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Fig. 1: An Overview of the Survey: The Lifecycle of the Text-to-SQL Task.

Abstract—Translating users’ natural language queries (NL)
into SQL queries (i.e., Text-to-SQL, a.k.a. NL2SQL) can sig-
nificantly reduce barriers to accessing relational databases and
support various commercial applications. The performance of
Text-to-SQL has been greatly enhanced with the emergence of
Large Language Models (LLMs). In this survey, we provide
a comprehensive review of Text-to-SQL techniques powered
by LLMs, covering its entire lifecycle from the following four
aspects: (1) Model: Text-to-SQL translation techniques that tackle
not only NL ambiguity and under-specification, but also properly
map NL with database schema and instances; (2) Data: From the
collection of training data, data synthesis due to training data
scarcity, to Text-to-SQL benchmarks; (3) Evaluation: Evaluat-
ing Text-to-SQL methods from multiple angles using different
metrics and granularities; and (4) Error Analysis: analyzing
Text-to-SQL errors to find the root cause and guiding Text-to-
SQL models to evolve. Moreover, we offer a rule of thumb for
developing Text-to-SQL solutions. Finally, we discuss the research
challenges and open problems of Text-to-SQL in the LLMs era.

Index Terms—Natural Language to SQL, Database Interface,
Large Language Models, Text-to-SQL.
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I. INTRODUCTION

ATURAL Language to SQL (i.e.,Text-to-SQL), which
converts a natural language query (NL) into an SQL
query, is a key technique toward lowering the barrier to
accessing relational databases [I]]—[7]]. This technique supports
various applications such as business intelligence and natural
language interfaces for databases, making it a key step toward
democratizing data science [8]|-[I8]. Recent advancements
in language models have significantly extended the frontiers
of research and application in Text-to-SQL. Concurrently, the
trend among database vendors to offer Text-to-SQL solutions
has evolved from a mere notion to a necessary strategy [19],
[20]. Therefore, we need to understand the fundamentals,
techniques, and challenges regarding Text-to-SQL.
In this survey, we systematically review recent Text-to-SQL
techniques through a new framework, as shown in Figure [T}

o Text-to-SQL with Language Models. We will first re-
view existing Text-to-SQL solutions from the perspective
of language models, categorizing them into four major
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categories (see Figure [[{a)). We will then focus on the
recent advances in Pre-trained Language Models (PLMs)
and Large Language Models (LLMs) for Text-to-SQL.

o Benchmarks and Training Data Synthesis. Undoubt-
edly, the performance of PLM- and LLM-based Text-to-
SQL models is highly dependent on the amount and qual-
ity of the training data. Therefore, we will first summarize
the characteristics of existing benchmarks and analyze
their statistical information (e.g., database complexity) in
detail. We will then discuss methods for collecting and
synthesizing high-quality training data, emphasizing this
as a research opportunity (see Figure [I(b)).

« Evaluation. Comprehensively evaluating Text-to-SQL
models is crucial for optimizing and selecting models for
different usage scenarios. We will discuss the multi-angle
evaluation and scenario-based evaluation for the Text-to-
SQL task (see Figure [T[c)). For example, we can assess
the Text-to-SQL model in specific contexts by filtering
benchmarks based on SQL characteristics, NL variants,
database domains, and so on.

o Text-to-SQL Error Analysis. Error analysis is essential
in Text-to-SQL research for identifying limitations and
improving the model robustness. We review existing error
taxonomies, analyze their limitations, and propose prin-
ciples for designing comprehensive taxonomies for Text-
to-SQL output errors. Using these principles, we create a
two-level error taxonomy and utilize it to summarize and
analyze Text-to-SQL output errors (see Figure [T[d)).

In addition to the above, we will provide practical guidance
for developing Text-to-SQL solutions, including a roadmap for
optimizing LLMs for Text-to-SQL tasks and a decision flow
for selecting Text-to-SQL modules tailored to various Text-to-
SQL scenarios. Finally, we will discuss key open problems in
the field, such as open Text-to-SQL tasks, cost-effective Text-
to-SQL with LLMs, and trustworthy Text-to-SQL solutions.

Differences from Existing Surveys. Our survey distinguishes
itself from existing Text-to-SQL surveys [21]-[28]] and tutori-
als [29]-[31]] in five aspects.

o« We systematically review the entire lifecycle of Text-
to-SQL problem, as shown in Figure |1} This lifecycle
includes various Text-to-SQL translation methodologies
powered by language models (Figure [T[(a)), training data
collection and synthesis methods (Figure [I(b)), multi-
angle and scenarios-based evaluations (Figure c)), and
Text-to-SQL error analysis techniques (Figure [T[d)).

o We provide a more detailed and comprehensive summary
of the inherent challenges in Text-to-SQL. Additionally,
we analyze the technical challenges when developing
a robust Text-to-SQL solution for real-world scenarios,
which are often overlooked in other surveys.

o We particularly focus on recent advances in LLM-based
Text-to-SQL methods, summarizing key modules and
comparing different strategies within this scope. We are
the first survey to provide a modular summary of methods
and provide detailed analyses for each key module (e.g.,
database content retrieval).

o We highlight the importance of evaluating Text-to-SQL

methods in a multi-angle way, analyze the Text-to-SQL
error patterns, and provide a two-level error taxonomy.
e We provide practitioners with a roadmap for optimizing
LLMs to Text-to-SQL and a decision flow for selecting
the suitable Text-to-SQL modules for various scenarios.

Contributions. We make the following contributions.

o Text-to-SQL with Language Models. We comprehensively
review existing Text-to-SQL techniques from a lifecycle
perspective (Figure [I). We introduce the Text-to-SQL
task definition, discuss challenges (Figure [2)), provide a
taxonomy of Text-to-SQL solutions based on language
models (Figure [3), and summarize the key modules of
language model-powered Text-to-SQL solutions (Figure ]
and Table . Next, we elaborate on each module of lan-
guage model-powered Text-to-SQL methods, including
the pre-processing strategies (Section [[V)), Text-to-SQL
translation methods (Section [V), and post-processing
techniques (Section [VI).

o Benchmarks and Training Data Synthesis. We summarize
existing Text-to-SQL benchmarks based on their charac-
teristics (Figure[I0). We analyze each benchmark in depth
and discuss its pros and cons (Table [[I). (Section [VII)

e Evaluation and Errors Analysis. We highlight the impor-
tance of evaluation in developing practical Text-to-SQL
solutions. We review widely used evaluation metrics and
toolkits for assessing Text-to-SQL solutions. We provide
a taxonomy to summarize typical errors produced by
Text-to-SQL methods. (Section

e Practical Guidance for Developing Text-to-SQL Solu-
tions. We provide a roadmap for optimizing existing
LLMs to Text-to-SQL tasks (Figure @a)). In addition,
we design a decision flow to guide the selection of ap-
propriate modules for different scenarios (Figure [IT|(b)).

e Open Problems in Text-to-SQL. We analyze the lim-
itations of LLM-based methods and discuss new re-
search opportunities, including the open-world Text-to-
SQL problem and cost-effective solutions (Section [X].

o Text-to-SQL Handbook. We maintain an online handbook
(https://github.com/HKUSTDial/NL2SQL_Handbook) to
help readers stay current with Text-to-SQL advancements.

II. TEXT-TO-SQL PROBLEM AND BACKGROUND

In this section, we first formalize the definition of the Text-
to-SQL task (Section [[lI-A). We then introduce the workflow
of how humans perform the Text-to-SQL task (Section
and discuss the key challenges (Section [[I-C). Finally, we
describe the evolution of Text-to-SQL solutions based on the
development of language models (Section [II-D)).

A. Problem Formulation

Definition 1 (Natural Language to SQL (Text-to-SQL)).
Natural Language to SQL (Text-to-SQL), also known as
NL2SQL, is the task of converting natural language queries
(NL) into corresponding SQL queries (SQL) that can be exe-
cuted on a relational database (DB). Specifically, given an NL
and a DB, the goal of Text-to-SQL is to generate an SQL that
accurately reflects the user’s intent and returns the appropriate
results when executed on the database.
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NL Query:
Find the of all customers who checked out books on exactly 3 different
on Labor Day in 2023.

Dataliase:@_
EICu'stomer |
I[Custc_;merld [ ]

[Book _“
[Bookid]Title]LiteraryGenre| SubjectGenre] -

:@ Novel Magic
|Book0r49r _____ | —> Table Linking
i |Customer|d|BookId [OrderDate[ | Columns Linking
BossonooonEenoonoRoEaEEee00d 5[01/05/23 ---> Database Content
Additional Information

Additional Information: Note that Labor Day stand for May 1 @ -® Foreign Key
sQL:

SELECT

FROM Customer

NATURAL JOIN BookOrder
NATURAL JOIN Book

SELECT

FROM Customer

WHERE CustomerId = (SELECT CustomerId
FROM BookOrder NATURAL JOIN Book
WHERE OrderDate='01/05/23" WHERE OrderDate='01/05/23"

GROUP BY CustomerId, GROUP BY CustomerId

HAVING COUNT(DISTINCT Sub]ectGenre) 3 HAVING COUNT(DISTINCT Sub]ectGenre) 3)
LiteraryGenre LiteraryGenre

(a) An Example of Text-to-SQL (Ambiguous NL)

NL Query:

Find the of all customers who checked out books on exactly 3 different

on Labor Day in 2023. @ / @

Datbbase =
! [Customer [Book |
:|Custom$rld| ] Bookld]Title [LiteraryGenre[SubjectGenre] ... |
@ e @ Y Novel Magic
| [Account IBoq,kOrder |

OrderDate [ |
May 1st 2023

E|Acgld|Achame|Password|CustomerId| Bookld | _Accld

Addltlonal Information: Note that Labor Day stand for May 1 @
P SELECT
FROM Customer
NATURAL JOIN Account NATURAL JOIN BookOrder NATURAL JOIN Book
WHERE OrderDate = 'May 1st 2023’
GROUP BY CustomerId,
HAVING COUNT(DISTINCT SubjectGenre) =

(b) An Example of Text-to-SQL (DB Schema Updated)
Fig. 2: Examples of the Text-to-SQL Task and Its Challenges.

Discussion. In some cases, the corresponding SQL query to an
NL may be multiple due to the ambiguity or underspecification
of the NL, or ambiguity in the database schema. In addition,
even when the NL, database schema and database content are
clear and specific, there may still be multiple equivalent SQL
queries that can satisfy the given NL question.

