
Unify: An Unstructured Data Analytics System
Jiayi Wang

Tsinghua University
jiayi-wa20@mails.tsinghua.edu.cn

Guoliang Li
Tsinghua University

liguoliang@tsinghua.edu.cn

Jianhua Feng
Tsinghua University

fengjh@tsinghua.edu.cn

Abstract—Despite unstructured data constituting over 80% of
the information available today, no specialized analytics system
currently exists to process this type of data. The lack of a
predefined schema in unstructured data renders traditional struc-
tured query languages, such as SQL, unsuitable for unstructured
data analytics. A seemingly straightforward solution is to utilize
natural language for crafting queries, thereby making analytics
more accessible to users without technical expertise. However,
understanding and executing queries posed in natural language
presents significant challenges. A brute-force approach involves
relying on users to manually derive solutions, tapping into their
knowledge and experience. However, this method of generating
query plans by human intervention is neither scalable nor
efficient. Therefore, a pertinent question arises: how can we
automate unstructured data analytics?

To address these challenges, this paper introduces Unify, an
innovative system leveraging the capabilities of large language
models (LLMs) to automatically generate, optimize, and execute
query plans for unstructured data analytics, where queries are
articulated in natural language. Unify initializes by defining
common operators used in unstructured data analytics and
creates both pre-programmed implementations and LLM-based
implementations for physically executing these operators. It then
guides LLMs to devise logical plans by methodically deconstruct-
ing queries into smaller steps, ensuring accurate logic by aligning
with suitable operators. For translating a logical plan into an
optimal physical plan, we further introduce a technique for
physical plan optimization that employs a semantic cost model
alongside semantic cardinality estimation. Comprehensive tests
conducted on real-world datasets demonstrate that Unify can
expedite query processing by up to 40×, while preserving high
accuracy, thus positioning Unify as an effective tool for large-
scale unstructured data analytics.

Index Terms—data analytics, unstructured data.

I. INTRODUCTION

Unstructured data, such as text, PDFs, videos, and audio,
accounts for over 80% of the information available today [21].
This type of data is prevalent across various domains, includ-
ing social media, healthcare, and legal documentation, and
harbors significant potential for insight extraction. However,
in contrast to structured data that easily aligns with tables
and predefined schemas, unstructured data does not have
a specific structure, thereby posing challenges for analysis
using conventional methods. Therefore, the need for innovative
approaches in unstructured data analytics is critical.

The first obstacle lies in expressing the objective of un-
structured data analytics, particularly in crafting the query.
Given the absence of a schema in unstructured data, traditional
structured queries, such as SQL, are not applicable. A logical
strategy uses natural language for formulating queries, making

them compatible with unstructured data and more user-friendly
for users without technical expertise.

For example, consider a scenario of analyzing a collection of
Web pages from “Sports Stack Exchange”, and an analytical
query, “Among questions with over 500 views, which sport
involving a ball has the highest ratio of number of injury-
related questions to number of training-related questions?”
This example illustrates that natural language queries specify
the desired outcome without detailing how to attain it.

However, the second obstacle is how to execute the query,
because answering the query necessitates a sophisticated rea-
soning process. For instance, a possible plan of answering this
query involves filtering documents (e.g., excluding non-ball
sports, selecting questions with more than 500 views), group-
ing documents by extracted sports, filtering injury-related and
training-related questions for computing the ratio for each
group, and then comparing these ratios to determine which
sport has the highest ratio. A natural strategy to answer this
query involves allowing users to manually create execution
plans, relying on them to craft solutions based on their
expertise and knowledge.

Nevertheless, relying on humans to create query plans is
neither scalable nor efficient. Therefore, a pertinent question
arises: how can we make this process automatic?
Central Problem. The central problem we aim to address is:
Given a collection of unstructured data and an analytics query
formulated in natural language, is it possible to automatically
generate an optimized execution plan for this query that can
be executed efficiently to produce accurate results?

Fortunately, large language models (LLMs) [33], [26] have
gained recognition as promising instruments owing to their
impressive capabilities in semantic comprehension. They excel
in interpreting natural language and reasoning, allowing us to
use them to generate an execution plan for a given query.
Key Idea. Our core idea stems from the insight that execution
plans for unstructured data analytics, as crafted by humans,
are methodically structured assemblies incorporating standard
predefined operators (e.g., filter, selection, count, comparison).
Therefore, our initial step involves identifying and predefining
these common operators. Upon receiving a query, we proceed
to construct the execution plan by systematically matching
segments of the query with the most relevant operators. This
iterative process breaks down the query into increasingly
refined smaller, more manageable sub-queries, until it is fully
composed of predefined operators. Throughout this iterative
process, we generate a series of potential execution plans,

subsequently refining them to enhance both accuracy and
efficiency. This meticulous optimization leads to the selection
of the most effective execution plan for implementation.
Challenges. However, answering unstructured data analytics
queries faces the following challenges:
C1. Plan Accuracy. Accurately answering these queries re-
quires complex multi-step reasoning. For instance, as demon-
strated in the previous example, it entails the integration
of diverse filtering, grouping, and aggregation operations,
with the planning process heavily dependent on a semantic
comprehension of the query. Yet, contemporary LLMs face
difficulties in formulating precise and complex plans for such
tasks. Consequently, the first challenge lies in devising a
logical workflow for a given query that accurately mirrors the
required reasoning to yield correct responses.
C2. Plan Efficiency. LLMs are computationally expensive,
especially for large input sizes. The inefficiency is com-
pounded by repeated invocations of LLMs, leading to sub-
stantial computational overhead. Moreover, the interdependen-
cies among operators within the plan typically necessitate
sequential execution, which further decelerates the process.
Therefore, optimizing the generation of plans to minimize the
total execution time represents the second challenge.
Our Approach. We propose Unify, the first system for
unstructured data analytics in natural language. Our method
consists of three key steps: generating logical plans that ensure
correct reasoning, transforming logical plans into optimized
and efficient physical plans, and executing the plans to com-
pute the final answer.
Logical Plan Generation. Unlike traditional logical plan gen-
eration in databases, which mandates that queries strictly ad-
here to specific syntactic and semantic requirements, ensuring
operators within the query precisely align with predefined
operators, our system introduces a more flexible approach. It
operates without stringent syntactic and semantic constraints,
allowing for operators in the query to semantically correspond
with predefined operators, albeit not always exactly. This flex-
ibility, however, introduces complexity, making the accurate
generation of logical plans a challenging endeavor. To address
this challenge (for C1), the query is decomposed iteratively,
breaking it down operator by operator. This process involves
aligning the query with predefined operators to progressively
reduce its complexity. In each iteration, the most suitable
operator is selected to refine the query through a two-step
strategy. This decomposition continues until the query is fully
decomposed, and the sequence of matched operators constructs
a logical plan capable of effectively addressing the query. The
first step uses a semantic embedding similarity check to filter
out operators deemed irrelevant. The second step instructs an
LLM to re-rank the remaining operators, prioritizing them
according to their relevance to the query.
Physical Plan Generation. Different from traditional query
optimization in databases, where a cost model and statistical
cardinality estimation built over structured data are employed,
unstructured data presents more challenges. In structured
environments, cost estimation relies on predefined statistical

models, such as histograms, to estimate cardinalities. How-
ever, these methods are not applicable to unstructured data,
which involve more complex operators dealing with semantic
information. For example, cardinality estimation for semantic
queries cannot depend on purely statistical techniques, as they
must account for the content-based relationships within the
data. To address this challenge and generate efficient physical
plans for execution (for C2), we analyze the operators for
unstructured data and design a cost model tailored for unstruc-
tured data analytics operators. Besides, to provide accurate
cost estimation, we formally define the problem of cardinality
estimation over unstructured data and propose an importance-
sampling-based method that leverages the semantic relevance
of data and query in the embedding space. This technique
allows us to predict the size of intermediate results at various
steps of the plan, thus enabling a suitable ordering of operators
based on the expected cost and selecting the most appropriate
physical implementations for each operator. In this way, we
can ultimately choose the physical plan that offers the highest
expected accuracy and performance.
Contributions. Overall, we make the following contributions.
(1) We propose Unify, the first system for automatic query
plan generation and execution for supporting natural language
analytics over unstructured data.
(2) We propose a logical plan generation algorithm that
constructs logical plans capable of solving complex queries
through correct logical reasoning.
(3) We propose physical plan optimization techniques to
transform logical plans into efficient physical plans, based on
a novel cost model and semantic cardinality estimation.
(4) We evaluate our system Unify on real-world benchmarks
for unstructured data analytics, demonstrating that Unify

generates optimized plans and reduces execution time by up
to 40×, while achieving high analytics accuracy.

