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LLMs: General Computing Interface
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LLM-Powered Applications Large Language Models

Information 
Retrieval

Data Analytics Content 
Creation

• Spam detection
• Attribute extraction
• Classification
• Ranking
• Summarization

• Question & Answering
• Customer 

Support
• Role-based, e.g. 

Travel Agent
• Translation

• Recommendation

• Code generation
• NL2SQL

• Document/text 
generation

• Emails, reports, 
etc.

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

Generate 
Code

Summarize

Q&A

NL2SQL
Classify

Rank
Write
E-mail

Recomm-
end LLM Inference System



LLM Inference System

LLM Inference Systems
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LLM External Tools, e.g. DBMS

Chatbot Coding Assistant AI Agent

LLM-Powered Apps

...

High Performance
• Low latency, i.e. time-to-first-token (TTFT), time-

between-tokens (TBT, TPOT), end-to-end lat.
• High throughput, i.e. requests/sec, tokens/sec

High Quality
• E.g. correctness (NL2SQL, Q&A, code gen), 

relevance (recommendation, customer support), 
accuracy (classification, ranking), etc.

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

Goal: Build a system for High-Performance and High-Quality inference



LLM Inference Systems: Key Challenges
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• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

Latency

(a) DeepSeek-R1 picking a 
random number

Goal: Build a system for High-Performance and High-Quality inference
1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it
2) Autoregressive Generation: Output generated one token at a time

Quality

vs.

(d) Output sensitivity to small 
changes in prompt [Kojima ‘23]

Throughput Memory

(c) KV cache growth

The

The cat

The cat sat

The cat sat on

The cat sat on the

The cat sat on the mat

LLM

LLM

LLM

LLM

LLM

(b) Autoregressive 
Generation



LLM Inference Systems: Architecture
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• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

Frontend

LLM External Tools, e.g. DBMS

Chatbot Coding Assistant AI Agent

LLM-Powered Apps

...

LLM Inference System
Scheduler

Request Processor

Optimizer / Executor

Storage Manager • Correct, Accurate, Relevant, 
Trustworthy, SecureQuality

• Fast, Available

• Memory Efficient, 
Elastic Resources

Latency

Memory

Throughput • Scalable

Goal: Build a system for High-Performance and High-Quality inference
1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it
2) Autoregressive Generation: Output generated one token at a time



LLM Inference Systems: Frontend
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Request Processor

Optimizer / Executor

Storage Manager

Frontend Scheduler

LLM External Tools, e.g. DBMS

Chatbot Coding Assistant AI Agent

LLM-Powered Apps

...

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

LLM Inference System

User Interface
• Declarative Modules
• Language Extensions

I/O Interpreter
• Prompt Generator
• Constraint Checker

Seq. Generation
• Streaming Generation
• Structured Generation

• Parse user requests 
into effective 
prompt workflow

• Build optimized 
prompts, e.g. prompt 
engineering

• Coordinate seq. gen. to 
balance quality and 
performance

Goal: Build a system for High-Performance and High-Quality inference
1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it
2) Autoregressive Generation: Output generated one token at a time



LLM Inference Systems: Scheduler
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Request Processor

Optimizer / Executor

Storage Manager

Frontend Scheduler

LLM External Tools, e.g. DBMS

Chatbot Coding Assistant AI Agent

LLM-Powered Apps

...

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

LLM Inference System

• Assign requests to 
workers to maximize 
utilization

• Prioritize jobs to 
minimize queuing 
delays

• Compose batches to 
balance TTFT & TBT 
with throughput

Load Balancer
• Job Assignment Module
• Load Prediction Model

Scheduler
• Job Prioritizer
• Job Cost Model

Batch Controller
• Chunking Module
• Batch Size Control

Goal: Build a system for High-Performance and High-Quality inference
1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it
2) Autoregressive Generation: Output generated one token at a time



LLM Inference Systems: Req. Proc.
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Request Processor

Optimizer / Executor

Storage Manager

Frontend

LLM External Tools, e.g. DBMS

Chatbot Coding Assistant AI Agent

LLM-Powered Apps

...

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

LLM Inference System

• Efficiently generate 
next token given 
partial text seq.

• Effectively perform 
token prediction by 
contextualizing token 
embeddings with 
minimal CPU / mem. 
cost

Operators
• Attention
• FFN / Mixture-of-Experts
• Token Sampler / Speculative 

Decoder
• GeMM

Inference Workflow
• Prefill
• Decode

Scheduler

Goal: Build a system for High-Performance and High-Quality inference
1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it
2) Autoregressive Generation: Output generated one token at a time



LLM Inference Systems: Executor
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Optimizer / Executor

Storage Manager

Frontend

LLM External Tools, e.g. DBMS

Chatbot Coding Assistant AI Agent

LLM-Powered Apps

...

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

LLM Inference System

• Minimize operator 
costs by exploiting 
special hardware

• Balance latency & 
throughput by 
coordinating batch 
execution timing

Scheduler

Request Processor

Hardware Acceleration
• FlashAttention
• FlashDecoding, 

RingAttention, LeanAttention

Batch Executor
• Continuous Batching
• Bursted Attention

Distributed Executor
• Data (PD-Disagg.) / Model / 

Pipeline Parallel Executor

• Maximize throughput
by coordinating 
execution over 
distributed workers

Goal: Build a system for High-Performance and High-Quality inference
1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it
2) Autoregressive Generation: Output generated one token at a time



LLM Inference Systems: Storage
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Storage Manager

Frontend

LLM External Tools, e.g. DBMS

Chatbot Coding Assistant AI Agent

LLM-Powered Apps

...

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

LLM Inference System

• Manage KV cache 
blocks to minimize 
wasted memory

• Compress model 
weights, activations, 
KV to minimize 
memory usage

Scheduler

Request Processor

Block Manager
• Block Storage
• Block Search & Retrieval
• Block Sharing & Eviction

Quantizer
• Quantizer Design
• Outlier Protection

Physical Storage
• Tiered Storage & Offloading
• Distributed Storage

• Store model weights 
and KV caches for 
efficient retrieval

Optimizer / Executor

Goal: Build a system for High-Performance and High-Quality inference
1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it
2) Autoregressive Generation: Output generated one token at a time



Part 1: Request Processing
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Efficiently and effectively generate next token by using contextualized embeddings

Request Processor

Operators
• Attention

• Naive Attention
• Multi-Headed Attention
• Grouped Attention
• Shared Attention
• Sparse Attention

• FFN
• Naive FFN
• Mixture-of-Experts

• Token Sampler
• Greedy / Stochastic
• Speculative Decoding

Inference Workflow
• Prefill
• Decode • Reduce compute complexity by exploiting KV cache

• Parallelized attention
• Parallelized attention with shared heads
• Reduce memory by sharing KV vectors
• Reduce memory & compute by discarding KVs

Technique Description / Key Idea

• Increase param. count (quality) w/o increasing cost

• Increase token/sec via fast drafter with parallel verif.

Operator Design

Optimization
Optimization

Operator Design
Operator Design

Optimization
Operator Design

Optimization
Operator Design

Technique Classification

Optimization
Workflow



Inference Workflow: Prefill
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Inference Workflow: How to efficiently perform LLM inference?

• Prefill: Exploit GPU matmul to contextualize multiple tokens at once

“The cat 
sat on 
the”

Prompt Predicted 
Next Token

= Input Embedding = Contextualized
Embedding

= Delta Vector = Query Vector = KV Vector



Inference Workflow: Decode
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Inference Workflow: How to efficiently perform LLM inference?

• Decode: After prefill, exploit KV Cache to avoid reconstructing KVs

Transformer Layer i

Previous 
Token + 
Cache

Predicted 
Next Token

“mat.”

KV$

= Cached KVs= Input Embedding = Contextualized
Embedding

= Delta Vector = Query Vector = KV Vector



Operators: Naive Attention
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Attention: How to efficiently contextualize an embedding vector?

