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Given a dataset with incomplete data (e.g., missing values), training a machine learning model over the incom-

plete data requires two steps. First, it requires a data-effective step that cleans the data in order to improve

the data quality (and the model quality on the cleaned data). Second, it requires a data-efficient step that
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selects a core subset of the data (called coreset) such that the trained models on the entire data and the coreset

have similar model quality, in order to save the computational cost of training. The first-data-effective-then-

data-efficient methods are too costly, because they are expensive to clean the whole data; while the first-data-

efficient-then-data-effective methods have low model quality, because they cannot select high-quality coreset

for incomplete data.

In this article, we investigate the problem of coreset selection over incomplete data for data-effective and

data-efficient machine learning. The essential challenge is how to model the incomplete data for selecting

high-quality coreset. To this end, we propose the GoodCore framework towards selecting a good coreset

over incomplete data with low cost. To model the unknown complete data, we utilize the combinations of

possible repairs as possible worlds of the incomplete data. Based on possible worlds, GoodCore selects an

expected optimal coreset through gradient approximation without training ML models. We formally define

the expected optimal coreset selection problem, prove its NP-hardness, and propose a greedy algorithm

with an approximation ratio. To make GoodCore more efficient, we propose optimization methods that

incorporate human-in-the-loop imputation or automatic imputation method into our framework. Moreover,

a group-based strategy is utilized to further accelerate the coreset selection with incomplete data given large

datasets. Experimental results show the effectiveness and efficiency of our framework with low cost.

CCS Concepts: • Computing methodologies → Machine learning; Machine learning approaches; Machine

learning algorithms; • Information systems → Data cleaning;

Additional Key Words and Phrases: Data-centric AI, machine learning, data cleaning, coreset selection
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1 Introduction

Data-effective machine learning (ML) (a.k.a. data-centric AI [66]) aims at obtaining high-quality
training data to release the value of AI, because it is well-known that dirty data may severely
degrade the performance of ML models [22, 65].

Data-efficient ML focuses on saving the training cost, i.e., making the training process more
efficient. A commonly used strategy is to select a core subset of training data (or coreset) [34, 62]
to represent the entire dataset such that ML models trained on the coreset can achieve similar
performance to the ML models trained on the entire dataset.

Apparently, users desire both data-effective ML (for training better ML models) and data-
efficient ML (for saving training cost). In this work, our main goal is to support both data-effective
and data-efficient ML over incomplete data where there are many missing values, which is very
common in real-world scenarios [22, 57, 78].

Running data-effective and data-efficient tools sequentially. Intuitively, we can either run
data imputation methods first for data-effective and then run coreset selection algorithms de-
noted by C(·) for data-efficient, or vice versa. Moreover, for data-effective solutions through data
cleaning, we generally consider two cases, either human-based solutions denoted by H(·) or au-
tomatic solutions denoted by A(·). In summary, we have the following four cases, as shown in
Figure 1:

• First data-effective (impute) then data-efficient (coreset):

(1) Impute-Human: H(D) → Coreset: C(H(D))
(2) Impute-Auto: A(D) → Coreset: C(A(D))

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 10. Publication date: May 2025.
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H(D)
��

(1) C(H(D))

Impute

Human
��

Auto ��
Coreset

��

��
A(D)

��

(2) C(A(D))

D

��

��

Data-effective → Data-efficient

Data-efficient → Data-effective
��

(3) H(C(D))

Coreset �� C(D) �� Impute

Human ��

Auto ��
(4) A(C(D))

Fig. 1. Sequential methods.

Solution Accuracy Human Cost Machine Cost

(1) C(H(D)) High High Low

(2) C(A(D)) Low None Low

(3) H(C(D)) Low Low Low

(4) A(C(D)) Low None Low

Our goal High None or Low Low or Very Low

(5) H(G(D)) High Low High

(6) A(G(D)) Medium None High

(7) G(D,�H) High Low Low

(8) G(D,�A) Medium None Low

(9) G+(D,�H) High Low Very Low

(10) G+(D,�A) Medium None Very Low

Fig. 2. A comparison of different approaches (1–4: sequential methods; 5–10: our solutions).

• First data-efficient (coreset) then data-effective (impute):

(3) Coreset: C(D) → Impute-Human: H(C(D))
(4) Coreset: C(D) → Auto-Human: A(C(D))
Next let’s discuss the pros and cons of the above approaches.
Case (1) has high human cost, low machine cost, and high accuracy in terms of the trained ML

models. Case (2) has zero human cost, low machine cost, but with low accuracy because automatic
imputation may not be good enough. Case (3) has low human cost, low machine cost, but with low
accuracy because corset selection over a dirty dataset may not ensure to compute a “good” coreset.
Case (4) has no human cast, low machine cost, but with low accuracy with the similar reason as
(3). The comparison of the above four methods can be found in Figure 2.

Our goal. Clearly, a primary goal is to achieve high accuracy for ML models, where only case (1)
can achieve. Case (2) achieves low accuracy because automatic imputation is hard to be accurate.
The main obstacle for making (1) practical is its high human cost. Hence, our main goal is to
achieve high accuracy with no or low human cost, and with low machine cost.

Consider cases (3) and (4), the main reason for them to achieve low accuracy is because they
cannot compute a good coreset directly from the dirty data. Intuitively, if we can compute a good
coreset directly from the dirty data, we can cheaply clean the coreset to achieve high accuracy,

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 10. Publication date: May 2025.
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(7) G(D,�H) (5) H(G(D))

D �� GoodCore ��
Human� ��

Auto� ��
G(D) �� Impute

Human ��

Auto ��
(8) G(D,�A) (6) A(G(D))

Fig. 3. Our proposal and its variants.

where the “goodness” means that the subset of tuples selected from the dirty data is similar to the
subset of tuples selected from the clean data.

Challenge. The main challenge of computing a good coreset from dirty data is to accurately esti-
mate the ground truth of each missing value; otherwise, we cannot select a coreset to well represent
the clean data. This is a known hard problem because each missing value may have multiple pos-
sible repairs. Also, because a coreset selection algorithm is typically iterative that each tuple is
selected per iteration [58], selecting a bad tuple may cause cascade amplification to the following
iterations, resulting in a bad coreset.

Our proposal. To tackle the above challenge, we model the combinations of possible repairs as
possible worlds of the original dirty data D. We then formulate it as an optimization problem for
selecting an expected optimal coreset that can represent the possible worlds of D via gradient
approximation without training in advance. We prove this problem to be NP-hard. We propose an
approximate algorithm, called GoodCore, denoted by G(·), with the main idea to iteratively add a
tuple with the highest utility into the coreset. After a good coreset is computed, we can either use
human imputation or automatic imputation to impute the data, as shown in Figure 3. We further
elaborate these two methods below:

(5) GoodCore: G(D) → Impute-Human: H(G(D))
(6) GoodCore: G(D) → Impute-Auto: A(G(D))

However, one main drawback is that modeling possible worlds of D is computationally expen-
sive, which hinders the practicability of the GoodCore algorithm. To address this high computa-
tional cost problem, we further propose imputation-in-the-loop optimization (with either humans
or automatic methods) into the GoodCore algorithm (see methods 7 and 8 in Figure 3). To this end,
the optimized algorithms can significantly reduce the number of possible worlds, thus achieving
low computational cost.

(7) GoodCore with human-in-the-loop imputation: G(D,�H)
(8) GoodCore with machine-in-the-loop imputation: G(D,�A)

Besides, since the above methods for coreset selection incorporate at least one iteration over
the entire dataset, it is not very efficient when the dataset is large, so we propose a group-based
acceleration strategy to further reduce the machine cost. The key idea is to assign similar tuples in
D into a group and select a coreset to represent these groups. Since the groups can still represent
the distribution of D, the selected coreset is still well-performed. In this way, we only need to
iterate these groups, with a much smaller number than the tuples of D, and thus the efficiency is
improved. We also provide a theoretical analysis with respect to the group-based strategy. Hence,
we further have the following 2 methods.

(9) Group-based GoodCore (GoodCore+) with human-in-the-loop imputation: G+(D,�H).
(10) GoodCore+ with machine-in-the-loop imputation: G+(D,�A).

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 10. Publication date: May 2025.



Cost-effective Missing Value Imputation for Data-effective Machine Learning 10:5

A comparison of methods (5)–(10) is given in Figure 2. Note that method (10) is likely to be a
good choice because it can achieve a high ML accuracy with low human cost and low machine
cost.

Contributions We make the following contributions.

(i) Two birds with one stone. We study the problem of solving both data-effective and data-
efficient ML in one framework, which is an important but not addressed problem. (Section 3)

(ii) NP-hardness and approximate solutions. We prove the NP-hardness of the problem. We pro-
pose a greedy algorithm with an approximate ratio. (Section 4)

(iii) Imputation-in-the-loop optimizations. We develop optimization techniques that integrate
imputation-in-the-loop into the coreset selection process, to improve the efficiency while
achieving high accuracy. We also analyze the convergence rate of our method and theoreti-
cally prove that it can converge fast. (Section 5)

(iv) Group-based acceleration. We develop group-based techniques to further improve the effi-
ciency. We also analyze the theoretical guarantee and convergence of the proposed tech-
niques. (Section 6)

(v) Experiments. We conduct extensive experiment on eight real-world datasets and compare
with 10 baselines to show that GoodCore can select a well-performed coreset to achieve
both data-effective and data-efficient ML while consuming a low human cost. (Section 7)

2 Background of Coreset Selection

In this section, we introduce the background of coreset selection on complete data, denoted by Dc .

2.1 Gradient Descent for ML

Gradient descent [51] is the most typical optimization algorithm to train ML models. At a high
level, it tweaks the parameters iteratively to minimize a given convex and differentiable function
to its local minimum.

Let Dc = {t1, t2, . . . , tn} be a set of train tuples (without missing values), where ti = (xi , yi ),
xi ∈ Rd denotes the vector of features and yi denotes the corresponding label. The goal of training
on Dc is to find the best parameter θ ∗ of a model by minimizing the loss:

θ ∗ = arg min
θ ∈ϑ

f (θ ), f (θ ) = 1

n

n∑
i=1

fi (θ , ti ), (1)

where ϑ is the parameter space. For ease of representation, we abbreviate fi (θ , ti ) as fi (θ ) to repre-
sent the loss of the ith train example. Generally speaking, the gradient descent approach is always
applied to find the minimizer of Equation (1), where the full gradient (sum of the gradients over
all training tuples), denoted by ∇f (θ ) =

∑n
i=1 ∇fi (θ ), has to be computed iteratively.

Besides incremental gradient methods like stochastic gradient descent (SGD) that can be
leveraged to accelerate the iterative gradient computation, there are other popular and orthogonal
methods, such as coreset, which will be discussed next.

2.2 Coreset over Complete Data

Coreset. To make training more efficient, instead of learning from entire Dc , one research ques-
tion is that whether we can compute a small subset C(Dc ) of Dc such that learning with C(Dc )
can hopefully achieve the same performance as learning with Dc . This small selected subset is
called coreset [34, 62]. In the following, we simply write C(Dc ) as C when it is clear from the
context.

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 10. Publication date: May 2025.
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The state-of-the-art coreset selection solutions are mostly based on gradient approximation [44,
58]. Suppose that θ denotes the parameter of an ML model trained over the full dataset, and θ ′

denotes the parameter of the same model trained over the coreset. Intuitively, the objective of
gradient approximation for coreset selection is to make ∇f (θ ′) as close as possible to ∇f (θ ). To
this end, existing solutions focus on selecting the coreset that minimizes the upper bound of gradient

approximation error (‖∇f (θ ) − ∇f (θ ′)‖). Next, let’s formally define it from scratch.