II. PRELIMINARY

A. Problem Definition

Problem Formulation. Given a document collection consist-
ing of N documents and a natural language (NL) analytics
query, the objective is to answer the query based on these un-
structured documents. The brute-force method involves experts
manually converting the query into an execution plan and then
executing this plan on the documents. We aim to automate this
process, targeting both high accuracy and low latency.
Supported Data Types. We assume that documents have
been pre-processed into plain text, enabling us to sidestep
issues related to document formatting and concentrate on the
complexities of unstructured data analytics.
Supported Query Types. We support a wide range of NL
analytical queries. These queries enable operations analogous
to SQL, such as selection, projection, and aggregation of
documents. Beyond traditional SQL-like capabilities, Unify
incorporates advanced semantic functions, e.g., semantic filter-
ing and grouping. This combination of both conventional and
semantic features empowers users to derive deeper insights.

TABLE I
COMPARISON BETWEEN CONVENTIONAL RELATIONAL DATABASES FOR STRUCTURED DATA AND Unify FOR UNSTRUCTURED DATA.

Key Components Conventional Relational Databases (Structured Data Analytics) Unify (Unstructured Data Analytics)
Logical Operators Limited to structured operations (e.g., select, projection, join, aggregate) Both structured and semantic operators (e.g., semantic filtering, extraction, and other LLM-driven operations)
Physical Operators Programmed function based implementation Both pre-programmed implementations and LLM-based implementation
Logical Plan Generation Map SQL queries with rigid schema and strict syntactic into operators Break down natural language queries, without a schema, to semantically aligned operators step by step
Physical Plan Generation Cost model for predefined functions with statistical cardinality estimation Cost model for both pre-programmed and LLM-based implementations with semantic cardinality estimation
Query Execution Execute predefined operators sequentially following the plan Interactive execution with dynamic replanning based on intermediate results
Optimization Strategy Fixed query optimization rules and cost models for structured data Adaptive optimization with semantic reasoning and LLM feedback

B. Related Work

Unstructured Document Analytics. Recent advancements in
large language models (LLMs) have greatly expanded the
potential for exploiting the value of large and complex un-
structured data [24], [27], [22], [21], [9], [35], [8]. LOTUS [27]
enables semantic queries across both structured and unstruc-
tured data by converting unstructured data into tables using
LLMs. However, it still requires manually written pandas-
like code to orchestrate the analytical pipeline. ZENDB [21]
indexes templatized documents by leveraging their inherent
text structures, but its reliance on document templates limits
flexibility for general document formats. DocETL [32] opti-
mizes complex document processing pipelines using LLM-
powered agents to automatically rewrite and evaluate pipelines
for improved accuracy through rewrite directives and sub-
plan optimization. However, the optimization process can be
computationally expensive and time-consuming, particularly
for large datasets, due to the need for extensive LLM calls
and validation steps. Evaporate [9] extracts tables from
documents by LLM-generated code and synthesized rules,
yet analysis still requires SQL queries, constraining semantic
analytics on the original unstructured data. PALIMPZEST [22]
optimizes both logical and physical plans for large-scale tasks
like information extraction and multimodal analytics, but it
relies on user-defined schemas and logical plans. Contrary to
these approaches, Unify eliminates the need for predefined
document structures or user-written code, allowing users to
perform analytics directly through natural language queries.
Retrieval Augmented Generation (RAG). RAG amplifies
the knowledge of LLMs for answering queries by retrieving
semantically relevant information from a text corpus [14], [36],
[10]. Both RAG and Unify involve retrieving information
from unstructured data. However, RAG is limited to point
lookups [27], assuming that a query can be answered by re-
turning relevant documents. This assumption does not hold for
unstructured data analytics, which requires handling complex
patterns, such as aggregating across multiple documents and
performing sophisticated reasoning over intermediate results.
NL2SQL. NL2SQL translates natural language (NL) queries
into structured SQL queries for executing data analytics over
relational databases [20], [23], [34]. Both NL2SQL systems
and Unify take the NL query as input, but NL2SQL adheres
to strict syntactic and schema requirements of databases. This
enables NL2SQL methods to break down the SQL generation
into sub-tasks aligned with these constraints [13], [29]. In
contrast, Unify poses additional challenges due to the absence
of well-defined structural boundaries.

III. Unify FRAMEWORK

The Unify framework, illustrated in Figure 1, consists of
three key components. First, Unify pre-processes the un-
structured data and operators offline for answering queries
efficiently (Section III-A). Then, given a query, Unify auto-
matically generates and refines an execution plan to answer the
query both accurately and efficiently (Section III-B). Lastly,
Unify judiciously executes the optimized plan to ensure high
performance and robustness (Section III-C).

A. Preprocessing

Before executing a query, Unify indexes both operators and
unstructured data to ensure efficient planning and execution.
Operators. Unify utilizes a set of manually defined operators,
which are frequently used in unstructured data analytics,
such as Filter, Extract, Compare, and support adding
new operators to handle uncovered cases. Each operator has
a predefined input, output, and execution specification. For
example, the Filter operator takes a list of documents as
input and outputs only those that meet a specified condition,
such as “2000 ≤ MovieMade ≤ 2010”. To align operators
with natural language, we establish logical representations for
usage patterns of each operator, describing its functionality in
natural language.

Definition 1 (Logical Representation): A logical represen-
tation is a structured natural language expression template de-
signed to encapsulate the semantic essence of NL expressions.
It abstracts essential elements into placeholders, such as Entity,
Condition, etc., each denoting distinct semantic roles.

For instance, the logical representation “[Entity] that [Con-
dition]” for the Filter operator can match phrases like
“Movies that were made in the 2000s” or “Movies that were
produced between 2000 and 2010.” This flexible representa-
tion allows Unify to identify operators involved in a query,
regardless of the specific condition or phrasing. Note that
each operator may have multiple logical representations. For
instance, the Filter operator has multiple logical represen-
tations such as “[Entity] having [Condition]”, “[Entity] that
satisfies [Condition]”, etc.

Additionally, each operator can have one or more physical
implementations of two categories: pre-programmed imple-
mentations and LLM-based implementations. For instance,
the aforementioned Filter operator could be implemented
by filtering documents with keyword-matching functions or
processing each document by prompting an LLM to evaluate
whether it meets the filtering criteria.

Among questions with over 500 views, which sport
involving a ball has the highest ratio of number of injury-
related questions to number of training-related questions?

involving a ball

with over 500 views involving a ball

with over 500 views
Filter

Filter

Filter

Filter
or?

Query

Semantic Parsing Current PlanMatched Logical
Representation (LR)

 [Entity] satisfy [Condition]

How many [Entity] are [Condition]

1
2
3

1
3

LLM Re-rank Reduced Query

Filter

Scan

 [Entity] that [Condition]

Logical Plan Generation (Section Ⅴ)

Physical Plan Generation (Section Ⅵ)

Plan Execution (Section Ⅲ-C)

Football
Answer

Physical PlanLogical Plan

Executed by
LLM
Executed by
Pre-programed
Implementation

Matching After Decomposition

Logical Plan

Physical Optimization
Operator Order Selection Physical Operator Selection

Cost Model Semantic Cardinality Estimation

Linear Scan

Index Scan

Scan

?

?
Based on cost model

Interactive Execution

2

Plan
Selection

Among questions with over 500 views, …
Rewrite as the
matched LR

 [Entity] satisfy [Condition]

Questions satisfy having over 500 views, …Semantic Filter

Linear Scan

…
Obtain Operator Input

Current Query:
Operator being

executed

Execute Operators in Topological Order

Matched LR:

Plan Adjustment
Meet Unexpected Outcome

Continue Execute

1

2

Determine Operator Input

Otherwise

Preprocessing (Section Ⅲ-A)

Operators
Unstructured Data Collection Data Index Operator Index

Embed

Build
Embed

BuildLogical Representations

Reduce
the
query

Repeat
until fully
decomposed

Filter

Filter
Filter

Count

GroupBy

Count

Max

Scan

Extract

Compute

Filter

Semantic Filter

Semantic Filter

Hash GroupBy

Programed Count

Semantic Extract

Programed Count

Programed Max

Linear Scan

Semantic Filter

Compute

Semantic Filter

Among questions with over
500 views, which sport
involving a ball has the highest
ratio of number of injury-related
questions to number of
training-related questions?

Among questions, which
sport involving a ball has
the highest ratio of number
of injury-related questions
to number of training-related
questions?

Logical
Optimization

Parallel Execution

Fig. 1. Framework of Unify.

Indexing. To effectively extract pertinent information from ex-
tensive unstructured datasets, Unify employs a text embedding
model to convert text sentences into vectors and then organizes
these vectors using a vector index like HNSW [25] for efficient
retrieval. In addition, the text embedding model also converts
logical representations of the operators into embeddings for
efficient matching of operators with a query, thus aiding in
the efficient construction of execution plans (Section III-B).

B. Planning Engine
Upon receiving a natural language query, the Planning En-

gine in Unify generates an optimized execution plan with two
steps: Logical Plan Generation and Physical Plan Generation.