B. Text-to-SQL Human Workflow

When professional users (e.g., DBAs) perform the Text-
to-SQL task, they first interpret the NL question, examine
the database schema and contents, and then construct the
corresponding SQL based on their SQL expertise. Below, we
outline this process in detail, as illustrated in Figure [2[a).

Step-1: Understanding Natural Language Query: Given the
NL query “Find the names of all customers who checked
out books on exactly 3 different genres on Labor Day in
20237, the DBA’s first task is to grasp the user’s intent and
identify key components. Key elements include: 1) Entities
or Attributes: “names”, “customers”, “books”, and “genres”;
2) Temporal Context: “Labor Day in 2023”; and 3) Specific
Conditions: “exactly 3 different genres”. Then, the DBA may
further understand the overall purpose of the NL query. In this
case, the DBA should retrieve a list of customer names based
on specific borrowing behavior on a particular date.

Step-2: Finding Relevant Tables, Columns, and Cell Values:

Next, the DBA examines the database schema and contents
to identify the relevant tables, columns, and cell values for
constructing the SQL. For example, the DBA may determine
that the “Customer” and “Book™ tables are relevant based
on their understanding of the NL (see Figure a)-@). The
DBA then decides which columns should be mentioned.

For example, the keyword “genres” can refer to either
“LiteraryGenre” or “SubjectGenre” (see Figure a)—@).
Furthermore, the DBA should interpret “Labor Day in 2023”
based on the context. In the US, “Labor Day in 2023” refers
to “September 4th, 2023”, while in China, it refers to “May
Ist, 2023”. This judgment relies on domain knowledge or
available additional information (see Figure a)—@).

Note that Step-2 aligns with the concepts of schema linking,
database content retrieval, and additional information acqui-
sition in recent Text-to-SQL solutions powered by language
models (please refer to Figure [35] for more details).

Step-3: Writing SQL based on NL and DB Understanding:
Finally, the DBA writes the corresponding SQL based on the
insights gained in Steps-1 and -2. This process, known as
“Text-to-SQL Translation”, relies heavily on the DBA’s SQL
expertise. However, this process can be very challenging due
to the ambiguity of the NL or the complexity of the database.
For example, as shown in Figure [J[(a), despite understanding
the need to link the Customer and Book tables, one must
be familiar with the usage and norms of employing either a
natural join or a subquery. In addition, there may be multiple
possible SQL queries because “genres” can refer to either
“LiteraryGenre” or “SubjectGenre”.

Takeways. From the above steps, we intuitively identify three
inherent challenges in the Text-to-SQL task: the uncertainty
of the natural language, the complexity of the database, and
the translation from the “free-form” natural language queries
to the “constrained and formal” SQL queries.

C. Text-to-SQL Task Challenges

In this section, we will first discuss the fundamental chal-
lenges of the Text-to-SQL task. We will then analyze the tech-
nical challenges, i.e., the challenges we face when developing
a strong Text-to-SQL solution in real-world scenarios.

C1: Uncertain Natural Language Query. Natural language
queries often contain uncertainties due to ambiguity and
underspecification [32f]. In Text-to-SQL tasks, the challenges
related to NL can be summarized as follows:

o Lexical Ambiguity: This occurs when a single word has
multiple meanings. For example, the word “bat” can refer
to an animal, or a baseball bat, or the action of swinging.

o Syntactic Ambiguity: This occurs when a sentence can
be parsed in multiple ways. For example, in the sentence
“Mary saw the man with the telescope”, the phrase “with
the telescope” can mean either that Mary used a telescope
to see the man or that the man had a telescope.

e Under-specification: This occurs when linguistic expres-
sions lack sufficient detail to convey specific intentions
or meanings clearly. For example, “Labor Day in 2023”
refers to September 4th in the US but May 1st in China.

C2: Complex Database and Dirty Content. The Text-
to-SQL task requires a deep understanding of the database
schema, including table names, columns, relationships, and
data attributes. The complexity of modern schemas and large
data volumes make this task especially challenging.
e Complex Relationships Among Tables: Databases often
contain hundreds of tables with complex interrelation-
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Type Level

NL Challenges
DB Challenges Single-table Queries

Text-to-SQL Challenges Single-table SQL Multi-table SQL

Token-level Recognition Synonym Recognition Semantic Understanding
Simple Multiple Tables Multiple Tables with Complex Schema  Massive Tables and Values

Advanced SQL Feature Support

Domain Knowledge Query Recognition  Multi-turn Dialogues
Real-world Databases

Adapting to Changed Schema Efficient SQL Generation

(a) The Definition of Challenges Levels
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Fig. 3: The Evolution of Text-to-SQL Solutions from the Perspective of Language Models.

ships. Text-to-SQL solutions must accurately comprehend
and leverage these relationships when generating SQL.

o Ambiguity in Attributes and Values: Ambiguous values
and attributes in a database can complicate Text-to-SQL
systems’ ability to identify the correct context.

e Domain-Specific Schema Designs: Different domains of-
ten have unique database designs and schema patterns.
The variations in schema design across domains make it
difficult to develop a one-size-fits-all Text-to-SQL model.

e Large and Dirty Database Values: Efficiently handling
vast data volumes in large databases is critical, as pro-
cessing all data as input is impractical. Additionally, dirty
data, such as missing values, duplicates, or inconsisten-
cies, can lead to erroneous query results (e.g., affecting
WHERE clauses) if not properly managed.

C3: Text-to-SQL Translation. The Text-to-SQL task differs
from the compilation of a high-level programming language to
a low-level machine language, as it usually has a one-to-many
mapping between the input NL, DB and output SQL. Specifi-
cally, the Text-to-SQL task faces several unique challenges:

o Free-form NL vs. Constrained and Formal SQL: Natural
language is flexible, while SQL queries must adhere to
strict syntax. Translating NL into SQL requires precision
to ensure the generated queries are executable.

o Multiple Possible SQL Queries: A single NL query can
correspond to multiple SQL queries that fulfill the query
intent, leading to ambiguity in determining appropriate
SQL translation (see the example in Figure Eka)).

o Database Schema Dependency: The Text-to-SQL trans-
lation is highly dependent on the underlying database
schema. As shown in Figure |Z| (a) and (b), the same NL
may produce different SQL queries based on schema vari-
ations. This requires Text-to-SQL models to bridge gaps
between training data and real-world schema differences.

Beyond the intrinsic challenges, developers must also over-
come several technical obstacles to build reliable and efficient
Text-to-SQL systems, as discussed below.

C4: Technical Challenges in Developing Text-to-SQL So-
lutions. Developing robust Text-to-SQL solutions requires
addressing several key technical challenges, including:

o Cost-effective Solution: Deploying Text-to-SQL models,
particularly those using large language models, demands
significant resources, such as hardware and/or API costs.
Achieving an optimal balance between model perfor-
mance and cost efficiency remains a crucial challenge.

e Model Efficiency: A trade-off often exists between model
size and performance, with larger models generally yield-
ing better results. Optimizing efficiency without com-
promising accuracy is essential, especially in interactive
querying scenarios requiring low latency.

e SOL Efficiency: The SQL generated by Text-to-SQL mod-
els must be both correct and optimized for performance.
This includes optimizing join operations, index usage,
and query structures. Efficient queries reduce database
load, improving system responsiveness and throughput.

o Insufficient and Noisy Training Data: High-quality Text-
to-SQL training data is challenging to obtain. Public
datasets are often limited and may include noisy annota-
tions, affecting model performance [33], [34]]. Annotation
requires database expertise, increasing costs, and the
complexity of Text-to-SQL tasks often leads to errors.

o Trustworthiness and Reliability: Text-to-SQL models
must be trustworthy and reliable, consistently producing
accurate results across diverse datasets and scenarios.
Trustworthiness requires transparency, allowing users to
understand and verify the generated SQL.

D. Challenges Solving with Large Language Models

Difficulty Levels. We categorize the difficulty of Text-to-SQL
into five levels, each addressing specific hurdles, as shown in
Figure [3(a). The first three levels cover challenges that have
been or are currently being addressed, highlighting the gradual
progress in Text-to-SQL capabilities. The fourth level includes
challenges that are the focus of current LLM-based solutions,
while the fifth level represents future challenges, showing our
vision for Text-to-SQL advancements over the next five years.

The Evolution of Text-to-SQL Solutions. The development of
Text-to-SQL solutions, illustrated in Figure [3[b), progresses
through four distinct stages: the rule-based stage, the neural
network-based stage, the PLM-based stage, and the LLM-
based stage. At each stage, we analyze shifts in target users,
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Fig. 4: The Categorization of PLM and LLM in Text-to-SQL.

i.e.,, from experts to broader user groups, and the extent to
which various Text-to-SQL challenges are addressed.

1) Rule-based Stage: In the early stages, statistical lan-
guage models (e.g., semantic parsers) were used to interpret
NL queries and convert them into SQL queries using pre-
defined rules [32f], [35]-[37]. However, rule-based Text-to-
SQL methods face challenges in adaptability, scalability, and
generalization. At this stage, natural language understanding
was limited to the token level, with research primarily focused
on single-table SQL queries (see Figure b)—@).

2) Neural Network-based Stage: To alleviate the limitations
of rule-based methods, researchers explored neural networks
for the Text-to-SQL task. This led to the development of
models based on sequence-to-sequence architectures and graph
neural networks [38]-[40], which enhanced the handling of
synonyms and intent understanding. Thus, research advanced
from single-table scenarios to more complex multi-table sce-
narios (see Figure [3(b)-®). However, the generalization ability
of these methods is still limited by model size and the
availability of sufficient training data.

3) PLM-based Stage: The introduction of PLMs like
BERT [41]] and T5 [42]] in 2018 led to significant advance-
ments in Text-to-SQL methods based on PLMs [[7], [43]], [44],
achieving competitive performance on various benchmarks
(see Figure 3(b)-®). At this stage, PLM-based Text-to-SQL
models trained on large corpora have greatly enhanced natural
language understanding, resolving approximately 80% of cases
in the Spider dataset [45]]. However, accuracy drops to about
50% on the extra hard cases of Spider [46|. In addition, these
models still face challenges in handling complex schemas.

