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LLMs: General Computing Interface

Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads
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LLM Inference Systems

- Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

Goal: Build a system for High-Performance and High-Quality inference
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« High throughput, i.e. requests/sec, tokens/sec Chatbot  Coding Assistant Al Agent

High Quality [ LLM Inference System ]
« E.g. correctness (NL2SQL, Q&A, code gen),
relevance (recommendation, customer support),
L . [ LLM ] [ External Tools, e.g. DBMS ]
accuracy (classification, ranking), etc.




LLM Inference Systems: Key Challenges

- Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

Goal: Build a system for High-Performance and High-Quality inference
1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it

@ 2) Autoregressive Generation: Output generated one token at a time
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(c) KV cache growth

Q: A juggler can juggle 16 balls. Half of the balls are golf ball\
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

(Output) 8 X

VS. J

Q: A juggler can juggle 16 balls. Half of the balls are golf baIIs,\
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls
are blue. That means that there are 4 blue golf balls. v /

(d) Output sensitivity to small
changes in prompt [Kojima ‘23]
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LLM Inference Systems: Architecture

« Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads
Goal: Build a system for High-Performance and High-Quality inference
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1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it
2) Autoregressive Generation: Output generated one token at a time
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LLM Inference Systems: Frontend

- Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

Goal: Build a system for High-Performance and High-Quality inference
g 1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it

2) Autoregressive Generation: Output generated one token at a time

LLM-Powered Apps

Chatbot Coding Assistant Al Agent

( LLM Inference System \

Request Processor

Optimizer / Executor

\ Storage Manager )

[ LLM || External Tools, e.g. DBMS |

User Interface
e Declarative Modules
« Language Extensions

/O Interpreter
* Prompt Generator
* Constraint Checker

Seq. Generation
» Streaming Generation
» Structured Generation

Parse user requests
into effective
prompt workflow

Build optimized
prompts, e.q. prompt
engineering

Coordinate seq. gen. to
balance quality and
performance



LLM Inference Systems: Scheduler

« Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads
Goal: Build a system for High-Performance and High-Quality inference

g 1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it

2) Autoregressive Generation: Output generated one token at a time

LLM-Powered Apps

ot

Load Balancer
Job Assignment Module

Chatbot Coding Assistant Al Agent Load Prediction Model

( LLM Inference System
r Scheduler

Job Prioritizer

Request Processor

Frontend J Scheduler

Job Cost Model

Optimizer / Executor

Batch Controller

\ Storage Manager

Chunking Module

Batch Size Control

[ LLM || External Tools, e.g. DBMS |

» Assign requests to

workers to maximize
utilization

Prioritize jobs to
minimize queuing
delays

Compose batches to
balance TTFT & TBT
with throughput



LLM Inference Systems: Red. Proc.

- Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

Goal: Build a system for High-Performance and High-Quality inference
g 1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it

2) Autoregressive Generation: Output generated one token at a time

LLM-Powered Apps
@?}’) }G}% Inference Workflow  Efficiently generate
1 Prefill next token given
Chatbot Coding Assistant Al Agent « Decode partial text seq.
( LLM Inference System \
Operators » Effectively perform
[ FrelriiEne ] [ SEAEEILEr ] « Attention token prediction by
Request Processor « FFN / Mixture-of-Experts contextu'alizing. token
= « Token Sampler / Speculative embeddings with
[ Optimizer / Executor } Decoder minimal CPU / mem.
\[ Storage Manager ]) * GeMM cost
[ LLM || External Tools, e.g. DBMS |




LLM Inference Systems: Executor

- Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

Goal: Build a system for High-Performance and High-Quality inference
g 1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it

2) Autoregressive Generation: Output generated one token at a time

LLM-Powered Apps
@E_’) }G}% HaT:dlwahr: Accgleratnon * Minimize operator
“ Js > IS costs by exploiting

* FlashDecoding,

Chatbot Coding Assistant Al Agent special hardware

RingAttention, LeanAttention

( LLM Inference System \
[ Frontend ] [ Scheduler ] Batch Executor + Balance latency &
. . throughput by
« Continuous Batching .
_ coordinating batch
[ Request Processor } « Bursted Attention execution timing
Optimizer / Executor Distributed Executor  Maximize throughput
\[ Storage Manager ]) + Data (PD-Disagg.) / Model / by coordinating
Pipeline Parallel Executor execution over

distributed workers
[ LLM || External Tools, e.g. DBMS |




LLM Inference Systems: Storage

- Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

Goal: Build a system for High-Performance and High-Quality inference
g 1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it

2) Autoregressive Generation: Output generated one token at a time

LLM-Powered Apps
@E{) }Ej{% Block Manager « Manage KV cache
Js - Block Storage blocks to minimize
Chatbot Coding Assistant Al Agent * Block Search & Retrieval wasted memory
* Block Sharing & Evicti
( LLM Inference System \ ST S
Frontend ] [ Scheduler J Quantizer « Compress model
Request Processor i « Quantizer Design weights, activations,
’  Outlier Protection KV to minimize
Optimizer / Executor | memory usage

