10). The selected block’s attributes are removed from
remains (line 11). Before proceeding to the next iteration, the
algorithm decays the scores of all blocks by a factor of « (line 5).
This ensures that attributes covered in the current round are given
higher importance than those covered in previous rounds. The
reason for this decay process is to encourage the selection of
blocks that not only cover uncovered attributes but also overlap
with each other as much as possible. However, emphasizing
the coverage of uncovered attributes takes precedence due to
this decay mechanism. Importantly, all of these processes are
calculated online.

The two criteria are not mutually exclusive, but we prioritize
the first one (minimizing independence assumptions) as it is
considered more critical. Specifically, only when two options
share the same number of independence assumptions do we
select the one that produces fewer errors. The offline reordering
algorithm ranks blocks based on the internal correlation of their
attributes. Blocks with highly correlated attributes are deemed
more significant and are thus prioritized. For online selection, a
greedy algorithm is employed to minimize the number of blocks
required to cover T, while simultaneously maximizing over-
laps in shared attributes. This approach inherently reduces the
number of independence assumptions needed for computation.

D. Continuous Case

A range query involving continuous attributes can be con-
ceptually considered as the integration or summation of queries
on discrete points. However, such calculations can be signif-
icantly slower compared to point queries. To overcome this

5727
Density Density
f=—— Query —=1 <~ Query —=1
Attribute Attribute
Value Value
(a) Uniform (b) Linear
Fig. 5. Data distributions on continuous intervals.

challenge, the tensor decomposition strategy offers an alterna-
tive approach. Leveraging the multiplicative distribution law,
we can first compute the marginal probability of each rank-1
tensor (distribution), followed by multiplications, and then sum
up the results from these rank-1 tensors. Given that the attributes
are discretized, the marginal probability, restricted by the query,
can be viewed as a linear combination of densities over intervals,
with &; representing their respective coefficients. In general, the
query estimation is expressed as:

R
@) =Y wirl [A%[nr] [D &AY[i;,0]
r=1 TpeTy” Tyers” 45€T5

(13)
where Té?D) and Tcgc) refer to the sets of discrete attributes
and continuous attributes, respectively, which the query has
constraints on. This equation differs from (6) because, for con-
tinuous attributes, it sums the densities of selected intervals, each
weighted by different coefficients, rather than selecting a single
categorical value. When the query fully covers an interval, the
corresponding coefficient is set to 1. However, for intervals that
are only partially covered by the query, their coefficients need
to be estimated.

This is not a standard interpolation problem, as interpolation
typically relies on known points to estimate the points in be-
tween. In our tensor, entry values represent interval integrals
rather than specific points, rendering the direct application of
linear or cubic interpolation inappropriate. As illustrated in
Fig. 5, the distribution within each interval is unknown. The
typical approach is to assume a uniform, linear, or cubic data
distribution within these partially covered intervals. While the
linear and cubic method provides a more accurate estimation,
we propose the uniform one due to two reasons. First, applying
linear or cubic interpolation entails calculating and recording
fixed points, followed by aligning them with linear or cubic
curves. However, the integral of these curves might diverge from
the corresponding tensor entry, as demonstrated in Fig. 5(b).
In contrast, the uniform assumption requires significantly less
computation and fewer records on fixed points compared to the
linear and cubic alternatives. Second, the error introduced by
fitting a curve to the data distribution is relatively insignificant
when compared to the densities of other intervals, as illustrated
in Example 1. Thus, the coefficient can be approximated as
proportional to the ratio of the interval covered by the query.

Finally, (13) only consists of multiplications and additions.
we proceed to determine the upper bound of multiplications and

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

5728

additions required.

N(x)<|Tg|-R+2-R

N(H) SR-D+R- Y (Ty-1) (4
TJ'ETQ

When comparing (6) with (13), both involve R iterations. How-
ever, the continuous case requires more computations per iter-
ation. Specifically, the number of multiplications increases by
2in each iteration because only the intervals at the two ends have
coefficients less than 1, necessitating additional multiplication.
In contrast, the intervals in between do not require multiplication
in practical implementations. Additionally, for additions, each
iteration introduces ZTjeTQ (IT;| — 1) more calculations.

We observe a significant increase in the number of additions,
but still on the order of R. On the other hand, the number of
multiplications is only slightly higher than what is observed in
the discrete case.

VI. EXPERIMENT

In this section, we evaluate CoDe from various perspec-
tives. We first define the general setup of the experiments in
Section VI-A. Next, we evaluate CoDe on discrete and continu-
ous datasets respectively in Sections VI-B and VI-C. Moreover,
we provide proof that zero-queries are accurately estimated in
Section VI-D. In Section VI-E, we evaluate the influence of
the number of filters and the parameter R in CoDe. Finally, we
examine how CoDe behaves when data updates in Section VI-F.

A. Experiment Setup

We first describe the general setups across all experiments.
The detailed setups are further introduced in each subsection.

Datasets: DMV dataset [14] is widely used in many other
cardinality estimation works. It records vehicle, snowmobile,
and boat registrations in New York. It consists of 11 columns
and 11,591,877 rows. 10 out of 11 attributes are categorical
and the remaining one is the date value which can be treated
as a continuous attribute. We use both the discretized and the
original continuous version of the dataset experiment.

Forest dataset [6] is used as a classification problem involving
7 distinct forest cover types. This dataset consists of a range
of attributes, including elevation, aspect, slope, hillshade, soil-
type, and more. In our Experiment, we focus on 45 categorical
attributes present in the dataset. The covertype dataset comprises
a total of 581,011 rows of instances.