Remark: PLMs vs. LLMs Figure H| shows the key differences
between LLMs and PLMs. LLMs are a subset of PLMs,
distinguished by their advanced language understanding and
emergent capabilities [47], [48]. The emergent abilities allow
LLMs to perform Text-to-SQL tasks directly using prompts. In
contrast, PLMs generally require additional pre-training or
fine-tuning for acceptable Text-to-SQL performance.

4) LLM-based Stage: LLMs demonstrate unique emergent
capabilities that surpass traditional PLMs in NLP tasks, mark-
ing a new paradigm for Text-to-SQL solutions. These LLM-
based Text-to-SQL methods have become the most represen-
tative solutions in the current Text-to-SQL landscape [5], [[6],
[49], [50]]. Current research focuses on optimizing prompt
design [6] and fine-tuning LLMs [49]]. For example, DAIL-
SQL [6] utilizes the GPT-4 with effective prompt engineering
techniques, achieving strong results on the Spider dataset [45].
Meanwhile, CodeS [49] builds an LLM specifically for Text-
to-SQL tasks by pretraining StarCoder [51]] on a large Text-
to-SQL-related corpus, showing solid performance on bench-
marks like BIRD [52f]. At this stage, LLMs’ emergent ca-

pabilities have significantly improved natural language un-
derstanding, shifting the task’s focus toward database-specific
challenges. New benchmarks like BIRD [52] and BULL [50]]
emphasize handling massive tables and domain-specific solu-
tions (see Figure [3(b)-®).

Text-to-SQL Solutions in LLMs Era. Broadly speaking,
there are two major approaches to leverage the capabilities
of LLMs for Text-to-SQL: 1) in-context learning, and 2) pre-
train/fine-tune LLMs specialized for Text-to-SQL.

In-Context Learning for Text-to-SQL. For in-context learning
methods, the goal is to optimize the prompt function P to
guide the LLMs, which can be formulated as follows:

Frim(P | NL, DB, K) — SQL,

where K denotes additional information or domain-specific
knowledge related to NL or DB. P is a prompt function that
transforms the input (NL, DB, K) into a suitable textual prompt
for the LLMs. A well-designed P can effectively guide the
LLMs to perform the Text-to-SQL task more accurately.

Employing in-context learning strategies for Text-to-SQL
treats LLMs as off-the-shelf tools, without modifying their
parameters. However, if users have sufficient training data
or hardware resources, calibrating the LLMs’ parameters can
enhance performance and accuracy, allowing the model to be
more closely tailored to the specific Text-to-SQL task.

Pre-train and Fine-tune LLMs for Text-to-SQL. Fully opti-
mizing the parameters of LLMs for Text-to-SQL involves two
key stages, pre-train and fine-tune, formulated as follows:

LLM* = Fiine-tune (Fpre-train(LLM, Dy), D)

During pre-train, the LLM is trained on a large-scale and
diverse dataset D, that includes a broad range of linguistic
patterns and domain-general knowledge, enabling the model
to develop robust understanding capabilities.

In the subsequent fine-tune stage, the pre-trained model
is further adjusted on a more specialized dataset Dy, which
is closely aligned with the Text-to-SQL task. This targeted
training refines the model’s capabilities, enabling it to more
effectively interpret and generate SQL based on NL queries.

III. LANGUAGE MODEL-POWERED TEXT-TO-SQL
OVERVIEW

While Text-to-SQL was initially designed as an end-to-
end task, recent advances, particularly in the LLM era, have
shifted towards a modular design. As shown in Figure [3]
modern PLM- and LLM-based solutions typically decompose
the task into three stages: Pre-Processing, Translation, and
Post-Processing. Each stage contains specialized modules such
as schema linking, intermediate representation, and execution-
guided correction. This design reflects the increasing complex-
ity of Text-to-SQL and aligns with the rising trend of multi-
agent or multi-module collaboration. Table [[| further compares
the key design choices across recent solutions.

Pre-Processing Methods. Pre-processing enhances inputs and

plays a significant role in improving Text-to-SQL parsing [53].

e Schema Linking: This module identifies the most relevant
tables and columns for Text-to-SQL (Section [[V-A).
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o Database Content Retrieval: This key module accesses
the appropriate database contents or cell values needed
for formulating SQL (Section [[V-B).

o Additional Information Acquisition: This key module
enriches the contextual backdrop by integrating domain-
specific knowledge (Section [[V-C).

Translation Methods. This is the core of Text-to-SQL solu-
tion, responsible for converting input NL queries into SQL.

e Encoding Strategy: This crucial module transforms the
input NL and database schema into an internal rep-
resentation, capturing both the semantic and structural
information of the input data (Section [V-A).

o Decoding Strategy: This key module transforms the in-
ternal representation into SQL queries (Section [V-B).

o Task-specific Prompt Strategy: This module provides
tailored guidance for the Text-to-SQL model, optimizing
the Text-to-SQL translation workflow (Section [V=C).

o Intermediate Representation: This module serves as a
bridge between NL and SQL translation, providing a
structured approach to abstract, align, and optimize NL
understanding, simplify complex reasoning, and guide the
generation of accurate SQL queries (Section [V-DJ.

Post-Processing Methods. Post-processing is a crucial step to
refine the generated SQL queries for better accuracy.

e SQL Correction Strategy: This aims to identify and
correct syntax errors in generated SQL (Section [VI-A).

o Output Consistency: This module ensures the uniformity
of SQL by sampling multiple reasoning results and se-
lecting the most consistent result (Section [VI-B).

o Execution-Guided Strategy: It uses the execution results
of SQL to guide subsequent refinements (Section [VI-C).

o N-best Rankers Strategy: It aims to rerank the top-k
results generated by the Text-to-SQL model to enhance

query accuracy (Section [VI-D).

Multi-agent Collaboration for Text-to-SQL in LLM Era.
Building upon modular design principles, recent research has
further introduced multi-agent architectures to tackle the Text-
to-SQL task. In contrast to traditional monolithic systems,
multi-agent frameworks assign specialized responsibilities
to distinct agents, each dedicated to handling a specific
subtask. This design facilitates enhanced division of labor
and more effective coordination among components. For
example, MAC-SQL [54] adopts a three-agent architecture,
with separate agents for schema linking, query decomposition
and generation, and execution-guided refinement. Similarly,
CHASE-SQL [55] employs a divide-and-conquer approach,
selecting relevant database content during preprocessing,
generating SQL queries through multiple chain-of-thought
pathways, and iteratively refining outputs through self-
correction and ranking. Pushing the boundary further,
Alpha-SQL [56] proposes a planning-centric autonomous
agent framework that leverages LLMs in combination with
Monte Carlo Tree Search (MCTS). This agent dynamically
selects and activates the appropriate modules, such as schema
linking and SQL generation, based on contextual reasoning
and execution-based feedback. Alpha-SQL’s strategy-driven
exploration and adaptive control offer robust generalization,
avoiding the rigidity of pipeline-based approaches.

IV. PRE-PROCESSING STRATEGIES FOR TEXT-TO-SQL

The pre-processing step is crucial in the Text-to-SQL trans-
lation process, as it identifies relevant tables and columns (i.e.,
Schema Linking) and retrieves necessary database contents or
cell values (i.e., DB Content Retrieval) to support SQL query
generation. What’s more, it enriches context by incorporating
domain-specific knowledge (i.e., Additional Information Ac-
quisition), which can improve the understanding of the query
context and correct errors to prevent their propagation.

A. Schema Linking

Schema linking aims to identify the tables and columns
relevant to the given NL query, ensuring accurate mapping and
processing of key information within the limited input. This
step is essential for improving the performance of the Text-to-
SQL task. In the LLM era, schema linking has become even
more critical due to the input length limitations of LLMs.

We categorize existing schema linking strategies into three
groups based on their characteristics: 1) string matching-based
schema linking, 2) neural network-based schema linking, and
3) in-context learning for schema linking.

1) String Matching-based Schema Linking: Early re-
search [39]], [84], [85] primarily focused on string matching
techniques for schema linking. These methods use similarity
measures between the NL queries and DB schemas to iden-
tify relevant mappings. IRNet [84]] adopts exact matching,
identifying links when candidates are identical or one is a
substring of the other. While effective for simple cases, it may
yield false positives due to shared words. To handle spelling
variations, ValueNet [86] applies approximate matching via
the Damerau—Levenshtein distance [87]].

However, these methods struggle with handling synonyms
and are not robust enough to manage vocabulary variations,
limiting their effectiveness in complex Text-to-SQL tasks.
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2) Neural Network-based Schema Linking: To alleviate
the above limitations, researchers have employed deep neural
networks to align database schemas with natural language
queries [[7]], [53]. These methods can better parse complex se-
mantic relationships between NL queries and database schema.

DAE [88|] frames schema linking as a sequential tag-
ging problem, using a two-stage anonymization model to
capture semantic relationships between schema and NL.
SLSQL [53] annotates schema linking information in the
Spider dataset [45]], enabling a systematic, data-driven study.
RESDSQL [7]] introduces a ranking-enhanced encoding frame-
work for schema linking, using a cross-encoder to prioritize
tables and columns based on classification probabilities. Fin-
SQL [50] uses a parallel cross-encoder to retrieve relevant
schema elements, significantly reducing linking time.

However, neural network-based methods often struggle to
generalize across databases with diverse schemas or domains,
especially when training data is scarce.

3) In-Context Learning for Schema Linking: With the ad-
vancement of LLMs like GPT-4, research is exploring how to
leverage their strong reasoning capabilities for schema linking,
i.e., directly identifying and linking relevant database schema
components from the NL query. A key technique is In-Context
Learning (ICL) technique [89]], which utilizes LLMs’ ability to
understand complex language patterns and relationships within
data schemas, enabling a more dynamic and flexible schema
linking process [5], [54], [59], [67], [90].

C3-SQL [67] employs zero-shot prompts with GPT-3.5
using self-consistency for table and column linking. For table
linking, tables are ranked by relevance and listed; for column
linking, columns are ranked within relevant tables and out-
putted as a dictionary, prioritizing matches with question terms
or foreign keys. MAC-SQL [54] proposes a multi-agent collab-
orative framework for Text-to-SQL, where the Selector agent
handles schema linking, activated only when the database
schema prompt exceeds a specified length. CHESS [59]] uti-
lizes GPT-4 to extract keywords from both NL and evidence
(additional information from BIRD [52]), implementing a
three-stage schema pruning protocol with different prompts.