1) Logical Plan Generation: The logical plan is constructed
by progressively identifying appropriate pre-defined logical
operators and reducing the query with the operators.
Semantic Parsing. To accurately capture the intent of the
query and align it with appropriate operators, the LLM is
prompted to identify the semantic elements of the NL query,
e.g., Condition, Entity, for extracting the logical representation
of the query (e.g., the converted query in Figure 1, where the
red and green texts denote values for Entity and Condition,
respectively). This process simplifies the query, thus enabling
accurate planning without being misled by specific values.

Logical Plan Generation Algorithm. Unify constructs the
logical plan by recursively reducing the query in a depth-first
search (DFS) manner, following two key steps:

Step 1: Operator Matching. Unify first identifies appropriate
operators for query reduction in two steps: (1) computes
embedding distances between the logical representations of the
query and the operators to select candidates with the smallest
distances; (2) prompts the LLM to check the applicability of
each candidate operator and reorders them based on the LLM
output. Since logical representations semantically encapsulate
the query logic and operator logic, the initial embedding
distance filtering efficiently narrows down relevant operators
and minimizes the cost of subsequent LLM evaluations.

Step 2: Query Reduction. Unify then iterates the operator
list to solve part of the query. For each operator, Unify

prompts the LLM to check whether the prerequisites of the
operator are satisfied. If so, the LLM is prompted to rewrite
the query by reducing the matched segment according to
the logical representation of the operator. For example, in
Figure 1, the query is reduced by removing the condition with
over 500 views by the logical representation “[Entity] satisfy
[Condition]” of the Filter operator. The reduced query will
then be taken as input to the above process until it is fully

reduced.
Error Handling. If all candidate operators cannot reduce the
query, Unify backtracks to the query before the latest reduc-
tion. In cases where no reduction path can fully decompose
the query, Unify appends a Generate operator to the top of
the plan and instructs the LLM to solve the remaining parts.
Logical Plan Optimization. The generated plan is further
optimized by analyzing the dependencies between operators to
reorganize it into a directed acyclic graph (DAG) form for par-
allel operator execution, as will be discussed in Section V-C.

2) Physical Plan Generation: Once a logical plan is de-
termined, Unify converts it into an optimized physical plan,
detailing how each operator will be executed.
Cost Model. Unlike relational databases, where operator
costs are typically driven by I/O factors, Unify focuses
on computational costs due to the frequent involvement of
resource-intensive LLMs. For LLM-related operators, costs
are predominantly determined by token count and the number
of LLM calls. For pre-programmed operators, costs depend
on input size and computational complexity. Unify builds
a unified cost model that estimates time consumption for
different physical operators (Section VI-A), which is crucial
for selecting efficient operator order, and appropriate physical
operator, thereby optimizing the overall plan, as will be
introduced in Section VI.
Semantic Cardinality Estimation. Unify employs a seman-
tical importance-aware sampling method (Section VI-B) for
estimating the size of intermediate results generated by each
operator. This is crucial for physical plan generation since the
cost heavily depends on the cardinality of intermediate outputs.

C. Execution Module

Determining Operator Input. Each operator in the plan
contains placeholders representing its input in the logical
representation. During execution, these placeholders must be
filled. To achieve this, Unify instructs the LLM to rewrite the
matched query segment into the form of the matched logical
representation. For example, the query ”Among questions with
over 500 views, . . . ” is rewritten as ”Questions satisfy having
over 500 views, . . . ” to align with the logical representa-
tion ”[Entity] satisfy [Condition]”. Using regular expressions,
Unify extracts the actual values for these placeholders. In this
case, “Questions” and “having over 500 views” are filled as
the [Entity] and [Condition] inputs for the Filter operator.
This method is employed across all operators, facilitating the
plan’s execution.
Parallel Topological Execution. To maximize efficiency, ex-
ecution follows a bottom-up, parallelized way based on the
topological order of the plan. Leveraging the DAG-structured
plan, operators with no interdependencies are executed in
parallel until all operators are completed, producing the fi-
nal result. By improving resource utilization through parallel
execution, the overall execution efficiency is improved.
Plan Adjustment During Execution. If an operator fails
to produce the expected result, Unify dynamically adjusts

the plan by continuously replanning to handle intermediate
queries, avoiding a complete restart.

IV. UNSTRUCTURED DATA ANALYTICS OPERATORS

This section introduces the operators used to compose the
query plan. In total, we have extracted 21 operators.

A. Logical Operators

Traditional relational operators are insufficient for unstruc-
tured data analytics, as they lack semantic processing ca-
pabilities. To address this, we manually identify a set of
operators to support more comprehensive analytics. Each
operator is defined with input, output, and the predefined
execution process, and a set of logical representations, as
shown in Table II. While some operators have functionality
similar to traditional database operators, they are extended
for unstructured data and equipped with semantic analytics
capabilities, e.g., support filtering with semantic checking of
natural language conditions.

B. Physical Operators

We describe the physical implementations of the logical
operators introduced in Section IV-A. Each logical operator
can be realized by one or more physical implementations.
We categorize physical operators into two types: (1) Pre-
programmed Implementations, which are implemented by
pre-programmed algorithms, similar to database operators,
and (2) LLM-based Implementations, which utilize LLMs
to handle semantic operators that require reasoning, e.g.,
filtering sports documents based on whether the sport requires
teamwork. Most logical operators feature two types of physical
implementations: pre-programmed functions for simple tasks
and LLM-based approaches for operations that demand a thor-
ough semantic comprehension. This dual approach for each
logical operator significantly increases Unify’s adaptability in
handling unstructured data.

1) Pre-programmed Implementations: Pre-programmed im-
plementations employ fixed and predefined execution pro-
cesses. These implementations are suitable for operations that
do not require semantic understanding, such as exact matching
or basic computations. For instance, the GroupBy operator can
be implemented using either HashGroupBy, which leverages a
hash table, or SortGroupBy, if the data is already sorted by the
grouping attribute. Similarly, the Extract can use keyword
search or regular expressions to retrieve specific information.

2) LLM-based Implementations: For tasks requiring se-
mantic understanding or complex processing of unstructured
data, LLM-based implementations are used. We call these
“semantic” operators since they utilize LLMs to produce re-
sults tailored to specific tasks through prompts. Every operator
is associated with a pre-defined prompt template, which is
dynamically filled with particular query values. For example,
the SemanticFilter operator constructs a prompt describing
the filtering conditions and applies it to each element in the
input list by invoking the LLM. As these operators rely on

TABLE II
THE LOGICAL OPERATORS, THEIR INPUTS, OUTPUTS, CORRESPONDING PHYSICAL OPERATORS, AND EXAMPLE LOGICAL REPRESENTATIONS.

Operator Input Output Pre-programmed Implementation LLM-based Implementation Example Logical Representation

Scan List List Linear Scan, Index Scan - documents satisfy [Condition]
Filter List List Exact condition filtering Semantic filtering [Entity] that [Condition]
Compare A, B, Condition A/B Standard comparison, e.g., >, < Semantic comparison larger in [Entity] and [Entity]
GroupBy List List of List Grouping by exact attributes Semantic grouping aggregate [Entity] by [Attribute]
Count List Number Standard aggregation (Count) Semantic count number of documents [Condition]
Sum List Number Standard aggregation (Sum) Semantic sum the total sum of [Entity]
Max List Number Standard aggregation (Max) Semantic max the maximum of [Entity]
Min List Number Standard aggregation (Min) Semantic min the minimum of [Entity]

Average List Number Standard aggregation (Average) Semantic average the mean of [Entity]
Median List Number Standard aggregation (Median) Semantic median the median of [Entity]

Percentile List Number Standard aggregation (Percentile) Semantic percentile the k-th percentile for [Entity]
OrderBy List List Numerical/lexicographical sort Semantic sorting Sort [Entity] [Condition]
Classify Text Class Rule-based/ML-based classification Semantic classification The type of [Entity]
Extract Text Text Keyword/Regex extraction Semantic extraction get [Entity] from documents
TopK List List Numeric ranking Semantic ranking the top [Number] [Entity]
Join List, List List Join by key Semantic join [Entity] that also occurs in [Entity]
Union Set, Set Set Standard set union Semantic set union set union of [Entity] and [Entity]

Intersection Set, Set Set Standard set intersection Semantic set intersection in set [Entity] and in [Entity]
Complementary Set, Set Set Standard set complementary Semantic set complementary in set [Entity] not in [Entity]

Compute List Number Programmed Mathematical Equation Semantic computation sum of squares of [Entity]
Generate Text Text - LLM invocation explain the result

LLM invocations for each input, they tend to be more com-
putationally expensive. However, these operators are essential
for handling tasks that require semantic inference, which pre-
programmed implementations cannot address.