• Naive: Weight contributions of other tokens by learned query-key similarity

Q

KT

Attention
Pattern

A

n

Prompt Length, n

A’ = 
Softmax(A)

V

Delta 
Vecs.

U

n

n

Reproj. Dim.
dv = m, e.g. 1024

U = Softmax(QKT)V

dk
e.g. 128

W
Q

Embed. Dim. m, e.g. 1024

W
K

W
V

Key Dim.
dv = m

e.g. 1024

The
cat
sat
on
the

Linear 
Transform

Pr
om

pt
 L

en
gt

h
n

Layer i

Reproj. Dim.

Add

The
cat
sat
on
the

Contextualized 
Embeddings

• Compute Cost: two matmuls + row-wise softmax
• Memory Cost: |Q|, |K|, |V|, |A|

Single-Head
(Prefill)



Operators: Multi-Headed Attention
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Attention: How to efficiently contextualize an embedding vector?

• Multi-Head (MHA): Split V across parallel “heads”
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Operators: Grouped Attention
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Attention: How to efficiently contextualize an embedding vector?

• Grouped Attention (GQA, MQA): Share KV projections across the heads

M
H

A

A1 A1’

V1

H1

Head 1

A2 A2’

V2

H2

Head 2

A3 A3’

V3

H3

Head 3

A4 A4’

V4

H4

Head 4
K1 K2 K3

Q
4

K4

Q
3

Q
2Q
1

G
Q

A

A1 A1’

V1

H1

Head 1

A2 A2’

V1

H2

Head 2

A3 A3’

V2

H3

Head 3

A4 A4’

V2

H4

Head 4
K1 K1 K2 K2

Q
1

Q
2

Q
3 Q
4

M
Q

A

A1 A1’

V

H1

Head 1

A2 A2’

V

H2

Head 2

A3 A3’

V

H3

Head 3

A4 A4’

V

H4

Head 4
K K K K

Q
1 Q
2

Q
3

Q
4

Multi-Head
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Operators: Shared Attention
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Attention: How to efficiently contextualize an embedding vector?

• Shared Attention: Share KVs across multiple (sub)-requests

= Shareable KVs = New KVs (Prompt)

= New KVs (Response)

Zheng, L et al. (2025) SGLang: Efficient Execution of Structured Language Model Programs, 
arXiv:2312.07104

(a) Reusing few-shot examples across 
multiple prompts

(b) Reusing ”thoughts” across multiple 
branches of a Tree-of-Thoughts process



Operators: Sparse Attention

18

Attention: How to efficiently contextualize an embedding vector?

• Sparse Attention: Compute QK similarities for only small subset of tokens

1

.8 .2
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0 0
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.5 .1 .1 .1 .1 .1
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q 2

q 3

KT k1
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e

0 0 .2 .2 .2 .2

0 0 0 0 .3 .3 .4

0 0 0 0 .2 .2 .2 .4

q 1
q 2

q 3

k1X X

k1X X k2X

k1X X k2X X k3

D
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od
e= Cached Keys

= New Keys

X = Evicted Keys

= Attention Score

(a) Dense

(b) Sparse
(e.g. Sliding Window)

Token Pruning
• Heuristic Mask

• Sliding Window (Sparse Transformers)
• Attention Sink (StreamingLLM)

• Score-Based Pruning
• Attention Threshold (Scissorhands)
• Accum. Attention (H2o “Heavy Hitters”)
• Approx. Attention (Loki, SparQ)

• Learned Pruning
• Block Gating (SeerAttention)



Operators: Feed-Forward Network
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Feed-Forward: How to predict next token given contextualized token?

• Naive: Construct next-token embedding via multi-layer perceptrons
g(f1) f2
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.



Operators: Mixture-of-Experts
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Feed-Forward: How to predict next token given contextualized token?

• Mixture-of-Experts: Replace FFN with a m different “experts”
• Single FFN: n total parameters, n activated parameters during inference
• m Experts: m x n total parameters, k x n activated parameters during inference

Attention

Add & Norm

Add & Norm

FFN 
(MoE)

Expert 1 Expert 2 Expert n

...

Router

X

X’

Yu, H et al. (2025) fMoE: Fine-Grained Expert Offloading for Large Mixture-of-Experts Serving, 
arXiv:2502.05370

MoE Architecture



Operators: Greedy / Stochastic Sampler
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Token Sampler: How to select next token given predicted next-token embedding?

• Greedy: Map from embedding onto token set & select max logit
• Stochastic: Randomly sample from the logit map according to logit value
• Top-K: Randomly sample from k-largest logits
• p-Nucleus: Set k so that logits sum to p

Token Sampler

The
cat
sat
on
the

W
b

Linear 
Transform

# of all possible next tokens

0 0 0 .6 0 0 0 .4

0 0 0 0 0 .40

Dictionary

.6

m
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m
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m
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m
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m
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m
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m
attress

... ...

......

... ...
p

p

Temperature / Softmax

Token Sampler

Logit Map



Operators: Speculative Decoding
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Token Sampler: How to select next token given predicted next-token embedding?

• Speculative Decoding: Quickly draft next k tokens, then quickly verify
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Embeddings

Warmup: Prefill

Raw 
Embeddings
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= Cached Keys

= New Keys

= Raw Embedding
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Request Processing: Summary
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Efficiently and effectively generate next token by using contextualized embeddings

Request Processor

Operators
• Attention

• Naive Attention
• Multi-Headed Attention
• Grouped Attention
• Shared Attention
• Sparse Attention

• FFN
• Naive FFN
• Mixture-of-Experts

• Token Sampler
• Greedy / Stochastic
• Speculative Decoding

Inference Workflow
• Prefill
• Decode

Operator Design

Optimization
Optimization

Operator Design
Operator Design

Optimization
Operator Design

Optimization
Operator Design

Latency Throughput Memory Quality

↑

Technique Classification

Optimization
Workflow

↑

↑ ↑↑ ↑

↑

↑

↑

↑

↑

↑
↑

↑

↑ ↑

↑ ↑

↑

↑

↑



Distributed Executor
• Model Parallelism
• Pipeline Parallelism
• Data Parallelism

• Multi-Replica
• PD-Disaggregated

Part 2: Optimizer / Execution

24

Minimize op. costs via hardware kernels; balance throughput / lat. by coordinating execution

Optimizer / Execution

Batch Executor
• Static Batching
• Continuous Batching
• Bursted Attention

Hardware Acceleration
• FlashAttention
• FlashDecoding, RingAttention
• LeanAttention

Workflow

Workflow
Workflow

Workflow
Workflow

Architecture
Architecture

Kernel Design
Kernel Design

• Parallelized blockwise attention

• Mitigate straggler effects via dynamic rebatching
• Batch splitting and merging

Technique Classification Technique Description / Key Idea

• Parallelize across layers

• Add multiple LLM replicas to increase throughput

• Reduce memory & I/O via kernel fusion

• Parallelize across requests in different stages

• Decouple P and D replicas to allow flexibility

Optimization • Maximize core utilization via streaming load balanc.



Hardware Accel.: FlashAttention
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Hardware Accel.: How to implement efficient operators over specialized hardware?

• FlashAttention: Update delta vector in place via online softmax & matmul

qT xT

KT

xkx1 xn... ...

Scan Direction 
(Columns)

uk-1T

Update M, D

uT = softmax(qTKT)V

uk
T

Update u

kth 
row

V

Scan Direction 
(Rows)

M, D

xk

Version k-1

Version k
Updated in place



Hardware Accel.: How to implement efficient operators over specialized hardware?

• FlashAttention: Shard across the queries

• FlashDecoding: Shard across KV followed by global reduction

Hardware Accel.: FlashDecoding

26
Dao, T., Haziza, D., Massa, F., and Sizov, G. Flash-decoding for long-context inference, 2023

Inter-query: Each worker 
gets different query block 
but share key-value blocks

Intra-query: Each worker 
gets different key-value 
blocks followed by global 
reduction step



Hardware Accel.: How to implement efficient operators over specialized hardware?