Gradient-based coreset selection is to minimize the gradient approximation error (GA er-

ror) between the full gradient w.r.t. Dc and the weighted sum of gradients w.r.t. the coreset C (or
coreset gradient). Formally, Equation (2) tries to minimize the GA error by considering all possible
parameters θ ∈ ϑ (i.e., maxθ ∈ϑ ), where “‖ · ‖” denotes the normed difference. Next, we introduce
the coreset gradient.

C∗ = arg min
C⊆Dc ,w j ≥0

max
θ ∈ϑ

��� n∑
i=1

∇fi (θ )

︸������︷︷������︸
full gradient

−
|C |∑
j=1

w j∇fγ (j)(θ )

︸�������������︷︷�������������︸
coreset gradient︸������������������������������︷︷������������������������������︸

gradient approximation error

���,

s .t . |C | ≤ K

. (2)

Because the coreset is a subset of the complete dataset (i.e., C ⊆ Dc ), we use γ (j) = i (where
j ∈ [1, |C |], i ∈ [1,n]) to denote that the jth tuple in C (denoted by c j ) is the ith tuple in Dc , i.e., ti .
In other words, γ is an index mapping from C to Dc .

Recall that the key idea of the coreset is to use a subset of tuples to represent the entire set.
Equation (2) potentially contains another important mapping ϕ from Dc to C to indicate this, i.e.,
ϕ(i) = j, i ∈ [1,n], j ∈ [1, |C |], which is highly related to the weight. Specifically, let ϕ(i) = j denote
that we will assign ti to c j (use c j to represent ti ) and use ∇fγ (j) to represent ∇fi . Each ti will be
assigned to one and only one c j , but each c j might be assigned with multiple tuples in Dc . Based
on ϕ, w j is defined as the weight of the c j , which is the number of tuples in Dc assigned to the c j ,
i.e., w j = |{ti |ϕ(i) = j, i ∈ [1,n]}| (c j is utilized to represent w j tuples in Dc ).

Next let’s use an example to better illustrate Equation (2).

Example 1. Let’s consider a case of the gradients of each tuple, as shown in Figure 4. Suppose
that for any θ , ∇f1(θ ) ≈ ∇f2(θ ), ∇f3(θ ) ≈ ∇f4(θ ) ≈ ∇f5(θ ) ≈ ∇f6(θ ) and ∇f7(θ ) ≈ ∇f8(θ ).
In this case, based on Equation (2), if one wants to find an optimal coreset with a size of 3, i.e.,
K = 3, the solution can be C∗ = {t2, t5, t7} (γ (1) = 2,γ (2) = 5 and γ (3) = 7), associated with
w1 = 2,w2 = 4,w3 = 2 because ϕ(1) = ϕ(2) = 1,ϕ(3) = ϕ(4) = ϕ(5) = ϕ(6) = 2 and ϕ(7) = ϕ(8) = 3.
In this way, C∗ can be one of the optimal coresets that can well approximate the full gradient
because ‖

∑8
i=1 ∇fi (θ ) −

∑3
j=1w j∇fγ (j)(θ )‖ is minimized, which is close to 0.

Key observation. We can observe from Example 1 that in order to minimize the GA error, we
should set ϕ(i) = j, where ∇fi and ∇fγ (j) are likely to be close. Therefore, computing the coreset
is similar to computing the K exemplars [67] of the gradients, if all the gradients of tuples can be
computed.

Upper bound minimization of GA error. We can see from Equation (2) that to solve the equa-
tion, the gradients have to be computed, which have a close relationship with the parameter θ .
However, the main bottleneck is that the entire parameter space ϑ is too expensive to explore.
Hence, a typical solution is to first compute the upper bound of GA error (Equation (3)), then
generalize [8, 37, 58] the upper bound computation to the entire parameter space (Equation (4)),

ACM Trans. Datab. Syst., Vol. 50, No. 3, Article 10. Publication date: May 2025.
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Dataset Dc

Coreset C∇f1(θ)

Fig. 4. Example of coreset selection.

and finally select the coreset to minimize the bound. To be specific, using the triangle equation,
for any particular θ , we have

��� n∑
i=1

∇fi (θ ) −
|C |∑
j=1

w j∇fγ (j)(θ )
��� ≤

n∑
i=1

‖∇fi (θ ) − ∇fγ (ϕθ (i))(θ )‖. (3)

Together with the aforementioned observation, given a coresetC , the upper bound is minimized
when ϕ assigns every tuple ti to the tuple in C with most gradient similarity, i.e., ‖

∑n
i=1 ∇fi (θ ) −∑ |C |

j=1w j∇fγ (j)(θ )‖ ≤
∑n

i=1 min
c j ∈C

‖∇fi (θ ) − ∇fγ (j)(θ )‖.

For the entire space ϑ , it has been proved in recent works [8, 37, 58] that for convex ML problems
(corresponding to an optimization problem in which the objective function is a convex function),
the normed gradient difference between tuples can be efficiently bounded by

∀i, j,max
θ ∈ϑ

‖∇fi (θ ) − ∇fj (θ )‖ ≤ max
θ ∈ϑ

O(‖θ ‖) · ‖xi − xj ‖, (4)

where ‖xi − xj ‖ is the Euclidean distance between feature vectors of two tuples, namely, feature

distance, and O(‖θ ‖) is a constant. Hence, we can conclude that GA error can be bounded inde-

pendent of the optimization problem in practice, i.e., any particular θ . Finally, considering
Equations (3) and (4) together, the coreset selection problem can be converted to

C∗ = arg min
C⊆Dc

n∑
i=1

min
c j ∈C

si j , s.t. |C | ≤ K , (5)

where si j = ‖xi − xγ (j) ‖ for ease of representation. The above equation indicates that given a train
data Dc and a coresetC , we use S =

∑n
i=1 minc j ∈C si j to score the coreset. The lower the score, the

smaller upper bound of the GA error we can get, which indicates a better coreset. To summarize,
solving Equation (5) is to minimize the upper bound of the GA error (i.e., select the coreset with
the lowest score) by just considering the feature vectors of the training tuples without training in
advance.

Note that Equation (4) holds for tuples associated with the same label [8, 37]. Therefore, in
practice, we respectively, select coresets for tuples with different labels and combine them. Suppose
that we aim at selecting a coreset with size K for a binary classification task (label 1: 60%, label 0:
40%), so we select a coreset with size 60%K for tuples with label 1 and another one with 40%K for
tuples with label 0.

Our scope. In this article, we focus on the convex problems (logistic regression, support vector
machine, etc.) because for such problems the gradient difference can be well bounded by the dif-
ference between feature vectors. Note that, for other ML algorithms such as deep neural networks,
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they can also be trained using a selected coreset to achieve good training accuracy (see Section 7
for our experimental findings).

3 Coreset Over Incomplete Data

In this section, we will formally define the problem of coreset selection over incomplete data
(Section 3.1) and then describe our proposed framework to solve the problem (Section 3.2).

3.1 Problem Definition

As discussed above, we have to compute the coreset score S , so as to produce a good coreset. To this
end, the feature distances can be computed as a pre-processing step, based on which the coreset
score can be computed. However, when there exists incomplete data with missing values, even the
feature distances are hard to compute accurately, let alone selecting a proper coreset.

Incomplete data. Formally, suppose thatD hasM attributes, denoted by {A1,A2, . . . ,AM }. Each
attribute Am ,m ∈ [1,M] represents a domain set including the Null, (i.e., Null ∈ Am ), in which
each tuple in D can take value on this attribute. |Am | denotes the domain size. Then, each tuple
ti ∈ A1 × A2×, . . . ,×Am . Let ti [m] denote the value of them−th attribute of ti , i.e., ti [m] ∈ Am .

For a tuple ti ∈ D, if ∃ ti [m] = Null,m ∈ [1,M], ti is an incomplete tuple, denoted by I[ti ] = 1,
otherwise I[ti ] = 0. Let us better illustrate this using an example.

Example 2. As shown in Figure 5(a), there are six tuples in tableD with five attributes (an excerpt
from a large table). For example, A2 is the Gender attribute, i.e., A2 = {M, F, Null}. Among these
tuples, t2, t3, t4, t6 have missing values, e.g., I[t2] = 1, I[t1] = 0. Given a coreset as shown on the
right side, if there are no missing values, we can assign each tuple ti ∈ D to its most similar
tuple in C (compute minc j ∈C si j ), and then sum these feature distances up to compute the coreset
score S . However, given these missing values, the feature distances cannot be computed accurately
(s12, s13, s22, etc.), and thus the assignment of tuples in D cannot be determined precisely. Hence,
the coreset score is not precise, and thereby leads to a coreset that cannot well represent the full
complete (clean) data.

As discussed above, imputation before coreset selection suffers from either large cost (human im-
putation) or large number of possible repairs (automatic imputation), while imputation after coreset

selection cannot obtain a good coreset because of the inaccurate feature distance computation (see
Example 2).

Therefore, an essential problem is to select a good coreset that can represent the complete dataset
Dc , which relies on accurate coreset score computation givenDc that is the unknown ground truth.
Fortunately, the possible repairs of D can be modeled by possible worlds [11–13, 26], based on
which we can effectively select the coreset over incomplete data.

Possible worlds. Given the incomplete dataset D, ∀t ∈ D and I[t] = 1, ∀t[m] = Null,m ∈ [1,M],
we assign a value in Am \ {Null} to t[m] as an imputation (a.k.a. a possible repair). Thus, we
have an assignment for all the missing values in D, which corresponds to a possible world W .
Since there exist a large number of possible assignments, we define the set of possible worlds as
IW = {Wk |k ∈ [1, |IW |]}.

Let us better illustrate this using an example.

Example 3. Given D, for tuples t2, t3, t4, t6 with missing values, we have a large number of pos-
sible assignment as shown in Figure. 5(b), each of which corresponds to a possible world (we omit
the Name attribute because there is no missing value on this attribute). Suppose that there are 2
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Fig. 5. Example of coreset selection with missing values.

.

(4/100/10) types of values of the attribute Gender (Department/Age/Working years), there exist
32,000 possible worlds in total.

Note that for numerical attributes, we will bin them into different buckets, such that we can
treat them as categorical values and avoid the unlimited number of possible worlds.

Even with possible worlds, the score computation of coreset remains challenging. Each possible
world of D is a complete dataset, and thus given a coreset, the score can be directly computed
considering the feature distances, as discussed in Section 2.2. However, the crucial issue is that
each possible world could be the ground truth, i.e., Dc , but each one leads to a different score.

Example 4. As shown in Figure. 5(b), the two possible worlds W1 and W2 are only different in
t3, leading to a different feature vector x3, which makes the score computation a difference. To
be specific, given the same coreset C with tuples t1(c1), t3(c2), and t4(c3), because of a different x3,
the closest feature distance of x5 inW2 becomes x1, rather than x3 inW1. And the closest feature
distance of x6 inW2 becomes x3, rather than x4 inW1. Therefore, the coreset scores, i.e., the sum
of these closest feature distances of tuples are different among possible worlds.

Example 4 shows that different possible worlds make the mapping ϕ different, which leads to
different scores. Hence, to get a good coreset without the ground truth, an intuitive solution is
to compute the expected coreset score considering all possible worlds. By doing so, although we
cannot get the complete data (Dc ) in advance, we can focus on how to select an informative coreset
that can represent the possible worlds of D.

Next, we formally define the studied problem.