3) Discussion: We introduce some representative operators
that are different from traditional database operators.
Index Scan. For semantic filtering conditions, LinearScan
is expensive when scanning large datasets. To this end, we
implement a vector-based IndexScan operator, which can
efficiently identify relevant data points with smaller embedding
distances to the query and avoid a full scan of the entire data.
Semantic Aggregation. These operators perform aggrega-
tions over an unstructured data list, e.g., SemanticCount can
tally the number of rule violations mentioned across a series
of sports match reports.
Semantic Set Operations. These operators handle set
operations that involve semantic checks. For example,
SemanticSetUnion can merge a set of entity matching meth-
ods from abstracts of academic papers, producing a union of
all entity matching methods found either in the original set or
within the paper abstracts.
Extensibility for Adding Other Operators. If the provided
operators do not meet specific requirements, additional oper-
ators can easily be added by defining their logical representa-
tions for planning and physical implementations for execution.

V. LOGICAL PLAN GENERATION

In Unify, the logical plan is built by recursively applying
operators to simplify the query. This section covers operator
identification for query reduction (Section V-A), query reduc-
tion with selected operators (Section V-B), plan construction
during reduction (Section V-C), and the recursive plan gener-
ation algorithm (Section V-D).

A. Operator Matching

Overview. Given a query, operator matching aims to efficiently
select the suitable operator that can solve a segment of the
query. A naive approach is to rely entirely on the LLM to
select the operator by organizing all operator descriptions to
the LLM within the prompt. However, this is neither efficient
nor accurate due to two reasons: (1) high computational cost
caused by extensive token usage and (2) high risk of incorrect
selections caused by the large number of operators [38]. To
address this, we minimize LLM involvement, and use LLM
as an auxiliary support when absolutely necessary.

One direct problem for operator matching is accurately
interpreting the intent of the natural language query. We
address this by also converting the query into a logical
representation using the LLM, with a few-shot prompt like
“Please parse the following question to extract the entities,
conditions, attributes, and the return type.” As discussed in
Section III-A, this involves replacing specific values in the
query with semantic placeholders like [Condition], [Entity],
and [Attribute]. By simplifying the query to this essential form,
we can focus on its logical structure and reasoning, rather than
being distracted by specific values, enabling a more precise
understanding of its intent.

Our key insight is that an operator is relevant to a query
if its logical representation is semantically similar to the
query’s logical representation. Therefore, we use semantic
similarity to filter out irrelevant operators and focus on those
with high potential to match the query, thereby improving
both accuracy and efficiency. Based on this idea, Unify

performs operator matching through a two-stage process. First,
it eliminates irrelevant operators by assessing the semantic
similarity between the logical representations of the query and
operators. Next, the remaining operators are evaluated by the

LLM, which categorizes them according to their capability to
address the query, ranging from fully solving, partially solving,
to not solving at all.
Semantic Matching. Although the logical representations of
queries and operators share a similar form, they are not directly
comparable as they are still in natural language. To address
this, we transform both into semantic embedding vectors that
capture their underlying meanings. The semantic correlation
between a query and an operator can then be measured by the
distance between their respective embedding vectors. Specifi-
cally, embeddings for the logical representations of operators
are precomputed and stored. The query’s logical representation
is generated by prompting the LLM, and its semantic embed-
ding is computed via the embedding model. Operator matching
is then performed by computing the embedding distances,
allowing us to assess the semantic similarity between the
query and available operators. The operators with the highest
semantic similarity, along with their corresponding logical
representations, are returned as candidates. For example, as
shown in Figure 1, the top three operators based on similarity
are selected.
Reranking Operators. Although semantic matching identifies
a set of candidate operators, not all are guaranteed to solve
parts of the query. For instance, an operator selected based on
semantic similarity might require unavailable inputs. To refine
the operator selection, we maintain a set of available variables,
which represent processed data starting from the unstructured
dataset. As new variables are generated (e.g., through filtering),
their descriptions (generated by prompting the LLM) are added
to this set. Only operators whose inputs are all within the
available variable set can be considered for further operations.

Specifically, Unify uses the LLM to perform a more
detailed evaluation of each operator’s ability to solve the query.
Specialized prompts like “Please check whether the operator
can solve any part of the query, if so, output the degree of
solution (fully solving, partially solving), otherwise output not
solving” are used. The query, available variables, the candidate
operator’s logical representation, and few-shot examples are
provided in the prompt. The LLM categorizes the operators
as fully solving, partially solving, or not solving based on its
analysis. Candidate operators are then reranked, prioritizing
operators more likely to solve the query, using the solving
degree as the primary criterion and semantic similarity as the
secondary criterion. This produces a sorted list of operators,
which is then used to reduce the query and generate the logical
plan.

B. Query Reduction

Reduction Process. Once an appropriate operator is selected,
Unify attempts to reduce the query logically by applying
the operator to the matched query segment. Intuitively, this
reduction is to replace the matched query segment with the ex-
pected operator output. However, due to the inherent flexibility
and variability of natural language expressions, strict keyword
matching and replacement are insufficient. Therefore, the
reduction process in Unify is facilitated by an LLM using a

Which group has the highest value?

Group Name

Scan & Filter by “with over 500 views”

Group by “sport”

Filter by “about sports involving a ball”

Max

Filter by “training-related
questions”

Among questions with over 500 views, which sport involving a ball has the highest ratio of
number of injury-related questions to number of training-related questions?

Among questions, which sport involving a ball has the highest ratio of number of injury-
related questions to number of training-related questions?

Among groups about sport involving a ball, which group has the highest ratio of number of
injury-related questions to number of training-related questions?

Which group has the highest ratio of number of injury-related questions to number of training-
related questions?

Filter by “injury-related
questions”

Compute “ratio of number1 to number2”

Which group has the highest ratio of
number of questions1 to number of
training-related questions?

Which group has the highest ratio of
number1 to number of questions2?

Which group has the highest ratio of
number1 to number of training-related
questions?

Which group has the highest ratio of
number1 to number2"

Count “number of questions1” Count “number of questions2”

1

2

3

4

5

6

7

8

9

10

Extract “sport”
Among sports, which sport involving a ball has the highest ratio of number of injury-related
questions to number of training-related questions?

11

Fig. 2. Query Reduction Process for an Example Query.

predefined few-shot prompt that incorporates placeholders for
the query, the matched logical representation of the operator,
and the expected output. The structure of the prompt is as
follows: “Given the query [Query] and a matched logical
representation [LR] of operator [OP] with expected output
[OUTPUT], please rewrite the query with the operator by
reducing the matched segment of the logical representation.”

Figure 2 illustrates the query reduction process for the
example query from Section III, with each reduction step
numbered by the reduction order. In the first step, the Filter

operator is applied to reduce the query by the logical rep-
resentation “[Entity] satisfy [Condition]” and the expected
output “[Entity]”. This Filter operator is feasible because
its required input is the initial unstructured dataset, which is
already available. With Filter, the original query is simpli-
fied by reducing “Among questions with over 500 views” to
“Among questions” and meanwhile generating an intermediate
variable “Questions with over 500 views” that can be used
in subsequent steps. The reduced query is then recursively
processed through the aforementioned semantic parsing, op-
erator matching, and further reduction steps using the same
methodology. This recursive process continues until the query
is fully solved as will be introduced next.
End of Reduction. The query is gradually simplified until it
reaches a final form, which we define as a minimal semantic
unit containing only an irreducible element, such as a single
entity, numerical value, or Boolean condition. The final state is
determined through LLM evaluation using prompts with few-
shot examples like: ”Check whether the initial query [Orig-
inal query] has been fully resolved given the [Variable set
description] and the current reduced query [Reduced query].”
This approach ensures that the query is systematically reduced
completely, obtaining a logical reasoning path to obtain the

final answer.

C. Plan Construction

Overview. While query decomposition at the logical level (as
described in Sections V-A-V-B) breaks down the query, it
does not directly produce an execution plan. A straightforward
approach is to use the operator sequence applied in decompo-
sition as the plan, but this would impose strict serialization,
where each operator must wait for all preceding ones to
finish. This is inefficient because many operators can run in
parallel without waiting for others to complete. For example,
in Figure 2, the Filter and Count for “training-related
questions” and “injury-related questions” can be executed
concurrently since they are independent. Therefore, a key
question arises: How can we accurately identify dependencies
between operators to optimize their execution order?
Dependency between Operators. Dependencies between op-
erators O1 and O2 are defined by their input-output relation-
ships. Operator O2 depends on O1 if it takes O1’s output as
an input, or if any of its inputs are derived from an operator
dependent on O1. Thus, identifying dependencies requires
analyzing the input and output structure of each operator.
Dependency Check. Given an operator O∗ and a sequence
of preceding operators O1, O2, · · · , Oc, where dependencies
among preceding operators are determined, the task is to
determine which operators O∗ depends on. The dependency
is checked in a reverse order, starting from Oc and moving
backward to O1. For each operator, we first check whether
it is a prerequisite for an existing prerequisite of O∗; if so,
it is directly determined as a prerequisite by the transitivity
property of dependency, i.e., if operator A depends on B,
and B depends on C, then A also depends on C. If not, we
check whether its output is an input for O∗. This check is
conducted by instructing LLMs using a prompt in the form of
”Check whether the output of Oi is an input for conducting the
operator O∗”, filled with the outputs of Oi and the required
inputs of O∗. After enumerating all preceding operators, all
prerequisites of O∗ that it depends on are identified.
Plan Construction Algorithm. The plan is constructed as
follows. (1) During each step in query decomposition, an
operator O is selected; (2) the dependency between O and
existing operators in the plan is checked; (3) O is added to the
plan by connecting it to its direct prerequisites. This process is
repeated iteratively until the full plan is constructed, as shown
in Figure 1 and Figure 2.
Example. In the query decomposition from Figure 2, consider
the dependency check for the Filter operator on ”training-
related questions.” This operator only requires input on ques-
tions about specific ball sports with over 500 views, and
thus, it has no dependency on the Filter for ”injury-related
questions.” Consequently, these two filters can be executed
in parallel, as depicted in Figure 1. In contrast, the Compute

operator depends on the results of both Count operators and
is connected to them by edges in the final plan. This illustrates
that the plan forms a Directed Acyclic Graph (DAG), where
prerequisites of an operator may share dependencies.