• LeanAttention: Stream mini-blocks to GPU cores followed by global reduct.

Hardware Accel.: LeanAttention

27

Rya S., Srikant B., Renee SA., Victor R., Saravan R. Lean Attention: Hardware-Aware Scalable 
Attention Mechanism for the Decode-Phase of Transformers. arXiv:2405.10480



Hardware Accel.: RingAttention

28

K1 K2 K5 K5 K6 K3K3 K4 K1

K6 K2 K5 K4 K6 K3K2 K4 K1

K6 K3 K5 K4 K1 K3K2 K5 K1

K6 K3 K4 K4 K1 K2K2 K5 K6

K1 K3 K4 K5 K1 K2K3 K5 K6

Worker 1 Worker 2 Worker 3

Time t0

t1

t2

t3

t4

K 1 K 2 K 3 K 4 K 5 K 6
Q1

Q2

Q3

Worker 1

Worker 2

Worker 3

Key Tiles

Q
ue

ry
 T

ile
s

Active Tile

Completed Tile

Incoming Tile

Hardware Accel.: How to implement efficient operators over specialized hardware?

• RingAttention: Distributed blocks + fixed transfer sequence
• Each worker needs to read every cache block, but what to do if cache exceeds worker memory?
• Distribute blocks across workers, then use fixed transfer sequence to hide transfer overhead



Batching: Continuous Batching

29

r1

r2

r3

Progres
s0% 100%

75

r4 0

60

r1

r2

r3

Progres
s0% 100%

33

25

20

Empty

r1

r2

r3

Progres
s0% 100%

66

50

40

r1

r2

r3

Progres
s0% 100%

H
ig

h
Lo

w
Pr

io
rit

y

Decode Round t = 1 t = 2 t = 3 t = 4

Queue

Active 
Batch

r4 0

80

r4 0

(a) Static Batching

Ba
tc

h 
Si

ze
r1

r4

r2

Progres
s0% 100%

50

r3 40

75

r1

r2

r3

Progres
s0% 100%

33

25

20

Empty

r1

r2

r3

Progres
s0% 100%

66

50

40

r4

r2

r3

Progres
s0% 100%

60

Empty

H
ig

h
Lo

w
Pr

io
rit

y

Decode Round t = 1 t = 2 t = 3 t = 4

Queue

Active 
Batch

r4 0

(b) Continuous Batching

Ba
tc

h 
Si

ze

Batching: How to avoid stragglers during batch formation?

• Continuous Batching: Reconstitute the batch after each round
Static Batching
• Requests 1 and 2 are held up by 

Request 3 (straggler)
• Request 4 cannot start until the 

R1R2R3 batch completes

Continuous Batching
e.g. Shortest-Job First
• Request 4 starts immediately b.c. 

higher priority than e.g. R3
• Requests 1 and 2 can return 

immediately once they finish
• Request 3 takes longer b.c. it got 

preempted by R4



Batching: Bursted Attention
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Batching: How to avoid stragglers during batch formation?

• Bursted Attention: Split for attention and rejoin for matrix ops.
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Distributed Exec.: Model Parallelism
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Worker 1 Worker 2

Yu G. I., Jeong J. S., Kim G. W., Kim S., Chun B. G. ORCA: A Distributed Serving System for Transformer-Based 
Generative Models. OSDI’22

Distributed Exec.: How to take advantage of multiple executors?

• Model Parallelism: Split large model across transformer layers
• Avoid memory pressure on a single worker



Distributed Exec.: Pipeline Parallelism
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Distributed Exec.: How to take advantage of multiple executors?

• Pipeline Parallelism: Concurrently execute multiple pipelines

Aminabadi R. Y., Rajbhandari S., Zhang M., Awan A. A., Li C., Li D., Zheng E., Rasley J., Smith S., Ruwase O., He 
Y. DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale. 
arXiv:2207.00032
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Distributed Exec.: Data Parallelism
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Distributed Exec.: How to take advantage of multiple executors?

• Data Parallelism: Deploy multiple LLM replicas to increase throughput
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Distributed Executor
• Model Parallelism
• Pipeline Parallelism
• Data Parallelism

• Multi-Replica
• PD-Disaggregated

Optimizer / Execution: Summary

34

Minimize op. costs via hardware kernels; balance throughput / lat. by coordinating execution

Optimizer / Execution

Batch Executor
• Static Batching
• Continuous Batching
• Bursted Attention

Hardware Acceleration
• FlashAttention
• FlashDecoding, RingAttention
• LeanAttention

Workflow

Workflow
Workflow

Workflow
Workflow

Architecture
Architecture

Kernel Design
Kernel Design

Technique Classification

Optimization

Latency Throughput Memory Quality
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Batch Controller
• Chunking Module
• Batch Size Control

Part 3: Scheduler

35

Minimize queuing delays and maximize resource utilization by balancing the load

Scheduler

Scheduler
• Job Prioritizer

• First-Come First-Serve
• Shortest-Job
• Multi-Level Queue

• Job Cost Prediction
• Cache / Prompt Based
• Learning-Based

Load Balancer
• Job Assignment

• Greedy
• Power-of-2

• Load Prediction (SAL)

Optimization

Algorithm
• Reduce overloading by 2-phase assignment

• Minimize queueing delays by prioritizing fast jobs
• Simulate shortest-job by using multiple queues

Technique Classification Technique Description / Key Idea

• Train a model to predict job cost

• Balance latency / throughput via batch sizing

Model (Heuristic)

Algorithm
Algorithm
Algorithm

Model (Learned)
Model (Heuristic)

Algorithm

Optimization

• Develop a model for predicting worker load

• Use cache / prompt length as proxy for job cost

• Balance latency / throughput via chunk sizing



Load Balancer: Job Assignment
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Job Assignment: How to assign jobs to workers under dynamic and uncertain loads?

• Greedy: Assign requests to least-load worker at time of assignment
• Under static loads, this is 2-competitive in worst-case but requires accurate load prediction

• Power-of-Two: Assign to greedy worker out of random 2 [Hu et al 2024 “TetriInfer”]
• Exponentially smaller makespan compared to random (but not as good as greedy) [Mitzenmacher 2001]

• Under dynamic loads, avoids overloading workers

Prefill

Decoder 3

Decoder 2

Decoder 1

Decoder 4

Prefill

(a) Greedy

Prefill

Prefill

Prefill

Prefill

Decoder 3

Decoder 2

Decoder 1

Decoder 4

Prefill

(b) Power-of-Two

Prefill
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Load Balancer: Load Prediction
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Load Prediction: How to measure worker load while considering dynamic job costs?
• Sources of Uncertainty:

• Dynamic memory growth:
• In-situ KV caches from existing / new requests 
• Reloaded caches from request resumptions

• Dynamic memory reclamation:
• Offloaded or evicted caches from preempted / finished requests

• Naive: Sum cost of in-situ jobs using request-level job cost prediction
• SAL: Factor in memory reclamation rate [Kossman et al 2025]

Decoder 4
Decoder 4

Decoder 4
?



Scheduler: Job Prioritization
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Job Prioritization: How to prioritize jobs to minimize queuing time?

• First-Come First-Serve (FCFS): Process requests in order of arrival

Queue Batch 
Former

Req.

OlderNewer

Req 1 Req 2

Head of Line (HOL) Blocking

Time

Wu B., Zhong Y., Zhang Z., Liu S., Liu F., Sun Y., Huang G., Liu X., Jin X. Fast Distributed Inference 
Serving for Large Language Models. arXiv:2305.05920

Real-World Datasets



Scheduler: Job Prioritization
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Job Prioritization: How to prioritize jobs to minimize queuing time?