Employing ICL for schema linking has shown promising
performance. However, LLMs have inherent limitations in
the amount of context they can process, meaning complex
schemas with many tables and columns may exceed this limit.

B. Database Content Retrieval

Database content retrieval focuses on efficiently extracting
cell values for specific SQL clauses such as WHERE. We
categorize existing database content retrieval strategies into
three groups based on their characteristics: 1) String Matching-
based Methods, 2) Neural Network-based Methods, and 3)
Index Strategy for Database Content Retrieval.

1) String Matching-based Methods: String matching-based
methods identify and compare cell values related to the NL
query through string matching [[7[], [43]l, [77], [83[l, [84], [86].

IRNet [84] uses n-grams, treating text between quotes as
cell values. BRIDGE [83] advances this with an anchor text
matching technique that automatically extracts cell values from
the NL. Using heuristics, it calculates the maximum sequence

match to define matching boundaries, excluding irrelevant
substrings, and adjusts thresholds for accuracy.

However, while string matching methods are effective, they
struggle with synonyms and can be computationally expensive
when handling large databases.

2) Neural Network-based Methods: These methods aim to
capture complex data and semantic features through layers of
nonlinear transformations, helping to resolve synonym issues.

TABERT [91] uses a method called database content snap-
shots to encode relevant database content for the NL query, em-
ploying attention mechanisms to manage information across
cell value representations in different rows. Another approach
leverages graph relationships to represent database content.
IRNet [[84]] uses the knowledge graph ConceptNet [92] to find
and link relevant cell values, assigning types based on exact
or partial matches. RAT-SQL [80] further enhances structural
reasoning by modeling the relationship between cell values and
the NL query, identifying column-value relationships where the
query value is part of the column’s candidate cell value.

While these methods capture semantic features, they may
struggle with ambiguous or context-dependent NL, leading to
inaccurate cell value retrieval. Moreover, the training of neural
networks demands substantial computational resources.

3) Index Strategy for Database Content Retrieval: Effi-
ciently retrieving relevant cell values is crucial for the perfor-
mance of Text-to-SQL systems, especially with large datasets.
Indexing is a key method for improving retrieval efficiency by
enabling faster access to relevant cell values [49], [59].

CHESS [59] uses Locality-sensitive Hashing [93|] for ap-
proximate nearest neighbor searches, indexing unique cell
values to quickly find the top matches related to the NL
query. This approach speeds up the process of comparing edit
distances and semantic embeddings. CodeS [49] employs a
coarse-to-fine matching strategy. It uses BM25 [94] to build
an index for coarse-grained searches, identifying candidate
values, which are then refined by applying the Longest Com-
mon Substring algorithm [95] to assess similarity with the NL,
thereby pinpointing the most relevant cell values.

While indexing significantly improves retrieval efficiency,
building indexes is time-consuming, and frequent changes to
database content require continuous updates, adding overhead.

C. Additional Information Acquisition

Additional information, such as domain knowledge, plays a
crucial role in enhancing Text-to-SQL models’ understanding
of NL queries, schema linking, and overall Text-to-SQL trans-
lation. This information can provide demonstration examples,
domain knowledge, formulaic evidence, and format informa-
tion for the Text-to-SQL backbone model or specific modules,
thereby enhancing the quality of generated results. We cate-
gorize existing strategies into the following two groups: /)
Sample-based Methods, and 2) Retrieval-based Methods.

1) Sample-based Methods: With advancements in LLMs
and in-context learning techniques, researchers often incor-
porate additional information into the textual inputs (i.e.,
prompts) alongside demonstration examples [49]], [59], [70].
DIN-SQL [35] integrates additional information through few-
shot learning across multiple stages. This helps DIN-SQL to
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various Text-to-SQL works [6], [59]]. Recent works [49]], [[70]
also encode schema metadata (e.g., data types) into natural
language to enhance context understanding.

2) Retrieval-based Methods: Extracting relevant knowl-
edge and few-shot examples from extensive domain knowl-
edge bases can increase token usage, impacting efficiency
and computational cost [5]], [6]. To enhance accuracy and
efficiency, some researchers employ similarity-based retrieval
methods. For example, PET-SQL [62]] builds a pool of question
frames and question-SQL pairs, selecting the & most similar
examples to the target query, which are then used in prompts.

When databases lack text-based additional information,
researchers devise methods to retrieve and convert exter-
nal knowledge into natural language. For example, RE-
GROUP [102]] creates a formulaic knowledge base across
domains (e.g., finance, transportation) and uses Dense Pas-
sage Retriever [[103]] to compute similarity scores, integrating
related entities with NL and schema through an Erasing-Then-
Awakening model [104f]. ReBoost [105] uses a two-phase
Explain-Squeeze Schema Linking strategy, first presenting a
generalized schema to LLMs, then applying targeted prompts
to improve query-to-entity mapping accuracy.

Retrieval-based methods improve the effectiveness of ac-
quiring additional information but increase computing costs.
Moreover, current research mostly relies on domain-specific
text, with limited use of structured knowledge. Thus, integrat-
ing diverse information sources could further enhance Text-to-
SQL performance, especially for domain-specific databases.

V. TEXT-TO-SQL TRANSLATION METHODS

In this section, we elaborate on Text-to-SQL translation
methods using language models. As shown in Figure[6] we will
detail their encoding (Section [V-A), decoding (Section [V-B]),
and task-specific prompt strategies (Section [V-C). Moreover,
we will discuss how the intermediate representation can benefit
the Text-to-SQL translation process (Section [V-DJ.

A. Encoding Strategy

In the Text-to-SQL task, encoding refers to transforming
NL and database schema into a structured format suitable

Representation Construction
of SQL Sturcture  of SQL Content

(c) Separate Encoding
(SC-Prompt AS Example)

Fig. 7: An Overview of the Encoding Strategies.

R tati
epresentation Hidden Layer

Representation
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for language model processing. This step is essential for
converting unstructured data into a form usable for SQL
generation, capturing the NL’s semantics and the schema’s
structure to help the model map user intent to appropriate SQL.
As shown in Figure [/} primary encoding strategies include
1) Sequential Encoding, 2) Graph-based Encoding, and 3)
Separate Encoding.

1) Sequential Encoding Strategy: Sequential encoding is a
strategy in Text-to-SQL models where both the NL and the
database schema are treated as token sequences. As shown in
Figure [7[a), the model processes the entire input as a linear to-
ken sequence using standard Transformer-based architectures.

Models like TS5 [42] are used to encode NL and database
schema sequentially in works [68]], [77]. BRIDGE [83]] im-
proves the alignment between the NL and database schema by
representing both as a tagged sequence and inserting matched
database cell values (called anchor texts) next to corresponding
fields. RESDSQL [7] uses a ranking-enhanced encoder to sort
and filter schema items, prioritizing the most relevant ones and
reducing schema linking complexity. Although LLM-based
Text-to-SQL systems often do not explicitly define an input
encoding strategy, they typically implicitly adopt a sequential
form by concatenating queries and schema components. These
models leverage self-attention to model dependencies across
the entire sequence.

While this allows for flexible contextualization, such ap-
proaches may struggle to capture complex relational structures,
limiting their performance on deeply nested SQL queries.

2) Graph-based Encoding Strategy: Graph-based encod-
ing in Text-to-SQL models represents both NL and database
schema as interconnected graphs, leveraging the relational
structure of databases and inter-dependencies in the input
data, as shown in Figure [7/(b). Unlike sequential encoding,
this approach preserves the schema’s topology, offering richer
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context for each element and enhancing the model’s ability to
produce accurate SQL queries [43], [[72], [[74], [[76], [79]-[81].

RAT-SQL [80] introduces a relation-aware self-attention
mechanism, explicitly using relational information in a graph
structure to jointly encode the question and schema, en-
hancing the model’s understanding of structural information.
S2SQL [79] injects syntactic structure information at the
encoding stage using the ELECTRA [106] model, enhancing
semantic understanding. G3R [73]] uses the LGESQL [107]
encoder and Graph Attention Network (GAT) [108] to cap-
ture multi-source heterogeneous information. Graphix-T5 [43]]
adds graph-aware layers, incorporating structural information
directly into the encoding process, significantly improving SQL
query generation across multiple benchmarks.

However, this strategy typically involves more intricate
graph construction and processing algorithms. It also tends
to rely on large-scale training data to achieve optimal perfor-
mance, which limits its applicability in low-resource scenarios.

3) Separate Encoding Strategy: The separate encoding
strategy in Text-to-SQL refers to independently encoding
different parts of the input (typically NL and the DB schema)
rather than combining them into a single sequence. This
strategy has evolved significantly over time and can be broadly
categorized into traditional and modern forms.

In traditional separate encoding, early models like SQL-
Net [109] and Seq2SQL [[110]], processed the NL and database
schema separately due to format mismatches. However, this
lack of interaction between the two components hindered
effective schema linking, leading to limited performance and
making this approach less common in recent research. Modern
separate encoding strategies, as illustrated in Figure [7{c),
focus on modular representation learning by decomposing
the Text-to-SQL task into subtasks and encoding different
aspects separately. TKK [78] employs task decomposition and
multi-task learning strategies by breaking down the complex
Text-to-SQL task into subtasks and progressively integrating
knowledge. Similarly, SC-Prompt [1] divides text encoding
into two stages: structure and content, each encoded separately.

While separate encoding may increase computational over-
head due to multiple processing steps, it allows for more re-
fined understanding of different aspects of queries. This mod-
ularity provides the model with greater flexibility to handle
various query tasks, thereby enhancing overall performance.
B. Decoding Strategy

Decoding is a crucial step in Text-to-SQL translation,
transforming encoder-generated representations into SQL. An
effective decoding strategy ensures that the generated SQL
queries are not only syntactically correct but also semantically
aligned with the NL queries, while optimizing SQL execution
efficiency. Figure [§]introduces several key decoding strategies.

1) Greedy Search-based Decoding Strategy: The greedy
search-based decoding strategy is a simple and efficient
method that selects the token with the highest probability at
each decoding step. As illustrated in Figure [§[a), it constructs
the output sequence by making a series of locally optimal
choices, without considering future possibilities.