Algorithm 1 Logical Plan Generation
Input: A query Q, operator index I , top k candidate operators
Output: A logical plan or None if no valid plan to generate.

1: function GENPLAN(Q, plan, I , k)
2: /* End of Reduction (Section V-B) */
3: if SIMPLEQUESTION(Q) then
4: return plan

5: /* Operator Matching (Section V-A) */
6: opList ← OPERATORMATCH(Q, I , k)
7: for each op in opList do
8: /* Query Reduction (Section V-B) */
9: Q′ ← reduce(Q, op)

10: /* Plan Construction (Section V-C) */
11: nextP lan← ADDOPTOPLAN(Q, Q′, op, plan)
12: plan′ ← GENPLAN(Q′, nextP lan, I , k)
13: if plan′ is not None then
14: return plan′

15: return None

16: LogicalP lan = GENPLAN(Q, emptyP lan, I , k)

D. Overall Logical Plan Generation Algorithm

We first introduce the generation of a single plan, followed
by error handling and an exploration to create multiple plans.
Generating Single Plan. Algorithm 1 describes the process
for generating a logical plan. The algorithm employs a depth-
first search (DFS) strategy, where Unify recursively applies
the operators that best match the query to simplify the query.
At each step, the query is reduced by the selected operator,
progressing toward a simpler form until it reaches a final state,
as described in Section V-B, containing only an irreducible
semantic element. During this process, the logical plan is
incrementally constructed, with each operator applied being
incorporated into the final plan that is stored in the state
variable and ensures that the plan maintains an efficient
directed acyclic graph (DAG) structure.
Error Handling. If, at any reduction step, no suitable operator
is found to simplify the query further, Unify backtracks to
explore alternative search paths. If after examining all possible
search paths the query remains unresolved, Unify restores
the most complete plan identified so far and prompts the
LLM to select one of the following strategies for resolving
the remaining query components: (1) Append a Generate

operator to produce an answer based on collected information
via the LLM (fallback to RAG). (2) Instruct the LLM to
generate Python code for solving the remaining task (fallback
to code generation). The choice of strategy is determined by
the LLM based on the complexity of the unresolved task. This
error-handling mechanism ensures Unify can robustly address
ad-hoc queries and incomplete decompositions. Meanwhile,
encountered errors are also collected and can be used to build
new operators tailored for the specific application scenario.
Generating Multiple Plans. While generating a single plan
is straightforward, it is prone to execution failures. In practice,
producing multiple candidate plans increases the likelihood of

finding the correct solution. To achieve this, the DFS algorithm
is adapted to explore multiple potential plans. Specifically, the
search continues after identifying a fully decomposed plan,
either until all possible paths are explored or until a predefined
number of plans, denoted by a hyperparameter nc, have been
generated. To promote diversity among the candidate plans,
the search process may be adjusted to prevent an overly
thorough investigation of individual paths. This adjustment is
controlled by a second hyperparameter, τ , which ranges from
0 to 1 and dictates the fraction of search paths to be pursued
prior to initiating backtracking, i.e., how thoroughly individual
search paths are explored. A higher τ allows for a deeper
exploration of each path before backtracking, while a lower
τ encourages earlier backtracking to explore alternative paths,
preventing generating too many results that share the same
initial operators (prefixes). When τ = 1, the search becomes
exhaustive. Once the target number of candidate plans are
generated, the plan generation stops and Unify proceeds to
optimize them.

VI. PHYSICAL PLAN GENERATION

Although the logical plan outlines a feasible method for
addressing the input question, it omits the execution details
for each step. Nonetheless, the selection of a physical imple-
mentation greatly influences query performance, compelling
us to choose from several alternatives. To address this, we
propose a cost model for selecting the physical plan.

A. Cost Estimation

In Unify, the cost of each operator is defined as its
execution time1. As discussed in Section IV, operators can be
categorized into two types: pre-programmed implementations
and LLM-based implementations. We estimate the costs for
these two categories separately.
LLM-based Implementations. For operators implemented
using LLMs, the majority of time is spent on the LLM
invocation. As noted in [3], the time cost of LLMs is pro-
portional to the number of output tokens (since input tokens
only take a tiny proportion of time cost, about 1% to 5% [3],
it can be ignored). Therefore, if we can estimate the number
of output tokens, we can accurately predict the cost. The
few-shot prompt templates in Unify enforce a fixed output
format, aiming to keep the number of output tokens constant.
However, we observe variations in time consumption and
average number of outputs across different LLMs, even for
the same operator. This variability makes it impractical to
predefine a universal constant for all operators.

Instead, we propose estimating these parameters based on
historical execution data. This allows us to compute an average
time-per-token constant µ, as well as the average number of
output tokens outop for each operator op. The cost can then be

1Minimizing total execution time and total execution cost are two different
objectives in unstructured data analytics. In this paper, we focus on optimizing
the total execution time. It should be noted that the method in this paper is
also suitable for optimizing the total cost, just by modifying the cost function
accordingly.

estimated as card · µ · outop, where card represents the input
cardinality, i.e., the number of elements to be processed.
Pre-programmed Implementations. For pre-programmed
implementations, which are implemented using static logic
within the code, the computation cost generally depends on
the size of the input and the function complexity. By utilizing
historical data, we calibrate this function to forecast the
computational expense. The projected cost for each operator
op can be computed as fop(card), where fop() is the calibrated
function and card is the input’s cardinality.

Based on above methods, we can estimate the cost for all
operator types. Notably, the cost for both LLM-based and
pre-programmed operators is closely tied to input cardinality,
making accurate cardinality estimation crucial for reliable cost
predictions.

B. Semantic Cardinality Estimation

Semantic Cardinality Estimation. In database systems, car-
dinality estimation (CE) is a well-established problem with
a significant impact on cost estimation [16], [18]. However,
traditional CE techniques are designed for structured SQL
queries and are not directly applicable to semantic queries
over unstructured data. Specifically, given an unstructured
dataset containing N text records, the task of semantic
cardinality estimation (SCE) is to predict the result size
of a semantic predicate θ without executing the query. Each
semantic predicate is expressed as an NL condition, such as
related to sports, involves a ball game. SCE presents unique
challenges due to the flexible nature of unstructured data,
which lacks a well-defined schema and does not support
indexes for CE like the commonly used histograms [28], [31]
in relational databases. Moreover, queries over unstructured
data are often expressed in natural language with semantic
predicates, making them harder to analyze. From Table II, we
can observe that many operators have fixed result cardinality
(e.g., Compare, Classify, Extract, Compute, Generate,
TopK and aggregation operators), or preserve input cardinality
(e.g., OrderBy). However, remaining operators like Filter,
Scan, GroupBy, set operators, and Join affect cardinality by
selecting data based on certain conditions. Therefore, the focus
of SCE is primarily on estimating the cardinality after filtered
by the conditions.
Estimation by Sampling. A straightforward approach to SCE
is sampling [17], [11], [37], [12]: executing the query on a
small subset of sampled data and estimating the proportion of
data that satisfies the predicate. However, uniform sampling is
inefficient, as it requires large sample sizes for accurate esti-
mations, which is costly when each sample must be evaluated
by costly LLMs. Stratified sampling is not directly applicable
because unstructured data lacks predefined attributes. Simi-
larly, histograms [28], [31], [12], widely used in relational
databases, are infeasible for SCE because unstructured data
lacks predefined attribute distributions.
Importance Sampling Optimization. To improve efficiency,
we leverage the observation that data points satisfying the
query often have small embedding distances with the query.