\ Storage Manager ) Physical Storage « Store model weights
» Tiered Storage & Offloading

== and KV caches for
[ LLM || External Tools, e.g. DBMs | * Distributed Storage efficient retrieval

10



Part 1: Request Processing

Efficiently and effectively generate next token by using contextualized embeddings

Request Processor [ Technique Classification ] [ Technique Description / Key Idea

Inference Workflow

e Prefill Workflow
« Decode Optimization « Reduce compute complexity by exploiting KV cache
Operators
« Attention

 Naive Attention Operator Design

« Multi-Headed Attention Operator Design  Parallelized attention

« Grouped Attention Operator Design « Parallelized attention with shared heads

* Shared Attention Optimization « Reduce memory by sharing KV vectors

* Sparse Attention Optimization « Reduce memory & compute by discarding KVs
+ FFN

« Naive FFN Operator Design

. Mixture-of-Experts Optimization * Increase param. count (quality) w/o increasing cost
« Token Sampler

» Greedy / Stochastic Operator Design

« Speculative Decoding Optimization * Increase token/sec via fast drafter with parallel verif.
11



Inference Workflow: Prefill

Inference Workflow: How to efficiently perform LLM inference?
* Prefill: Exploit GPU matmul to contextualize multiple tokens at once
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Inference Workflow: Decode

Inference Workflow: How to efficiently perform LLM inference?
* Decode: After prefill, exploit KV Cache to avoid reconstructing KVs

. \
II a 1) Transformer Layer 1 :
Previous | Trlélr?sefi:'m 5 S 5 gr— gr— pr— g— | pr—
Token + 1| 3 =S | | 5| Predicted
= baet = ==
Cache I A = © T | | | 2] NextToken
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Embedding
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Prompt Length

Key Dim. Reproj. Dim.
[ dk [ 1
e.g. 128 e.g. 1024

Layer i

Operators: Naive Attention

Attention: How to efficiently contextualize an embedding vector?

* Naive: Weight contributions of other tokens by learned query-key similarity
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Operators: Multi-Headed Attention

Attention: How to efficiently contextualize an embedding vector?

* Multi-Head (MHA): Split V across parallel “heads”

Multi-Head
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Operators: Grouped Attention

Attention: How to efficiently contextualize an embedding vector?

* Grouped Attention (GQA, MQA): Share KV projections across the heads

Multi-Head

Grouped-
Query

1 <
e

H

Multi-
Query
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Operators: Shared Attention

Attention: How to efficiently contextualize an embedding vector?
« Shared Attention: Share KVs across multiple (sub)-requests

Branch 1 ][ Branch 1 ]

= Shareable KVs = New KVs (Prompt) search History || Branch 1.1 | Branch 1.1 |
= New KVs (Response) Search History ][ Branch 1.1.1 ] [ Branch 1.1.1 ]
Search History ][ Branch 1.2 ][ Branch 1.2 ]
‘ Search History J( Branch 1.2.1 | Branch 1.2.1 |
Prompt 1 Few-shot examples ]—r Question 1 ]——[ Answer 1 guestion —— ][ — ]
Prompt2 |  Fewshotexamples |—{ Question2 }—— Answer2 | searchvistory ) ((raneh 22 ) ((eranch 21 )
Prompt 3 Few-shot examples ‘ Question 3 J—[ Answer 3 Search History ][ Branch 2.1.1 ] [ Branch 2.1.1 ]
(a) Reusing few-shot examples across EELE S EETTER) (o2 |
multiple prompts Search History )\ Branch2.2.1 | Branch 2.2.1 |

(b) Reusing "thoughts” across multiple
branches of a Tree-of-Thoughts process

Zheng, L et al. (2025) SGLang: Efficient Execution of Structured Language Model Programs,
arXiv:2312.07104
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Operators: Sparse Attention

Attention: How to efficiently contextualize an embedding vector?
« Sparse Attention: Compute QK similarities for only small subset of tokens

Token Pruning

» Heuristic Mask
Sliding Window (Sparse Transformers)
Attention Sink (StreamingLLM)

« Score-Based Pruning

(a) Dense

Attention Threshold (Scissorhands) [
Accum. Attention (H20 “Heavy Hitters”) §
Approx. Attention (Loki, SparQ) = &

« Learned Pruning £ % '
Block Gating (SeerAttention) § '

- = Cached Keys = Evicted Keys
- = New Keys E = Attention Score (b) Sparse

(e.g. Sliding Window)




Operators: Feed-Forward Network

Feed-Forward: How to predict next token given contextualized token?

« Naive: Construct next-token embedding via multi-layer perceptrons

g(f)

fr(X) = XW; + by

x{ by

Xz by

Z{' by

g=ReLU
a.k.a. ElemMax(0, a)

L1

2 X
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Operators: Mixture-of-Experts

Feed-Forward: How to predict next token given contextualized token?