• Shortest-Job First (SJF): Process requests in order of remaining time
• Guarantees minimum average latency (incl. queuing time) but requires accurate completion time pred.
• Preemptive SJF:

• Can lead to stalls for perpetually low-priority requests
• Context-switch cost (offloading / evicting in-situ cache + reloading the cache upon resumption)
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Scheduler: Job Prioritization
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Job Prioritization: How to prioritize jobs to minimize queuing time?

• Multi-Level Queue (MLQ): Gradually demote requests to simulate SJF
• Naive MLQ: place all new jobs in highest priority queue, then gradually demote
• Skip-Join MLQ: place all new jobs in queue based on prefix length
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Wu B., Zhong Y., Zhang Z., Liu S., Liu F., Sun Y., Huang G., Liu X., Jin X. Fast Distributed Inference 
Serving for Large Language Models. arXiv:2305.05920

(d) Shortest Remaining 
Processing Time (Optimal)

(c) Skip-Join MLQ

(b) Naive MLQ(a) FCFS



Scheduler: Job Prioritization
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Job Prioritization: How to prioritize jobs to minimize queuing time?

• Maximum Cache Hits: Process requests based on cache hits
• Simulates SJF since large cache hit could mean low job cost
• Avoids cache thrashing

Zheng L., Yin L., Xie Z., Sun C., Huang J., Yu CH., Cao S., Kozyrakis C., Stoica I., Gonzalez JE., Barrett C., Sheng Y. 
SGLang: Efficient Execution of Structured Language Model Programs. arXiv:2312.07104

t1: “Solve this question...” t2: “Write a story...” t3: “Solve this question...” t4: “Write a story...”



Scheduler: Job Cost Prediction
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Job Cost Prediction: How to measure job cost without knowing final output length?

• Ask the LLM: Add output length prediction request to original prompt

E.g. Perception-in-Advance (PiA):
Prompt
Create a fun math question for children. Before 
responding to the above instruction, you have to 
predict the length of your response. Print the 
estimated number of words in your response in the 
first line. Then change to a new line to respond to the 
instruction.

GPT-4
Estimated response length: 60 words.
Sure, here’s a fun math problem: There are 7 apples in a 
basket. A friendly squirrel comes and...

Zheng Z., Ren X., Xue F., Luo Y., Jiang X., You Y. Response Length Perception and Sequence 
Scheduling: An LLM-Empowered LLM Inference Pipeline. NeurIPS’23



Scheduler: Job Cost Prediction
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Job Cost Prediction: How to measure job cost without knowing final output length?

• Train an Estimator: Use separate estimator to predict output length

Shahout R., Malach E., Liu C., Jiang W., Yu M., Mitzenmacher M. Don't Stop Me Now: Embedding 
Based Scheduling for LLMs. arXiv:2410.01035



Scheduler: Job Cost Prediction
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Job Cost Prediction: How to measure job cost without knowing final output length?

• Certaindex: Use beam consistency as heuristic for remaining job time

“The cat sat on the”

mat couch table
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mat couch table
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. and .
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0.40 0.30 0.35

<EOS> Then It then it was <EOS> It But
0.70 0.10 0.05 0.60 0.30 0.05 0.75 0.10 0.05

Beam Search (k > 1, e.g. k = 3)

Group beams into m
clusters based on 

similarity

Measure cluster entropy 
using size of each 

cluster |Ci| relative to 
number of beams, n

Normalize to yield a 
score between [0, 1]

Fu Y., Chen J., Zhu S., Fu Z., Dai Z., Zhuang Y., Ma Y., Qiao A., Rosing T., Stoica I., Zhang H. 
Efficiently Scaling LLM Reasoning with Certaindex. arXiv:2412.20993



Batch Controller: Prefix Chunking
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Batch Controller: How to compose the batch to balance throughput and latency?

• Chunked Prefills: Split prefill across multiple rounds

Agrawal, A, Panwar, A, Mohan, J, Kwatra, N, Gulavani, BS, Ramjee, R. SARATHI: Efficient LLM 
Inference by Piggybacking Decodes with Chunked Prefills. arXiv:2308.16369

GPU 1

GPU 2

GPU 1

GPU 2



Batch Controller: Batch Sizing
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Batch Controller: How to compose the batch to balance throughput and latency?

• Batch Sizing: Inc. batch size to raise throughput & dec. to lower latency

w/o chunked prefills w/chunked prefills

Agrawal, A, Panwar, A, Mohan, J, Kwatra, N, 
Gulavani, BS, Ramjee, R. SARATHI: Efficient 
LLM Inference by Piggybacking Decodes with 
Chunked Prefills. arXiv:2308.16369

Yu G. I., Jeong J. S., Kim G. W., Kim S., Chun B. G. 
ORCA: A Distributed Serving System for Transformer-
Based Generative Models. OSDI’22



Batch Controller
• Chunking Module
• Batch Size Control

Scheduler: Summary

47

Minimize queuing delays and maximize resource utilization by balancing the load

Scheduler

Scheduler
• Job Prioritizer

• First-Come First-Serve
• Shortest-Job
• Multi-Level Queue

• Job Cost Prediction
• Cache / Prompt Based
• Learning-Based

Load Balancer
• Job Assignment

• Greedy
• Power-of-2

• Load Prediction (SAL)

Optimization

Algorithm

Technique Classification

Model (Heuristic)

Algorithm
Algorithm
Algorithm

Model (Learned)
Model (Heuristic)

Algorithm

Optimization

Latency Throughput Memory Quality
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Part 4: Storage Manager
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Efficiently store KV caches to minimize wasted memory; reduce memory usage via compression

Storage Manager

Quantizer
• Quantizer Design
• Outlier Smoothing

Block Manager
• Block Storage (Paged)
• Block Sharing & Eviction

• Prefix Sharing
• Partial Reconstruction
• Long Context Eviction

• Block Search & Retrieval
• Radix Tree

Framework • Dynamic block-based memory allocation

• Organize blocks by prefix to support efficient search

• Reduce memory by lowering numerical precision

Technique Classification Technique Description / Key Idea

• Reduce quantization error by smoothing outliersOptimization
Operator Design

Index

Physical Storage
• Tiered Storage & Offloading
• Distributed Storage

• Hot Blocks
Framework

• Increase capacity by exploiting tiered storageFramework
• Increase capacity by storing across multiple workers

• Reconstruct KV vectors for imperfect matches
• Reduce memory by discarding unimportant KVs

Optimization
Optimization
Optimization

Optimization • Replicate hot blocks to avoid block transfer



Block Manager: Block Storage
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Block Storage: How to allocate memory for tasks with dynamic memory usage?

• PagedAtten.: Dynamically allocate small blocks managed by block table
• vAttention [Prabhu et al 2025], vTensor [Xu et al 2024 FlexInfer]: use GPU native memory management 

capabilities to keep track of blocks
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Block Manager: Sharing & Eviction
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Block Sharing: How to reuse cache blocks when KV vectors are context-dependent?
• Key vectors KY for Chunk Y are influenced by value vectors from the prefix X

• Prefix Sharing: Reuse up to longest exact-match prefix
• Cache Reconstruction: Recalculate KV vectors for a few significant tokens

• E.g. position-based, template-based, score-based
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Block Manager: Sharing & Eviction
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Block Sharing: How to reuse cache blocks when KV vectors are context-dependent?

• Cache Reconstruction: Recalculate KV vectors for a few significant tokens
• Position-Based [Hu et al 2024 Epic]: Recalculate at fixed positions, e.g. chunk boundaries

Hu J., Huang W., Wang H., Wang W., Hu T., Zhang Q., Feng H., Chen X., Shan Y., Xie T. EPIC: Efficient Position-
Independent Caching for Serving Large Language Models. arXiv:2410.15332



Block Manager: Sharing & Eviction
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Block Sharing: How to reuse cache blocks when KV vectors are context-dependent?