Poker Hand dataset [10] comprises records of five playing
cards randomly drawn from a standard deck of 52 cards. Its
primary objective is to forecast different poker hands. With a
total of 11 attributes and a vast collection of 999,999 rows.

Workloads: We generate 12,000 queries, from which 10,000
queries are used for training each query-driven method similar
to [49], [50] and 2,000 queries are kept for testing all methods.
The attributes of the table have an independent and identical
probability to appear in a query. All the queries have at least two
filters as the marginal distributions are too simple. The operators
in each filter predicate vary from {>, <, =}, and the predicate

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 10, OCTOBER 2025

value is uniformly selected from the corresponding column. To
fit the reality and further test the accuracy of the models, we
only allow equality filters on discrete attributes and inequality
filters on continuous attributes. Furthermore, the queries with
zero results are separately evaluated with non-zero queries as
they have different difficulties in estimation.

Baselines: We compare CoDe with six state-of-the-art candi-
date cardinality estimation models as follows:

1) MSCN [32]: This method encodes the query features
with a table set, a join set, and a predicate set using one-hot
vectors. Then, it utilizes the multi-set convolutional network to
learn a mapping function from the feature set to the predicated
cardinality.

2) LW-XGB [17]: It employs a tree-based ensemble method,
called XGBoost [11], which encodes a query as a sequence of
selection ranges, then learns a mapping function from the query
encoding to the predicted cardinality.

3) LW-NN [17]: This approach is based on fully connected
neural networks. It trains a local neural network (NN) model on
a fixed join path, and encodes each predicate as four numbers
indicating the operations (<, >, =) and the normalized value.

4) DeepDB [27]: This method relies on relational sum-
product networks (RSPN). It divides a table into row clusters
and column clusters recursively. Then it utilizes sum nodes
(resp. product nodes) to combine the row clusters (resp. column
clusters).

5) BayesCard [47]: This method relies on Bayes Network to
learn a joint distribution. We adopt a state-of-the-art implemen-
tation with probabilistic programming.

6) Naru [49]: Tt builds a deep autoregressive model on the
samples of the table, then conducts a progressive sampling to
make the estimates.

7) FactorJoin [46]: It combines the classical join-histogram
with the learning-based methods to capture attribute distribution
efficiently and accurately.

8) UAE [45]. This method proposes differentiable progressive
sampling via the Gumbel-Softmax trick to enable learning from
queries. Then it unifies both query and data information using
the deep autoregression model.

Metrics: For non-zero queries, we use q-error to measure their
accuracy. The g-error is defined as follows:

[estimated density]
¢ = max -
true density

true density
max(1, [estimated density))

where [-] means rounding to nearest integer. We will report 50%,
95%, and 99% quantiles, but the mean and the max g-errors are
excluded. The reason is the results are heavily dependent on
the random seeds, and a few extreme samples can dramatically
change the mean and the max. Therefore, the median (50%) is
a better metric to represent the average accuracy.

For evaluations on zero queries, we calculate the accuracy
rate, which is the ratio of queries that are estimated correctly.

#{estimated density < 0.5}
#total queries

accuracy =

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: LIGHTWEIGHT LEARNED CARDINALITY ESTIMATION MODEL

In addition to measuring errors, we also evaluate the inference
latency of the methods. We capture the average execution time
of each query, denoted in milliseconds (ms).

Environment: All experiments were implemented in Python,
and performed on a server with a 20-core Intel(R) Xeon(R)
6242R 3.10 GHz CPU, and 256 GB DDR4 RAM. For a fair
comparison, all the models are estimated on CPU as not all the
models support GPU training and inference.

B. Evaluation on Discrete Datasets

To process the DMV dataset, our initial step involves con-
verting it into a discrete version. Since all attributes, except
for ‘Reg_Valid_Date, are categorical in nature, we pro-
ceed by categorizing the values of ‘Reg_Valid_Date’ into
14 distinct categories based on the corresponding year of the
data. Subsequently, we evaluate queries on this discretized ver-
sion of the dataset. The domain size of the dataset is about
2.25 x 10'3, with attribute domain sizes ranging from 2 to
225. Given this diversity, balancing the attribute domain sizes
through thoughtful joins before applying the covering design be-
comes crucial. we propose joining the attribute ‘ Record_Type’
with ‘Scof flaw_Indicator’ and ‘Suspension_Indicator’,
as well as joining ‘ Fluel_Type’ with ‘ Revocation_Indicator’.
As aresult, we have an 8-column dataset, over which we deploy
a (8,4, 3) covering design comprising 14 blocks, each varying
in length from 4 to 7. To train tensor decompositions effectively
on these blocks, our focus is on minimizing the error of re-
constructing the tensor, as it directly influences CoDe’s g-error.
Each block causes distinct challenges due to varying tensor sizes
and correlations, so the hyper-parameter R is necessary to be
individually determined for each block. It is noteworthy that R
need not be the same across all blocks. In practice, some blocks
are required to train multiple times to find the appropriate R,
ensuring minimal reconstruction error. As a result, the values of
R vary from 2,000 to 15,000. To construct a query workload,
we ensure that each attribute has an independent 50% chance
of appearing in a query. Queries that possess only one filter or
have a density equal to zero are excluded from the workload.
Since the dataset is discrete, we only allow equality to appear
in the filters. By implementing these criteria, we generate a set
of 2,000 queries that satisfy the specified conditions. In terms
of computational cost, the training process takes a total of 6,095
seconds, with an average of 435 seconds per block. Addition-
ally, the local storage required for the tensor decomposition is
142 MB in total, averaging 10 MB per block.