Expected optimal coreset selection over incomplete data. Given D, we have a number of
possible worlds IW = {Wk }. Then given a subset (coreset) C ⊂ D, for different Wk , we have the
corresponding Ck with the same tuples as C but probably different imputations. For Ck , we can
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Fig. 6. The GoodCore framework.

compute a score Sk =
∑n

i=1 minc j ∈Ck
si j , where si j = ‖xi −xγ (j) ‖ and both feature vectors are from

{Wk }. Then, we have the expectation E[C] =
∑ |IW |

k=1
pkSk , where pk denotes the probability of the

appearance of {Wk }. Finally, our problem becomes how to compute the coreset C with the lowest
expectation of GA error upper-bound. Formally, we have

C∗ = arg min
C⊆D

E[C], s.t. |C | ≤ K . (6)

For example, given D, the corresponding possible worlds and a coreset C in Figure 5, we have
differentCk with the same tuples (containing t1, t3, t4) but probably different imputations. For each
Ck , we will compute Sk , and finally compute E[C]. Solving Equation (6) can result in an informative
coreset with incomplete tuples being selected. After these tuples are imputed by a human, i.e., Case
(5), or state-of-the-art automatic method, i.e., Case (6), we can derive a good coreset.

3.2 Goodcore Framework

Next, we will introduce our proposed GoodCore framework to solve Equation (6), which is non-
trivial because it is NP-hard. But fortunately, we prove that it has the sub-modular property (see
Section 4). Hence, GoodCore uses a greedy framework with three loops to solve the problem with
an approximate ratio.

At a high level, the greedy strategy adds one tuple with the largest “utility” to the coreset iter-
atively, which can be considered as the first loop. In each iteration, we have to iterate tuples in D
to select the one with the largest utility, which is the second loop. Naturally, we have to compute
the utility of each tuple, where all tuples in D have to be considered, leading to the third loop.

Next, we will further illustrate the framework using Figure 6 and Algorithm 1.

The first loop (lines 3–9) of the greedy algorithm is to add the tuple t∗ with the maximum utility

(i.e., E[t |C] = E[C] − E[C ∪ {t}]) into the coreset iteratively for K times. To be specific, the “utility”
of a tuple t denotes the reduction of expectation of GA error after adding t into the coreset C .

Suppose thatK = 3. Figure 6 (the 1st loop part) shows the situation that there already have been
2 tuples in C , and we are going to add the third tuple into the coreset.

The second loop (lines 6–7) computes the utilities of tuples that are not in coreset C , based on
which the best one is picked for the first loop. An ideal solution is to consider all tuples in D \C ,
which is prohibitively expensive, so in practice we use an efficient method to accelerate this loop
by uniformly sampling h tuples as Tsample (line 5) and then selecting the best one from Tsample

(line 14). The difference is that theoretically, considering all tuples has an approximate ratio 1- 1
e

(because of the sub-modular property), while the sampling method holds a (1- 1
e
− ϵ) ratio [61],

where ϵ is related to the sampling ratio.
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ALGORITHM 1: GoodCore Framework

Input: Incomplete train data D, coreset size K , sample size h.

Output: A coreset C ⊆ D, weightW = {w j },|C | = |W| = K .

1 C = ∅;

2 while |C | < K do

3 /*1st loop*/

4 Sample h tuples as Tsample ⊆ D \C
5 for each tuple t ∈ Tsample do

6 /*2nd loop*/

7 E[t |C] = ComputeUtility(t ,C,D); /*3rd loop*/

8 t∗ = arg maxt ∈Tsample
E[t |C] ;

9 C = C ∪ {t∗};
10 for t ∈ C do

11 if I[t] = 1 then

12 Impute t by a human or automatic method.

13 for j = 1 to |C | do

14 for i = 1 to n do

15 if c j = arg minc j′ ∈C max
θ ∈ϑ

‖∇fi (θ ) − ∇fγ (j′)(θ )‖ then

16 w j += 1;

17 return C,W;

As shown in Figure 6, suppose that h = 3, and we sample {t3, t4, t6} from {t1, t3, t4, t6}. Then the
second loop iterates the three tuples and computes the utility for each one (the third loop).

The third loop (line 7) will loop through all tuples inD, so as to compute the utility of tuple t used
in the second loop. To be specific, the core part of the utility computation (i.e., ComputeUtility)

is to compute E[C] =
∑ |IW |

k=1
pkSk =

∑ |IW |
k=1

pk (
∑n

i=1 minc j ∈Ck
si j ), from which we can see that it

is inevitable to iterate the n tuples in D. However, the most challenging part is that we also have
to enumerate a large number of possible worlds. We will illustrate how to solve this in detail in
Section 4.

The imputation step (line 12). After GoodCore selects the coresetC using the above 3 loops, we
can leverage a human or automatic method to impute the tuples that are incomplete in C , which
correspond to Case (5) and Case (6) in Section 1, respectively.

Weights computation (lines 20–23). It computes the weight of each tuple in C , which will be
used to approximate the full gradient during training. For training, tuples in the coreset are ran-
domly shuffled. Afterward, suppose that in each step of the gradient decent, when we use c j ∈ C
to update the gradient, we compute the gradient (∇fj ) of c j first, and then usew j∇fj to update the
model parameters.w j is the number of tuples in D assigned to c j . The above steps repeat until the
model converges.

Imputation-in-the-loop optimizations. Unfortunately, the 3-loop computation of the strategy
is rather expensive due to the large number of possible worlds (Section 4). To address this, we can
integrate either human-in-the-loop or the automatic method into GoodCore framework (Section 5).
It iteratively imputes one incomplete tuple or a mini-batch of incomplete tuples. Once the tuple(s)
is (are) computed and added to the coreset within the first loop, the number of possible worlds can
be significantly reduced, and so does the computational cost.
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Group-based acceleration. As discussed above, we have to iterate all tuples ofD in the third loop
to compute the utility of a tuple t . Given a large train set with missing values, it is still inefficient
to compute the coreset. To address this, we propose to assign tuples in D to multiple groups, and
use these groups to represent the entire dataset. Since the number of groups is smaller than n, the
efficiency can be much improved (Section 6).

4 Goodcore Algorithm

In this section, we will illustrate the GoodCore algorithm in detail for solving Equation (6), which
is proven to be prohibitively expensive (Section 4.1). Then we focus on how to compute the expec-
tation using possible worlds (Section 4.2) in the algorithm.

4.1 Problem Complexity

Let us first discuss the time complexity of finding the optimum of Equation (6).

Theorem 1. The problem of expected optimal coreset selection over incomplete data is NP-hard.

Proof. Let us consider a special case that there is no missing value in D. Our problem becomes
the typical coreset selection problem over complete data, which has been proven to be NP-hard
by reduction from the Minimum Vertex Cover problem [32, 58, 59]. Hence, our problem is also
NP-hard. �

Theorem 2. The problem of expected optimal coreset selection over incomplete data has the sub-

modular property.

Proof. First, we regard E[C] =
∑ |IW |

k=1
pkSk as a utility function, where Sk =

∑n
i=1 minc j ∈Ck

si j .
In fact, Sk can be regarded as a function of the coreset score computation over complete data, which
has already proven to have the sub-modular property [42, 58, 59]. Therefore, consider the property
that a non-negative linear combination of sub-modular functions is also sub-modular [53]. To be
specific, given any sub-modular function д1,д2, . . . ,дk and non-negative numbers α1,α2, . . . ,αk .

Then the function G defined by G =
∑k

i=1 αiдi is sub-modular. Hence, we can conclude that our

studied problem is a sub-modular problem because E[C] =
∑ |IW |

k=1
pkSk , where pk > 0. �

The greedy algorithm. Given the sub-modular property, naturally, we can design a greedy al-
gorithm with an approximate ratio. As shown in Algorithm 1, we greedily add one tuple to the
coreset at each iteration. The added tuple should have the largest utility computed by E[t |C] =
E[C] −E[C ∪ {t}]. Hence, the key component is that given the original train data (D) and a coreset
(C or C ∪ {t}), how to compute the expectation of GA error (E[C] or E[C ∪ {t}]) of the coreset.
However, it is non-trivial because of the large number of possible worlds. We will first introduce
how to compute the probability pk , and describe the expectation computation in Section 4.2. After
K tuples are added, we can impute missing tuples in the coreset generated by GoodCore.

4.2 Expectation Computation

Possible world probability. To compute the expectation, it is inevitable to derive the probability
of each possible world, which can be taken as a pre-processing step in our framework. To be
specific, since tuples with missing values are always imputed independently [57], given a possible
worldWk , the probabilitypk can be computed bypk =

∏
t ∈Wk ,I[t ]=1 p

t
k

, wherept
k

denotes the proba-

bility of the appearance of tuple t with I[t] = 1. Besides, apparently pt
k
= 1 when I[t] = 0, so pk = 1

if there are only complete tuples. Therefore, our focus is on how to get the value of pt
k

, which can
be solved by many approaches, like statistic methods and learning-based methods (see [57] for a
survey). In this article, we use the learning-based method [14] with a Python library [1] to generate
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Fig. 7. Tuple-based expectation computation.

the probability, which can be easily replaced by other libraries or domain-specific methods. During
training, learning-based methods take D as input and learn a model M to describe the joint data
distribution. For inference, we have P(Ai |x,vmask ) =M(x,vmask ,ω

∗), where the model takes as
input the feature vector x of t , the mask vector vmask (indicating which attributes are missing)
and the model parameter ω∗, outputs the probability distribution of a missing attribute Ai .

Suppose that t just has one missing attribute Ai , and then vmask is a one-hot vector with
vmask [i] = 0. Hence, we can directly obtain pt

k
from the distribution P(Ai |x,vmask ). For t with

multiple missing attributes, we can also compute pt
k

using the chain rule. If t has two missing

values of Ai and Aj , to compute pt
k

, we have to compute P(Ai ,Aj |x,vmask ), abbreviated as
P(Ai ,Aj ) = P(Ai )P(Aj |Ai ). P(Ai ) can be obtained by masking the ith and jth attribute invmask .
Then, we only mask the jth attribute and impute different values of Ai to obtain P(Aj |Ai ).

Example 5. In Figure 5(a), suppose that for the first possible world, we have to compute
p1 = p

2
1 ×p3

1 ×p4
1 ×p6

1. For instance, to compute p3
1, given the trained deep learning model, we feed

{Lei, M, Mask, 35, Mask} and a one-hot vector {1, 1, 0, 1, 0} into the model and compute the probabil-
ity distribution of this tuple, from which we can get p3

1, i.e., the probability of {Lei, M, Sales, 35, 1}.
Compared with statistical approaches, deep learning-based methods use more powerful models

with good learning capacity and consider the correlation between attributes. For practitioners,
they can use any ad-hoc method to compute the probability.

Brute-force expectation computation. Recap that E[C] =
∑ |IW |

k=1
pk (

∑n
i=1 minc j ∈Ck

si j ). Intu-
itively, the brute-force method is to enumerate each possible world, compute the probability and
finally get the expectation. However, there are a huge number of possible worlds, which makes
the computation prohibitively expensive. Specifically, we assume the attribute number M and
|Am |,m ∈ [1,M] are constants, so the number of possible worlds of each tuple is a constant,
denoted by L. Suppose that the number of tuples with missing values is O(n), so the number of
possible worlds (|IW |) isO(Ln). Given a coresetC , the time complexity to compute E[C] isO(nLn),
which is rather expensive.

Tuple-based expectation computation. To further elaborate, we can easily expand E[C] as
follows:

E[C] = p1(min
c j ∈C1

s1j

��������

+ min
c j ∈C1

s2j + · · · + min
c j ∈C1

snj )

+ p2(min
c j ∈C2

s1j

��������

+ min
c j ∈C2

s2j + · · · + min
c j ∈C2

snj ) + · · ·

+ p |IW |( min
c j ∈C |IW |

s1j

�������������

+ min
c j ∈C |IW |

s2j + · · · + min
c j ∈C |IW |

snj ).