Since GPT models (e.g., GPT-4) default to greedy search-
based decoding, many Text-to-SQL solutions using GPT fall

10
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all all i from all
select< [col] select [col] selec<
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(a) Greedy Search-based (b) Beam Search-based (c) Constraint-aware
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Fig. 8: An Overview of the Decoding Strategies.

into this category. DTS-SQL [|60], based on DeepSeek [111]],
uses the same approach. Early models like SQLNet [[109] and
Seq2SQL [110] also rely on greedy search for SQL generation.

Despite its efficiency, greedy search has notable limitations.
By focusing only on immediate token probabilities, it fails
to account for long-term dependencies or global sequence
coherence. As a result, errors made early in the decoding
process may propagate and lead to suboptimal or incorrect
SQL queries, particularly for complex or multi-step questions.

2) Beam Search-based Decoding Strategy: Beam search is
a widely used decoding strategy that explores a broader search
space compared to greedy decoding, often leading to higher-
quality results. Instead of selecting only the top token at each
step, it retains a fixed number of top-ranked partial sequences
(known as beams) and expands each by considering the top-k
most probable next tokens, as illustrated in Figure [§{b).

Given its advantages, several Text-to-SQL models employ
beam search [7]], [71]], [82]. RAT-SQL [80] combines relation-
aware graph structure encoding with beam search to generate
multiple SQL candidates, reranking them based on graph
structure information. Unlike RAT-SQL, EditSQL [99] uses
beam search alongside dialogue history to generate and re-
fine candidate SQL queries. SmBoP [81] employs a semi-
autoregressive bottom-up decoding approach, improving ef-
ficiency by parallelizing sub-tree construction and scoring,
with logarithmic time complexity. ZeroNL2SQL [44] retains
the top-k hypotheses during the SQL sketch generation stage,
which are then refined for query and predicate calibration.

Compared to greedy decoding, beam search improves the
ability to generate syntactically and semantically valid SQL
queries, especially in complex scenarios, by considering mul-
tiple hypotheses at each step. However, this benefit comes at
the cost of increased computational complexity and memory
usage, potentially slowing down the decoding process.

3) Constraint-aware Incremental Decoding Strategy:
Constraint-aware incremental decoding strategies aim to en-
sure the structural and syntactic validity of SQL queries by
applying explicit constraints during the decoding process. As
shown in Figure [§|c), these strategies incrementally generate
SQL while enforcing SQL grammar constraints at each step.

A representative implementation is PICARD [77] (Parsing
Incrementally for Constrained Auto-Regressive Decoding),
which integrates SQL grammar constraints into the decoding
loop. It verifies the syntactic validity of the partially generated
query at every step, ensuring that each token adheres to the
SQL grammar. This significantly reduces the generation of
invalid or incomplete queries. Many models [43]], [[74]—[78]]
have adopted this paradigm to improve performance.
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In addition to grammar-level constraints, some mod-
els incorporate schema-level constraints during decoding.
BRIDGE [83] introduces Schema-Consistency Guided Decod-
ing, which enforces alignment between the generated SQL
query and the underlying database schema by verifying their
consistency and adjusting the decoding path accordingly.

While this strategy introduces additional computational
overhead due to per-token constraint evaluation, it offers strong
guarantees of syntactic correctness and is particularly effective
for generating structurally complex SQL queries.

C. Task-specific Prompt Strategy

In the era of LLMs, prompt engineering has become a pow-
erful method for harnessing LLM capabilities across diverse
tasks. In Text-to-SQL, task-specific prompts are crafted to
guide LLMs in optimizing Text-to-SQL translation, enhancing
the accuracy of translating complex NL queries into precise
SQL queries. Broadly speaking, there are two main types of
task-specific prompt strategies: 1) Chain-of-Thought prompt-
ing, and 2) Decomposition Strategy.

1) Chain-of-Thought (CoT) Prompting: The CoT prompt-
ing [112], known for its effectiveness, showcases the LLM’s
reasoning process, improving both the accuracy and inter-
pretability of the generated results. In Text-to-SQL, CoT en-
hances model performance and ensures that the generated SQL
statements are more aligned with human expectations [[113].

CHESS [59] transforms NL into SQL statements through
a streamlined pipeline that utilizes LLMs and CoT. This
process includes entity and context retrieval, schema selection,
SQL generation, and revision. In addition, the integration
of CoT with other techniques can enhance the performance
of Text-to-SQL models. These techniques include in-context
learning [63]], [69], logical synthesis [61]], calibration with
hints [[67], [[73] and multi-agent system [54]. Specifically, in-
context learning and logical synthesis enrich CoT by em-
bedding a deeper linguistic understanding, enabling precise
semantic mapping to SQL constructs [63]], [69]]. Calibration
with hints fine-tunes model responses, aligning them closely
with NL nuances for accurate intent translation [67]], [73].
Furthermore, integrating the multi-agent framework with CoT
fosters a collaborative approach, with specialized agents han-
dling tasks like schema linking and SQL generation, which
speeds up reasoning and enhances adaptability [54].

Overall, these techniques create a more robust Text-to-
SQL framework, offering better precision and reliability in
translating complex NL queries into accurate SQL statements.
However, CoT prompting may introduce longer reasoning
chains and latency, and its effectiveness can be sensitive to
prompt design and task complexity.

2) Decomposition Strategy: The decomposition strategy
divides the Text-to-SQL task into sequential subtasks, allowing
each sub-module to concentrate on a specific generation step,
thereby enhancing accuracy, quality, and interpretability.

Different approaches vary in subtask decomposition gran-
ularity [54]], [60], [66], [[73], [78]. TKK [78] applies finer-
grained decomposition by breaking down Text-to-SQL parsing
into subtasks like mapping NL to SELECT, FROM, and WHERE
clauses. This approach helps the model concentrate on each

Intermediate Representation:

SELECT film.title
WHERE count(film_actor.*)>5

(a) SQL-like Syntax Language (e.g. NATSQL)

SELECT [column]
FROM [table]

JOIN [tablel

ON [table].[column]
=[table].[column]
GROUP BY [column] [column] film_id
HAVING count([column]) > n [column] % [n] 5

(b) SQL-like Sketch Structure (e.g. SC-Prompt)
Fig. 9: An Example of the Intermediate Representation.

[column] title

[table] film

[table] film_actor

[table].[column] film.film_id
[table].[column] film_actor.film_id

clause, enhancing understanding of the problem, schema,
and SQL alignment. Similar strategies are used in G*R [73]]
and DEA-SQL [66]. Moreover, decomposition also reduces
model complexity. For example, MAC-SQL [54] introduces a
Decomposer agent to split the user’s query into subproblems,
making SQL generation for each part more manageable.

In general, the decomposition strategy divides the Text-to-
SQL translation task into multiple subtasks, enabling each sub-
module to focus on enhancing its specific output. However,
this approach also raises computational costs, making model
training and deployment more complex and resource-intensive.

D. Intermediate Representation for Text-to-SQL Translation

The Text-to-SQL is challenging due to the complexity and
ambiguity of NL queries, coupled with the syntax-constrained
nature of SQL. To simplify this process, researchers have
developed a grammar-free intermediate representation (IR) to
bridge the “free-form” NL question and the “constrained and
formal” SQL. This IR provides a structured yet flexible format,
capturing the essential components and relationships within
an NL query without the strict syntax requirements of SQL.
Figure [9] shows two types of IR strategies, discussed below.

1) SQL-like syntax language: As shown in Figure [9fa),
SQL-like syntax language is a simplified SQL-like structure.
Early approaches used information retrieval techniques to
map the original question and schema data into this syn-
tax [96], [114]. Subsequent research efforts have focused
on consolidating or eliminating partial clauses or operations
in SQL queries to simplify SQL-like syntax language [97],
[98]]. SyntaxSQLNet [97] simplifies the syntax language by
removing parts of the FROM and JOIN clauses. SemQL [98]
removes the entire FROM, JOIN, ON, and GROUP BY clauses,
and further merges the WHERE and HAVING conditions into a
unified filtering representation. Recent research has focused
on simplifying syntax languages to improve parsing effi-
ciency [115]]. NatSQL [[100], a widely used SQL-like syntax
language, eliminates uncommon SQL operators and keywords,
streamlining schema linking by minimizing necessary schema
items. Combined with PLMs, NatSQL has achieved strong
results on various benchmarks [7], [68]].

SQL-like syntax languages have demonstrated potential in
bridging user queries and databases. However, previous studies
face challenges due to high complexity and limited coverage
of database structures [[L00]. As databases grow in size and
domain specificity, maintaining the simplicity of SQL-like
syntax languages becomes increasingly difficult. Moreover,
some of these languages require manual construction and
adjustments, raising deployment costs and complexity.
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Fig. 10: Timeline for Text-to-SQL Benchmarks.

2) SQL-like sketch structure: Leveraging the structural
characteristics of SQL, researchers have developed SQL-like
sketches that mirror SQL structure for parsing, enabling diverse
NL queries to be mapped into a specific sketch space, as shown
in Figure O(b). This approach reduces parsing complexity.

Early works applied fixed sketch rules and neural networks
to map the NL into SQL-like sketch structure [97], [116].
SyntaxSQLNet [97]] uses a syntax tree and a corresponding
decoder, dividing the decoding into nine sub-modules that
separately predict operators, keywords, and entities before
combining them to generate the final SQL. In recent years,
the development of language models has allowed researchers
to design more elaborate SQL-like sketch structures for pars-
ing [1f, [44], [61]], [71]. CatSQL [71]] constructs a more
general template sketch with slots serving as initial place-
holders. Its base model focuses on the parsing of NL to fill
these placeholders, consequently decreasing the computational
cost. Moreover, several recent works cover both SQL-like
syntax language and SQL-like sketch transition methods. For
instance, RESDSQL [7] introduces a rank-enhanced encoding
and skeleton-aware decoding framework. During the decoding
phase, its decoder initially generates the SQL skeleton and
then transforms it into the actual SQL query. When combined
with NatSQL, RESDSQL demonstrates the ability further to
enhance the quality of SQL query generation.

In general, SQL-like sketch structure can be more easily
combined with other strategies, such as decomposition strategy
or SQL-like syntax language strategy. In addition, it can
more fully utilize the comprehension and cloze capabilities of
existing LLMs and reduce the dependence on professionals.