* Mixture-of-Experts: Replace FFN with a m different “experts”

« Single FFN: n total parameters, n activated parameters during inference
 m Experts: m x n total parameters, k x n activated parameters during inference

X MoE Architecture MoE Serving
|

Add & Norm \ I |

Lossy Lossless
Serving Serving
| |

N |
\ I

' | | | |
|
|

Compress Quantize  Coarse-grained Fine-grained
(MoE-I? [38]) (MoQE [23]) (Mixtral-Offload [16],  (fMoE)
Vi MoE-Infinity [52])

Attention

Yu, H et al. (2025) fMoE: Fine-Grained Expert Offloading for Large Mixture-of-Experts Serving,
arXiv:2502.05370
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Operators: Greedy / Stochastic Sampler

Token Sampler: How to select next token given predicted next-token embedding?

* Greedy: Map from embedding onto token set & select max logit

« Stochastic: Randomly sample from the logit map according to logit value
* Top-K: Randomly sample from k-largest logits
« p-Nucleus: Set k so that logits sum to p

# of all possible next tokens
A [ Token Sampler ]
( ’ o)
The Li : —
inear
cat | Transform § p -
sat
. - -
the K | Temperature / Softmax | ) 1
' ' ' 3 3 3313 3 3 3
LogitMapp---|°|°|°|'6|°|°|°|'4|'" 22 817z 22 2
' ' ' ®» =~ 3 S - < @
- g_) %

[ Token Sampler ]
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Operators: Speculative Decoding

Token Sampler: How to select next token given predicted next-token embedding?

Speculative Decoding: Quickly draft next k tokens, then quickly verify

_________________________________

Warmup: Prefill 2 Phase1 Draft

Contextualized D o Ermbadd
Embeddings | | — ke Emleseelig
KV Cache :
The | -E>m . | = Contextualized Embedding
sat ! Draf . ! . = Cached Keys

Raw
Embeddings

The |Al:
cat |

| A{Draft}> ma

= New Keys
KV Raw "Draft | >
Cach  Embed. Draft J> <EOS ,
____________________________________ e.__________::'_'_'_'_'_'_'_'_'_'_'_'_'_::::::::::::::::::1:_____________,\

" Phase 2: Verify
Raw New

Contextualized
Embeddings

| . Prefill 5

Embeddings QKVs Attention — |

! sat S on | Next iter.

E on B the i =0 3\l Phase 1:
the ¢¢ mat. 9*9’335
: mat.

-\ Wo Wi Wy ;

M e __ _____________________________________________________________ e 22



Request Processing: Summary

Efficiently and effectively generate next token by using contextualized embeddings

Request Processor [ Technique Classification ] Throughput Quality

Inference Workflow

 Prefill Workflow
* Decode Optimization ! )
Operators
« Attention
 Naive Attention Operator Design
« Multi-Headed Attention Operator Design ! 1 ?
« Grouped Attention Operator Design L 1] L !
« Shared Attention Optimization 1] T 1
« Sparse Attention Optimization ! 1 J !
 FFN
« Naive FFN Operator Design
« Mixture-of-Experts Optimization 1 0
« Token Sampler
» Greedy / Stochastic Operator Design
« Speculative Decoding Optimization ! 1 1
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Part 2: Optimizer / Execution

Minimize op. costs via hardware kernels; balance throughput / lat. by coordinating execution

Optimizer / Execution [ Technique Classification ] [ Technique Description / Key Idea

Hardware Acceleration

 FlashAttention Kernel Design
« FlashDecoding, RingAttention Kernel Design

Reduce memory & /O via kernel fusion
Parallelized blockwise attention

0 R USIER Optimization - Maximize core utilization via streaming load balanc.
Batch Executor

- Static Batching Workflow

« Continuous Batching Workflow « Mitigate straggler effects via dynamic rebatching

- Bursted Attention Workflow « Batch splitting and merging

Distributed Executor

* Model Parallelism Workflow « Parallelize across layers

* Pipeline Parallelism Workflow - Parallelize across requests in different stages

» Data Parallelism
« Multi-Replica Architecture * Add multiple LLM replicas to increase throughput
- PD-Disaggregated Architecture « Decouple P and D replicas to allow flexibility

24



Hardware Accel.: FlashAttention

Hardware Accel.: How to implement efficient operators over specialized hardware?
» FlashAttention: Update delta vector in place via online softmax & matmul

: I Scan Direction
| _—
I (Columns) : -‘
I I KT " [z] “ Dcurr ()J\-ifcurr— M, ow U [Z] i erk — ]\-""[new V. [ k‘]
[ l | Diew ) Dhew Z
I [
= u’ = softmax(q"KT)V
3 XT Version k-1
o T
X1 . Xk Xn uk_l
| )
7 - kth

|

o - row

: Scan Direction
Version k (Rows)

Updated in place
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Hardware Accel.: FlashDecoding

Hardware Accel.: How to implement efficient operators over specialized hardware?
* FlashAttention: Shard across the queries

Inter-query: Each worker
gets different query block
but share key-value blocks

Queries

Output

« FlashDecoding: Shard across KV followed by global reduction

Intra-query: Each worker
gets different key-value
blocks followed by global
reduction step

Queries !