We can see from the above equation that these underlined terms are only related to t1 ∈ D as
well as {C1,C2, . . . ,C |IW |}, i.e., the coresets corresponding to the |IW | possible worlds. However,
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as the coreset C is much smaller than the full data D, the number of possible worlds of C will be
also much smaller than |IW |, and thus there will be many duplicates among {C1,C2, . . . ,C |IW |}.
Therefore, many of these underlined terms have identical variable parts, i.e., minc j ∈Ck

s1j , when
they are associated with the sameCk . These terms are like terms. Combining these like terms (i.e.,∑ |IW |

k=1
pk minc j ∈Ck

s1j ), we can get the expectation of minc j ∈C s1j , denoted by E[minc j ∈C s1j ].
In short, we can convert the expectation computation over the possible worlds of the entire

training set D to the sum of expectation of each tuple in D, as follows:

E[C] =
|IW |∑
k=1

pk

(
n∑

i=1

min
c j ∈Ck

si j

)
=

n∑
i=1

E[min
c j ∈C

si j ]. (7)

Example 6. Figure 7 shows how to compute E[minc j ∈C s2j ]. Instead of enumerating |IW | pos-
sible worlds by the brute-force method, we can enumerate a much smaller number of possible
worlds of C ∪ t2, compute the corresponding probabilities and finally get the tuple expectation.
Specifically, The left part of Figure 7 shows the possible worlds of the tuple, the right part shows
the possible worlds of the coreset, and their combination is the possible worlds of C ∪ t2. Then,
following Equation (7), we can iterate the tuples in D, compute their expectations and sum them
up to derive E[C].

Time complexity. Since the coreset size isK , and the number of tuples with missing values in the
coreset isO(K), the time complexity of computing E[C] using tuple-based method isO(nLK ), where
K is much smaller than n, compared with the brute-force method. However, note that computing
E[C] is just the third loop in the entire framework. Besides, the first two loops incrementally add
K tuples into the coreset, and sample h tuples for tuple selection, respectively. Hence, the overall
time complexity of coreset selection over incomplete data is O(KhnLK ), which is still expensive
when K is not small enough. In the next section, we involve the imputation-in-the-loop strategies
to achieve further improvement.

5 Optimized Goodcore with Imputation-in-the-loop

As discussed above, it is rather expensive to directly compute all theK tuples in the coreset. Hence,
in this section, we propose to involve the imputation-in-the-loop mechanism that asks the human,
i.e., Case (7), or automatic method, i.e., Case (8) to impute these missing values iteratively while
they are generated by Algorithm 1.

The advantages of this optimization are two-fold. First, with more and more missing values be-
ing imputed, the number of possible worlds is greatly reduced, which reduces the machine cost a
lot. Second, for human-in-the-loop imputation, it allows us to gradually impute the tuples accu-
rately, and thus the coreset score computation can be more and more accurate, which produces a
better coreset.

5.1 One Tuple Each Iteration

In fact, we can just slightly modify Algorithm 1 to achieve the imputation-in-the-loop strategy.
To be specific, in the first loop, we will iteratively impute the tuple once an incomplete tuple t∗

is computed by GoodCore, rather than conducting the imputation after K tuples are computed, as
discussed in Section 4. To this end, we move the imputation step (lines 11–12 in Algorithm 1) inside
the first loop of Algorithm 1, i.e., imputing each selected t∗ by a human or automatic method in
each iteration after line 9.

Afterward, we will add the next tuple into the coreset, so another loop starts and h tuples are
sampled. In the following, we will expand the third loop, i.e., the function ComputeUtility (line 7)
of Algorithm 1 under this one tuple per iteration scenario.
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ALGORITHM 2: ComputeUtility (3rd-loop to compute E[t |C])
Input: Incomplete train data D, current coreset C , a sampled tuple t .
Output: The expectation E[t |C].

1 Ĉ = C ∪ {t};
2 E[Ĉ] = 0;

3 for each tuple ti ∈ D do

4 if I[t] = 0 and I[ti ] = 0 then

5 E[Ĉ]+= min
c j ∈Ĉ

si j ;

6 else

7 Get the possible worlds of Ĉ ∪ {ti };
8 Compute E[min

c j ∈Ĉ
si j ] using these possible worlds and their probabilities;

9 E[Ĉ]+= E[min
c j ∈Ĉ

si j ];

10 E[t |C] = E[C] − E[Ĉ];
11 return E[t |C];

As shown in Algorithm 2, at the beginning, we temporarily add the sampled tuple t to the
current coreset, so as to compute the benefit of t , i.e., E[t |C]. To this end, we have to first compute

the expectation of GA error bound of Ĉ (i.e., computing E[Ĉ] in the for-loop lines 3–12). And
the expectation w.r.t. C (i.e., E[C]) has been computed in the last loop. Then we can compute

E[t |C] = E[C] − E[Ĉ] (line 10).
Specifically, to compute E[Ĉ], we will use the tuple-based expectation computation method

proposed in Section 4.2. For each tuple ti ∈ D, if ti and t are both complete, we can directly

compute minc j ∈Ĉ si j because there is no incomplete data in Ĉ (lines 4–5). Otherwise, we will

enumerate the possible worlds of Ĉ ∪ {ti }, compute their probabilities and compute E[minc j ∈Ĉ si j ]
(lines 7–8). Note that since there are at most two tuples (i.e., ti and t ) have missing values, the

number of possible worlds is small because other missing values in Ĉ have been imputed by
humans in previous iterations.

Time complexity analysis. As discussed above, using this human-in-the-loop strategy, the num-
ber of possible worlds to be considered is greatly reduced. For Algorithm 2, the time complexity is

O(nL2) because there are at most two incomplete tuples in Ĉ . For the entire three loops framework,
the time complexity can be regarded asO(Khn) because L is a constant, which is much lower than
the solution without imputation in the loop.

However, if we utilize the human for imputation, the above method will incorporate many hu-
man iterations. In the following, we propose to ask humans to impute a small batch of missing
tuples in each iteration, so as to reduce the number of human iterations.

5.2 One Batch Each Iteration with Human-in-the-loop

In Section 5.1, one tuple per iteration by humans requires many human iterations. However, if we
just incorporate a single human iteration like Section 4.2, it is infeasible to compute the tuples to
be imputed due to the large number of possible worlds. Therefore, in this subsection, we propose
a tradeoff solution that asks the human to impute a small batch of tuples per human iteration.

To be specific, as shown in Algorithm 3, compared with the one tuple per human iteration
algorithm (i.e., the modified Algorithm 1 at the beginning of Section 5.1), we additionally take the
batch sizeb as input (whenb = 1, Algorithm 3 is in fact the modified Algorithm 1). Algorithm 3 also
incorporates 3 loops, but the main difference is that we do not instantly ask the human to impute
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ALGORITHM 3: Batch algorithm of GoodCore

Input: D, K , h, batch size b.

Output: A coreset C , weightW.

1 C = ∅, cnt = 0;

2 while |C | < K do

3 Sample h tuples as Tsample ⊆ D \C
4 for each tuple t ∈ Tsample do

5 E[t |C] = ComputeUtility(t ,C,D);
6 t∗ = arg maxt ∈Tsample

E[t |C] ;

7 C = C ∪ {t∗};
8 if I[t∗] = 1 then

9 cnt + +;

10 if cnt = b then

11 Ask the human to impute the incomplete tuples;

12 cnt = 0;

13 Compute the weightW.

14 return C,W;

the most beneficial tuple t∗ amongTsample . Instead, we just add t∗ into the coresetC (line 7). When
there have been b incomplete tuples, we ask the human to impute these tuples together (line 17–
19). Finally, we compute the weight (line 13), same as Algorithm 1. Although this approach reduces
the number of human iterations, it takes a longer time to compute E[t |C] (line 5) than Algorithm 1
because there are more incomplete tuples, which indicates more possible worlds. Specifically, the
time complexity of computing E[t |C] is O(nLb ), which is also expensive. Hence, we propose a
heuristic method to accelerate this process as follows.

Reducing the number of possible worlds. A straightforward method of improving the effi-
ciency is to reduce the number of possible worlds. To this end, intuitively, we should focus more
on the possible world with a high probability, so these possible worlds with low probabilities can
be pruned without sacrificing the accuracy of expectation computation much. Note that for each
possible world, the probability is computed by the multiplication of the probabilities of incomplete
tuples in the world because the tuples can be considered independent [57]. Therefore, we can re-
move the possible worlds of each tuple with low probabilities (i.e., reducing L), and thus the num-
ber of possible worlds of the entire coreset is greatly reduced. For example, we can keep top-l (e.g.,
l = 3) possible worlds (i.e., 3 different possible imputations of t with high probabilities) of a tuple t .
Then for the batch of b incomplete tuples, the number of possible worlds is lb and the complexity
of computing E[t |C] is O(nlb ), where both l and b are small enough. Therefore, the time complex-
ity is O(Khn). Besides, we can also apply this heuristic method to make the algorithm in Section 4
practical, which is evaluated in Section 7.5.

5.3 Convergence Rate Analysis

Convergence rate is often used to reflect the speed of finding the optimal parameters for the ML
algorithm. With a higher convergence rate, we can take fewer epochs to make the model converge.
To compute the convergence rate, we have to compute the distance between the parameter θ and
the optimal parameter θ ∗ in the t th and the (t + 1)-th epoch. Since f is a strongly convex function,
∀θ ,θ ′ we have

f (θ ) − f (θ ′) ≥ ∇f (θ ′)(θ − θ ′) + η

2
‖θ − θ ′‖2, (8)
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where η is a constant. We denote the stepsize as ζt =
ζ0

kτ for the t th epoch, where τ is a constant.

After using gradient descent in each step, we have ‖θ t+1−θ ∗‖2 = ‖θ t −ζk

∑ |C |
j=1w j∇fγ (j)(θ t

j−1)−θ ∗‖2.

Then, following Equation (8), we have

‖θ t+1 − θ∗‖2 ≤ ‖θ t − θ∗‖2 − 2ζt

|C |∑
j=1

(fj (θ t ) − fj (θ∗))

+2ζt

|C |∑
j=1

(fj (θ t
j−1) − fj (θ t )) + ζ 2

t

|C |∑
j=1

‖w j∇fj (θ t
j−1)‖

2

. (9)

Recap that we select a coreset that minimizes E[C] through converting gradient difference to
feature distance (si j ) computation. Obviously, given a dataset, si j can be bounded (suppose that

si j ≤ s0). Then, we have E[minc j ∈C si j ] =
∑ |IW |

k=1
pk (minc j ∈Ck

si j ) ≤
∑ |IW |

k=1
pk ∗ s0 = s0, and

thus E[C] =
∑n

i=1 E[minc j ∈C si j ] ≤ n ∗ s0 = κ1. Besides, we also have maxθ ∈ϑ ‖
∑n

i=1 ∇fi (θ ) −∑ |C |
j=1w j∇fγ (j)(θ )‖ ≤

∑n
i=1 minc j ∈C ‖∇fi (θ ) − ∇fγ (j)(θ )‖ ≤

∑n
i=1 minc j ∈C si j ≤ κ1. Following the

definition of convex function, we have fj (θ t ) − fj (θ ∗) ≤ w j∇fj (θ ∗)(θ t − θ ∗) + η

2 ‖θ
t − θ ∗‖2. Based

on the above things, we can apply Cauchy–Schwarz inequality [74] and derive

− 2ζt

|C |∑
j=1

(fj (θ t ) − fj (θ ∗))