VI. POST-PROCESSING STRATEGIES FOR TEXT-TO-SQL

After the Text-to-SQL model generates the SQL, post-
processing can refine it to better meet user expectations. This
step involves leveraging additional information or models to
enhance the SQL, with a focus on SQL correction, ensuring
output consistency, and execution-guided checking.

A. SQL Correction Strategies

The SQL generated by Text-to-SQL models may contain
syntax errors. DIN-SQL [5] introduces a self-correction mod-

ule that operates in a zero-shot setting, where the model
receives only the faulty SQL and attempts to correct it. Two
prompts are used: a general prompt for CodeX, which directly
asks for error identification and correction, and a mild prompt
for GPT-4, which seeks potential issues without presuming
errors. To handle errors in predicate predictions, such as
incorrect columns or values, ZeroNL2SQL [44] employs a
multi-level matching approach. This method incrementally
expands matching across columns, tables, and databases, al-
lowing matched values to be returned to the LLMs to generate
SQL queries consistent with the database content.

While these methods focus on fixing syntax errors, they
often overlook semantic errors [33]], such as incorrect table
joins, misaligned conditions, or inaccurate aggregations, which
are essential for improving accuracy.

B. Output Consistency

To enhance output consistency, self-consistency [[117] has
been introduced, based on the idea that complex reasoning
tasks may have multiple valid paths to a single correct answer.
This approach samples various reasoning paths and selects the
most consistent answer to improve output quality.

DAIL-SQL [6] integrates self-consistency, achieving a 0.4%
performance improvement over configurations without it. To
reduce LLM randomness, FinSQL [50] generates n candidate
SQL queries in parallel, clusters them based on keyword
consistency, and selects a query from the largest cluster. The
self-consistency strategy enhances LLM output diversity by in-
creasing the temperature and selecting the final result through
majority voting. However, recent studies [[118] indicate that
relying on a single model may still yield limited diversity. To
overcome this limitation, PET-SQL [62] introduces a cross-
consistency strategy, in which multiple LLMs generate SQL at
lower temperatures and vote based on execution results.

While these methods improve accuracy by enforcing con-
sistency across multiple executions, they significantly increase
inference cost and time.

C. Execution-Guided Strategies

In Text-to-SQL tasks, the execution result of an SQL query
provides critical feedback on Text-to-SQL translation accu-
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racy. For example, errors or NULL values in execution results
can signal potential issues with the SQL query.

To reflect human behavior in writing complex SQL queries,
CHESS [59] provides LLMs with the database schema,
question, candidate SQL queries, and their execution results.
CHESS starts with a draft query and refines it based on
execution feedback, adjusting for syntax errors as needed.
CodeS [49], on the other hand, generates a complete SQL
statements through beam search, producing four SQL candi-
dates and selecting the first executable one as the final result.

Execution-Guided Strategies refine SQL based on execution
results, ensuring the query retrieves data correctly. However,
this approach can significantly increase SQL generation time,
especially with large databases.

D. N-best Rerankers Strategies

In Text-to-SQL tasks, especially in cross-domain scenarios,
generated SQL queries can vary subtly in structure and seman-
tics. N-best reranking reorders the top-N model outputs, often
leveraging a larger model or additional knowledge sources. For
example, fine-tuning a BERT-based reranker, as demonstrated
by Bertrand-dr on the Spider dataset [119]], has effectively
improved the performance of several Text-to-SQL models.

However, the effectiveness of Bertrand-dr’s reranking can
be unstable and sensitive to threshold settings, sometimes
even yielding negative effects. To address these limitations,
G*R [73] introduces a feature-enhanced reranker using PLM-
based hybrid prompt tuning, which bridges domain gaps
without extra parameters. Contrastive learning then sharpens
distinctions between candidate queries [[120]. Similarly, ReF-
SQL [121] retrieves the most relevant results from the retriever
and generator modules to improve final answer quality.

While N-best reranking is widely used in PLM-based meth-
ods to refine SQL candidates, it is less common in LLM-based
methods, which typically have stronger inference capabilities.

VII. TEXT-TO-SQL BENCHMARKS

In this section, we will first elaborate on the different types
of Text-to-SQL datasets, highlighting their characteristics, as
shown in Figure [T0] (Section [VII-A). We will then perform an
in-depth analysis of existing datasets (Section [VII-B).

A. An Overview of Text-to-SQL Benchmarks

With advancements in Text-to-SQL, various datasets have
emerged to address the evolving challenges, as shown in Fig-
ure[T0] These range from single-domain databases with simple
queries to cross-domain, multi-turn, multilingual, and domain-
specific scenarios, reflecting the progress and the emergence
of new challenges for Text-to-SQL solutions.

Single-Domain Text-to-SQL Datasets. Early Text-to-SQL
datasets focused on specific domains with relatively simple
SQL queries, such as ATIS [122]] for flight information and
GeoQuery [123] for U.S. geographical facts. Recently, larger
single-domain datasets [5O], [131], [133], [[142], [[147], [[148]]
have been introduced, featuring more complex databases and
SQL queries tailored to specific scenarios. This shift reflects
an increased emphasis on assessing Text-to-SQL systems’
performance and practical utility within particular domains.

Cross-Domain Text-to-SQL Datasets. After the development
of early single-domain datasets, the Text-to-SQL field shifted
toward cross-domain datasets to test systems’ generalization
across diverse SQL queries and databases. WikiSQL [110] was
the first cross-domain dataset, drawing tables from Wikipedia
across various domains. Subsequently, Spider [45] was in-
troduced, containing more complex relational databases with
multiple tables. Recently, BIRD [52] has further advanced
complexity by including SQL functions and operations absent
in Spider, providing a greater challenge for Text-to-SQL.

Multi-Turn Text-to-SQL Datasets. With advancements in
Text-to-SQL, multi-turn datasets have been developed to sup-
port interactive dialogues. SParC [128] is a cross-domain and
multi-turn dataset with about 4.3 K NL questions, totaling over
12K (NL, SQL) pairs, each NL question requiring contextual
understanding across turns. CoSQL [[129], collected using a
Wizard-of-Oz setup, includes over 30K turns and introduces
additional challenges like unanswerable questions, further test-
ing context comprehension.

Text-to-SQL Datasets with Robustness Testing. In real-
world applications, Text-to-SQL systems must handle diverse
user groups and databases, emphasizing robustness. Spider-
Syn [138] simulates user unfamiliarity with schemas by using
synonyms in NL questions, while Dr.Spider [145]] applies 17
types of perturbations to databases, NL questions, and SQL
queries for comprehensive robustness evaluation.

Text-to-SQL Datasets with SQL Efficiency Testing. Real-
world databases often hold vast amounts of data, and a single
NL may correspond to multiple SQL queries with different
execution efficiencies. BIRD [52] introduces a metric for
evaluating SQL execution efficiency called the Valid Efficiency
Score (VES), which will be further discussed in Section [VIII}

Knowledge-Augmented Text-to-SQL Datasets. Domain-
specific knowledge is essential for Text-to-SQL systems to
perform well in real-world applications. KaggleDBQA [141]
includes database documents, such as column and table de-
scriptions. Similarly, Spider-DK [139] expands the Spider
development set by adding five types of domain knowledge to
NL questions, testing systems’ ability to use this information.

Text-to-SQL Datasets with Ambiguous Questions. In real-
world Text-to-SQL tasks, ambiguities often arise, such as
semantic ambiguities in NL and overlapping database schemas,
making ambiguity-focused evaluation increasingly important.
AmbiQT [146] is the first dataset designed to assess ambiguity
coverage, comprising four ambiguity types. Each NL question
maps to two valid SQL queries, reflecting specific ambiguities.

Synthetic Text-to-SQL Datasets. MIMICSQL [131]] em-
ploys a template-based approach to generate initial template
questions and corresponding SQL queries, though manual
refinement is required to make questions more natural. Sci-
enceBenchmark [147] also uses templates for initial SQL
generation but leverages GPT-3 for SQL-to-NL translation.

B. In-depth Analysis of Existing Text-to-SQL Datasets

To analyze and compare Text-to-SQL datasets complexity,
we use the NL2SQL360 [46] system for statistical evaluation,
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TABLE II: Statistics of Text-to-SQL Benchmarks.