Output

Split 1/5 split 2/5 Split 3/5 Split 4/5 split 5/5

Dao, T., Haziza, D., Massa, F., and Sizov, G. Flash-decoding for long-context inference, 2023

Values

Keys

Values

Keys
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Hardware Accel.: LeanAttention

Hardware Accel.: How to implement efficient operators over specialized hardware?
LeanAttention: Stream mini-blocks to GPU cores followed by global reduct.

LeanAttention
SM Occupancy: 5/5

From SM1
From SM2

FlashAttention-2 FlashDecoding
SM Occupancy: 2/5 SM Occupancy: 4/5

o] _
SM. | headl B 0utputl

Rya S., Srikant B., Renee SA., Victor R., Saravan R. Lean Attention: Hardware-Aware Scalable
Attention Mechanism for the Decode-Phase of Transformers. arXiv:2405.10480
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Hardware Accel.: RingAttention

Hardware Accel.: How to implement efficient operators over specialized hardware?
RingAttention: Distributed blocks + fixed transfer sequence

Each worker needs to read every cache block, but what to do if cache exceeds worker memory?
Distribute blocks across workers, then use fixed transfer sequence to hide transfer overhead

Worker 1 1 Worker 2 1 Worker 3

Key Tiles

|(,;<<x 3 <

orker

orker

Query Tiles

orker

U Active Tile
1} Completed Tile

= INcoming Tile

ty
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Batching: Continuous Batching

Batching: How to avoid stragglers during batch formation?

- Continuous Batching: Reconstitute the batch after each round

Static Batching

 Requests 1 and 2 are held up by
Request 3 (straggler)

« Request 4 cannot start until the
R1R2R3 batch completes

Continuous Batching
e.g. Shortest-Job First

* Request 4 starts immediately b.c.

higher priority than e.g. R3
 Requests 1 and 2 can return
immediately once they finish
» Request 3 takes longer b.c. it got
preempted by R4

High

Priority

Low

Priority  Hign

Low

Progres
0%g

Progres
0%g

Progres Progres

100% 100% 0%g 100% O%g 100%

)
N .
%) Active
£ Batch
©
m
ry ry Queue
t=3 t=4
(a) Static Batching
Progres Progres Progres Progres
0%g 100% 0%g 100% 0%g 100%
Iy Iy 66 | I

Batch‘ Size
.

Decode Round t =1
(b) Continuous Batching
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Batching: Bursted Attention

Batching: How to avoid stragglers during batch formation?
« Bursted Attention: Split for attention and rejoin for matrix ops.

Batched Attention Vs Bursted Attention
/‘
- = Cached KVs é?c, i\\ §
- = New KVs § Q &

# of Values = # of Keys

Kernel

Attention

Kernel

Attention
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Distributed Exec.: Model Parallelism

Distributed Exec.: How to take advantage of multiple executors?

 Model Parallelism: Split large model across transformer layers
* Avoid memory pressure on a single worker

Worker 1 Worker 2
( * L : |
Layerl Layer?2 : Layer3 Layer4
GPUI : GPU4
........................... < -
GPU2 E GPU5
........................... .i.---------___--------------.
GPU3 E GPU6

YuG. |, Jeong J. S., Kim G. W., Kim S., Chun B. G. ORCA: A Distributed Serving System for Transformer-Based
Generative Models. OSDI’22
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Distributed Exec.: Pipeline Parallelism

Distributed Exec.: How to take advantage of multiple executors?
* Pipeline Parallelism: Concurrently execute multiple pipelines

N
0w o
Te ©
SE ® 2
wv
%_g- o 3
o 0o
O 4
0w B
) B
o 5O
Q.E o
O 4

Time

Aminabadi R. Y., Rajbhandari S., Zhang M., Awan A. A, Li C., Li D., Zheng E., Rasley J., Smith S., Ruwase O., He
Y. DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale.
arXiv:2207.00032
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Distributed Exec.: Data Parallelism

Distributed Exec.: How to take advantage of multiple executors?
« Data Parallelism: Deploy multiple LLM replicas to increase throughput

Global Load Balancer

In-Situ /
Persisted KVs

Model Weights

(a) Monolithic

Load Balancer (P)
e, N

Local
Scheduler

In-Situ /
Persisted KVs

Model Weights

Sync
Prompt KVs

Load Balancer (D)

—r

Local
Scheduler

Batched Decode Exec.