For the Forest dataset, the domain size is about 1.23 x
10™. While most attributes possess a domain size of 2, the
‘Cover_Type’ attribute consists of 7 distinct values. The Do-
main sizes are fairly evenly distributed across attributes, there-
fore joining attributes is not necessary. Given its larger attribute
count and domain size compared to DMV, we consider using
more blocks to cover the table. Thus, we employ a C'(45, 20, 4)
covering design for attributes, yielding a total of 67 blocks. In
contrastto DMV, the sizes of block tensors in Forest are relatively
smaller, leading to the training of tensor decompositions with
lower R values. The range of R spans from 1,000 to 2,000. The

5729

TABLE V
EVALUATION ON DISCRITIZED DATASET

Dataset Method 50% | 95% 99% | Latency(ms)
CoDe 1.0 2.25 9.0 0.0468
Naru 1.2 5.10 11.7 3.14
DeepDB 1.53 41.9 379 1.35
DMV BayesCard | 1.15 12.2 141 1.10
MSCN 7.88 83.0 268 0.0911
LW-XGB 4.40 75.4 599 0.0142
LW-NN 5.07 190 2710 0.0051
FactorJoin 1.27 3.17 12.49 1.8661
UAE 1.24 2.29 3.12 6.7505
CoDe 1.0 1.002 | 1.057 0.0453
Naru 1.10 1.83 3.50 4.33
DeepDB 1.05 3.0 14.3 0.834
Forest BayesCard 1.02 1.80 5.68 0.926
MSCN 2.08 16.5 29.3 1.57
LW-XGB 2.63 11.1 25.0 0.0456
LW-NN 1.09 1.42 4.18 0.0079
FactorJoin 1.06 1.92 6.21 1.9943
UAE 1.18 1.76 2.73 7.3752
CoDe 1.0 2.0 3.0 0.0804
Naru 1.24 6.67 6.73 6.18
DeepDB 15.0 100 122 0.815
Poker BayesCard | 1.28 5.99 20.1 1.27
MSCN 1.90 4.0 8.0 0.0494
LW-XGB 1.71 4.12 6.59 0.0257
LW-NN 1.34 2.98 4.98 0.0309
FactorJoin 1.30 7.51 8.39 2.0653
UAE 1.20 4.29 5.20 8.5548

workload of Forest is generated in a similar way. However, in this
case, each attribute is assigned a 10% chance of being selected
in a query. In terms of computational cost, the training process
takes a total of 15,402 seconds, with an average of 230 seconds
per block. Additionally, the local storage required for the tensor
decomposition is 25.1 MB in total, averaging 385 KB per block.

For the Poker dataset, the domain size is about 3.8 x 10°. The
domain sizes of attributes vary from 4 to 13. The primary ob-
jective of this dataset is to predict the attribute ‘Poker_Hand’,
while all other attributes are treated as mutually independent.
In line with this, all the queries generated for evaluation in-
volve ‘Poker_H and’, while other attributes are assigned a 50%
chance of selection. Similarly, each block is designed to involve
‘Poker_Hand’. To accomplish this, we employ a C'(10, 5, 3)
covering design for attributes excluding ‘Poker_Hand’, with
the addition of ‘Poker__H and’ in each block. In total, 17 blocks
are trained, each consisting of 6 attributes. For the R value,
we opt for a consistent choice of 10,000 across all blocks.
In terms of computational cost, the training process takes a
total of 9,685 seconds, with an average of 570 seconds per
block. Additionally, the local storage required for the tensor
decomposition is 70.4 MB in total, averaging 4.1 MB per block.

The experimental results conducted on the DMV, Forest, and
Poker datasets are displayed in Table V. A general observation
is that for all the datasets, the CoDe is the most accurate method.
Furthermore, CoDe is faster than all other data-driven methods,
and only slower than some workload-driven methods.

In terms of accuracy analysis, we first notice that CoDe not
only attains a perfect 50% q-error for all the datasets but also
ensures 55.05%, 66.95%, and 53.45% absolute accuracy on the
DMV, Forest, and Poker datasets, respectively. A notable obser-
vation is that data-driven approaches, such as Naru, DeepDB,

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

5730

and BayesCard, tend to outperform workload-driven methods,
including MSCN, LW-XGB, and LW-NN, in terms of accuracy.
This superiority can be attributed to data-driven methods’ abil-
ity to directly learn data distribution, unlike workload-driven
counterparts that only rely on query workload patterns. How-
ever, given the random nature of our experiment workloads,
workload-driven methods exhibit less effectiveness due to the
absence of specific patterns for learning. BayesCard outperforms
Naru in terms of 50% g-error, but lags behind at 99% qg-error.
This trend extends to other methods, including CoDe. Such
variations may arise due to differences between continuous and
discrete datasets. Some methods treat all values as continuous,
forcing a smooth curve aligning all discrete values, averaging
out errors from extreme cases, and potentially impacting their
performance. Another instance is the contrasting behavior of
LW-XGB and LW-NN, with the former performing better on the
DMV dataset while the latter excels on the Forest dataset. Such
distinctions can be attributed to method sensitivity towards query
complexity. Specifically, query difficulty closely correlates with
the number of filters, a factor we will further explore in subse-
quent experiments.

Turning our focus to latency analysis, we observe that CoDe,
as a data-driven approach, exhibits latency at least 16 times
quicker than all other data-driven techniques. When compared to
workload-driven methods, CoDe remains faster than MSCN on
DMYV and Forest datasets, yet slightly slower than LW-XGB and
LW-NN. Workload-driven methods generally exhibit superior
speed since they can directly process queries without the need
for data distribution considerations. Latency variance across
methods and datasets can be attributed to many reasons such
as model complexity and query difficulty.