Redundancy Measure

DB Complexity Query Complexity

Dataset #-Questions #'gé“ils“e #;%l_lgzlf;ls #-DBs  #-Tables #-}I‘:t\)l;;es f:[‘(;zllse #-I}e[c)(]);ds Tables  Selects Agg S[?:,l:‘cr g{] ‘::]};)
ATIS [122 5280 947 5.6 1 25 25 5.24 162243 8.39 1.79 0.22 0 0
GeoQuery [123] 877 246 3.6 1 7 7 4.14 937 222 2.19 0.92 0 0.01
Restaurants | 124 378 23 16.4 1 3 3 4.00 19295 243 1.17 0.35 0 0
Academic [114] 196 185 1.1 1 17 17 3.12 58249674 3.48 1.04 0.54 0 0
IMDb [125 131 89 1.5 1 17 17 3.94 40147386 291 1.01 0.30 0 0
Yelp [125 128 110 1.2 1 8 8 5 4823945 241 1 0.45 0 0
Scholar 126 817 193 42 1 10 10 2.50 147416275 3.38 1.02 0.68 0 0.02
WikiSQL [110] 80654 80257 1 26531 26531 1 6.34 17 1 1 0.28 0 0
Advising [127] 4387 205 21.4 1 15 15 7.40 332596 3.41 1.21 0.40 0 0.11
Spider [45 11840 6448 1.8 206 1056 5.13 5.01 8980 1.83 1.17 0.54 0 0
SParC [128] 10228 8981 1.1 166 876 5.28 5.14 9665 1.58 1.10 0.44 0 0
CoSQL [129] 8350 8007 1 166 876 5.28 5.14 9665 1.54 1.11 0.42 0 0
CSpider [130] 11840 6408 1.8 206 1056 5.13 5.01 8980 1.83 1.17 0.54 0 0
MIMICSQL [131] 20000 10000 2 - - - - - 1.74 1 0.84 0 0
SQUALL [132] 11276 8296 1.4 2108 4028 1.91 9.18 71 1.22 1.29 0.40 0.03 0.16
FIBEN [133] 300 233 1.3 1 152 152 2.46 11668125 5.59 1.56 0.97 0 0.04
ViText2SQL [134] 9693 5223 1.9 166 876 5.28 5.14 9665 1.17 1.12 0.54 0 0
DuSQL [135] 25003 20308 1.2 208 840 4.04 5.29 20 1.49 1.25 0.73 0 0.30
PortugueseSpider [136] 9693 5275 1.8 166 876 5.28 5.14 9665 1.85 1.17 0.54 0 0
CHASE [137] 15408 13900 1.1 350 1609 4.60 5.19 4594 1.81 1.16 0.31 0 0
Spider-Syn [138] 1034 550 1.9 166 876 5.28 5.14 9665 1.68 1.17 0.59 0 0
Spider-DK [139] 535 283 1.9 169 887 5.25 5.14 9494 1.71 1.16 0.54 0 0
Spider-Realistic_[140] 508 290 1.8 166 876 5.28 5.14 9665 1.79 1.21 0.50 0 0
KaggleDBQA [141 272 249 1.1 8 17 2.12 10.53 595075 1.25 1.05 0.69 0 0.04
SEDE |[142] 12023 11421 1.1 1 29 29 7.28 - 1.90 1.29 0.94 0.49 0.49
MT-TEQL |143] 489076 4525 108.1 489076 3279004 6.70 5.51 - 1.69 1.15 0.53 0 0
PAUQ [144] 9876 5497 1.8 166 876 5.28 5.14 9693 1.82 1.17 0.53 0 0
knowSQL 102 28468 - - 488 - - - - - - - - -
Dr.Spider [145 15269 3847 4 549 2197 4 5.54 28460 1.81 1.19 0.52 0 0
BIRD (52 10962 10840 1 80 611 7.64 7.14 4585335 2.07 1.09 0.61 0.20 0.27
AmbiQT [146] 3046 3128 1 166 876 5.28 5.14 9665 1.85 1.17 0.51 0 0.01
ScienceBenchmark [147] 5031 3654 1.4 - - - - - 1.45 1 0.24 0 0.07
BULL [50] 7932 5864 14 3 78 26 14.96 85631 1.22 1 0.18 0.42 0.05
BookSQL |[148] 78433 39530 2 1 7 7 8.86 1012948 1.25 1.12 0.78 0.39 0.22
Archer [149] 518 260 2 10 68 6.8 6.81 31365.3 3.89 3.07 1.77 0.1 3.55
Spider2-Lite [[150] 527 527 1 264 6259 23.71 35.61 - 6.53 5.10 3.57 1.60 2.94

as shown in Table [lll We measure the Redundancy, including
the number of NL questions, SQL queries, and their ratio. DB
Complexity covers the total databases, total tables, average
tables per database, average columns per table, and average
records per database. Query Complexity measures the average
number of tables, SELECT keywords, aggregate functions,
scalar functions, and mathematical computations in each SQL
query. For datasets without public dev/test splits, such as
CHASE [137]], only statistics for public splits are reported. For
datasets without publicly available data, like knowSQL [[102],
values in Table [lI] are marked with “—".

From the Redundancy Measure perspective, we observe a
trend from early datasets to recent ones where datasets have
grown in size. Specifically, MT-TEQL [|143|] stands out with
the highest number of NL questions and the largest ratio of NL
questions to SQL queries due to its automated transformation
of NL questions, generating a large volume of variants.

In terms of Database Complexity, the number of databases
and tables within each dataset aligns with its intended task.
Single-domain datasets, such as BookSQL [148], generally
contain fewer databases, while those aimed at robustness
evaluation, like Dr.Spider [145]] and MT-TEQL [[143], include
a larger number of databases.

Regarding Query Complexity, datasets like FIBEN [133]
and SEDE [142] feature SQL queries with multiple tables
and aggregate functions, mirroring complexities in the real-
world financial domains and Stack Exchange sites. Recent
datasets also emphasize Scalar Functions and Mathematical
Computations, adding structural challenges.

Discussion. Despite the increasing number of datasets pro-
posed by the Text-to-SQL community, a gap in SQL complex-
ity remains compared to real-world scenarios. Current datasets
typically feature fewer SELECT keywords, indicating a lack

of nested queries and complex set operations. Additionally,
challenges involving Scalar Functions and Mathematical Com-
putations require further focus. We encourage the community
to propose datasets addressing these complexities.

VIII. EVALUATION AND ERROR ANALYSIS

In this section, we introduce key evaluation metrics for Text-
to-SQL solutions (Section|[VIII-A)), review toolkits for low-cost
and comprehensive evaluation (Section |[VIII-B), and provide
an error taxonomy for analyzing SQL errors in the Text-to-SQL

process (Section [VIII-C).

A. Evaluation Metrics

Evaluation metrics are crucial for measuring Text-to-SQL
performance. We define N as the dataset size, (); as the NL
question of the ¢-th example, V; as the execution result set of
the ground-truth SQL query Y; and V; as the execution result
set of the SQL query Y; generated by the Text-to-SQL solution.

Execution Accuracy (EX) [45]]. This metric evaluates the per-
formance of the Text-to-SQL system by comparing whether
the execution result sets of the ground-truth SQL queries and

the predicted SQL queries are identical. It can be computed by:
_ SN, 1(Vi=V)
EX = ==+

, where 1(-) is an indicator function that
equals 1 if the condition inside is satisfied, and O otherwise.
Note that false negatives could occur because different SQL
queries corresponding to semantically different NL queries
may produce identical execution result sets.

String-Match Accuracy (SM) [110)]. This metric, also called
Logical Form Accuracy, simply compares whether the ground-
truth SQL query and the predicted SQL query are identical as
strings. It may penalize SQL queries that produce the correct
execution result sets but do not have the exact string match
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with the ground-truth SQL queries. It can be computed as

follows: SM = Coim 10G=Y1) 1]\(,“:%)).

Component-Match Accuracy (CM) [45]]. This metric evaluates
the detailed performance of the Text-to-SQL system by mea-
suring the exact matching of different SQL components such
as SELECT, WHERE and others between the ground-truth
SQL query and the predicted SQL query. For a specific SQL
component C'. The computation can be formalized as follows:

N c _vcC
CMC _ Zi:l ]]'(Y; _ Y; )
= N ,
where Y,© is the component of SQL query Y;. To correctly de-
termine if an SQL component matches, some SQL components
(e.g,WHERE) do not consider order constraints.

Exact-Match Accuracy (EM) [45]]. This metric is based on the
Component-Match Accuracy (CM) and measures whether all
SQL components C = {C}} of the predicted SQL query match
the ground-truth SQL query. It can be computed as follows:
s = Lo HAcec i =Yi™)
N

Valid Efficiency Score (VES) [52]]. This metric measures the
execution efficiency of valid SQL queries. It considers both
the accuracy and efficiency of SQL execution, which can be
computed as follows:
W= V) ROGY) oy oy [BOD

N E(Y))
where R(-) measures the relative execution efficiency of the
predicted SQL query compared to the ground-truth SQL query,
eliminating uncertainties due to machine status. E(-) measures
the efficiency of specific SQL query, which can refer to
execution time, memory usage and more.

N
VS = L=t

)

Query Variance Testing (QVT) [46]]. This metric measures the
robustness of a Text-to-SQL system in handling variations in
NL queries. For a given SQL query Y}, there are often multiple
corresponding NL queries, represented as pairs {(Q1, Y;), (Q2,
Y, ooy (Qm, Yo)}. The QVT metric is calculated as:
N m4
m@:12<24ﬂﬂ%>mv’

N 4 m;
=1

where m; is the number of different NL variations for the SQL
query Y;, and F(Q;;) is the predicted SQL query for the j-th
NL variation of Y;.

B. Text-to-SQL Evaluation Toolkits

Recent Text-to-SQL solutions have achieved remarkable
performance on various Text-to-SQL benchmarks. However, in
real-world applications, variations in NL query styles, database
schemas, and SQL query characteristics across domains make
it difficult to fully assess system robustness using standard
benchmark metrics alone. To address this, recent toolkits [46]],
[143] have been developed to provide a more comprehensive
evaluation of Text-to-SQL systems in practical scenarios.

MT-TEQL [143] is a unified framework for evaluating
the performance of Text-to-SQL systems in handling real-
world variations in NL queries and database schemas. It
is based on a metamorphic testing approach, implement-
ing semantic-preserving transformations of NL queries and

database schemas to generate their variants without manual
efforts automatically. It includes four types of transformations
for NL queries (e.g. Prefix Insertion) and eight types of
transformations for database schemas: (e.g. Table Shuffle).
NL2SQL360 [46] is a multi-angle evaluation framework of-
fering fine-grained assessments of Text-to-SQL systems across
diverse scenarios (Figure Ekc)). Unlike MT-TEQL, it empha-
sizes varied SQL query characteristics in different applications,
such as aggregate functions, nested queries, or top-k queries
typical of the Business Intelligence scenario. Comprising six
core components, Dataset, Model Zoo, Metrics, Dataset Filter,
Evaluator, and Analysis, NL2SQL360 provides a unified,
model-agnostic interface for systematic evaluations. Users can
apply both public and private datasets, customize metrics for
specific scenarios, and analyze performance on subsets with
scenario-specific SQL characteristics, offering valuable insights
into Text-to-SQL system effectiveness across applications.

C. A Taxonomy for Text-to-SQL Errors Analysis

Error analysis involves examining model errors to identify
limitations and guide corrective actions for improved perfor-
mance. In this section, we first review the existing Text-to-
SQL error taxonomies. We then propose design principles and
introduce a two-level Text-to-SQL errors taxonomy.

Existing Taxonomies for Text-to-SQL Errors Analysis.
Recent Text-to-SQL research [5]], [33], [59], [151]]-[153]] has
increasingly incorporated error analysis, proposing various
error taxonomies. Ning et al. [[152] introduced a detailed
error taxonomy based on two dimensions: (1) Syntactic di-
mension identifies specific SQL parts where errors occur,
organized by keywords such as WHERE and JOIN. (2) Se-
mantic dimension indicates misinterpretations of the natural
language description, such as errors in understanding table
names. SQL-PalLM [153]] categorizes errors into five types:
(1) Schema Linking, irrelevant or missing table/column se-
lection; (2) Database Content, misinterpreting data values;
(3) Knowledge Evidence, failing to utilize external hints;
(4) Reasoning, lacking intermediate logical steps; and (5) Syn-
tax, invalid SQL format. NL2SQL-BUGs [33] focuses on
the analysis of semantic errors, organizing them into 9 main
categories and 31 subcategories. It further proposes a new
benchmark for evaluating models’ error detection capabilities,
advancing automated error analysis in Text-to-SQL.