-~

In-Situ / SPU

Persisted KVs

®cru

- -

|
Model Weights [
\

____/

(b) P/D Disaggregated
(Synchronous)
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Optimizer / Execution: Summary

Minimize op. costs via hardware kernels; balance throughput / lat. by coordinating execution

Optimizer / Execution [ Technique Classification ] Throughput Quality

Hardware Acceleration
* FlashAttention

« FlashDecoding, RingAttention

* LeanAttention

Batch Executor

« Static Batching

« Continuous Batching
» Bursted Attention

Distributed Executor

* Model Parallelism

* Pipeline Parallelism

» Data Parallelism
* Multi-Replica
 PD-Disaggregated

Kernel Design
Kernel Design

Optimization

Workflow
Workflow
Workflow

Workflow
Workflow

Architecture
Architecture

]

i i

nd

ndndll nd =

14
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Part 3: Scheduler

Minimize queuing delays and maximize resource utilization by balancing the load

Scheduler [ Technique Classification ] [ Technique Description / Key Idea ]

Load Balancer
* Job Assignment

. Greedy Algorithm
. Power-of-2 Algorithm * Reduce overloading by 2-phase assignment
« Load Prediction (SAL) Model (Heuristic) » Develop a model for predicting worker load
Scheduler
« Job Prioritizer
 First-Come First-Serve Algorithm
« Shortest-Job Algorithm * Minimize queueing delays by prioritizing fast jobs
« Multi-Level Queue Algorithm « Simulate shortest-job by using multiple queues
« Job Cost Prediction
« Cache / Prompt Based Model (Heuristic) » Use cache / prompt length as proxy for job cost
 Learning-Based Model (Learned) » Train a model to predict job cost
Batch Controller
« Chunking Module Optimization « Balance latency / throughput via chunk sizing
 Batch Size Control Optimization « Balance latency / throughput via batch sizing

35



Load Balancer: Job Assignment

Job Assignment: How to assign jobs to workers under dynamic and uncertain loads?

* Greedy: Assign requests to least-load worker at time of assignment
« Under static loads, this is 2-competitive in worst-case but requires accurate load prediction

* Power-of-Two: Assign to greedy worker out of random 2 [Hu et al 2024 “Tetrilnfer’]

« Exponentially smaller makespan compared to random (but not as good as greedy) [Mitzenmacher 2001]
« Under dynamic loads, avoids overloading workers

Decoder 2

Prefill Prefill

Prefill

Prefill

Prefill Prefill

Prefill I I I I Prefill

(a) Greedy (b) Power-of-Two
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Load Balancer: Load Prediction

Load Prediction: How to measure worker load while considering dynamic job costs?
« Sources of Uncertainty:
* Dynamic memory growth:
* In-situ KV caches from existing / new requests
» Reloaded caches from request resumptions
* Dynamic memory reclamation:
» Offloaded or evicted caches from preempted / finished requests

* Naive: Sum cost of in-situ jobs using request-level job cost prediction
SAL: Factor in memory reclamation rate [Kossman et al 2025]

load (s max‘ (memory(r) — free_mem(s)),

queued_tokens(s.r / max_t okens_per_lmtch)

_Decoderd | P11
 Decoderd | ]

_Decoderd JJIJ]
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Scheduler: Job Prioritization

Job Prioritization: How to prioritize jobs to minimize queuing time?

* First-Come First-Serve (FCFS): Process requests in order of arrival

B Queuing Delay Execution Time
Newer Older 100 o 75
< :
Batch < 80
Req. c
Former 3
S 60/ 79.6
Accu 98.0 98.0
D 40
L] - m
Head of Line (HOL) Blocking 2 5
. =
Req 1 Req 2 = 0 .
(0e%™” en (02 a (102 aca (02 1002 et
. gL et Fix Npac© AP ha‘eGP onare
Time \ S J

!

Real-World Datasets

Wu B., Zhong Y., Zhang Z., Liu S., Liu F., Sun Y., Huang G., Liu X., Jin X. Fast Distributed Inference
Serving for Large Language Models. arXiv:2305.05920
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Scheduler: Job Prioritization

Job Prioritization: How to prioritize jobs to minimize queuing time?

« Shortest-Job First (SJF): Process requests in order of remaining time

« (Guarantees minimum average latency (incl. queuing time) but requires accurate completion time pred.
* Preemptive SJF:

« Can lead to stalls for perpetually low-priority requests

« Context-switch cost (offloading / evicting in-situ cache + reloading the cache upon resumption)

Stall
Prevention
Batch
‘IHHHHHI" IE!ll!lI

Low High
Priority Priority

Time

Load-Based
Prioritizer

C
9
e
9
e

()

| -
o
©

®

)
-l
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Scheduler: Job Prioritization

Job Prioritization: How to prioritize jobs to minimize queuing time?

* Multi-Level Queue (MLQ): Gradually demote requests to simulate SJF

« Naive MLQ: place all new jobs in highest priority queue, then gradually demote
« Skip-Join MLQ: place all new jobs in queue based on prefix length

Round-Based I I
Demotion J1 Ji{Jz|J2| J3 |J3 J1 I2| I3 |J1lJ2])3

_ Ty Ty Ty|Ty| Ty [T Ty Ty Ty |To|Ty|T
ngh | | : ! R 1 Il 2| 12|gt2
Priority

(a) FCFS (b) Naive MLQ

- Level 1 Queue ‘

o ’—’

w | -

8 ﬁ Level 2 Queue ‘ J2| I3 |J2]|)3 J1 J1 J2|J2| I3 |J3 J1 J1
Req 85 Ti| T1 |T2|T, Ty T, Ty |T2| Ty (T2 Ty T,

E n:- | | | | | » | | | | |

o ..

a ‘ (c) Skip-Join MLQ (d) Shortest Remaining

Low Processing Time (Optimal)

Priority

Wu B., Zhong Y., Zhang Z., Liu S., Liu F., Sun Y., Huang G., Liu X., Jin X. Fast Distributed Inference
Serving for Large Language Models. arXiv:2305.05920
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Scheduler: Job Prioritization

Job Prioritization: How to prioritize jobs to minimize queuing time?