C. Evaluation on Continuous Dataset

While CoDe is specifically designed for discrete data, our
objective is not to demonstrate superiority over other methods
exclusively for pure continuous datasets. Nonetheless, it remains
crucial to showcase CoDe’s capability in handling datasets with a
minority of continuous attributes. In this experiment, we evaluate
CoDe alongside other methods using the original continuous
version of the DMV dataset.

The continuous version of CoDe differs from its discretized
counterpart solely in the ‘Reg_V alid_Date’ attribute. Corre-
sponding adjustments are made in workload generation. In this
case, queries are composed of equalities = for discrete attributes
and inequalities <, > for the ‘Reg_V alid_Date’ attribute. The
covering design and subsequent training process remain identi-
cal to the discretized version. However, the estimation process
diverges.

The experimental results are displayed in Table VI. Results
show that CoDe performs as the top method for 50% and 95%
g-errors, slightly trailing Naru for 99% q-error. Impressively,
CoDe ensures the absolute estimation accuracy of 53.25% of
queries. Concerning inference latency, CoDe ranks as the sec-
ond fastest method, trailing only LW-XGB. In general, most
methods demonstrate similar behavior to the discretized DMV
experiment. Notably, minor differences arise not only from the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 10, OCTOBER 2025

TABLE VI
EVALUATION ON CONTINUOUS DMV DATASET
Method 50% 95% 99% | Latency(ms)
CoDe 1.0 2.0 12.0 0.0559
Naru 1.27 5.0 7.63 4.425
DeepDB 1.43 339 196 1.2
BayesCard 1.12 13.3 140 2.56
MSCN 6.39 102 351 0.08
LW-XGB 4.29 86.0 1130 0.031
LW-NN 4.40 209 2440 0.082
FactorJoin 1.272 | 7.7161 38.0 2.574
UAE 1.27 3.52 7.81 8.558
TABLE VII
EVALUATION OF CODE ON CONTINUOUS DMV WITH VARYING NUMBER OF
BINS
#bins | 50% | 95% | 99% | Latency(ms)
9 1.001 | 23.9 307 0.0713
14 1.0 2.0 12.0 0.0559
20 1.0 325 | 2253 0.0792

contrast between continuous and discrete datasets but also from
the influence of randomly generated queries. However, LW-NN
significantly diverges between the two datasets, with markedly
slower inference latency in the continuous version compared to
its discrete counterpart.

By varying the number of bins, we observe from Table VII
that the model becomes less accurate when the number of bins
is too small. This inaccuracy primarily stems from the large
bin sizes. However, other factors also impact accuracy. For
example, an excessively large number of bins increases the
domain size, making the model harder to train. Additionally, the
model’s inherent perturbation during training further influences
its accuracy.

D. Evaluation on Zero-Queries

As illustrated in Fig. 4, queries are highly likely to yield
zero instances when the number of filters is high enough. This
situation prompts a significant challenge for existing cardinality
estimation methods due to they lack a consideration for these
zero-queries. Ensuring the proper functioning of CoDe for zero-
queries becomes a pivotal consideration. In this experiment, we
generate training queries similar to the previous trials conducted
on the DMV, Forest, and Poker datasets. The key difference
is that we do not eliminate queries with zero cardinalities (we
assign a true cardinality of 1e~3 to queries with zero cardinalities
because true cardinalities should be greater than zero to calculate
g-error). For generating testing queries, we specifically retain
the zero-queries from the generated queries. We evaluate all
methods based on their accuracy in correctly estimating the
ratio of queries, with estimated densities below 0.5 considered
as accurate.

The outcomes of this experiment are summarized in
Table VIII. Impressively, CoDe significantly outperforms all
other methods, successfully estimating nearly all zero-queries.
The second-best performer is DeepDB, which manages to
correctly estimate less than half of the queries. Conversely,
workload-driven methods struggle to estimate any zero-queries

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: LIGHTWEIGHT LEARNED CARDINALITY ESTIMATION MODEL

TABLE VIII
ACCURACY ON ZERO-QUERIES

Method DMV Forest Poker
CoDe 99.1% | 96.5% | 96.1%
Naru 29.5% 24% 26.2%

DeepDB 48.7% 42.6% | 44.4%

BayesCard | 25.1% 30.1% 28.7%

MSCN 5.1% 6.7% 6.3%

LW-XGB 4.7% 4.9% 4.9%

LW-NN 4.2% 5.1% 4.6%
UAE 23.9% 12.8% 15.6%

FactorJoin 24.7% 28.4% 27.6%
TABLE IX

EVALUATION OF CODE AGAINST #FILTERS

Dataset | #filters 50% 95% 99% | Latency(ms)
2 1.0 1.69 4.0 0.0469
3 1.0 2.0 4.0 0.0472
DMy 7 T0 30 [1301 0.0632
5 1.0 5.0 22.02 0.0634
2 1.0 1.0003 1.008 0.0396
Forest 4 1.0 1.01 1.21 0.0436
6 1.0 1.09 2.10 0.0737
8 1.001 1.33 3.87 0.0862
2 1.0 1.03 1.13 0.0431
Poker 3 1.0 1.16 1.5 0.0465
4 1.0 1.10 2.0 0.0509
5 1.0008 2.0 3.0 0.0809

correctly. This reason can be attributed to their training on
workload dominated by non-zero cardinality queries. This type
of training is necessary for workload-driven methods to accu-
rately estimate most queries, but it can introduce a bias towards
producing non-zero answers. This exposes a significant limita-
tion of workload-driven methods, which is their heavy reliance
on historical workloads rather than actual data, making them
inadequate for handling unfamiliar queries.

E. Ablation Study

In this section, our exploration delves into exploration of the
impact of pivotal parameters: the number of filters within the
queries and the parameter R, k, and ¢.