Taxonomy Principles for Text-to-SQL Errors Analysis.
Current error taxonomies in Text-to-SQL are often specific
to particular datasets, limiting their general applicability. To
address these issues, a standardized and effective taxonomy is
essential. We propose the following principles [[154] to guide
the development of a Text-to-SQL error taxonomy:

o Comprehensiveness: The taxonomy should cover all pos-
sible error types in the Text-to-SQL translation process.

e Mutual Exclusivity: Each error type should be clearly
distinct to avoid classification ambiguity.

o Extensibility: The taxonomy should be adaptable to in-
clude emerging error types as Text-to-SQL evolves.

e Practicality: It should be practical, enabling users to
diagnose and address errors in real-world scenarios.
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Our Taxonomy for Text-to-SQL Errors Analysis. Following
these principles, we developed a two-level Text-to-SQL error
analysis taxonomy:

e Error Localization: The first level identifies specific SQL
components where errors occur, such as the SELECT
or WHERE clause. Pinpointing error locations enables
targeted adjustments and enhances correction efficiency.

o Cause of Error: The second level focuses on the under-
lying reasons for the error. For instance, errors in the
WHERE clause values may indicate the model’s limita-
tions in database content retrieval or interpretation.

Discuss the Application of the Two-level Error Taxonomy.
We collected and classified errors from DIN-SQL [5] on
the Spider [45] using our proposed taxonomy. As shown
in Figure [T[d), only 1.8% of the errors fall into the Others
category, suggesting our taxonomy is practical and effective.
Nonetheless, we recognize that developing a complete
and universally applicable Text-to-SQL error taxonomy is
inherently iterative. We encourage continued efforts from the
community to refine and expand this taxonomy over time.

IX. PRACTICAL GUIDANCE FOR TEXT-TO-SQL

In this section, we provide practical guidance for developing
Text-to-SQL solutions, considering key factors and scenarios.

A. Data-Driven Roadmap for Text-to-SQL

In Figure [[T]a), we outline a strategic roadmap designed to
optimize LLMs for Text-to-SQL task, based on data privacy
and data volume. Data privacy affects the choice of open-
source and closed-source LLLMs, while data volume affects
the strategies for optimization for training and inference.

Condition 1: Data Privacy. For privacy-sensitive data, open-
source LLMs are preferable, as closed-source models typi-
cally use external APIs, potentially exposing data to external
servers. Open-source models allow full control over local train-
ing and inference, providing stronger data privacy protection.

Condition 2: Data Volume. For open-source LLMs, optimiza-
tion is possible in both training and inference phases, while

closed-source LLMs allow only inference-stage optimization
due to limited access. With extensive Text-to-SQL data, pre-
training enhances performance; fine-tuning is suitable for
datasets with hundreds to thousands of (NL, SQL) pairs. In
low-data scenarios, few-shot learning is recommended, while
zero-shot methods are essential when labeled data is unavail-
able. Hardware resources and API costs are also important
considerations in selecting the best optimization strategy.

B. Decision Flow of Selecting Text-to-SQL Modules

In Figure [TT(b), we present recommendations for choosing
Text-to-SQL modules based on specific scenarios, highlighting
both benefits and trade-offs. Below, we outline two examples.

Scenario 1: Complex Database Schema with Numerous Tables
and Columns. In this case, using Schema Linking strategies is
advisable. This reduces token costs and minimizes noise from
irrelevant schema elements, enhancing efficiency. However, it
also incurs additional time costs.

Scenario 2: Execution Results Can be Accessed. Here,
Execution-Guided Strategies are recommended, as they im-
prove system performance by filtering out non-executable SQL
queries. The downside is the increased time required for query
execution, which can be substantial with large databases.

In summary, while each module offers unique advantages
for specific Text-to-SQL scenarios, it is essential to balance
these benefits with the potential drawbacks in system design.

X. LIMITATIONS AND OPEN PROBLEMS

We analyze the limitations of LLM-based methods and pro-
pose corresponding open problems, highlighting unresolved
challenges and suggesting directions for future research.

Limitations of Current LLM-based Solutions. Although
recent LLM-based Text-to-SQL methods have made signifi-
cant progress, they still face several challenges when dealing
with complex queries in real-world scenarios. First, existing
methods are typically trained and executed on a single, fixed
database, which limits their ability to handle open environ-
ments that require cross-database queries and multi-source
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TABLE III: Resource Consumption Statistics on the Spider.

Method Base Model | API Tokens/SQL | Latency/SQL (s)
RESDSQL [7] PLM - 1.91
RESDSQL+NatSQL [7] PLM - 1.97
ZeroNet [44] PLM+LLM 377 3.72
DIN-SQL [5] LLM 3579 10.34

data aggregation. Second, although LLMs have strong natural
language understanding capabilities, they incur high token
consumption during inference, leading to high costs and low
efficiency. In addition, most Text-to-SQL methods lack inter-
pretability and debugging mechanisms, making it difficult for
users to understand how the model generates SQL or to detect
and fix potential semantic errors. Finally, current methods
show limited adaptability to new domains and rely heavily
on high-quality training data; how to automatically generate
targeted training samples based on model feedback remains an
open problem. These limitations reveal shortcomings in cross-
database scalability, inference efficiency, system reliability,
and data adaptability, highlighting the need for more efficient,
trustworthy, and scalable Text-to-SQL solutions.

Open-Domain Text-to-SQL Problem. In real-world scenar-
ios like government open data platforms, citizens may ask
questions that require querying multiple databases and aggre-
gating results. For example, answering “What is the average
processing time for tax returns in the last five years?” requires
retrieving tables from multiple databases (e.g., fax records,
processing logs, and statistical reports) and generating mul-
tiple SQL queries over them. Unlike traditional Text-to-SQL,
where a single target database is specified by the user, Open
Text-to-SQL may need to generate multiple SQL queries that
access different databases for a single NL.

Thus, the Open Text-to-SQL problem introduces unique
challenges, including: (1) database retrieval: accurately iden-
tifying and retrieving relevant databases from a vast array of
data sources; (2) handling heterogeneous schemas: integrating
data with varied structures and terminologies, requiring ad-
vanced schema matching and linking techniques; (3) answer
aggregation: inferring final answers from multiple SQL queries
across databases, which demands methods to plan query
order, resolve conflicts, and ensure consistency; (4) domain
adaptation: generalizing models across domains to address
differences in terminology and structure; (5) scalability and
efficiency: managing large data volumes while maintaining
performance; and (6) evaluating and benchmarking: devel-
oping metrics and datasets that accurately reflect real-world
complexity for Open Text-to-SQL solutions.

Develop Cost-effective Text-to-SQL Methods. LLM-based
Text-to-SQL methods show great potential but are limited
by high token consumption, leading to increased costs and
slower inference times. In contrast, PLM-based Text-to-SQL
methods excel at handling complex SQL queries and accurately
interpreting database schemas. A promising approach is to
combine the strengths of both, developing modular Text-to-
SQL solutions or using a multi-agent framework to integrate
LLMs and PLMs for the Text-to-SQL task (as shown in
Table @[) In parallel, efforts have aimed to improve LLM-
based efficiency. EllieSQL [155]] employs complexity-aware
routing to enhance cost-efficiency by assigning queries to
suitable LLM-based generators.

Make Text-to-SQL Solutions Trustworthy. Ensuring Text-
to-SQL solutions are trustworthy is essential for generating
accurate and reliable SQL, mitigating risk, and reducing the
need for manual intervention. Topics include the following:

Interpreting Text-to-SQL Solutions. Understanding the rea-
soning behind a Text-to-SQL model’s performance enhances
confidence in its reliability. Explainable Al techniques [156],
[157], such as surrogate models [[158]] and saliency maps [[159],
aim to reveal model decisions. However, their effectiveness in
Text-to-SQL contexts, especially with combined LLMs and
PLMs, remains an open question. In addition, multi-agent
LLM frameworks [[160] improve reliability by splitting Text-
to-SQL into specialized sub-tasks. Although this approach
improves robustness, coordinating agents to ensure consistent
and optimized performance remains a major challenge.

Text-to-SQL Debugging Tools. Inspired by compiler design,
a debugger for Text-to-SQL could improve accuracy and relia-
bility by measuring semantic and syntactic errors in generated
SQL queries. Such tools would detect potential errors, enable
users to examine the SQL generation process and identify
mismatches [33]], [[34]]. However, achieving this goal presents
significant challenges. Traditional code compilers primarily
capture syntactic errors, while Text-to-SQL debugging must
also address semantic errors, i.e., ensuring that the generated
SQL query accurately reflects the intent of the NL query.

Interactive Text-to-SQL Tools. These tools are essential for
empowering professional users (e.g., DBAs) to create complex
SQL queries that span multiple databases, often exceeding 50
lines of code. A key feature is the model’s ability to decom-
pose complex queries into manageable sub-queries, reducing
cognitive load and enabling DBAs to focus on each part
before reassembling them. Supporting both bottom-up and top-
down workflows, such tools enable users to iteratively refine
outputs, align SQL generation with intent, and integrate model
assistance with domain expertise.

Adaptive Training Data Synthesis. Learning-based Text-to-
SQL models often fail to generalize to unseen domains, partly
due to limited training data coverage, quality, and diversity.
Therefore, an interesting research problem is to automatically
and incrementally generate (NL, SQL) pairs based on the
model performance. Specifically, by incorporating insights
from evaluation metrics and evaluation results, we can identify
specific weaknesses of the model. Using this information, we
can synthesize training data that continually evolves with the
help of LLMs to cover a broader range of domains.

XI. CONCLUSION

In this paper, we comprehensively review Text-to-SQL tech-
niques from a lifecycle perspective in the LLM era. We for-
mally define the Text-to-SQL task, discuss key challenges, and
propose a taxonomy based on underlying language models.
We summarize key modules of language model-driven meth-
ods, including pre-processing, translation, and post-processing
strategies. Furthermore, we analyze benchmarks and evalu-
ation metrics, highlighting their characteristics and common
errors. We also offer a practical roadmap for adapting LLMs
to Text-to-SQL tasks and maintain an online handbook with
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the latest advancements, discussing ongoing challenges and
open problems.
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