 Maximum Cache Hits: Process requests based on cache hits

« Simulates SJF since large cache hit could mean low job cost
* Avoids cache thrashing

) 0J L) L)

You are a helpful assistant. You are a helpful assistant. You are a helpful assistant. You are a helpful assistant.
(] (] (] (]
J J _J J
User: Hello! User: What can you do? [ User: Hello! User: What can you do? User: Hello! User: What can you do? User: Hello! User: What can you do?
Assistant: Hi! | Assistant: | can ... Assistant: Hi! | Assistant: | can ... Assistant: Hi! | Assistant: | can ... Assistant: Hi! [ Assistant: | can ...
(] (] () C)
User: Solve this question... User: Write a story ... User: Write a story ...
Assistant: Sure! ... Assistant: Sure! ... Assistant: Sure! ...
(] a a
t,: “Solve this question...” t,: “Write a story...” t,: “Solve this question...” t,: “Write a story...”

Zheng L., Yin L., Xie Z., Sun C., Huang J., Yu CH., Cao S., Kozyrakis C., Stoica |., Gonzalez JE., Barrett C., Sheng Y.
SGLang: Efficient Execution of Structured Language Model Programs. arXiv:2312.07104
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Scheduler: Job Cost Prediction

Job Cost Prediction: How to measure job cost without knowing final output length?

- Ask the LLM: Add output length prediction request to original prompt

E.qg. Perception-in-Advance (PIA):

Prompt

Create a fun math question for children. Before
responding to the above instruction, you have to
predict the length of your response. Print the
estimated number of words in your response in the
first line. Then change to a new line to respond to the
instruction.

GPT4

Estimated response length: 60 words.

Sure, here’s a fun math problem: There are 7 apples in a
basket. A friendly squirrel comes and...

Perception in Advance (Pi1A)
Error(w) |  Acc-507T Acc-100 1

GPT-4 22 80% 100%
ChatGPT 51 77% 90%
Claude 37 64% 96%
Bard 70 44% 72%
HugginChat-30B 77 52% 72%
Vicuna-13B 94 49% 73%
Vicuna-7B 123 40% 65%

Zheng Z., Ren X., Xue F., Luo Y., Jiang X., You Y. Response Length Perception and Sequence
Scheduling: An LLM-Empowered LLM Inference Pipeline. NeurlPS’23
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Scheduler: Job Cost Prediction

Job Cost Prediction: How to measure job cost without knowing final output length?
« Train an Estimator: Use separate estimator to predict output length

" SR Scheduling N -~ - ~iteration-level
’ Wl O LLM
Requesty | | \ ( )
: 1 f = ' Layer,
Request, | Qo k .
R 2 © : __ | | Probing
. o c : e [T vINg o
: = 2 cheduler | Layer .
Requests | 2 o | YETN Linear |
pool |, S50 Toker!— [ : /| Classifier |
| O £ resolution i Layer;| v
i .‘;U ? | A 5 e & 5 " & ] L T .......
Requesty, | i c | : Layer; !
!_ i j D — :
T
-y N : R_efmgd/éutput Length Prediction .

Shahout R., Malach E., Liu C., Jiang W., Yu M., Mitzenmacher M. Don't Stop Me Now: Embedding
Based Scheduling for LLMs. arXiv:2410.01035
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Scheduler: Job Cost Prediction

Job Cost Prediction: How to measure job cost without knowing final output length?
« Certaindex: Use beam consistency as heuristic for remaining job time

Beam Search (k > 1, e.g. k = 3) Measure cluster entropy

“The cat sat on the” : using size of each
mat

0.35 0.25 0.15

Group beams into m

clusters based on cluster |C;| relative to

number of beams, n

e similarity
H=—3" 1€ ] il Jog 1€ 1€ ]
m [ m [ )G 1=1
040 0.30 0.15 035 025 0.20 050  0.20 0.15 N
H — logn—H c [O 1]
0.35 025 | couch [ lOg T )

\
040 [ ] 030 {Land J 1 s i uUyuy yu

Normalize to yield a

score between [0, 1]

0.70 0.10 0.05 0. 60 0.30 0.05 0.75 0.10 0.05
L \/ =

FuY., ChenJ., Zhu S., Fu Z., Dai Z., Zhuang Y., Ma Y., Qiao A., Rosing T., Stoica I., Zhang H.
Efficiently Scaling LLM Reasoning with Certaindex. arXiv:2412.20993
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Batch Controller: Prefix Chunking

Batch Controller: How to compose the batch to balance throughput and latency?