Data point not satisfying the query Data point satisfying the queryQuery

(a) Questions related to football (b) Importance Function

<latexit sha1_base64="doupWb9d7gYNKKdliQAJKWT2wNk=">AAADb3icjVLLSsNAFD1tfNa3LlwIEiyCopREfC2LblxWtCrUIkmc1mCahGQiiPgJbvXb/ANd+geemaagFqsTktw595x75965bhz4qbSs10LRGBoeGR0bL01MTk3PzM7Nn6VRlnii7kVBlFy4TioCPxR16ctAXMSJcDpuIM7d20PlP78TSepH4am8j0Wz47RDv+V7jiR00rqyr2bLVsXSy+w37NwoI1+1aK6wgUtcI4KHDB0IhJC0AzhI+TRgw0JMrIkHYgktX/sFHlGiNiNLkOEQveW3zV0jR0PuVcxUqz1mCfgmVJpYpSYiL6Gtspnan+nICv0t9oOOqc52z7+bx+oQlbgh+peux/yvTtUi0cK+rsFnTbFGVHVeHiXTXVEnN79UJRkhJqbsa/oT2p5W9vpsak2qa1e9dbT/TTMVqvZezs3wPrA6l1F/vxHl/4sR84wtnl5lG8Tr9rHHTLHZdyMllDiJ9s+56zfOtir2bmXneLtcPchncgxLWMEa524PVRyhhjqzt/GEZ7wUP4xFY9kwu9RiIdcs4Nsy1j8BO0GvyQ==</latexit>

f1

<latexit sha1_base64="EsYL4qfJJ/aZmEghCtayKHv0qWs=">AAADb3icjVLLSsNAFD1tfNT41oULQYJFUJSSiq9l0Y1LRauCiiRxUoNpEpKJUIqf4Fa/zT/QpX/gmTEFtfiYkOTOuefcO/fOdZMwyKRtP5fKxsDg0HBlxBwdG5+YnJqeOcniPPVE04vDOD1znUyEQSSaMpChOEtS4bTdUJy6t3vKf3on0iyIo2PZScRl22lFgR94jiR05F+tX01V7Zqtl9Vv1AujimIdxNOlVVzgGjE85GhDIIKkHcJBxuccddhIiF2iSyylFWi/wD1ManOyBBkO0Vt+W9ydF2jEvYqZabXHLCHflEoLS9TE5KW0VTZL+3MdWaE/xe7qmOpsHf7dIlabqMQN0b90PeZ/daoWCR87uoaANSUaUdV5RZRcd0Wd3PpUlWSEhJiyr+lPaXta2euzpTWZrl311tH+F81UqNp7BTfH66/VuYz6840o/1+MhGf0eXqV7TfeRx97zAxrfTdiwuQk1r/PXb9xsl6rb9U2Dzeqjd1iJiuYxyKWOXfbaGAfB2gyewsPeMRT+c2YMxYM64NaLhWaWXxZxso7Pkqvyg==</latexit>

f2
<latexit sha1_base64="l8Js5njuvqMal0bYz9uVPzIHDZ8=">AAADb3icjVLLSsNAFD1tfNT61oULQYJFUJSS+l4W3bisaFVQkSROa2iahGQilOInuNVv8w906R94ZpqCWnxMSHLn3HPunXvnOpHvJdKyXnJ5Y2h4ZLQwVhyfmJyanpmdO0vCNHZF3Q39ML5w7ET4XiDq0pO+uIhiYbcdX5w7rUPlP78XceKFwansROK6bTcDr+G5tiR00rjZupkpWWVLL3PQqGRGCdmqhbO5dVzhFiFcpGhDIICk7cNGwucSFViIiF2jSyym5Wm/wAOK1KZkCTJsoi1+m9xdZmjAvYqZaLXLLD7fmEoTK9SE5MW0VTZT+1MdWaE/xe7qmOpsHf6dLFabqMQd0b90feZ/daoWiQb2dQ0ea4o0oqpzsyip7oo6ufmpKskIETFl39If03a1st9nU2sSXbvqra39r5qpULV3M26Kt1+rcxj15xtR/r8YEc/Y4OlVtt94vT72mQk2Bm6kiCInsfJ97gaNs81yZbe8c7xdqh5kM1nAIpaxyrnbQxVHqKHO7E084gnP+XdjwVgyzB41n8s08/iyjLUPQVOvyw==</latexit>

f3
<latexit sha1_base64="02+0ttGllXtDO/z/ZZJMf4wRWGc=">AAADb3icjVLLSsNAFD1tfNZXqwsXggSLoCgllfpYim5cVrRVUJEkndbQNAnJRBDxE9zqt/kHuvQPPDNNQS0+JiS5c+459869c53I9xJpWS+5vDEyOjY+MVmYmp6ZnSuW5ptJmMauaLihH8bnjp0I3wtEQ3rSF+dRLOye44szp3uo/Ge3Ik68MDiVd5G46tmdwGt7ri0JnbSva9fFslWx9DKHjWpmlJGteljKbeASLYRwkaIHgQCStg8bCZ8LVGEhInaFe2IxLU/7BR5QoDYlS5BhE+3y2+HuIkMD7lXMRKtdZvH5xlSaWKUmJC+mrbKZ2p/qyAr9Kfa9jqnOdse/k8XqEZW4IfqXbsD8r07VItHGnq7BY02RRlR1bhYl1V1RJzc/VSUZISKm7Bb9MW1XKwd9NrUm0bWr3tra/6qZClV7N+OmePu1OodRf74R5f+LEfGMbZ5eZfuN1+/jgJlgc+hGCihwEqvf527YaG5VqjuV7eNaef8gm8kJLGEFa5y7XezjCHU0mL2DRzzhOf9uLBrLhtmn5nOZZgFflrH+AURcr8w=</latexit>

f4

Distance

Fig. 3. Illustration of high correlation between embedding distance and
probability of satisfying the query predicate.

As illustrated in Figure 3(a), for the example query ”Questions
related to football”, data points closer to the query embedding
are more likely to satisfy the query, while the likelihood
decreases with increasing distance. Uniform sampling fails in
such cases because relevant data points make up only a small
portion of the entire dataset and may not be involved in the
uniform samples. Therefore, we propose importance sampling,
which can focus more on data points closer to the query vector.
This method improves the accuracy of cardinality estimation
even with a small number of samples.
Importance Function. To implement importance sampling,
we define an importance function f , which inputs a distance to
the query and outputs the normalized probability of satisfying
the query for this distance. Since the right importance function
depends on the distribution of vectors, f must be tailored
to each dataset individually. Specifically, f in Unify is a
piecewise scalar function, similar to a histogram, where each
piece fi denotes the importance of the i-th group of vectors
that are within a specific distance range, with

∑
i fi = 1.

During estimation, Unify samples data points from groups of
different distances proportional to fi and estimates the result
as

∑
i

ni(
∑

x∈Si
θ(x))

ns·fi where Si represents the samples in the i-
th group, ns denotes the total number of samples, ni denotes
the total number of data points in the i-th group and fi is
the importance value for that group. This function f , tailored
to the dataset’s vector distance distribution, is learned from
historical queries. Compared with uniform sampling, a special
case for fi =

ni

N , Unify samples based on an approximation
distribution of satisfied data, thus improving accuracy under
the same sample size, e.g., in Figure 3, the data points likely
to be omitted by uniform sampling can be captured by Unify.
Estimation by Importance Sampling. Given a query with
predicate θ, Unify estimates its cardinality as follows. (1)
Compute embedding vector distances between the query and
data; (2) Group data based on the distance ranges specified in
the importance function; (3) Samples nsfi data points within
each group, where ns denotes the total number of samples;
(4) Check whether the samples satisfy θ as θ(x) using LLMs;
(5) Estimate the result as

∑
i

ni(
∑

x∈Si
θ(x))

ns·fi .

C. Physical Plan Selection

Unlike traditional databases, in Unify, the ordering of basic
operators such as Filter also significantly impacts execution
efficiency due to the involvement of LLM computations. The

need for extra semantic understanding makes it difficult to rely
solely on cost when choosing physical operators.
Operator Order Selection. When a query involves multiple
operators, e.g., multiple Filter operators, the order in which
they are applied affects efficiency. To maximize performance,
filters eliminating more data should be applied earlier to reduce
the dataset size quickly. For example, the query in Figure 1
contains several filters, and by reordering these filters, we can
generate multiple candidate plans. Unify evaluates the cost of
each plan using the cost model and our SCE method, selecting
the plan with the lowest cost for execution.
Physical Operator Selection. As discussed in Section IV-B, a
logical operator may have multiple physical implementations,
each with varying efficiency. To choose the appropriate phys-
ical operator, we apply the cost model from Section VI-A.
In cases where multiple physical operators are feasible, we
compare their estimated costs and select the most efficient
option. When specific operator requirements are present, such
as semantic understanding, Unify bypasses the cost model
and directly selects the operator based on these requirements.
Plan Selection. When multiple physical plans are available,
the goal of physical plan selection is to select the most efficient
one for execution. Using the cost model from Section VI-A,
we estimate the cost of each candidate plan and choose the
one with the lowest estimated cost. This ensures Unify to
select the plan that provides accurate results while minimizing
expected execution time.