To begin, we investigate the impact of the number of filters in
queries on the performance of CoDe. This experiment employs
the models trained in Section VI-B. We proceed to generate
multiple workloads for each dataset, maintaining a consistent
pattern while varying the number of filters in each workload.
For the DMV and Poker datasets, filter counts range from 2 to 5.
while for the Forest dataset, filter counts span from 2 to 8.

The outcomes are presented in Table IX. A noteworthy ob-
servation is that as the number of filters increases for all the
datasets, both the errors and latency increase. A higher number of
filters corresponds to larger domain sizes, making accurate query
estimation more challenging. Likewise, a greater number of
filters entails increased multiplicative operations, consequently
lengthening inference time. Notably, the median g-errors remain
relatively stable at precisely 1, except for the cases of 8 filters
on the Forest dataset and 5 filters on the Poker dataset. This
indicates that CoDe proficiently resolves most queries, even
when the number of filters is substantial. Notably, a latency surge

5731

TABLE X
EVALUATION OF CODE AGAINST R

Dataset R 50% 95% 99% | Latency(ms)
2000 1.00007 20.1 940 0.0393
DMV 5000 1.00002 7.52 96.0 0.0479
10000 1.0 5.0 35.0 0.0554
1000 1.0 1.003 1.06 0.0449
Forest 2000 1.0 1.014 | 1.125 0.0471
5000 1.0 1.025 1.195 0.0537
2000 1.06 2.0 4.0 0.0557
Poker 5000 1.02 2.0 3.0 0.0653
10000 1.0 2.0 3.0 0.0804

TABLE XI

EVALUATION OF CODE ON DMV WITH VARYING k AND ¢

Covering Design 50% 95% | 99% | Latency(ms)
C(8,4,3) 1.0 2.25 9.0 0.0468
C(11,4,3) 1.0008 | 29.3 291 0.0556
C(11,4,2) 1.024 43.0 378 0.0603
k>5 Failed to compute

arises between the 3-filter and 4-filter cases for the DMV dataset.
This is due to the fact that while 3-filter queries can be fully
covered by a single block, 4-filter queries might require two
blocks for comprehensive resolution. A similar trend happens
between the 4-filter and 6-filter scenarios for the Forest dataset,
and the 4-filter and 5-filter scenarios for the Poker dataset.

In a subsequent exploration, we delve into the impact of the
parameter R on CoDe performance. This experiment employs
the workload generated in Section VI-B, and the models are
trained with varying choices of R values. Notably, all blocks
share the same R value for each setting, with training executed
once irrespective of errors. For the DMV and Poker datasets, R
values span from 2,000 to 10,000, while for the Forest dataset,
the range is 1,000 to 5,000.

The outcomes are presented in Table X. An initial observation
reveals that an increase in R leads to a subsequent rise in
inference latency across all the datasets. This correlation can
be attributed to the fact that both the number of additions and
multiplications are proportional to R. However, the relationship
between latency and R is not strictly proportional, as block
selection also requires inference time. Furthermore, concerning
errors, an interesting trend emerges: while the errors on the
DMV and Poker datasets decrease as R grows, the opposite
trend is observed for the Forest dataset. This behavior arises
due to the fact that a larger R is not necessarily better. Excessive
R values can lead to tensor decomposition reconstruction errors
oscillating around zero, consequently resulting in higher g-errors
in estimation.

We evaluate the effects of parameters & and ¢. In Table XI,
C(8,4,3) represents the recommended method from Sec-
tion VI-B, which utilizes covering design after join operations.
Theoretically, larger values for both k£ and ¢ are preferable.
Our experiments specifically compare cases where k = 4 versus
k > 5. Notably, the situation without any covering design occurs
when k£ = v. However, when k& = 5, tensor decomposition be-
comes infeasible due to excessive domain size. For instance,
the subspace formed by the five largest attributes in the DMV
dataset has a domain size of 5.2 x 10?, requiring approximately

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

5732

TABLE XII
EVALUATION OF DATASET UPDATE

Dataset 50% 95% 99% | Update Time(ms)
DMV 1.011 10.2 96.0 91.0
Forest 1.0006 1.011 1.058 52.9
Poker 1.03 2.0 3.0 71.2

20GB of storage space alone - making tensor decomposition
computationally prohibitive. This clearly demonstrates the crit-
ical importance of covering design. Comparing C'(11, 4, 3) with
C(8,4,3), the former shows inferior performance. While both
share the same ¢ value, C'(8, 4, 3) requires fewer blocks, allowing
for more targeted adjustments or retraining. Among all config-
urations, C'(11,4,2) performs the worst due to its minimal ¢
value, which results in many queries not being covered by a
single block.

F. Data Update

When addressing data updates, we explore two distinct meth-
ods: updating only the weights and performing a full update. To
investigate this, we initially sample 95% of the data from each
dataset, simulating the dataset’s state before the update. Subse-
quently, CoDe models are trained on these sampled datasets. The
weights are then updated by scaling them roughly by a factor
of ﬁ. The updated model is evaluated using the workload
generated in Section VI-B, and the outcomes are presented in
Table XII.

To evaluate the significance of these results, we compare
them against the optimum outcomes detailed in Table V. The
findings indicate that g-errors for the Forest and Poker datasets
are slightly worse than the optimum results. Notably, the 95%
and 99% q-errors on the DMV dataset exceed the expected per-
formance. This can potentially be attributed to the algorithmic
perturbations introduced during the update process. Nonethe-
less, most of these updated results outperform those of all other
methods. This implies that in many scenarios, updating only the
weights is sufficiently effective, even with a 5% difference in the
dataset. Moreover, the weight update process takes less than 0.1
seconds across all datasets, demonstrating its viability for daily
applications. However, it’s important to note that this approach
no longer guarantees that most queries will be absolutely ac-
curate. Therefore, for scenarios demanding optimal results, full
retraining is recommended.