• Cache Reconstruction: Recalculate KV vectors for a few significant tokens
• Template-Based [Gim et al 2024 Prompt Cache]: Recalculate only the “parameter” tokens of a template

Gim I., Chen G., Lee S., Sarda N., Khandelwal A., Zhong L. Prompt Cache: Modular Attention Reuse for Low-
Latency Inference. arXiv:2311.04934



Block Manager: Sharing & Eviction
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Block Sharing: How to reuse cache blocks when KV vectors are context-dependent?

• Cache Reconstruction: Recalculate KV vectors for a few significant tokens
• Score-Based [Yao et al 2024 CacheBlend]: Identify significant tokens based on attention score deviation

Yao J., Li H., Liu Y., Ray S., Cheng Y., Zhang Q., Du K., Lu S., Jiang J. CacheBlend: Fast Large Language Model 
Serving for RAG with Cached Knowledge Fusion. arXiv:2405.16444



Block Manager: Sharing & Eviction
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e.g. StreamingLLM
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Block Eviction (Long Context): How to reduce cache size without reducing quality?

• Sparse Attention: Compute QK similarities for small subset of tokens
Heuristic Masks Score-Based



Block Manager: Block Search & Retriev.
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Block Search & Retrieval: How to find and retrieve reusable blocks from a persisted cache?

• Radix Tree: Split persisted prefixes along shared prefix branches

(a) Each branch stores a 
matchable prefix

(b) To keep cache size under control, whole 
least-used branches can be evicted as the 

tree grows

Zheng L., Yin L., Xie Z., Sun C., Huang J., Yu CH., Cao S., Kozyrakis C., Stoica I., Gonzalez JE., Barrett C., Sheng Y. 
SGLang: Efficient Execution of Structured Language Model Programs. arXiv:2312.07104



Physical Storage: Tiered & Offloading
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Cache Offloading (Long Context): How to simultaneously reduce memory and reload costs? 

• Entry-Wise: Store cache on cold storage and load significant tokens only
• Partial Query Weight: Modified Wq that returns truncated query vector with few “significant” dims.
• Partial Key Cache: Key vectors truncated to few “significant” dims.

Lee W., Lee J., Seo J., and Sim J. InfiniGen: Efficient Generative Inference of Large Language Models with 
Dynamic KV Cache Management. OSDI’24



Physical Storage: Tiered & Offloading
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Cache Offloading (Long Context): How to simultaneously reduce memory and reload costs?

• Layer/Model-Wise: Store % of model/layers across tiered storage
• FlexGen: Define a cost model and minimize via LP formulation

• Considerations: read/write costs, CPU-side computation
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Physical Storage: Tiered & Offloading
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Kwon W., Li Z., Zhuang S., Sheng Y., Zheng L., Yu C. H., Gonzalez J. E., Zhang H., Stoica I. Efficient Memory 
Management for Large Language Model Serving with PagedAttention. arXiv:2309.06180



Physical Storage: Tiered & Offloading
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Cache Offloading (Preemption): For preempted requests, when to evict and when to offload?

• Async Recovery: Prefetch Layer i + 1 during computation of Layer i
• Disaggregated Async Transfer: Stream cache from prefill to decode

Lee W., Lee J., Seo J., and Sim J. InfiniGen: Efficient 
Generative Inference of Large Language Models with 
Dynamic KV Cache Management. OSDI’24
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Physical Storage: Distributed Cache
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Distributed Cache: How to partition blocks to workers to balance the workload & reduce transfers?

• Cache-Aware Load Balancing: Assign jobs based on cache hits
• Preble: Use distributed radix tree to search matching blocks

Srivatsa V., He Z., Abhyankar R., Li D., Zhang Y. Preble: Efficient Distributed Prompt Scheduling for LLM Serving. 
arXiv:2407.00023



Physical Storage: Distributed Cache

61

Distributed Cache: How to partition blocks to workers to balance the workload & reduce transfers?

• Hot Blocks: Store hot block replicas on multiple workers
• Mooncake: To replicate blocks “naturally”, occasionally assign requests while ignoring worker blocks
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Quantization: Quantizer Design
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(a) Uniform Quantizer (b) Non-Uniform Quantizer

Quantizer Design: How to find error-minimizing map from high to low-precision domain?

• Uniform: Discretize a high-precision domain into low-bit numbers
• E.g. 𝑞(𝑥) = 𝑥/𝑠 + 𝑧 where s is a step size and z is offset

• Non-Uniform: Directly solve for error minimization mapping
• E.g. k-means clustering

Survey: Gholami A., Kim S., Dong Z., Yao Z., Mahoney M. W., Keutzer K. A Survey of Quantization Methods for 
Efficient Neural Network Inference. arXiv:2103.13630



Quantization: Quantizer Design
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Quantizer Design: How to find error-minimizing map from high to low-precision domain?

• Tensor-Wise: Apply one quantizer over a whole tensor
• Vector-Wise: Apply different quantizers per token/KV or dim (“channel”)
• Dimension-Wise: Apply different quantizers per group of dimensions
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Quantization: Outlier Protection
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Outlier Protection: How to identify & preserve information in outliers?

• Mixed-Precision: Keep outliers in raw high-precision form
• SpQR [Dettmers et al 2023]: Use a sparse representation to hold raw values + special matmul kernel



Quantization: Outlier Protection

65

Outlier Protection: How to identify & preserve information in outliers?

• Outlier Smoothing: Smooth outliers to yield more uniform tensor
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Storage Manager: Summary
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Efficiently store KV caches to minimize wasted memory; reduce memory usage via compression

Storage Manager

Quantizer
• Quantizer Design
• Outlier Smoothing

Block Manager
• Block Storage (Paged)
• Block Sharing & Eviction

• Prefix Sharing
• Partial Reconstruction
• Long Context Eviction

• Block Search & Retrieval
• Radix Tree

Framework

Technique Classification

Optimization
Operator Design

Index

Physical Storage
• Tiered Storage & Offloading
• Distributed Storage

• Hot Blocks
Framework
Framework

Optimization
Optimization
Optimization

Optimization

Latency Throughput Memory Quality
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I/O Interpreter
• Control Flow
• Prompt Generator

• Prompt Optimization
• Template Completion

User Interface
• Declarative Modules
• Language Extensions

Seq. Generation
• Streaming Generation

• 0-Shot CoT
• Few-Shot, 1-Shot CoT
• Internalized CoT

• Structured Generation
• Beam Search
• x-of-Thoughts

Part 5: Frontend
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Capture user intents in order to automatically optimize prompts and workflows

Frontend

Framework

API • Capture user intent to support prompt optimization

• Provide automatic prompt engineering

• Increase quality by generating more context

• PD interleave for fast and accurate templates

Technique Classification Technique Description / Key Idea

• Increase quality by providing more context

• Increase quality via multiple candidate sequences

API Feature

Optimization
Optimization

Optimization

Framework
• Increase quality via multiple candidate sequences

API • Facilitate programmatic prompting

Optimization

Optimization • Increase quality via fine-tuning



User Interface: Declarative Modules
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Declarative Modules: How to capture intent of a request in order to support automatic prompts?

• LMQL: Use SQL-like syntax to express intent via output constraints

• DSPy: Provide callable modules for common requested tasks

# use constrained variable to produce a classification
"Based on this, the overall sentiment of the message\
can be considered to be[CLS]" where CLS in [" positive", " neutral", " negative"]

math = dspy.ChainOfThought("question -> answer: float")
math(question="Two dice are tossed. What is probability that the sum equals 2?")

class ExtractInfo(dspy.Signature):
"""Extract structured information from text."""
text: str = dspy.InputField()
title: str = dspy.OutputField()
headings: list[str] = dspy.OutputField()
entities: list[dict[str, str]] = dspy.OutputField(desc="a list of entities and their metadata")

module = dspy.Predict(ExtractInfo)



User Interface: Declarative Modules
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Declarative Modules: How to capture intent of a request in order to support automatic prompts?