* Chunked Prefills: Split prefill across multiple rounds

Ad1Bd1 Cd1Dd1 Ad2Bd2
GPU 1 Ay B, Cp Dy | Bubble - ‘Bubble \
\ *
GPU 2 A i Ce O
time

(a) Baseline iteration-level scheduling

Cp1Aas DpiAgz CpoBar Ba2Car Dan

$\ v < AN _9\\

GPU1 [ A, [ B, | A | B By Dlpd L,
- Z

GPU 2 Aot | Bo1 | Ao | Bro Bps Dp2

time
(b) SARATHI : Chunked prefills with decode-maximal batching

Agrawal, A, Panwar, A, Mohan, J, Kwatra, N, Gulavani, BS, Ramjee, R. SARATHI: Efficient LLM
Inference by Piggybacking Decodes with Chunked Prefills. arXiv:2308.16369
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Batch Controller: Batch Sizing

Batch Controller: How to compose the batch to balance throughput and latency?
« Batch Sizing: Inc. batch size to raise throughput & dec. to lower latency
@224 preproj 7 attn g8 postproj @ ffn
W w/o chunked prefills m w/chunked prefills

10 =
- 2 10%
g
S 61 P
& :
: 4 3 102-
E 2 g
= o ft(1, 1) —e—orca(1) ——orca(16)
0- Z 1 ‘ ft‘(8. S) —'-—orcag8) '—-—'orca(32')
0 2 4 6
Batch size Throughput (req/s)
Agrawal, A, Panwar, A, Mohan, J, Kwatra, N, YuG. |, Jeong J. S., Kim G. W., Kim S., Chun B. G.
Gulavani, BS, Ramjee, R. SARATHI: Efficient ORCA: A Distributed Serving System for Transformer-
LLM Inference by Piggybacking Decodes with Based Generative Models. OSDI’22

Chunked Prefills. arXiv:2308.16369

46



Scheduler: Summary

Minimize queuing delays and maximize resource utilization by balancing the load

Scheduler [Technique Classification ] Throughput Quality

Load Balancer
* Job Assignment

. Greedy Algorithm

« Power-of-2 Algorithm ¥ ?
. Load Prediction (SAL) Model (Heuristic) ! 1
Scheduler
« Job Prioritizer

- First-Come First-Serve Algorithm

« Shortest-Job Algorithm \ 1

- Multi-Level Queue Algorithm ! i
« Job Cost Prediction

« Cache / Prompt Based Model (Heuristic) ! 1

 Learning-Based Model (Learned) v 1 1
Batch Controller
« Chunking Module Optimization ! 0
« Batch Size Control Optimization { 1

47



Part 4: Storage Manager

Efficiently store KV caches to minimize wasted memory; reduce memory usage via compression

Storage Manager [ Technique Classification ] [

Block Manager

Block Storage (Paged)
Block Sharing & Eviction

» Prefix Sharing

* Partial Reconstruction

» Long Context Eviction
Block Search & Retrieval

* Radix Tree

Physical Storage

Tiered Storage & Offloading
Distributed Storage
* Hot Blocks

Quantizer

Quantizer Design
Outlier Smoothing

Technique Description / Key Idea

Framework

Optimization
Optimization
Optimization

Index

Framework
Framework
Optimization

Operator Design
Optimization

Dynamic block-based memory allocation

Reconstruct KV vectors for imperfect matches
Reduce memory by discarding unimportant KVs

Organize blocks by prefix to support efficient search

Increase capacity by exploiting tiered storage
Increase capacity by storing across multiple workers

Replicate hot blocks to avoid block transfer

Reduce memory by lowering numerical precision
Reduce quantization error by smoothing outliers
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Block Manager: Block Storage

Block Storage: How to allocate memory for tasks with dynamic memory usage?

- PagedAtten.: Dynamically allocate small blocks managed by block table

« vAttention [Prabhu et al 2025], vTensor [Xu et al 2024 FlexInfer]: use GPU native memory management
capabilities to keep track of blocks

KV Memo Final Usage Total Block Si
i > Reserve ?C_SAE\ Global KV Memory

| Req. 1 KV d
& I (Reserved) Over-
w allocation
\%‘\ vs.
MM

Current Reg. 3 KV | Under-
Usage (Reserved) J allocation

Global Mem. (e.g. 80GB)

W

Blk 6 - Blk8 38

Model Weights
Model Weights

217 Unallocated
= (0]
SR (Available)

Global Mem. (e.g. 80GB)

(a) Static Allocation (b) Paged Allocation
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Block Manager: Sharing & Eviction

Block Sharing: How to reuse cache blocks when KV vectors are context-dependent?
« Key vectors Ky for Chunk Y are influenced by value vectors from the prefix X

—
Q —
3 3
Chunk YCa.\che A Chunk Y Selective N
Construction S Reconstruction =
>
L2: L2:
-
1 Att. 8= = | Reconstructed
o WV
S E E }Read from
= Cache

* Prefix Sharing: Reuse up to longest exact-match prefix

« Cache Reconstruction: Recalculate KV vectors for a few significant tokens
« E.g. position-based, template-based, score-based
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Block Manager: Sharing & Eviction

Block Sharing: How to reuse cache blocks when KV vectors are context-dependent?