VII. RELATED WORK
A. Cardinality Estimation.

Cardinality estimation is one of the most important compo-
nents in database optimizer. Traditional methods mainly contain
histograms and samplings, which with the advantages of small
overhead and strong applicability. Histogram [40] assumes that
all attributes are independent and is implemented in DBMS like
Postgres [23]. Additionally, multi-dimensional histogram [15],
[24], [39], [44] variations have been proposed to model distri-
butions more comprehensively. Sampling [34], [58] samples a

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 10, OCTOBER 2025

portion of the dataset for estimation, this approach is used in
DBMS such as MySQL [36].

Learned cardinality estimation models [4], [27], [35], [38],
[41], [45], [50], [55], [56] are based on machine learning
techniques. Compared to traditional methods, they are more
accurate, but less applicable due to higher overhead and limited
support for query types. In addition to the models outlined in
Section VI, there are several other representative methods: (1)
Bayesian Networks [12], [19], [25], [43] (BN). BN-based meth-
ods employ a directed acyclic graph to formulate conditional
probabilities for dataset attributes. Attributes under the same par-
ent node are assumed to be conditionally independent. (2) Deep
Auto-Regression [26], [49] (DAR) models employ the chain rule
for joint distribution formulation. Conditional probabilities are
modeled using a deep neural network (DNN). (3) FLAT [59]
is a model based on the factorized-split-sum-product networks
(FSPN [48]). (4) ASM [31] is a new learned cardinality estimator
that use autoregressive model, sampling, and multi-dimensional
statistics merging for cardinality estimation.

B. Tensor Decomposition.

Tensor decomposition is a mathematical technique used to
break down multi-dimensional arrays (tensors) into simpler,
interpretable components. It extends the concept of matrix fac-
torization to higher dimensions, enabling pattern extraction,
dimensionality reduction, and efficient computation for com-
plex datasets. (1) CP (CANDECOMP/PARAFAC) [33]: Decom-
poses a tensor into a sum of rank-one tensors. It is simple
and unique under mild conditions but lacks flexibility due to
its fixed rank structure. (2) PARAFAC2 [9], [30]: A variant of
PARAFAC designed for tensors with uneven sizes. (3) Tucker
decomposition [42] Breaks down a tensor into a core tensor and
multiple factor matrices. It is more flexible than CP (allowing
different ranks per mode) but is generally non-unique. Notably,
CP decomposition can be viewed as a special case of Tucker
decomposition where the core tensor is diagonal. (4)Tensor train
decomposition (TT) [37]: Represents a tensor as a sequence of
matrices, where each entry of the tensor is computed as the
product of these matrices. (5)Tensor ring decomposition [57]:
An advanced form of TT where the decomposed tensors form
a cyclic ring structure. It offers greater flexibility and often
achieves better compression compared to TT.

C. Covering Design

A universal solution for all covering designs C'(v, k, t) does
not exist [13], [16], [21]. While the ¢ = 2 scenario is frequently
analyzed [1], [2], [7], [22], the complexity increases consid-
erably for t > 2 [5], [8]. Moreover, research has delved into
establishing lower bounds for covering designs [3], [18], [22],
[28], [29]. Besides covering design, several other mathematical
concepts share similarities with it: (1)Lotto Designs: A general-
ization of covering designs. A (v, k, t, m)-lotto design ensures
that for any ¢-element subset (the “draw”), at least one k-element
block (a "’ticket”) intersects it in at least m elements. (2)Steiner
Systems: These require every ¢-subset to appear in exactly one

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: LIGHTWEIGHT LEARNED CARDINALITY ESTIMATION MODEL

block. (3)Packing Designs: These limit t-subsets to appearing
in at most one block, optimizing non-overlapping coverage.

VIII. CONCLUSION AND FUTURE WORK

This paper introduces a novel cardinality estimation method
named CoDe. By embracing the covering design strategy, we
capture dataset distribution through multiple models rather than
a single one. Each model is built using the tensor decomposition
technique. CoDe demonstrates outstanding accuracy and speed.

There are two most interesting problems that deserve further
study. First, exploring more flexible and efficient table covering
methods could enhance the approach. For example, similar
to [51], [52], [53], [54], employing the covering method on
GPUs in parallel could further reduce the latency of CoDe,
making it more likely to be used in production scenarios. Second,
extending CoDe to scenarios like fully continuous datasets,
multi-table setups, and cardinality estimation tasks in federated
learning presents promising directions.

REFERENCES

[1] R.J. R. Abel, A. Assaf, F. E. Bennett, I. Bluskov, and M. Greig, “Pair
covering designs with block size 5,” Discrete Math., vol. 307, no. 14,
pp. 1776-1791, 2007.

[2] R.J. R. Abel, 1. Bluskov, M. Greig, and J. de Heer, “Pair covering and
other designs with block size 6,” J. Combinatorial Des., vol. 15, no. 6,
pp. 511-533,2007.

[3] D. Applegate, E. Rains, and N. Sloane, “On asymmetric coverings and
covering numbers,” J. Combinatorial Des., vol. 11, no. 3, pp. 218-228,
2003.

[4] M. Aytimur, S. Reiner, L. Worteler, T. Chondrogiannis, and M. Gross-
niklaus, “LPLM: A neural language model for cardinality estimation of
like-queries,” in Proc. ACM Manage. Data, vol. 2, no. 1, pp. 1-25, 2024.

[5] R.Bertolo, I. Bluskov, and H. Hiaméldinen, “Upper bounds on the general
covering number CX (v, k, t, m),” J. Combinatorial Des., vol. 12, no. 5,
pp. 362-380, 2004.