VII. EXPERIMENTS
Our experiments aim to answer the following key questions.

(1) Can Unify generate reasonable plans that accurately
answer the input queries? (Section VII-B) (2) How efficient are
the plans optimized by Unify? (Section VII-B) (3) How accu-
rate is the proposed semantic cardinality estimation method?
(Section VII-C) (4) How effective are the logical and physical
optimization techniques? (Sections VII-D-VII-E)

A. Experimental Settings
Dataset. We evaluate our system using four real-world
datasets, widely utilized in prior research, representing a di-
verse range of content and document lengths. The datasets in-
clude informal (Stack Exchange) and formal texts (Wikipedia)
with document counts ranging from 1,000 to 5,000.
(1) Sports [4]: 3,898 web pages from Sports Stack Exchange.
For all datasets from Stack Exchange [5], we restrict to
questions with at least 3 upvotes to ensure data quality.
(2) AI [1]: 5,137 web pages from AI Stack Exchange.
(3) Law [2]: 2,053 web pages from Law Stack Exchange.
(4) Wiki [7]: A sample of 1,000 web pages from the English
Wikipedia.
Baselines. We compare Unify against the following methods:
(1) RAG [14]: The basic retrieval-augmented generation (RAG)
pipeline that retrieves related document sentences based on
embedding similarity and generates answers using the LLM.
(2) RecurRAG [36]: An extension of RAG that decomposes
the query iteratively and retrieves information for decomposed
queries.

0

20

40

60

80
Ac

cu
ra

cy
 (%

)

(a) Sports
0

20

40

60

80

Ac
cu

ra
cy

 (%
)

(b) AI
0

20

40

60

80

Ac
cu

ra
cy

 (%
)

(c) Law
0

20

40

60

Ac
cu

ra
cy

 (%
)

(d) Wiki

100

101

102

Ex
ec

. T
im

e
(m

in
)

(e) Sports

100

101

102

Ex
ec

. T
im

e
(m

in
)

(f) AI

100

101

102

Ex
ec

. T
im

e
(m

in
)

(g) Law

100

101

102

Ex
ec

. T
im

e
(m

in
)

(h) Wiki

RAG RecurRAG LLMPlan Sample Exhaust Unify Manual

Fig. 4. Performance of different methods on different datasets: Accuracy (a)-(d); Latency (e)-(h).

(3) LLMPlan: Instructs the LLM to generate a plan using
operator descriptions, then executes the plan by instructing
LLM with prompts for each operator.

(4) Sample: Uses the LLM to enumerate a proportion of all
data (20% in the experiments) with prompts describing the
query, and iteratively outputs intermediate results, cumulating
the final answer.

(5) Exhaust: Exhaustively searches all possible execution
plans and selects the best based on LLM feedback, acting
as an extreme variant of Unify.

(6) Manual: Manually creates and executes physical plans by
experts. The planning time cost for this method is calculated
based on the time spent designing the plan and debugging for
execution.

Hyper-parameter Setting. We employ Llama-3.1-70B (quan-
tized to 8-bit floats) for plan generation and Llama-3.1-8B for
LLM-based operators since plan generation and operator exe-
cution may require different levels of semantic understanding
capability. The number of candidate operators for semantic
matching is set to k = 5, with nc = 3 candidate plans
and a plan diversity parameter τ = 0.75. We use Sentence
Transformer [30] to embed sentences into embeddings and
use the hnswlib [25] library for vector indexing. The top 100
relevant sentences are used in the retrieval step for RAG-based
baselines. Execution is parallelized when possible across 4
local Llamas. LLM invocation is batched when possible.

Test Workloads. We generate 100 queries per dataset, derived
from 20 templates that are manually designed based on the
queries on StackExchange Data Explorer [6]. Each template
produces 5 queries by sampling literals from the data. To
increase diversity in the natural language expression of the
queries, we instruct LLM to generate equivalent variants
for each query as the test query and manually verify their
equivalence. The ground truths are computed manually.

Evaluation Metrics. We assess result quality using accuracy
and measure the end-to-end execution time of answering a
query through latency. For semantic cardinality estimation, we
measure accuracy by q-error [16], [15], defined as q-error =
max{ Estimation

GroundTruth ,
GroundTruth
Estimation }, which compares the estimated

cardinality against the actual value. A smaller q-error indicates
a more accurate estimation.

Environment. Experiments are conducted on an Ubuntu
server with an Intel Xeon 6242R CPU, 6 Nvidia 4090 GPUs,
and 2TB RAM.

B. Overall Evaluation

1) Comparison of Accuracy: Figure 4(a)-(d) shows the
accuracy of different methods across datasets. The results
demonstrate that Unify significantly outperforms all base-
lines, with accuracy improvements up to 68%. In addition,
Unify achieves accuracy similar to exhaustive search methods
(Exhaust) and manual plan selection (Manual). For exam-
ple, on the Sports dataset, Unify achieves 81% accuracy,
compared to 13% (RAG), 20% (RecurRAG), 24% (LLMPlan),
33% (Sample), 80% (Exhaust), and 84% (Manual). The low
accuracy of RAG and RecurRAG is due to their inability to
handle complex queries that require complex reasoning and
data aggregation since they only retrieve pieces of information.
Similarly, LLMPlan struggles due to its reliance on LLMs
for both plan generation and execution, which is limited
by the limited reasoning abilities of LLMs. Sample, while
capable of processing data subsets, relies on LLM for complex
reasoning and only analyzes the sample subset, thus degrading
its accuracy. In contrast, Unify uses operator-based query
decomposition, which generates logically correct plans and re-
trieves the necessary information, thus leading to much higher
accuracy. Though Exhaust achieves high accuracy through
an exhaustive search, it is extremely costly and LLM does
not always select the optimal plan. Notably, Unify obtains
an accuracy comparable to Manual, which, while accurate,
requires extensive time for manual coding and debugging.

2) Comparison of Efficiency: Figure 4(e)-(h) compares end-
to-end execution time of different methods. Unify answers
each query in a few minutes with an average of 0.8 minutes for
planning. This execution time is competitive with RAG-based
methods and is significantly faster than Exhaust and Manual.
For example, on Sports, Unify has an average latency of
3.1 minutes, compared to 0.4 minutes (RAG), 1.1 minutes
(RecurRAG), 1.2 minutes (LLMPlan), 13.1 minutes (Sample),
96.2 minutes (Exhaust), and 23.5 minutes (Manual). Al-
though RAG and RecurRAG are faster, their simplistic process-
ing does not consider the aggregation information of all data
and limits their accuracy. While LLMPlan is also faster, its
fully prompt-based planning and execution are incapable of
solving complex reasoning required by the queries. Sample
takes a longer time due to its need to process large data subsets.
Exhaust and Manual are significantly slower since they
either exhaustively search all possible plans or involve human
efforts. Though involving multi-step planning, optimization,
and execution, Unify achieves competitive execution time
due to optimizations like involving LLMs for planning only

TABLE III
Q-ERRORS OF SEMANTIC CARDINALITY ESTIMATION METHODS.

Sampling Sports AI

Method 50th 95th 99th Max 50th 95th 99th max

Uniform 6.95 33.2 94.2 351 6.47 35.0 82.5 409
Stratified 5.82 28.1 79.3 302 6.63 31.5 70.8 345

AIS 7.21 36.8 102.4 387 7.39 48.1 91.2 432
Unify 1.79 6.45 12.4 22.5 1.95 5.22 9.15 25.0

Sports WikiDatasets
0.0

2.5

5.0

Ex
ec

. T
im

e
(m

in
)

(a) Evaluation of Logical Optimization

Unify
Unify-noLO

Sports WikiDatasets
0

5

10

15
Ex

ec
. T

im
e

(m
in

)

(b) Evaluation of Physical Optimization

Unify Unify-GD Unify-Rule

Fig. 5. Evaluation of: (a) logical optimization; (b) physical optimization.

when necessary, maximizing operator independence degree for
parallel execution and appropriate physical operator selection.

In summary, our system, Unify, achieves significantly
higher accuracy compared to state-of-the-art baselines, with
improvements ranging from approximately 48% to 68%. It
also achieves approximately the same accuracy as manually
designed and exhaustively searched plans, while reducing
execution latency by up to 40 times compared to Exhaust

and 10 times compared to Manual.

C. Semantic Cardinality Estimation Evaluation

We evaluate the effectiveness of our semantic cardinality
estimation method (Section VI-B) against other methods on
the Sports and AI datasets. Filtering conditions in queries
from Section VII-B are used for evaluation, and all methods
are constrained to the same number of sampled data points
(1% of all data). Baselines include:
(1) Uniform Sampling: uniformly sampling from all data,
which is also adopted in PALIMPZEST [22].
(2) Stratified Sampling: grouping data by embedding distance
to the query, then sampling proportionally to group size.
(3) Adaptive Importance Sampling (AIS) [19]: dividing
the sampling process into multiple iterations. Starting from
a uniform distribution, AIS iteratively refines the importance
function to improve sampling accuracy. We restrict to two
iterations due to the limited number of total samples.