≤ −ηζt ‖θ t − θ ∗‖2 + 2ζt ‖
|C |∑
j=1

w j∇fj (θ ∗)‖‖(θ t − θ ∗)‖

≤ −ηζ t ‖θ t − θ ∗‖2 +
2ζ t |C |κ1κ2

η

, (10)

whereκ2 can be regarded as the upper bound of ‖θt −θ ∗‖. Since f is convex, thus, for item fj (θ t
j−1)−

fj (θ t ), we have fj (θ t
j−1) − fj (θ t ) ≤ ‖w j∇fj (θ t )‖ζt

∑j−1
i=1 ‖wi∇fi (θ t

i−1)‖. In addition, we can assume

thatmax j ∈{1, · · · , |C | } ‖∇fj (θ )‖ ≤ κ3. Then, we have

2ζt

|C |∑
j=1

(fj (θ t
j−1) − fj (θ t )) + ζ 2

t

|C |∑
j=1

‖w j∇fj (θ t
j−1)‖2

≤ 2ζt

|C |∑
j=1

‖w j∇fj (θ t )‖ζt

j−1∑
i=1

‖wi∇fi (θ t
i−1)‖ + ζ 2

t

|C |∑
j=1

‖w j∇fj (θ t
j−1)‖2

≤ 2ζ 2
t (|C |2 − |C |)w2

maxκ
2
3 + ζ

2
t |C |w2

maxκ
2
3

. (11)

Thus, from Equations (9) to (11), we can get

‖θ t+1 − θ ∗‖ ≤ (1 − ηζt )‖θ t − θ ∗‖2 +
2ζt |C |κ1κ2

η
+ ζ 2

t |C |2w2
maxκ

2
3 . (12)

Finally, following Lemma 4 in [25], the convergence rate of Algorithm 1 is at the same rate
of O( 1√

k
) as the convergence rate on the entire dataset [64]. Therefore, theoretically, the selected

coreset can converge with the same number of epochs as training on the full data. In this way,
since coreset has a much smaller size than the full data, the efficiency can be much improved.
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6 GoodCore+: Group-based Acceleration

As discussed above, we can observe that in Section 5.1, even with the most efficient imputation-in-
the-loop strategy, i.e., one tuple in each iteration, the time complexity isO(Khn), whereK is the size
of the coreset,h is the sample size, andn is the cardinality of the entire dataset. Therefore, obviously,
the efficiency is dominated byn, which is still low whenn is large, and thus it is necessary to further
accelerate this process.
Key observation. Recap that in Figure 4, we can observe that given a tuple c in the coreset, the
tuples in the origin full train set D represented by c are likely to be closer to each other than other
tuples not represented by c . Based on this observation, we propose to first group the full train set,
and then compute the coreset based on the groups. This can achieve much acceleration because
the number of groups is much smaller than n.

At the following, we will theoretically and empirically show that the group-based solution can
accelerate the coreset selection process without sacrificing the effectiveness much.

6.1 Solution Overview

One of the core parts of coreset computation is to compute the tuple-tuple distance, i.e., si j . For
the group-based solution, we just need to consider the relationship between tuples and these
pre-computed groups, namely tuple-group distance, rather than the large amount of tuple-tuple
distances. As we will discuss below, the computation of tuple-group distance does not need to
iterate all tuples in the group, and thus the overall efficiency can be much improved. At a high
level, the overall process of group-based GoodCore solution with imputation in the loop is shown
in Algorithm 4.

To be specific, as shown in Algorithm 4 Line 2, we first group D using the efficient local

sensitive hash (LSH) approach, where each groupGu ,u ∈ [1,U ] includes the indexes of tuples in
D. In this way, every pair of tuples in the same group is close to each other in the feature distance.
Afterward, the major difference between group-based GoodCore and original GoodCore lies in
the 3rd loop. Instead of selecting a coreset to represent all tuples in the train set, group-based
GoodCore selects a coreset to represent all groups. As these groups can well capture the train set
distribution, the selected coreset contains enough information to approximate the full gradient of
the entire train set.

To this end, recap that the typical coreset selection algorithm relies the tuple-tuple distances to
approximate the full gradient, while for group-based GoodCore, we just need to consider the tuple-
group distances, i.e., sγ (j)u = maxv ∈Gu

sγ (j)v , sγ (j)v = ‖xv − xγ (j) ‖,γ (j) ∈ [1,n], which denotes the
maximum feature distance between the tuple c j in the coreset and all tuples inGu . As tuples inGu

are close to each other, sγ (j)u can represent the relationship between c j and tuples inGu to a large
extent. We will theoretically show that using this maximum distance can still derive a bounded GA
error. However, since computing sγ (j)u needs to iterate the tuples inGu , which is time-consuming,
we finally estimate an upper bound ŝju to compute the coreset score (as shown in Line 11), which
still leads to a well-performed coreset.

6.2 Group-based GA Error Bound

In this section, following the equations in previous sections, we deduce the GA error bound for our
group-based solution. If we group D to {G1,G2, . . .GU }, considering Equation (7), we can rewrite
the total sum of n feature distances (i.e., minc j ∈Ck

‖xi − xγ (j) ‖) to U summations as follows:

E[C] =
|IW |∑
k=1

pk

(
n∑

i=1

min
c j ∈Ck

‖xi − xγ (j) ‖
)
=

|IW |∑
k=1

pk

(
U∑

u=1

∑
v ∈Gu

min
c j ∈Ck

‖xv − xγ (j) ‖
)
. (13)
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ALGORITHM 4: GoodCore+ (imputation-in-the-loop by humans)

Input: Incomplete train data D, coreset size K , sample size h, batch size b.

Output: A coreset C ⊆ D, weightW = {w j },|C | = |W| = K .

1 C = ∅;

2 Group D into groups G = {G1,G2, . . . ,GU };
3 while |C | < K do

4 /*1st loop*/

5 Sample h tuples as Tsample ⊆ D \C
6 for each tuple t ∈ Tsample do

7 /*2nd loop*/

8 Ĉ = C ∪ {t};
9 for each group Gu ∈ G do

10 /*3rd loop*/

11 E[Ĉ]+= E[min
c j ∈Ĉ

ŝju × |Gu |], where ŝju is the estimated upper bound of

12 sγ (j)u = max
v ∈Gu

sγ (j)v , sγ (j)v = ‖xv − xγ (j) ‖,γ (j) ∈ [1,n];

13 E[t |C] = E[C] − E[Ĉ];
14 t∗ = arg maxt ∈Tsample

E[t |C] ;

15 if I[t∗] = 1 then

16 cnt + +;

17 if cnt = b then

18 Ask the human to impute the incomplete tuples;

19 cnt = 0;

20 for j = 1 to |C | do

21 for i = 1 to n do

22 if c j = arg minc j′ ∈C max
θ ∈ϑ

‖∇fi (θ ) − ∇fγ (j′)(θ )‖ then

23 w j += 1;

24 return C,W;

Afterward, each summation is the sum ofU feature distances, as shown in Equation (14), the sum
of each group can be bounded by the maximum distance (maxv ∈Gu

minc j ∈Ck
sγ (j)v ) multiplying

the group size, but the bound is expensive to compute because of iterating D. To address this, we
further apply the max-min inequality [16] to simplify the computations.

|IW |∑
k=1

pk

(
U∑

u=1

∑
v ∈Gu

min
c j ∈Ck

sγ (j)v

)
≤

|IW |∑
k=1

pk

(
U∑

u=1

|Gu | max
v ∈Gu

min
c j ∈Ck

sγ (j)v

)

≤
|IW |∑
k=1

pk

(
U∑

u=1

|Gu | min
c j ∈Ck

max
v ∈Gu

sγ (j)v

)

=

|IW |∑
k=1

pk

(
U∑

u=1

|Gu | min
c j ∈Ck

sγ (j)u

)
. (14)

Therefore, we can iterate over smaller group G to compute the maximum feature distance (i.e.,
sγ (j)u = maxv ∈Gu

sγ (j)v , j ∈ [1, |Ck |]) between each c j ∈ Ck and tuples in each group Gu . Then,
similar to assigning tuples of the full train set to the tuple of the coreset in previous sections, we
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can assign the group Gu to the tuple with the minimum distance, i.e., minc j ∈Ck
sγ (j)u . To enable

efficient coreset selection, given D and these groups G, we should precompute all the maximum
feature distances {sγ (j)u |j ∈ [1,n],u ∈ [1,U ]}. In this way, we can directly get the value of sγ (j)u .

Similar to Section 4.2, directly computing the probability and getting the expectation is ex-
tremely expensive, and thus we still can convert the expectation computation over the possible
worlds associated with all groups to the sum of expectation of each group, as follows:

|IW |∑
k=1

pk

(
U∑

u=1

|Gu | min
c j ∈Ck

sγ (j)u

)
= p1( |G1 | min

c j ∈C1

sγ (j)1
��������������

+ |G2 | min
c j ∈C1

sγ (j)2 + · · · + |Gu | min
c j ∈C1

sγ (j)u )

+ p2( |G1 | min
c j ∈C2

sγ (j)1
��������������

+ |G2 | min
c j ∈C2

sγ (j)2 + · · · + |Gu | min
c j ∈C2

sγ (j)u ) + · · ·

+ p |IW |( |G1 | min
c j ∈C |IW |

sγ (j)1

�������������������

+ |G2 | min
c j ∈C |IW |

sγ (j)2 + · · · + |Gu | min
c j ∈C |IW |

sγ (j)u )

=

U∑
u=1

|Gu | × E[min
c j ∈Ĉ

sγ (j)u ].

(15)

6.3 Technical Details of GoodCore+

6.3.1 Grouping. As discussed in Algorithm 4 Line 2, we need to group the entire train set as a
pre-processing step. To achieve this efficiently, we adopt locality sensitive hashing (LSH) [10]
to assign similar tuples to the same group, with a time complexity linear with |D |. Note that D
contains some tuples with missing values, an ideal way is to first impute these tuples precisely
and then group, but we do not know the ground truth in advance. Therefore, we just apply a
typical algorithm i.e., MICE [68] to impute these missing values, and then conduct the grouping.
Although the imputation results may not be accurate enough, it does not influence much because
we just need closer tuples to be included in the same group, and these missing cells do not have a
large impact on determining whether two tuples are close. Finally, tuples with the same hash code
are considered highly similar and grouped together.

6.3.2 Computing the Expected Maximum Distance. In this part, we focus on computing Equa-
tion (15), where the key part is the expected maximum distance, i.e., E[minc j ∈Ĉ sγ (j)u ]. To

be specific, we expand E[minc j ∈Ĉ sγ (j)u ] = q1 minc j ∈Ĉ sγ (j)u [1] + q2 minc j ∈Ĉ sγ (j)u [2] + · · · +
qcard (u) minc j ∈Ĉ sγ (j)u [card(u)], where card(u) denotes the number of possible world of Gu ∪ Ĉ ,

qx (x ∈ [1, card(u)]) denotes the probability of the x−th possible world and sγ (j)u [x] denotes the
maximum distance corresponding to the x−th possible world (each possible world does not con-
tain missing values). Therefore, to compute the expected maximum distance E[minc j ∈Ĉ sγ (j)u ], we

should know how to compute sγ (j)u [x], i.e., the maximum feature distance between a tuple c j and
a group Gu within a possible world.
Estimating an upper bound for each possible world. For ease of representation, we just use
s ju to represent sγ (j)u [x], indicating the maximum feature distance of a possible world. Recap that
the reason why we do not directly compute the sγ (j)u is that iteratingGu to compute the maximum
distance is expensive. To solve this, we propose to leverage the quantization technique to estimate
an upper bound ŝju of s ju , and then use ŝju to compute the coreset score that still very likely leads
to a bounded GA error.
Basic idea. At a high level, if we consider each tuple individually, it is time-consuming as discussed
above. However, if we take all tuples in a group as a whole, we cannot distinguish these tuples
from each other and the maximum distance is impossible to estimate. Therefore, we propose a more
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refined method that partitions them-dimensional feature space intoM low-dimensional subspaces,
and then quantizes each subspace separately. The quantization is conducted by applying k-means
algorithm [36] over the vectors in each subspace, where R clusters are generated. In this way, a
short code will represent a feature vector, where the zth element corresponds to the quantization
index (i.e., cluster ID) of the zth subspace, and thus the short codes of two vectors can be used to
efficiently estimate their Euclidean distance. In our scenario, we use the short codes to efficiently
estimate an upper bound. To be specific, we also split xj of c j into M subvectors, each of which is
represented as xz

j . If we can respectively compute the maximum distance (denoted by sz
ju ) between

the zth subvector and vectors in the zth subspace ofGu , z ∈ [1,M], and sum them up, we can derive

an upper bound between c j and Gu , i.e., s ju ≤
∑M

z=1 s
z
ju .