[6] J. Blackard, “Covertype,” UCI Machine Learning Repository, 1998. [On-
line]. Available: https://doi.org/10.24432/C50K5N

[7]1 1. Bluskov, M. Greig, and K. Heinrich, “Infinite classes of covering
numbers,” Can. Math. Bull., vol. 43, no. 4, pp. 385-396, 2000.

[8] I. Bluskov and H. Himiildinen, “New upper bounds on the minimum size
of covering designs,” J. Combinatorial Des., vol. 6,no. 1, pp. 21-41, 1998.

[9]1 R.Bro,C.A. Andersson, and H. A. Kiers, “PARAFAC2—Part II. Modeling

chromatographic data with retention time shifts,” J. Chemometrics: J.

Chemometrics Soc., vol. 13, no. 3/4, pp. 295-309, 1999.

R. Cattral and F. Oppacher, “Poker Hand,” UCI Machine Learning Repos-

itory, 2007. [Online]. Available: https://doi.org/10.24432/C5KW38

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in

Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016,

pp. 785-794.

C. Chow and C. Liu, “Approximating discrete probability distributions

with dependence trees,” IEEE Trans. Inf. Theory, vol. IT-14, no. 3, pp. 462—

467, May 1968.

C. J. Colbourn, CRC Handbook of Combinatorial Designs. Boca Raton,

FL, USA: CRC Press, 2010.

N. O. Data, “Vehicle, snowmobile, and boat registrations,” 2020. [Online].

Available: data.ny.gov

A. Deshpande, M. Garofalakis, and R. Rastogi, “Independence is good:

Dependency-based histogram synopses for high-dimensional data,” ACM

SIGMOD Rec., vol. 30, no. 2, pp. 199-210, 2001.

J. H. Dinitz and D. R. Stinson, Contemporary Design Theory: A Collection

of Surveys, vol. 26. Hoboken, NJ, USA: Wiley, 1992.

A.Dutt, C. Wang, A. Nazi, S. Kandula, V. R. Narasayya, and S. Chaudhuri,

“Selectivity estimation for range predicates using lightweight models,” in

Proc. VLDB Endowment, vol. 12, no. 9, pp. 1044-1057, 2019.

Z. Fiiredi, “A projective plane is an outstanding 2-cover,” Discrete Math.,

vol. 74, no. 3, pp. 321-324, 1989.

[10]

(1]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

5733

L. Getoor, B. Taskar, and D. Koller, “Selectivity estimation using proba-
bilistic models,” in Proc. 2001 ACM SIGMOD Int. Conf. Manage. Data,
2001, pp. 461-472.

D. Gordon, “Covering designs,” 1995. [Online]. Available: https://www.
dmgordon.org/cover/

D. M. Gordon, O. Patashnik, and G. Kuperberg, “New constructions for
covering designs,” J. Combinatorial Des., vol. 3, no. 4, pp. 269-284, 1995.
M. Greig, P. Li, and G. Van Rees, “Covering designs on 13 blocks
revisited,” Utilitas Mathematica, vol. 70, pp. 221-262, 2006.

T. P. G. D. Group, “PostgreSQL 15.4 Documentation,” 2023. [Online].
Available: https://www.postgresql.org/

D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi, “Approx-
imating multi-dimensional aggregate range queries over real attributes,”
ACM SIGMOD Rec., vol. 29, no. 2, pp. 463-474, 2000.

M. Halford, P. Saint-Pierre, and F. Morvan, “An approach based on
Bayesian networks for query selectivity estimation,” in Proc. 24th Int.
Conf. Database Syst. Adv. Appl., Springer, 2019, pp. 3—19.

S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G.
Das, “Multi-attribute selectivity estimation using deep learning,” 2019,
arXiv:1903.09999.

B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and C.
Binnig, “DeepDB: Learn from data, not from queries!,” in Proc. VLDB
Endowment, vol. 13, no. 7, pp. 992—-1005, 2020.

D. Horsley, “Generalising Fisher’s inequality to coverings and packings,”
Combinatorica, vol. 37, no. 4, pp. 673-696, 2017.

D. Horsley and R. Singh, “New lower bounds for t-coverings,” J. Combi-
natorial Des., vol. 26, no. 8, pp. 369-386, 2018.

H. A. Kiers, J. M. Ten Berge, and R. Bro, “PARAFAC2—Part 1. A
direct fitting algorithm for the PARAFAC2 model,” J. Chemometrics: J.
Chemometrics Soc., vol. 13, no. 3/4, pp. 275-294, 1999.

K.Kim, S. Lee, I. Kim, and W.-S. Han, “ASM: Harmonizing autoregressive
model, sampling, and multi-dimensional statistics merging for cardinal-
ity estimation,” in Proc. ACM Manage. Data, vol. 2, no. 1, pp. 1-27,
2024.

A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper, “Learned
cardinalities: Estimating correlated joins with deep learning,” in Proc.
Biennial Conf. Innov. Data Syst. Res., 2019, pp. 1-8.

T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455-500, 2009.

V. Leis, B. Radke, A. Gubichev, A. Kemper, and T. Neumann, “Cardinality
estimation done right: Index-based join sampling,” in Proc. Biennial Conf.
Innov. Data Syst. Res., 2017, pp. 1-8.

P.Li, W. Wei, R. Zhu, B. Ding, J. Zhou, and H. Lu, “ALECE: An attention-
based learned cardinality estimator for SPJ queries on dynamic workloads
(extended),” 2023, arXiv:2310.05349.

C. Oracle, “MySQL 8.0 reference manual,” 2023. [Online]. Available:
https://www.mysql.com/

I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295-2317, 2011.