• DSPy: Provide callable modules for common requested tasks

Automatic zero-shot CoT prompting

cot = dspy.ChainOfThought(BasicGenerateAnswer)User-Submitted
Program

Your input fields are:
1. `question` (str)

Your output fields are:
1. `reasoning` (str)
2. `answer` (str)

All interactions will be structured in the following way, with the appropriate values filled in.

[[ ## question ## ]]
{question}

[[ ## reasoning ## ]]
{reasoning}

System-Generated 
Prompt



User Interface: Language Extensions
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Language Extensions: How to intuitively incorporate LLM generation into imperative languages?

• SGLang: Provide LLM API with parameterized calling
s += LLM("To answer "+q+", I need "+gen("tool", choices=["calc", "www"]))
if s["tool"] == "calc":

// .. do something
elif s["tool"] == "www":

// .. do something

Example 1: Using LLM API plus imperative control flow to build a tool-using agent

character_regex=(...)
def character_gen(s, name):

s += user(
f"{name} is a character in Harry Potter. Please fill in the following information about this character."

)
s += LLM(gen("json_output", max_tokens=256, regex=character_regex))

Example 2: The LLM API includes features e.g. regex constrained outputs



I/O Interpreter: Control Flow
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Control Flow: How automatically format LLM outputs to enable value-based control flow?

• SGLang: Provide LLM API with parameterized calling
s += LLM("To answer "+q+", I need "+gen("tool", choices=["calc", "www"]))
if s["tool"] == "calc":

// .. do something
elif s["tool"] == "www":

// .. do something

Generated Prompt
Complete the following with one word only: “calc” or “www”. 
To answer (question here), I need:



I/O Interpreter: Prompt Generator
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Prompt Generator: How to automatically optimize a prompt to decr. lat & increase quality?

• Declarative Modules: Optimize prompts based on the called module

Example: Automatic few-shot prompting

# Initialize KNNFewShot with a sentence transformer model
knn_few_shot = KNNFewShot(k=3, trainset=trainset, vectorizer=dspy.Embedder(xyz).encode))

# Compile the QA module with few-shot learning
compiled_qa = knn_few_shot.compile(qa)

# Use the compiled module
result = compiled_qa("What is the capital of Belgium?")



I/O Interpreter: Prompt Generator
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Prompt Generator: How to automatically optimize a prompt to decr. lat & increase quality?

• Staggered Templates: Build progressive prompts by interleaved decode

Write a summary of Bruno Mars, the singer:
{{ "name": "[STRING_VALUE]",

"age": [INT_VALUE],
"top_songs": [[

"[STRING_VALUE]",
"[STRING_VALUE]" ]] }}

Write a summary of Bruno Mars, the singer:
{ "name": " Bruno Mars

Write a summary of Bruno Mars, the singer:
{ "name": "Bruno Mars",
"age": "

User-Submitted
JSON Template

System-Generated 
Prompt #1

System-Generated 
Prompt #2

Automatic “staggered” template completion workflow from LMQL

LMQL



Seq. Generation: Streaming
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Streaming Generation: Adding which key phrases illicit high-quality responses?

• Zero-Shot CoT: Use phrases that yield responses mirroring reasoning
Base Prompt Zero-Shot Chain-of-Thought (Cot)vs.

Kojima, T et al. (2022) Large Language Models are Zero-Shot Reasoners, arxiv:2205.11916

Effect of different phrases on 
accuracy for math word problems 
(MultiArith)



Seq. Generation: Streaming
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Streaming Generation: Adding which key phrases illicit high-quality responses?

• Few-Shot Examples: Use examples to yield pattern-matching outputs

Brown, T et al. (2020) Language Models are Few-Shot Learners, NeurIPS’20

Base Zero-Shot Prompt Few-Shot Promptvs.

Providing few-shot examples 
increases BLEU score for translation 
tasks



Seq. Generation: Streaming
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Streaming Generation: Adding which key phrases illicit high-quality responses?

• One-Shot CoT: Add example reasoning to yield reasoning-like output
Base Zero-Shot Prompt One-Shot CoT Promptvs.

Wei, J et al. (2022) Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, 
NeurIPS’22



Seq. Generation: Streaming

77

Streaming Generation: Adding which key phrases illicit high-quality responses?

• Internalized CoT: Fine-tune to yield reasoning-like output w/o key phrases

Nye, M et al. (2021) Show Your Work: Scratchpads for Intermediate Computation with Language 
Models, ICLR’21

Prompt:

Model 
Output:

Fine-tuning with supervised scratchpad 
increases accuracy over few-shot (i.e. 
one-shot CoT) alone



Seq. Generation: Structured
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“The cat sat on the”

mat couch table

. and quietly . and comfortably . and knocking

0.35 0.25 0.15

0.40 0.30 0.15 0.35 0.25 0.20 0.50 0.20 0.15

“The cat sat on the”

mat couch table
0.35 0.25 0.15

“The cat sat on the”

mat couch

. and .

0.35 0.25

0.40 0.30 0.35

<EOS> Then It then it was <EOS> It But
0.70 0.10 0.05 0.60 0.30 0.05 0.75 0.10 0.05

Structured Generation: Which candidate sequences to generate and how to organize?

• Beam Search: Advance the top-k sequences based on logit score

Beam Search (k > 1, e.g. k = 3)
Score Candidate

0.35 The cat sat on the mat

0.25 The cat sat on the couch

0.15 The cat sat on the table

Score Candidate

0.14 The cat sat on the mat.

0.11 The cat sat on the mat and

0.09 The cat sat on the couch.

Score Candidate

0.10 The cat sat on the mat.<EOS>

0.07 The cat sat on the mat and then

0.07 The cat sat on the couch.<EOS>



Seq. Generation: Structured
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List a few plans...: 
The cat sat on the

Here are a few 
possible plans: ...

Is this plan good? 
“Sentence Completion...”

Is this plan good? 
“Creative Writing...”

Is this plan good? 
“Grammar Analysis...”

Sentence Completion is 
a good plan

Creative Writing is a 
good plan

Grammar Analysis is 
a bad plan

Structured Generation: Which candidate sequences to generate and how to organize?

• Tree-of-Thoughts: Advance multiple “thought chains”, i.e. sub-requests
The cat sat on the

Inference System
= Internal Prompt
= Internal Response

= User Prompt



Seq. Generation: Structured
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Here are a few 
possible plans: ...

“Sentence Completion...” “Creative Writing...” “Grammar Analysis...”

Plan Evaluator Plan Evaluator Plan Evaluator

The cat sat on the

Inference System
Pre-Planner E.g. Ask LLM for 

possible plans

Plan Enumeration E.g. Parse response

Pre-Planner Pre-Planner

E.g. Ask LLM

Thoughts

Structured Generation: Which candidate sequences to generate and how to organize?

• Tree-of-Thoughts: Advance multiple “thought chains”, i.e. sub-requests



Seq. Generation: Structured
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Structured Generation: Which candidate sequences to generate and how to organize?