Computing ŝju . As discussed before, directly computing sz
ju is time-consuming, so we leverage

these clusters in each subspace to represent all the vectors in the zth subspace.
Specifically, we use {r 1

1 , r
2
1 , . . . , r

R
1 } to represent the cluster centers in the first subspace. Hence,

we can build a matrixmr1 to store the feature distances (denoted bymr1[x][y]) between every two
cluster centers, in total M matrices are built. In this way, we can quantize each ti (xi ) ∈ T to a
short code di , where dz

i , z ∈ [1,M] denotes the zth element, indicating that the dz
i th center has

the shortest distance with xz
i among all clusters of the zth subspace. Then, the feature distance

between ti and c j can then be approximated by
∑M

z=1mrz [dz
i ][dz

j ].
Given c j andGu , we approximate sz

ju by first quantizing xj and ∀x ∈ Gu to short codes. Based on
these matrices, for the zth subspace, we calculate the maximum distance between the code corre-
sponding to c j and codes of tuples inGu , i.e., ŝ juz = maxv ∈ Gumrz [dz

j ][dz
v ] as the approximation.

Then, we approximate the upper limit by summing up the M distances ŝju =
∑M

z=1 ŝ
z
ju . Although

ŝz
ju may slightly underestimate sz

ju due to the quantization bias, the summation ŝju always overes-

timates s ju since each ŝz
ju is close to sz

ju , and thus the GA error can be always bounded.

Reducing the number of possible worlds. Recap that E[minc j ∈Ĉ ŝju ] =
∑card (u)

x=1 qx minc j ∈Ĉ

ŝju [x]. Hence, since each group contains multiple tuples, possibly multiple missing values, it is
expensive to enumerate card(u) possible worlds and to get the expectation. To address this, we can
reduce the number (L) of possible worlds of each tuple, and just keep several top possible worlds,
say l , with the highest probabilities as discussed before. Next, suppose that there are y + 1 tuples

(y tuples in Gu and one tuple in Ĉ) with missing values, and thus there exist ly+1 possible worlds

for Gu ∪ Ĉ . To achieve further acceleration, we can just select top-lд (e.g., 3) possible worlds and
normalize them to compute the expectation. Similarly, the above framework is easy to generalize
to the scenario of one batch per iteration, where the only difference is that in the coreset, we have
a small batch b of tuples with missing values rather than just one, indicating that the number of
possible worlds that should be considered increases.

Furthermore, we can continue to reduce the number of possible world considering the following
entropy-based method. Considering a missing cell value with three possible values to be imputed,
if the probability distribution predicted by an imputation algorithm is (0.8, 0.1, 0.1), i.e., with a low
entropy, it is certain enough to directly impute the value corresponding to the probability 0.8 rather
than considering the possible worlds of this value. Formally, we use H (X ) = −

∑nX

i=1 p(xi ) logp(xi )
to denote the entropy [70] of a cell value X , where nx denotes the number of possible values of X ,
andH (X ) ∈ [0, lognx ]. Therefore, we can set a threshold (e.g., 10% lognx ) that ifH (X ) ≤ 10% lognx ,
we directly impute the values. In this way, the number of possible world can be further reduced.
Time complexity analysis. For the quantization step, we can sample a small subset to compute
the clusters in each subspace, and thus the time complexity of this part can be ignored. Then the
matrices can be computed in O(mR2) and the short codes of D can be computed in O(mnR). As
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Table 1. Statistics of Datasets

Dataset |D | m # Incomp. Tuples Task

Nursery 10,960 9 3,218 Multi-Class.

HR 18,287 12 5,475 Binary Class.

Adult 32,842 14 10,752 Binary Class.

Credit 131,000 11 76,813 Binary Class.

BikeShare 13,300 15 4,821 Regression

Air 437,200 18 128,372 Regression

IMDB 1,000,000 40 331,189 Multi-Class.

IMDB-Large 4,000,000 40 1,312,908 Multi-Class.

discussed above, the largest distance between corresponding codes of c j and codes of tuples in
Gu can be computed by ŝz

ju = maxv ∈Gu
mrz [dz

j ][dz
v ] in the zth subspace. As dz

j only takes from R

different values {1, 2, . . . ,R}, we can precompute maxv ∈Gu
mrz [i][dz

v ], i ∈ [1,R] for eachGu , which

takes O(UR2). In this way, we can compute each ŝju =
∑M

z=1 ŝ
z
ju in O(M), and considering that l , lд

and b are all small constants, all the upper bounds ŝju , j ∈ [1,n], u ∈ [1,U ] can be computed in
O(MnU ), which is much faster thanO(mn2) that enumerates every tuple and tuples in each group
to compute the upper bounds, because m � M and U � n. Then, considering the three-loop
framework, the overall time complexity isO(KhU ), which is much faster than theO(Khn) because
U � n.
Convergence analysis. Considering the proof in Section 5.3, obviously, given a dataset,
sγ (j)u can be bounded (suppose that sγ (j)u ≤ s0). Then we have E[minc j ∈Ĉ sγ (j)u ] =∑card (u)

x=1 qx minc j ∈Ĉ s ju [x] ≤
∑card (u)

x=1 qx ∗s0 = s0, and thus E[C] =
∑U

u=1 |Gu | ×E[minc j ∈Ĉ sγ (j)u ] ≤
n ∗ s0 = κ1. And we also havemaxθ ∈ϑ ‖

∑n
i=1 ∇fi (θ ) −

∑ |C |
j=1w j∇fγ (j)(θ )‖ ≤

∑n
i=1 minc j ∈C ‖∇fi (θ ) −

∇fγ (j)(θ )‖ ≤
∑n

i=1 minc j ∈C si j ≤ κ1. Then we can still apply Cauchy–Schwarz inequality [74] to
justify the convergence of the group-based method following the proof in Section 5.3.

7 Experiment

In this section, we sufficiently compare our proposed methods with multiple baselines on real
datasets to demonstrate our effectiveness and efficiency.

7.1 Experimental Settings

Dataset. We evaluate on six real-world datasets that are often used in the field of data imputa-
tion [40, 48, 52, 54], as shown in Table 1, where M denotes the number of attributes.
(1) Nursery [2] is a multi-classification task, which predicts “the level of recom-

mendation for whether a child goes to school”. There are five different levels, i.e.,
{not_recom, priority, recommend, spec_prior, very_recom}. (2) HR [20] is a binary classi-
fication task of “predicting whether an employee would change the job”. (3) Adult [3] is a binary
classification task that predicts “if the annual revenue of a people is over 50,000 dollars”. (4) Credit
[4] is a binary classification task that predicts “whether the loan will be deferred based on a person’s

economic situation”. (5) BikeShare [5] is a regression task that predicts “the number of bike sharing

in a given time”. (6) Air [6] is a regression task that predicts “the air quality at a certain time”. (7)

IMDB [50] refers to a dataset that predicts the rating (1–10) of movies, which contains the basic
information of movies, e.g., movie_id, title, production_year. (8) IMDB-Large [50] is the
large vision of IMDB, which contains 4,000,000 records with the same attributes.

For datasets (1)–(3) and (7)–(8), we follow existing works [41, 77, 78] to manually inject missing
values until the rate of missing tuples is 30%, and we will vary the percentage of incomplete tuples
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in Section 7.8. Datasets (4)–(6) already contain missing values. For all datasets, we randomly split
them for 80%/10%/10% as train/validation/test sets.
Evaluation metrics. We mainly evaluate the effectiveness and efficiency of GoodCore and base-
lines. For effectiveness, we use the prediction accuracy for the classification task and use the mean

square error (MSE =
∑N

i=1(yi−ŷi )
N

, where N denotes the size of test set) for the regression task.
For efficiency, we focus on the machine cost (i.e., the runtime of machine) as well as the human

cost (the number of tuples imputed by humans for human-involved methods). For datasets (1)–(3)
and (7)–(8), we have the ground truth of missing tuples, so we use them to simulate the human
imputation. For datasets (4)–(6), we leverage the expert to impute missing values in the coreset by
looking at the top-5 values recommended by the automatic method as a reference. Note that we
only involve humans when it is affordable. For baselines that require humans to impute a lot of
missing tuples (i.e., Complete and C(H(D)) as below), we will not apply them on datasets (4)–(6).
Baselines. We compare GoodCore and GoodCore + with a variety of baselines.
(1) Origin refers to just training on D.
(2) ActiveClean [48] is an iterative data cleaning framework, which estimates the impact of tuples
and prioritizes cleaning the tuples that greatly affect the model performance. In each iteration, it
can ask the human to clean a sample subset of tuples. We set the sample size to 50, same as the
article.
(3) BoostClean [49] is an automatic data cleaning method that iteratively selects a cleaning
method from several pre-defined algorithms, applies to the train dataset and updates the model.
We use MICE [68], MISSForest [73], GAIN [78] as pre-defined algorithms.
(4) Best-Auto uses MICE [68], MISSForest [73], GAIN [78] to respectively impute the train set
and selects the one that achieves the highest accuracy on the validation set.
(5) Complete is an ideal case that trains on the ground truth, i.e.,Dc . Note that only datasets (1)–(3)
have the ground truth to evaluate this baseline. Datasets (4)–(6) do not have the ground truth and
it is too expensive to ask the human to impute so many missing values.
(6) MixCore is a baseline that selects a coreset from all complete tuples, and then we randomly
select some incomplete tuples to impute. We set the number of incomplete tuples to be imputed
equal to that of other baselines for fair comparison. Finally, we train with the tuples in the coreset
plus the imputed ones.
(7) C(H(D)) first involves human to impute the dataset D and then selects a coreset. Similar to
Complete, only datasets (1)–(3) can be evaluated on it because they have the ground truth. The
coreset selection solution is the algorithm in [58], which is a greedy algorithm by modifying Al-
gorithm 1 without considering the possible worlds.
(8) C(A(D)) first uses automatic data imputation methods to impute the dataset D, and then selects
a coreset using the same method of baseline (7).
(9) H(C(D)) directly selects a coreset based on D and then asks human to impute the incomplete
tuples of the coreset.
(10) A(C(D)) also directly selects a coreset fromD, it then uses MICE [68] to impute the incomplete
tuples in the coreset.
Our solutions. We compare GoodCore and its variants.
(11) G(D,�H) uses GoodCore to select the coreset and iteratively asks human to impute incomplete
tuples (one tuple per human iteration) during the coreset selection process.
(12) G(D,�A) is similar to G(D,�H), but the automatic MICE method is used.
(13) G+(D,�H) uses group-based method to accelerate GoodCore, which selects the coreset and
iteratively asks human to impute incomplete tuples (one tuple per human iteration) during the
coreset selection process.
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Fig. 8. Effectiveness of different methods.

(14) G+(D,�A) is similar to G+(D,�H), but the automatic MICE method is used.
Besides, since the coreset of H(G(D)) (or A(G(D))) is too expensive to compute due to the large

number of possible worlds, we do not directly compare it with it. Instead, we will limit the number
of possible worlds of each tuple to 3 as discussed in Section 5.2 and evaluate in Section 7.5.
Hyper-parameter setting. We use SVM and linear regression as the default downstream model
for classification and regression tasks, respectively. We vary the downstream models in Section 7.8.
For model training, we use SGD and k-inverse decay scheduling, i.e., αk = α0/(1 + bk) (α0 and b
are hyper-parameters to be tuned independently for different methods). The sample size h is set to
200 as default and we vary the size in Section 7.8. The number of training epochs is set as 20. We
also impute the test data using the same method that is applied to the train data before testing.