Y. Park, S. Zhong, and B. Mozafari, “QuickSel: Quick selectivity learning
with mixture models,” in Proc. 2020 ACM SIGMOD Int. Conf. Manage.
Data, 2020, pp. 1017-1033.

V.Poosalaand Y. E. Ioannidis, “Selectivity estimation without the attribute
value independence assumption,” in Proc. 23rd Int. Conf. Very Large Data
Bases, 1997, pp. 486-495.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price, “Access path selection in a relational database management system,”
in Proc. 1979 ACM SIGMOD Int. Conf. Manage. Data, 1979, pp. 23-34.
J. Sun, J. Zhang, Z. Sun, G. Li, and N. Tang, “Learned cardinality
estimation: A design space exploration and a comparative evaluation,”
in Proc. VLDB Endowment, vol. 15, no. 1, pp. 85-97, 2021.

L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279-311, 1966.

K. Tzoumas, A. Deshpande, and C. S. Jensen, “Lightweight graphical
models for selectivity estimation without independence assumptions,” in
Proc. VLDB Endowment, vol. 4, no. 11, pp. 852-863, 2011.

H. Wang and K. C. Sevcik, “A multi-dimensional histogram for selectivity
estimation and fast approximate query answering,” in Proc. 2003 Conf.
Centre Adv. Stud. Collaborative Res., 2003, pp. 328-342.

P. Wu and G. Cong, “A unified deep model of learning from both data
and queries for cardinality estimation,” in Proc. 2021 Int. Conf. Manage.
Data, 2021, pp. 2009-2022.

Z. Wu, P. Negi, M. Alizadeh, T. Kraska, and S. Madden, “FactorJoin:
A new cardinality estimation framework for join queries,” in Proc. ACM
Manage. Data, vol. 1, 2023, Art. no. 41.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.24432/C50K5N
https://doi.org/10.24432/C5KW38
data.ny.gov
https://www.dmgordon.org/cover/
https://www.dmgordon.org/cover/
https://www.postgresql.org/
https://www.mysql.com/

5734

[47]

[48]
[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 10, OCTOBER 2025

Z. Wu, A. Shaikhha, R. Zhu, K. Zeng, Y. Han, and J. Zhou, “BayesCard:
Revitilizing Bayesian frameworks for cardinality estimation,” 2020,
arXiv:2012.14743.

Z. Wu et al., “FSPN: A new class of probabilistic graphical model,” 2020,
arXiv:2011.09020.

Z. Yang et al., “NeuroCard: One cardinality estimator for all tables,” in
Proc. VLDB Endowment, vol. 14, no. 1, pp. 61-73, 2020.

Z. Yang et al., “Deep unsupervised cardinality estimation,” in Proc. VLDB
Endowment, vol. 13, no. 3, pp. 279-292, 2019.

J.Zhang, H. Huang, P. Zhang, J. Wei, J. Zhu, and J. Chen, “SageAttention2:
Efficient attention with thorough outlier smoothing and per-thread INT4
quantization,” in Proc. Int. Conf. on Mach. Learn., 2025, pp. 1-23.

J. Zhang, G. Li, and J. Su, “SAGE: A framework of precise retrieval for
rag,” in Proc. IEEE 41st Int. Conf. Data Eng., 2025, pp. 1-14.

J. Zhang, J. Wei, P. Zhang, J. Zhu, and J. Chen, “SageAttention: Accurate
8-bitattention for plug-and-play inference acceleration,” in Proc. Int. Conf.
Learn. Representations, 2025, pp. 1-21.

J. Zhang et al., “SpargeAttn: Accurate sparse attention accelerating any
model inference,” in Proc. Int. Conf. Mach. Learn., 2025, pp. 1-17.
J.Zhang, C. Zhang, G. Li, and C. Chai, “AutoCE: An accurate and efficient
model advisor for learned cardinality estimation,” in Proc. IEEE 39th Int.
Conf. Data Eng., 2023, pp. 2621-2633.

J. Zhang, C. Zhang, G. Li, and C. Chai, “PACE: Poisoning attacks on
learned cardinality estimation,” in Proc. ACM Manage. Data, vol. 2, no. 1,
pp. 1-27, 2024.

Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki, “Tensor ring
decomposition,” 2016, arXiv:1606.05535.

Z. Zhao, R. Christensen, F. Li, X. Hu, and K. Yi, “Random sampling
over joins revisited,” in Proc. 2018 Int. Conf. Manage. Data, 2018,
pp. 1525-1539.

R.Zhu et al., “FLAT: Fast, lightweight and accurate method for cardinality
estimation,” in Proc. VLDB Endowment, vol. 14, no. 9, pp. 1489-1502,
2021.

Yaoyu Zhu received the MSci degree in mathemat-
ics from Imperial College London. He is currently
working toward the PhD degree with the Department
of Computer Science, Tsinghua University, Beijing
China. His research interests include machine learn-
ing and query processing for database.

Jintao Zhang is currently working toward the
master’s degree with the Department of Com-
puter Science, Tsinghua University, Beijing China.
His research interests include query processing for
database.

Guoliang Li (Fellow, IEEE) received the PhD de-
gree in computer science from Tsinghua University,
Beijing, China, in 2009. He is currently working as a
professor with the Department of Computer Science,
Tsinghua University, Beijing, China. His research
interests mainly include database systems, data clean-
ing and integration, and AI&DB co-optimization.

Jianhua Feng received the BS, MS, and PhD degrees
in computer science from Tsinghua University. He is
currently working as a professor with the Department
of Computer Science, Tsinghua University. His main
research interests include large-scale data manage-
ment.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 06,2026 at 05:43:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