• Graph-of-Thoughts: ToT with more ops., e.g.  “aggregation”, “refine”

M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski, L. Gianinazzi, J. Gajda, T. Lehmann,
H. Niewiadomski, P. Nyczyk, and T. Hoefler. Graph of thoughts: Solving elaborate problems with large language models. AAAI’24, 
38(16):17682–17690, 2024



I/O Interpreter
• Control Flow
• Prompt Generator

• Prompt Optimization
• Template Completion

User Interface
• Declarative Modules
• Language Extensions

Seq. Generation
• Streaming Generation

• 0-Shot CoT
• Few-Shot, 1-Shot CoT
• Internalized CoT

• Structured Generation
• Beam Search
• x-of-Thoughts

Frontend: Summary

82

Capture user intents in order to automatically optimize prompts and workflows

Frontend

Framework

API

Technique Classification

API Feature

Optimization
Optimization

Optimization

Framework

API

Optimization

Optimization

Latency Throughput Memory Quality
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Part 6: Inference Systems
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Examples Key Features Key Design Aims

Single-
Replica

• Orca (2022)
• vLLM (2023)
• Sarathi (2024)
• SGLang (2024)
• FastServe (2024)

• Single copy of LLM weights
• Fundamental Scalability 

Limitation: Linear Transform 
(WQ, WK, WV matmul) and FFN 
cannot be scaled up → Low 
Throughput

• Increase throughput via latency and 
memory reduction → faster request 
processing & larger batch sizes

Multi-
Replica

• Preble (2024)
• DistServe (2024)
• TetriInfer (2024)
• SplitWise (2024)
• Mooncake (2024)
• DeepServe (2025)

• Multiple copies of LLM weights
• Raises total system mem.
• Allows Data Parallelism & 

Distributed Cache for larger in-
memory persisted KV caches

• Increase throughput and reduce 
latency via techniques for distributed 
execution, e.g. Load Balancing, PD 
Disaggregation, & Hot Block 
Replicas

Build a system for High-Performance and High-Quality inference



Single-Replica Systems
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Latency Memory Throughput Quality
Request 

Processing
• KV Cache (decode)
• Efficient attention

• Grouped / Shared / 
Sparse Attention

• Speculative 
Decoding

• MoE

Optimizer / 
Execution

• Fused / Blockwise 
Kernels

• Cont. Batching
• Pipeline Parallelism

• Fused Kernels
• Model Parallelism 

(device mem.)
Low lat. → greater 

throughput

N/A

Scheduler
• Job Prioritization 

supported by Job 
Cost Prediction

• Chunked Prefills

Low lat. → faster 
reclamation N/A

Storage Manager
• Cache Sharing
• Block Search
• Quantization

• Paged Memory
• Cache Sharing
• Offloading
• Quantization

Low mem. → larger 
batch sizes N/A

Frontend • Constrained Outputs
• Staggered Templ.

Low lat. → faster 
reclamation

Low lat. → greater 
throughput

• Prompt Opt/Eng.
• Structured Gen.

Increase throughput via lat. and mem. reduction → faster request processing & larger batch sizes



Single-Replica: Orca (2022)
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Request 
Processing Optimization / Execution Scheduling Storage Frontend

• KV Cache • Fused Attention
• Cont. Batching
• Bursted Attention
• Model/Pipeline Par.

• FCFS • Static Preallocated 
Memory

N/A

Yu G. I., Jeong J. S., Kim G. W., Kim S., Chun B. G. ORCA: A Distributed Serving System for Transformer-Based 
Generative Models. OSDI’22

• Orca (2022): Reduce TTFT via continuous batching and reduce TBT via model/pipeline par.



Single-Replica: vLLM (2023)
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Request 
Processing Optimization / Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.
• Shared Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.

• FCFS • Paged Memory
• Cache Sharing
• Offloading 

(Preemption)

N/A

• vLLM (2023): Reduce memory waste via paged memory and block sharing

Kwon W., Li Z., Zhuang S., Sheng Y., Zheng L., Yu C. H., Gonzalez J. E., Zhang H., Stoica I. Efficient Memory 
Management for Large Language Model Serving with PagedAttention. arXiv:2309.06180



Single-Replica: Sarathi (2024)
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Request 
Processing Optimization / Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.

• FCFS
• Chunked 

Prefills

• Paged Memory
N/A

• Sarathi (2024): Use Chunked Prefills to reduce TBT from straggler batches

Agrawal, A, Panwar, A, Mohan, J, Kwatra, N, Gulavani, BS, Ramjee, R. SARATHI: Efficient LLM 
Inference by Piggybacking Decodes with Chunked Prefills. arXiv:2308.16369



Single-Replica: SGLang (2024)
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Request 
Processing Optimization / Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.
• Shared Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.

• Cache Hits 
Priority

• Paged Memory
• Cache Sharing
• Block Search 

(Radix Tree)

• Constrained Gen.
• Staggered Temp.
• Structured Gen.

• SGLang (2024): Co-design frontend to support fast/accurate template completion, structured gen.

Zheng L., Yin L., Xie Z., Sun C., Huang J., Yu CH., Cao S., Kozyrakis C., Stoica I., Gonzalez JE., Barrett C., Sheng Y. 
SGLang: Efficient Execution of Structured Language Model Programs. arXiv:2312.07104



Single-Replica: FastServe (2024)
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Request 
Processing Optimization / Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.

• Multi-Level 
Queue

• Paged Memory
• Offloading 

(Preemption)
N/A

• FastServe (2024): Reduce latency from Head-of-Line blocking using MLQ

Wu B., Zhong Y., Zhang Z., Liu S., Liu F., Sun Y., Huang G., Liu X., Jin X. Fast Distributed Inference 
Serving for Large Language Models. arXiv:2305.05920



Multi-Replica Systems
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Latency Memory Throughput Quality
Request 

Processing
• KV Cache (decode)
• Efficient attention

• Grouped / Shared / 
Sparse Attention

• Speculative Decoding • MoE

Optimizer / 
Execution

• Fused / Blockwise Kernels
• Cont. Batching
• Pipeline Parallelism
• Data Parallelism
• PD Disaggregation

• Fused Kernels
• Model Parallelism (device 

mem.)

• Data Parallelism
• PD Disaggregation 

(low lat.) N/A

Scheduler

• Job Prioritization supported 
by Job Cost Prediction

• Chunked Prefills
• Job Assignment 

supported by Load 
Prediction

Low lat. → faster reclamation Low lat. → greater throughput N/A

Storage 
Manager

• Cache Sharing
• Block Search
• Quantization
• Hot Block Replicas

• Paged Memory
• Cache Sharing
• Offloading
• Quantization
• Distributed Cache

• Hot Block Replicas 
(low lat.)

N/A

Frontend • Constrained Outputs
• Staggered Templ. Low lat. → faster reclamation Low lat. → greater throughput • Prompt Opt/Eng.

• Structured Gen.

Increase throughput and reduce latency via techniques for distributed execution



Multi-Replica: Preble (2024)

91

Request 
Processing

Optimization / 
Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.
• Shared Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.
• Data Parallelism

• Cache Hits Priority
• Cache Hits Load 

Balancing

• Paged Memory
• Offloading (Preemption)
• Block Search (Radix 

Tree)

• SGLang

• Preble (2024): Decrease workload latency by assigning requests based on cache hits

Srivatsa V., He Z., Abhyankar R., Li D., Zhang Y. Preble: Efficient Distributed Prompt Scheduling for LLM Serving. 
arXiv:2407.00023



Multi-Replica: DistServe (2024)
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Request Processing Optimization / 
Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.
• Data Parallelism (PD-

Disagg.)

• FCFS
• Greedy Job Assignment (P: 

Shortest-Queue, D: Least-
Load)

• Paged Memory

N/A

• DistServe (2024): Provision GPUs in a cluster to P/D in order to maximize goodput

Zhong Y., Liu S., Chen J., Hu J., Zhu Y., Liu X., Jin X., Zhang H. DistServe: Disaggregating Prefill and Decoding for 
Goodput-optimized Large Language Model Serving. arXiv:2401.09670

(a) Mixed vs Pure Batches (b) Allocation Strategy (c) Example Allocations



Multi-Replica: TetriInfer (2024)
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Request Processing Optimization / 
Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.
• Data Parallelism (PD-

Disagg.)

• Chunked Prefills
• Job Priority (P: SJF, D: 

Conservative FCFS)
• Job Assignment (P: Least-

Load, D: Power-2)

• Paged Memory
• Cache Sharing
• Offloading 

(Preemption)
N/A

• TetriInfer (2024): Decouple P and D scheduling to allow workload targeted scheduling

Hu C., Huang H., Xu L., Chen X., Xu J., Chen S., Feng H., \Wang C., Wang S., Bao Y., Sun N., Shan Y. Inference 
without Interference: Disaggregate LLM Inference for Mixed Downstream Workloads. arXiv:2401.11181

(a) Disaggregation vs. vLLM (b) Power-2 vs. Random



Multi-Replica: SplitWise (2024)
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Request Processing Optimization / 
Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.
• Shared Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.
• Data Parallelism (PD-

Disagg.)