7.2 Overall Evaluation

In this part, we compare GoodCore solutions with baselines. We use ρ = K
|D | to denote the propor-

tion of coreset to the entire train set. We set ρ = 0.005 for datasets (1)–(4), ρ = 0.001 for datasets
(5) and ρ = 0.0005 for larger datasets (6)–(8). We will further conduct evaluation by varying the
coreset size in Section 7.4.

7.2.1 Evaluation of Model Accuracy. The results are provided in Figure 8. To summa-
rize, the result could be generally ranked as G(D,�H)/C(H(D))/Complete > G(D,�A

)/BoostClean/Best − Auto > C(A(D)) > MixCore > ActiveClean > H(C(D))/A(C(D)) > Origin.
Next, we explain the results.

In general, on all datasets, our method G(D,�H), Complete and C(H(D)) perform the best.
Complete and C(H(D)) achieve a high accuracy because they ask the human to impute missing val-
ues accurately, but incur a high human cost. For example, Complete and C(H(D)) achieve accuracy
of 71.9% and 71.7% on Adult. G(D,�H) is competitive with them because it selects a good coreset
that can well represent the unknown ground truth via gradient approximation. In addition, we can
observe that G(D,�H) performs better than G(D,�A) because human imputation is more accu-
rate than automatic methods. For example, on Adult, G(D,�H) has an accuracy of 71.7%, while
G(D,�A) and others are below 68%. G(D,�A), BoostClean and Best-Auto have competitive
performance on accuracy. BoostClean and Best-Auto can have a not bad performance because
they impute all tuples and train on the entire dataset, but they cannot achieve efficient training
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Fig. 9. Efficiency of different methods. Note that only machine cost (i.e., runtime of machine) is considered.

(see 7.2.2). But we can train on the much smaller coreset generated by G(D,�A) with a good accu-
racy, because GoodCore considers the possible repairs to derive the coreset that can approximate
the full gradient of the entire dataset. Given the same number of tuples to be imputed by human,
G(D,�H) also outperforms ActiveClean because we have theoretical guarantees on the gradient
approximation. For other baselines, H(C(D)) and A(C(D)) do not perform well because they select
the coreset from an incomplete dataset. C(A(D)) cannot achieve a good performance because the
selected coreset can not well represent the complete entire dataset, as it does not consider possible
repairs as our method. MixCore does not perform well (e.g., 65.2% on Adult) because G(D,�H)
and G(D,�A) select a better coreset considering the full data. For Origin, on Adult, the model
has an accuracy of 61.3% because of the incomplete tuples.

7.2.2 Evaluation of the Efficiency. We evaluate the efficiency of all methods, including the ma-
chine cost and human cost.
Machine cost. Machine cost is shown in Figure 9. The results could be ranked as
H(C(D))/A(C(D))/G(D,�H)/G(D,�A)/C(H(D))/MixCore < C(A(D)) < Complete < Origin <
ActiveClean < BoostClean/Best − Auto. We can observe that the first five methods in the rank-
ing have low machine cost, mainly because they train based on the selected coreset and do not
need iterative training. G(D,�H) and G(D,�A) are slightly slower because they need to iterate
several possible repairs during the process of coreset selection. But G(D,�H) is still more efficient
than Origin, Complete, BoostClean , and Best-Auto by more than one order of magnitude, be-
cause they need to train on the entire training data. Moreover, ActiveClean and BoostClean are
not efficient either because they incorporate multiple training times, so as to estimate the gradi-
ent while data imputation. Best-Auto is slow because training multiple imputation models takes
time.
Human cost. In terms of the human cost, C(H(D)), H(C(D)), G(D,�H) and ActiveClean involve
human. As shown in Table 2, C(H(D)) is very expensive because it asks the human to impute
all missing tuples. For example, on datset Adult, 10,752 tuples have to be imputed. We do not
compare Credit , BikeShare and Air for C(H(D)) because they do not have the ground truth. But
H(C(D)) and G(D,�H) are cost-effective because human just needs to impute missing tuples in the
much smaller coreset. For example, they only cost 81 and 63 tuples on dataset Adult, respectively.
ActiveClean asks the human to iteratively impute the data. Given the same number of tuples to
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Table 2. Human Cost of Different Methods

Dataset G+(D,�H) G(D,�H) H(C(D)) C(H(D))
Nursery 35 37 22 3,218

HR 48 44 32 5,475

Adult 60 63 81 10,752

Credit 57 52 67 -

BikeShare 35 38 25 -

Air 100 98 102 -

IMDB 215 220 230 331,189

IMDB-Large 520 511 530 1,312,908
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Fig. 10. Effectiveness of G vs. G+.

impute, our method can achieve much higher accuracy. We will evaluate it in details in the next
subsection.
Summary. Based on the results, we have the following conclusions. (1) Our proposed methods
G(D,�H) and G(D,�A) can achieve high model accuracy because the selected coreset can well
represent the underlying ground truth by gradient approximation considering possible repairs.
Meanwhile, they are practical because of the low machine cost. (2) Compared with C(H(D)) that
involves human to impute the entire dataset D, the human cost of G(D,�H) is much lower, as
observed in Table 2, e.g., 37 vs. 3, 278 on the Nursery dataset. Thus, we can choose G(D,�H)
when we want to achieve high model accuracy and afford a certain human cost. (3) If we neither
care very much about the accuracy nor consider to incur human cost, the much more efficient
G(D,�A) is a good choice.

7.3 Evaluation of GoodCore+

In this part, we evaluate the efficacy of GoodCore+.

7.3.1 Evaluation of Model Accuracy. The results are provided in Figure 10. We can found that the
accuracy of GoodCore+ and GoodCore are roughly the same on all datasets. For example, on dataset
IMDB-Large, G+(D,�H)and G(D,�H) achieve accuracy of 74.7% and 74.9% and they differ from
each other by 0.2%. This is because both of them select a good coreset because of a bounded GA
error. In addition, we can observe that G+(D,�H) performs better than G+(D,�A) because human
imputation is more accurate than automatic methods. For example, on IMDB-Large, G+(D,�H) has
an accuracy of 74.7%, higher than that of G(D,�A).
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Fig. 11. Efficiency of G vs. G+. Note that only machine cost (i.e., runtime of machine) is considered.

7.3.2 Evaluation of the Efficiency. We evaluate the efficiency of GoodCore+ and GoodCore, in-
cluding the machine cost and human cost.
Machine cost. Machine cost is shown in Figure 11. GoodCore+ is more efficient than GoodCore.
For example, on IMDB-Large, G+(D,�H) spends about 12min, which is 4.8× faster than G(D,�H).
That is because G+(D,�H) have the lower time complexity than G(D,�H), which is discussed in
Section 6.3.2.
Human cost. In terms of the human cost, as shown in Table 2, G+(D,�H) and G(D,�H) are
cost-effective because humans just need to impute missing tuples in a much smaller coreset. For
example, they only cost 520 and 511 tuples on dataset IMDB-Large, respectively.
Summary. Based on the results, we have the following conclusions. (1) Although we group tuples
over the entire train set, our proposed methods G+(D,�H) and G+(D,�A) still achieve high ac-
curacy because the gradient approximation error can still be bounded. (2) The efficiency is much
improved compared with GoodCore because we just need to iterate these groups rather than the
entire train set within the 3-loop coreset selection process. (3) The human cost is competitive with
G(D,�H) because the group-based solution has low impact on the number of tuples to be imputed
by humans.

7.4 Coreset Size Selection of GoodCore

Recap that GoodCore needs the user-specified coreset size as input. Thus, we discuss how to select
an appropriate coreset size. We adopt a simple yet effective solution that starts from a coreset with
a small size, train over it and evaluate via a validation set, enlarge the coreset and iteratively train
until the performance does not improve much. To be specific, initially, we begin with ρ = 10−4, and
enlarge the coreset by 2 times iteratively. If the performance on validation set varies no more than
0.5% within three successive iterations, we will stop. Figure 12 shows the performance on dataset
HR , Adult, and BikeShare when varying the coreset size. We can see that the performance first
improves rapidly, then remains stable just after several iterations. For example, on dataset Adult,
when ρ = 5×10−3, the accuracy has improved to 72.85% on the validation set. Empirically, an ideal
coreset size is between ρ = 10−3 to 10−2.
Summary. The results show that coreset size is not difficult to determine. If the user is willing to
specify a coreset size like in Section 7.2 based on the empirical finding, we can directly compute
a coreset without training. If she cannot, we can also get a good coreset with just several training
iterations over small coresets, which is also efficient.
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Fig. 12. Coreset size selection of GoodCore.

Fig. 13. Varying missing tuple rate. Fig. 14. Varying missing value rate.

Compare with ActiveClean. Figure 12 also reports an interesting comparison with ActiveClean.
Specifically, in ActiveClean, we use the coreset size K as the budget, i.e., number of tuples to be
imputed by human in each active cleaning iteration. We can observe that at the beginning, when
the coreset size is very small, ActiveClean is better because it trains with the entire dataset includ-
ing the imputed tuples, while we train the model using only a few tuples in the coreset. However,
as with the increase of the coreset size, we can see that G(D,�H) outperforms ActiveClean. This
is because ActiveClean uses a heuristic method to estimate the impact of tuples to the overall
gradient, which is not theoretically bounded (e.g., with gradient bounds like Coreset) and thus not
accurate enough. For G(D,�H), it can achieve high accuracy with a proper coreset size, which is
not large.

7.5 Batch Algorithm of GoodCore and GoodCore+

In Sections 7.2 and 7.3, G(D,�H) and G+(D,�H) outperform other baselines on accuracy, but
require many human iterations. In this part, we evaluate the batch algorithm of GoodCore and
GoodCore+ by varying the batch size b, i.e., Algorithm 3 to reduce the number of iterations. Intu-
itively, the algorithm is G(D,�H) when b = 1. Then we increase b until a single batch with a size b
can contain all incomplete tuples in the coreset with sizeK , which is in fact the algorithm H(G(D)).
Due to the large number of possible worlds, we adopt the heuristic method in Section 5.2 to set
l = 3 when b > 1 for GoodCore and we set l = 3, lд = 3 for GoodCore + according to Section 6.3.2.

In Figure 15, the x-axis denotes the batch size and the y-axis denotes the test performance on
dataset Adult and IMDB-Large. We can see that when b is small (i.e., b ≤ 5), the performance
does not significantly decrease (e.g., on IMDB-Large, the accuracy decreases from 71.5% to 70.9%
with G(D,�H)). However, when b keeps increasing, the performance slightly decreases. Thus,
GoodCore and GoodCore + are not very sensitive to the batch size b and we can reduce the number
of human iterations without sacrificing much model performance.

In this part, we also vary the number of possible worlds by varying l , which is the number of
possibles world per tuple. The larger l , the larger number of possible worlds we have. The results
are shown in Figures 16 and 17. In terms of the accuracy, we can see that with l increasing (fixing
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Fig. 16. Effectiveness of GoodCore
when varying l .

Fig. 17. Efficiency of GoodCore
when varying l .
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Fig. 18. Varying Hyperparameters in LSH and Quantization-based Method.

Table 3. The Number of Possible Worlds

on Different Datasets

Method Nursery HR Adult

H(G(D)) 10201 10201 10202

A(G(D)) 10201 10201 10202

G(D,�H) 103 103 104

G(D,�A) 103 103 104

b = 10), the accuracy increases first and then remains stable soon, but the time keeps increasing
because more possible worlds indicate more computation. Hence, we do not need a large l .