Table III shows that Unify outperforms all baselines. On
Sports, the median q-error of Unify is 1.79, compared to
6.95 (Uniform), 5.82 (Stratified), and 7.21 (AIS). Both
uniform and stratified sampling fail to account for the distribu-
tion of data points that satisfy query conditions. AIS attempts
to improve accuracy through iterative refinement but struggles
with limited samples. Unify achieves superior accuracy by
effectively capturing the distribution of data points that satisfy
the query with an accurate importance function.

D. Logical Optimization Evaluation

We evaluate the effectiveness of the proposed logical op-
timization on the Sports and Wiki datasets by comparing
Unify, which employs logical optimization to generate a
DAG-structured plan with parallel execution when possible,
against Unify− noLo, which executes operators sequentially
without optimization. Figure 5(a) shows the latency of the two
methods. The results show that logical optimization signifi-
cantly reduces execution time, with average reductions of 32%
and 45% (the sequential plans of some queries offer limited
or no optimization potential). This demonstrates that Unify
accurately captures operator dependencies, and reducing these
dependencies leads to significant efficiency improvement.

E. Physical Optimization Evaluation

To evaluate the effectiveness of the proposed physical opti-
mization methods, including operator ordering and physical
operator selection based on the cost model introduced in
Section VI, we compare Unify with two baselines: Unify-
Rule, which performs no physical optimization and randomly
selects physical operators based on semantic requirements,
and Unify-GD, which uses ground truth cardinality for cost-
based physical optimization. The results, shown in Figure 5(b),
demonstrate that Unify significantly reduces execution time
compared to Unify-Rule and achieves similar efficiency to
Unify-GD. The performance improvement of Unify over
Unify-Rule stems from the ability of our optimization tech-
niques to select operator orders that minimize intermediate
result sizes early in the execution, thereby reducing the
overall computational cost. Additionally, Unify can choose
more efficient physical operators when applicable, such as
IndexScan. The comparable efficiency between Unify and
Unify-GD is due to the accuracy of Unify in estimating
semantic cardinality, which allows it to accurately predict plan
costs and select the most efficient execution plan.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed Unify, a novel system designed
to automate unstructured data analytics by utilizing LLMs.
To address the limitations of traditional analytics systems that
rely on predefined schemas, we presented an algorithm for
generating logical plans that can tackle complex queries with
accurate logical reasoning. We designed effective methods for
optimizing physical plans, turning logical plans into efficient
executions based on an innovative cost model and semantic
cardinality estimation. Experiments demonstrated that Unify
not only significantly improved accuracy but also enhanced
query processing speed for analyzing unstructured data.

ACKNOWLEDGMENT

Guoliang Li is the corresponding author. This
work was supported by National Key R&D Program
of China (2023YFB4503600), Shenzhen Project
(CJGJZD20230724093403007), NSF of China (62232009),
Zhongguancun Lab, Huawei, and Beijing National Research
Center for Information Science and Technology (BNRist).

REFERENCES

[1] Ai stackexchange data. https://archive.org/download/stackexchange/ai.
stackexchange.com.7z.

[2] Law stackexchange data. https://archive.org/download/stackexchange/
law.stackexchange.com.7z.

[3] Openai latency optimization. https://platform.openai.com/docs/guides/
latency-optimization.

[4] Sports stackexchange data. https://archive.org/download/stackexchange/
sports.stackexchange.com.7z.

[5] Stackexchange data archive. https://archive.org/download/
stackexchange.

[6] Stackexchange data explorer. https://data.stackexchange.com/
stackoverflow/queries.

[7] Wiki data archive. https://dumps.wikimedia.org.
[8] E. Anderson, J. Fritz, A. Lee, and et al. The design of an llm-powered

unstructured analytics system. arXiv:2409.00847, 2024.
[9] S. Arora, B. Yang, S. Eyuboglu, A. Narayan, A. Hojel, I. Trummer, and

C. Ré. Language models enable simple systems for generating structured
views of heterogeneous data lakes. VLDB, 17(2):92–105, 2023.

[10] A. Asai, Z. Wu, Y. Wang, A. Sil, and et al. Self-rag: Learning to retrieve,
generate, and critique through self-reflection. ICLR 2024, 2024.

[11] S. Chaudhuri, R. Motwani, and V. R. Narasayya. On random sampling
over joins. In SIGMOD, pages 263–274. ACM Press, 1999.

[12] G. Cormode, M. N. Garofalakis, and et al. Synopses for massive data:
Samples, histograms, wavelets, sketches. Found. Trends Databases, 4(1-
3):1–294, 2012.

[13] D. Gao, H. Wang, Y. Li, X. Sun, Y. Qian, B. Ding, and J. Zhou. Text-
to-sql empowered by large language models: A benchmark evaluation.
Proc. VLDB Endow., 17(5):1132–1145, 2024.

[14] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, Q. Guo,
M. Wang, and H. Wang. Retrieval-augmented generation for large
language models: A survey. CoRR, abs/2312.10997, 2023.

[15] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper.
Learned cardinalities: Estimating correlated joins with deep learning. In
CIDR. www.cidrdb.org, 2019.

[16] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and
T. Neumann. How good are query optimizers, really? VLDB, 2015.

[17] V. Leis, B. Radke, A. Gubichev, and et al. Cardinality estimation done
right: Index-based join sampling. In CIDR, 2017.

[18] V. Leis, B. Radke, A. Gubichev, and et al. Query optic mization through
the looking glass, and what we found running the join order benchmark.
VLDB J., 27(5):643–668, 2018.

[19] G. P. Lepage. Adaptive multidimensional integration: vegas enhanced.
J. Comput. Phys., 439:110386, 2021.

[20] B. Li, Y. Luo, C. Chai, G. Li, and N. Tang. The dawn of natural language
to sql: Are we fully ready? VLDB, 17(11):3318–3331, 2024.

[21] Y. Lin, M. Hulsebos, R. Ma, and et al. Towards accurate and efficient
document analytics with large language models. CoRR, 2024.

[22] C. Liu, M. Russo, M. J. Cafarella, L. Cao, P. B. Chen, Z. Chen, M. J.
Franklin, T. Kraska, S. Madden, and G. Vitagliano. A declarative system
for optimizing AI workloads. CoRR, abs/2405.14696, 2024.

[23] X. Liu, S. Shen, B. Li, P. Ma, R. Jiang, Y. Luo, Y. Zhang, J. Fan, G. Li,
and N. Tang. A survey of nl2sql with large language models: Where are
we, and where are we going? arXiv preprint arXiv:2408.05109, 2024.

[24] S. Madden, M. J. Cafarella, M. J. Franklin, and T. Kraska. Databases
unbound: Querying all of the world’s bytes with AI. Proc. VLDB
Endow., 17(12):4546–4554, 2024.

[25] Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs.
IEEE Trans. Pattern Anal. Mach. Intell., 42(4):824–836, 2020.

[26] OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.
[27] L. Patel, S. Jha, C. Guestrin, and M. Zaharia. LOTUS: enabling semantic

queries with llms over tables of unstructured and structured data. CoRR,
abs/2407.11418, 2024.

[28] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita. Improved
histograms for selectivity estimation of range predicates. In SIGMOD,
pages 294–305. ACM Press, 1996.

[29] M. Pourreza and D. Rafiei. DIN-SQL: decomposed in-context learning
of text-to-sql with self-correction. In Neurips, 2023.

[30] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using
siamese bert-networks. In EMNLP, pages 3980–3990. Association for
Computational Linguistics, 2019.

[31] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access path selection in a relational database management
system. In SIGMOD, pages 23–34. ACM, 1979.

[32] S. Shankar, T. Chambers, T. Shah, A. G. Parameswaran, and E. Wu.
Docetl: Agentic query rewriting and evaluation for complex document
processing. arXiv preprint arXiv:2410.12189, 2024.

[33] H. Touvron, T. Lavril, G. Izacard, X. Martinet, and et al. Llama: Open
and efficient foundation language models. CoRR, abs/2302.13971, 2023.

[34] I. Trummer. Generating succinct descriptions of database schemata for
cost-efficient prompting of large language models. VLDB, 2024.

[35] M. Urban and C. Binnig. CAESURA: language models as multi-modal
query planners. In CIDR, 2024.

[36] S. Yao, J. Zhao, D. Yu, N. Du, and et al. React: Synergizing reasoning
and acting in language models. In ICLR, 2023.

[37] Z. Zhao, R. Christensen, F. Li, X. Hu, and K. Yi. Random sampling
over joins revisited. In SIGMOD, pages 1525–1539. ACM, 2018.

[38] C. Zheng, H. Zhou, F. Meng, J. Zhou, and M. Huang. Large language
models are not robust multiple choice selectors. In ICLR, 2024.