• FCFS
• One-Shot Greedy Job 

Assignment (Shortest Queue)

• Paged Memory
• Cache Sharing
• Offloading 

(Preemption)
N/A

• SplitWise (2024): Use one-shot load balancing to allow asynchronous PD cache transfer

Patel P., Choukse E., Zhang C., Shah A., Goiri I., Maleki S., Bianchini R. Splitwise: Efficient Generative LLM Inference 
Using Phase Splitting. ISCA’24

(a) Async vs Serial Transfer (b) Provisioning Simulator and Results



Multi-Replica: Mooncake (2024)
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Request 
Processing

Optimization / 
Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.
• Shared Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.
• Data Parallelism 

(PD-Disagg.)

• FCFS
• One-Shot Greedy Job 

Assignment (P: Cache Hits, 
D: Least-Load)

• Early Rejection

• Paged Memory
• Cache Sharing
• Offloading (Preemption, 

Distributed Cache)
• Hot Blocks

N/A

• Mooncake (2024): Hot blocks & one-shot load balancing with early rejection for overload protection

(a) Early Rejection (Instantaneous Load) (b) Early Rejection (Predicted Load)
Qin R., Li Z., He W., Zhang M., Wu Y., Zheng W., Xu X. Mooncake: A KVCache-centric Disaggregated Architecture 
for LLM Serving. arXiv:2407.00079



Multi-Replica: DeepServe (2025)
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Request 
Processing

Optimization / 
Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.
• Shared Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.
• Data Parallelism 

(PD-Disagg.)

• One-Shot Greedy 
Job Assignment 
(Heuristic)

• Paged Memory
• Cache Sharing
• Offloading (Preemption, 

Distributed Cache)
• Block Search (Radix Tree)

N/A

• DeepServe (2025): Serverless inference system over shared AI infrastructure

Hu J., Xu J., Liu Z., He Y., Chen Y., Xu H., Liu J., Meng J., Zhang B., Wan S., Dan G., Dong Z., Ren Z., Liu C., Xie T., Lin D., 
Zhang Q., Yu Y., Feng H., Chen X., Shan Y. DeepServe: Serverless Large Language Model Serving at Scale. arXiv:2501.14417



Inference Systems: Summary
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Fundamental techniques + workload/performance-driven design and system configuration

Fundamental Techniques Design Choices Configuration Tuning

Fundamentally efficient 
techniques
• KV Cache
• Fused/Blockwise Kernels
• Continuous Batching
• Paged Memory

Based on workload or resource 
considerations
• Job Priority/Assignment

• Cost-Based vs. Cost-Agnostic
• Cache Management

• Persisted vs. Non-Persisted
• In-Memory vs. Tiered Storage
• Replicated vs. Non-Replicated

• Frontend
• Specialized vs. General Reqs.

• Architecture
• Single vs. Multi-Replica
• Mono. vs. Disaggregated

• Quantization
• Quantized vs. Raw

Based on performance objectives
• Batch Size
• Chunk Size
• Resource Provisioning (e.g. # of 

P and D workers, # of GPUs per 
layer, etc.)

• Quantization Scheme



Single-Replica
• Orca (2022)
• vLLM (2023)
• Sarathi (2024)
• SGLang (2024)
• FastServe (2024)

Multi-Replica
• Preble (2024)
• DistServe (2024)
• TetriInfer (2024)
• SplitWise (2024)
• Mooncake (2024)
• DeepServe (2025)

Inference Systems: Summary
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Existing systems are general-purpose and tend towards memory-rich environments

System Job Priority/Assign. Cache ManagementArchitecture Frontend

Single
Single
Single
Single
Single

Multi Mono
Multi Disagg
Multi Disagg
Multi Disagg
Multi Disagg
Multi Disagg

Cost-Agnostic
Cost-Agnostic
Cost-Agnostic
Cost-Agnostic
Cost-Agnostic

Cost-Agnostic
Cost-Agnostic
Cost-Based

Cost-Agnostic
Cost-Base

Cost-Agnostic

In-Mem
Persisted In-Mem

In-Mem
Persisted In-Mem

In-Mem

Persisted In-Mem
In-Mem

Persisted In-Mem
Persisted In-Mem
Persisted In-Mem

Persisted Tiered Repl
Persisted In-Mem

General
General
General

Special + Gen
General

General
General
General
General
General
General
General



Future Opportunities: Scheduling
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Scheduling techniques raise throughput by minimizing queueing delays

Shortest-Job 
First (SJF)

First-Come First-
Serve (FCFS)

Multi-Level 
Queue (MLQ)

Heuristic-Based
• “Certaindex” [Dynasor]
• Prompt length [LARRY; Mooncake]

Learning-Based
• Train an Estimator [TRAIL; S3]

• Ask the LLM [PiA]

Cost-BasedCost-Agnostic

Schedulers

Key Challenges for the DB Community
• Scheduler Design

• Robust Schedulers: Stall Prevention, Rebalancing
• Job Cost & Load Prediction
• System Integration: Co-design scheduler + batcher, e.g. adaptive chunk/batch size & job 

priority while balancing TTFT, TBT, SLO



Future Opportunities: Storage Manager
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Paged memory increases memory efficiency via dynamic memory allocation & block sharing

Stage Techniques Things to Consider

Block Storage • Direct Storage, e.g. GPU Shared Memory
• Tiered Storage, i.e. Offloading

Hot blocks, search & retrieval costs, transfer cost

Block Search • Exact-match hash table
• Exact-match radix tree

Block granularity, partial matches, searching by 
other than matched tokens, integrating with entry-
based techniques

Block Retrieval • GPU to GPU
• DRAM to GPU (offloaded blocks)
• Remote DRAM (distributed blocks)

For offloaded / distributed blocks, balancing 
retrieval + reconstruction cost with savings from 
reuse

Block Reuse • Use without modification (i.e. prefix sharing)
• Selective Reconstruction

Balancing accuracy with overhead from reuse, 
e.g. amount of reconstructed vectors

Block Eviction • LRU, score-based Potentially useful vs. historically useful blocks

Key Challenges for the DB Community



Future Opportunities: Frontend
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Seq. Gen. techniques can increase quality by increasing context but raises inference cost

Frontend Auto 
CoT

Auto Few-
Shot

Auto 
Reasoning

Control 
Flow

Structured 
Output

Template 
Comp.

Auto 
Beam

Auto 
ToT

Auto 
GoT

LMQL (Declarative) Random ✔ ✔ ✔ Manual

DSPy (Declarative) Module
Random,

k-NN ✔ ✔ Module

SGLang ✔ ✔ ✔
Guidance ✔ ✔

LangChain
Random,

k-NN ✔ ✔

Key Challenges for the DB Community
• LLM Query Optimization: Which generation technique to use given a user request?

• Capturing user intent (Query Parsing)
• Optimizing prompt contents (Prompt Engineering)
• Optimizing prompt workflows (Structured Generation)

Manual Auto

Prompt Eng. Structured Gen.



Future Opportunities: Other
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Key Challenges for the DB Community
• LLM Query Execution: How to coordinate memory / compute resources?

• Managing experts / low-rank adapters for MoE & LoRA (Model Offloading)
• Integrating speculative drafters / small models for SpecDec (Model Management)

• Data Structures + Algorithms: How to design operators for modern hardware?
• Heterogenous hardware; CXL; PIM (Processing-In-Memory) DRAM

• Quantization: How to effectively quantize weights / KV cache / activations?

Swappable Low-Rank (LoRA) adapters. 
[Sheng et al ‘25 S-LoRA]

Softmax with CXL.
[Gu et al ‘25]

Product quantization KV compression.
[Zhang et al ‘25]



Thanks!

Slides: https://dbgroup.cs.tsinghua.edu.cn/ligl/activities.html
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