When it comes to the number of possible worlds, we would like to clarify that we do not compare
with H(G(D)) and A(G(D)) because the number of possible worlds of D is very large, which is
infeasible to compute. We show the number in Table 3, where we also report the numbers of
possible worlds of G(D,�H) and G(D,�A) in each iteration, which are practical to compute.

7.6 Ablation Studies of GoodCore+

Hyperparameters for grouping. We use LSH to effectively group the entire dataset and test the
impact of different numbers of hyperplanes, which is an important parameter in LSH. As shown in
Figure 18 (a), as the number increases, more groups are generated and the tuples within each group
become closer, resulting in an increase in initial accuracy. Afterward, the accuracy remains stable
because the tuples in each cluster are similar enough to approximate the gradient. Therefore, based
on experience, using 64 hyperplanes is the most suitable, as more groups will reduce efficiency.
Hyperparameters in quantization-based method. In Section 6.3.2, we use quantization-based
method to estimate the upper bound ŝju of s ju . Recap that GoodCore+ needs the user-specified
cluster centers sizeR, which is important for computing the maximum feature distances. To choose
a proper R, we adopt a simple yet effective solution that selects different R and obtains different
coresets. Then we train over these coresets and evaluate via a validation set to get different results.
Specifically, we select R from 32 to 512 for each dataset. Figure 18 (b) shows the performance on
dataset HR and IMDB-Large when varying the cluster centers size R. We can see that as R increases,
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Fig. 22. Loss of GoodCore.

the accuracy of the dataset also gradually increases, because when R increases, the upper bound
ŝju is closer to s ju , which can help us to select a good coreset.

We also tested the performance of different feature segmentation methods (corresponding to
different M). In Figure 18 (c)–(d), the initial M = 12 indicates that in each subspace, the length of
all sub-vectors is 1. As M decreases, the accuracy first improves because each sub-vector becomes
longer, containing more information when adding these ŝz

ju , resulting in more accurate boundaries.

But if each sub-vector is too long, which means that each vector is quantized into a very short
code, the accuracy will decrease because in this case, the quantization based method does not
have enough information to give accurate distance estimates. Based on experience, when M is
around 3, it is always a good choice.
Varying the entropy threshold. In this part, we start to use the entropy to further eliminate
the number of possible worlds by imputing the missing cells with low entropy in advance, as
discussed in Section 6.3.1. Specifically, we test the impact of different entropy thresholds. As shown
in Figure 19 and Figure 20, when the threshold is less than 20% (i.e., we directly impute the cell if
its corresponding entropy is no larger than 20% lognx ), the accuracy almost remains unchanged,
while the efficiency is improved by almost 30%. However, when the threshold exceeds 20%, the
accuracy begins to decrease because in this situation, directly imputing a value is not accurate
enough. In short, setting an appropriate threshold (e.g., 20%) is helpful to improve the efficiency
without sacrificing the accuracy.

7.7 Convergence Evaluation

In Section 5.3, we have shown the convergence rate of GoodCore theoretically. In this part, we test
the convergence of training over the coreset (G(D,�H)) and entire data (Complete) empirically.
Figure 21 shows the test accuracy of two methods with the number of training iterations increasing.
We can observe that on both datasets, training on the coreset converges much faster than training
on the full data.

For example, on dataset Adult, it takes ∼40 iterations for GoodCore to converge, which is 180×
faster than Complete. This is because GoodCore has the same convergence rate with training
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Fig. 25. Varying sample size.
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Fig. 26. Varying downstream model.

over the entire dataset as discussed in the theoretical result of Section 5.3, but the entire dataset
(e.g., Adult) is 200× (similar to 180×) larger than the coreset (ρ = 0.005). That is, GoodCore con-
verges with the same number of epochs as training on the entire dataset. Since the size of coreset
is much smaller, GoodCore is more efficient. Also, we can achieve competitive accuracy as training
on full data by approximating the full gradient with a theoretical bound.

Furthermore, we report the loss change to reflect the relation between actual convergence rate
and theoretical results. In Figure 22, on dataset HR , the initial loss is 8.4. According to the theoretical
convergence rate O( 1√

k
) (this k denotes the kth epoch), the loss should decrease to around 3.8 at

the end of 5-th epoch (≈ 3,200-th iteration). Actually, the actual loss decreases to 3.25 at that time,
which is close to the theoretical value.

We also test the convergence of GoodCore+, as shown in Figures 23 and 24. The results validate
that the group-based method can also converge fast.

7.8 Sensitivity Analysis

Varying the sample size. In this part, we vary the sample size h and evaluate the performance.
The experimental results are shown in Figure 25. We vary the sample size h from 22 to 210. We can
see that when h is too small, the performance is low. The reason is that GoodCore cannot precisely
estimate the utilities of tuples when h is small. When the sample size increases, we can see that
the performance improves rapidly and finally becomes stable, which indicates that GoodCore is
not much sensitive to the sample size when h is not too small.
Varying the downstream models. Recap that GoodCore can be used on different convex models.
Thus, in this part, we apply GoodCore on different convex models and evaluate the performance.
We evaluate logistic regression and SVM for classification tasks. For regression tasks, we evaluate
linear regression, ridge regression and SVM regression. We can see that in Figure 26 (a) and (b),
on dataset Adult, G(D,�H) achieved 71.7% accuracy for SVM, better than on logistic regression
(69.4%). Although different downstream models may have different performance, GoodCore can im-
prove the model performance for the specific downstream model. In order to show that GoodCore
can be used for other types of models like neural networks, we compare with Multilayer Percep-
tron (MLP, fully connected networks of two hidden layers with 256 nodes for each layer), although
GoodCore does not hold theoretical guarantee for this non-convex model. As shown in Figure 26,
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we can see that MLP achieves almost the same performance as the ground truth. This is because
the coreset selected by GoodCore can also represent the full dataset. However, in Figure 26(c), on
a large dataset Air (with metric MSE, the lower the better), neural network based methods (we
also implement RNN, 2 hidden layers with 128 nodes for each layer) can have a better accuracy
but the coreset cannot perfectly achieve the same performance. This may be because this large
dataset has more informative things to learn, and it is hard for the coreset-based solution to well
represent the dataset without the theoretical guarantee.
Varying the percentage of incomplete tuples. In this part, we vary the rate of missing tuples
and evaluate the performance, as shown in Figure 13. Note that the rate denotes the percentage
of incomplete tuples rather than the cell values. Even if a tuple just has one missing attribute, it is
regarded as incomplete. We vary the percentage from 20% to 100%. We can observe that the perfor-
mance does not decrease much with the percentage increasing from 20% to 50%, which indicates
that GoodCore is not very sensitive to the percentage of incomplete tuples in this range. After that,
the accuracy decreases because there are more missing tuples.

Besides, we also vary the rate of missing cell values in Figure 14. In this scenario, for example,
50% missing values of a dataset indicates more number of missing cell values than the scenario of
50% missing tuples. Hence, we can see that the accuracy decreases more quickly than Figure 13.

8 Related Work

Task-agnostic incomplete data imputation. Data imputation has been widely studied for years.
Existing methods can be divided into two categories: statistic-based methods and learning-based
methods. The former one always uses the statistic information [33, 55] (like mean, median or
mode) to impute the missing values. Also, some methods compute the similarity of the incomplete
tuples to the complete tuples and use the most similar one to impute the missing values [9, 39, 75].
Recently, to improve the imputation accuracy, many learning-based methods focus on how to use
ML to learn the data distribution (e.g., MissForest imputation [73], MICE [68], and IIM [79]), and
then use the trained model to predict the missing values. Besides traditional ML models, some deep
learning models are also used for data imputation (e.g., autoencoder [35, 56, 63] and GANs [72, 78]).
Coreset selection. A previous work [21] has studied how to select a well-performed coreset over
incomplete tuples. Another work [23] studies to use group-based method to accelerate the core-
set selection process without incomplete data. The extension to the previous studies in this work
is five-fold. First, we propose a new framework that incorporates the group-based strategy into
the coreset selection process with incomplete data. Second, we theoretically analyze that incorpo-
rating the group-based strategy still leads to a bounded GA error, considering the possible worlds
produced by the incomplete data. Third, given these groups, the number of possible worlds further
increases, more strategies are proposed to reduce the number of possible worlds to improve the effi-
ciency. Fourth, we theoretically and empirically prove that incorporating the group-based method
still guarantees the convergence. Fifth, two large datasets and ten new experiments are added to
demonstrate the efficacy of our proposed methods. In addition, Huang et al. [38] studied how to
compute and continuously update the coreset while training, but it is rather time-consuming be-
cause of the training process. To solve this problem, works [17, 18] selected the coreset without
training in advance, but they can only be customized to particular model types, respectively. Some
works [7, 24, 69, 71] study how to select a subset of data only considering the data distribution
rather than the model performance. Gradient-based methods [46, 58, 60, 76] focused on selecting
the coreset to approximate the full gradient without training in advance for multiple model types,
which is regarded as an optimization problem as discussed in Section 2.2. Moreover, Deng et al. [29]
choose an optimal coreset under label uncertainty, particularly when encountering a deep learn-
ing training set that contains mislabeled data. Coreset selection can also be formulated as a bilevel
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optimization problem [15, 43, 45], where the outer objective involves choosing a subset and the
inner objective entails optimizing model parameters on the subset, the ultimate goal is to select a
subset such that the model empirical risk on this subset approximates that of the model trained on
the complete dataset. However, it is rather time-consuming because it requires solving an inner
optimization problem during each outer iteration.

In short, none of the above methods except [21] consider coreset selection over incomplete data.
Data cleaning for ML. Recently, there have been several works that clean the data to optimize
the ML model. In contrast to the above discussion about task-agnostic incomplete data imputation,
data cleaning for ML is task-aware, which triggers new technical challenges. SampleClean [47] fo-
cuses on cleaning selected samples, so as to answer SQL aggregate queries more efficiently, but
it is not for any model. CPClean [40] proposes certain prediction to impute missing data for opti-
mizing ML models. Different from us, it is customized to nearest neighbor classifiers rather than
convex models solved by the gradient descent algorithm. BoostClean [49] regards data cleaning as
a boosting problem that iteratively selects from a predefined set of cleaning algorithms, so as to
continuously maximize the accuracy of a validation set with training iteratively. MisDetect [27]
and IDE [30] focus on detecting mislabeled data instances using early loss signals and influence
functions. Closer to our work is ActiveClean [48], which progressively cleans the data tuples that
are likely to much influence the model measured by the gradients. Different from us, given a bud-
get K , we can select the coreset without training, but ActiveClean needs to train iteratively and
label a set of validation dataset. We empirically show that our method outperforms ActiveClean
on model accuracy and efficiency in Section 7.
Data preparation for ML. Recent studies have concentrated on enhancing data preparation
within the ML field. LakeBench [28] provides a benchmark for discovering joinable and union-
able tables, while LakeCompass [19] offers a comprehensive system for data search and improves
ML model performance. Conversely, STAIR [31] presents a technique for summarizing outliers
through interpretable rules, which improves the management of dataset anomalies. Together, these
works advance the effectiveness and clarity of data preparation for ML.

9 Conclusion

In this article, we propose the GoodCore framework to select a good coreset over the incomplete
data, which achieves data-effective and data-efficient ML. We formulate it as an expected optimal
coreset selection problem, which is NP-hard. Then we propose a greedy algorithm with an ap-
proximation ratio. We also propose to involve imputation-in-the-loop strategies into GoodCore to
improve the efficiency. Furthermore, a group-based acceleration method is incorporated to further
accelerate the coreset selection process. We conduct experiments on real-world datasets to verify
the effectiveness and efficiency of GoodCore and GoodCore+.
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