« Cache Reconstruction: Recalculate KV vectors for a few significant tokens
« Position-Based [Hu et al 2024 Epic]: Recalculate at fixed positions, e.g. chunk boundaries

Chunk 1

Chunk 2

Chunk 3

Query

Answer the question
based on the given
passages.

All people living in
the Thenum District
work in the Chrysan

Company.

Derek is a single
man living in the
Thenum District.

Which company does
Derek work in?
Answer within 5
words and do not...

Naive

KV 3 KV 2 KV 1 - * Derek is a resident of Thenum District

Recompute no tokens

Fully Recompute

FR
(FR) > Chrysan Company Q

AV £
Recompute all tokens

RE IR

Recompute 15% tokens to numerically approach FR

CacheBlend
>

Chrysan Company

kva [ kv [ k1 RGN Atintink

Recompute k tokens of each chunk boundary

Chrysan Company

&

Hu J., Huang W., Wang H., Wang W., Hu T., Zhang Q., Feng H., Chen X., Shan Y., Xie T. EPIC: Efficient Position-
Independent Caching for Serving Large Language Models. arXiv.2410.15332
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Block Manager: Sharing & Eviction

Block Sharing: How to reuse cache blocks when KV vectors are context-dependent?

« Cache Reconstruction: Recalculate KV vectors for a few significant tokens
« Template-Based [Gim et al 2024 Prompt Cache]: Recalculate only the “parameter” tokens of a template

. T TP DI IS T D,
Schema Prompt attention states ® v | ;
( A 7 A o e / VN | |
<schema name="cities'> E/ } : % II I I | I E“i‘-i?Ii/tiii%iI % ] | I I I | / I / la ( ' : \
A A
<module name= Dens ' @ ' @
1 1
S/mLe Prompt Cache | : LLM
<module name= > eus : :
<param name="duration" len=2/> @ <city-info/> | <trip-plan/> <tokyo/> <miami/> ! <paris/>
</module> | V// I
<module name= . \ y
</module> f@ ?@
<module name= > ve Prompt : :___________________________________'
1
</module> ; ;
</schema> <prompt schema:”cities”{____J' _____ . L e e
<trip-plan duration= | "3 days" |/> <miami/> . Highlight the surf spots.
</prompt> T T empty space
- 7

Gim |, Chen G,, Lee S., Sarda N., Khandelwal A., Zhong L. Prompt Cache: Modular Attention Reuse for Low-
Latency Inference. arXiv.2311.04934
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Updated KV

Precomputed KV

Layer 1

Recompute all

tokens on Layer 1

Layer 2

Selectively
recompute three

tokens on Layer 2

Block Manager: Sharing & Eviction

Block Sharing: How to reuse cache blocks when KV vectors are context-dependent?

Cache Reconstruction: Recalculate KV vectors for a few significant tokens
Score-Based [Yao et al 2024 CacheBlend]: Identify significant tokens based on attention score deviation

7 I | n —
o % - o 7
=0 p 2N )
) ~ o) ‘,
D 2 KV ng
deV|at|on - deviation I
9 Re-used é? Re-computed

Yao J., LiH., LiuY.,, Ray S,, Cheng Y., Zhang Q., Du K., Lu S., Jiang J. CacheBlend: Fast Large Language Model
Serving for RAG with Cached Knowledge Fusion. arXiv:2405.16444

Layer 3

Selectively
recompute two
tokens on Layer 3

Selected
HKVD tokens

deviation




Decode

Prefill

Block Manager: Sharing & Eviction

Block Eviction (Long Context): How to reduce cache size without reducing quality?
Sparse Attention: Compute QK similarities for small subset of tokens

Heuristif Masks

Prefill

Decode

(a) Sliding Window (b) Attention Sink
e.g. LongFormer e.g. StreamingLLM

Score-ABased

Decode

Prefill

(c) Least-Score
e.g. TOVA, Keyformer, H20
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Block Manager: Block Search & Retriev.

Block Search & Retrieval: How to find and retrieve reusable blocks from a persisted cache?
« Radix Tree: Split persisted prefixes along shared prefix branches

[ J i
T SHRSSHON £ = You are a helpful assistant Question .1.
You are a helpful assistant. Answer 1: ... P - Answer 1: ...
. Question 2: ...
Question 2: ... E .-
Answer 2: Answer 2:...
’ User: Hello! Question 3:
. | . . . tod
User: Hello! User: What can you do? Question 3: Assistant: Hil
Assistant: Hi! [ Assistant: | can ... ‘ [—-,
a (&) ) . |
‘ User: Solve this question... What ... When ... How ...
User: Write a story ... What ... When ... How ... Assistant: Sure! ... Answer 3:... |Answer3:.. |Answer3: ...
Assistant: Sure! ... Answer 3: ... Answer 3: ... Answer 3: ... User: How about ..? "
| h | | | | ] l l Assistant: Itis a ... DJ

()

(b) To keep cache size under control, whole
least-used branches can be evicted as the
tree grows

(a) Each branch stores a
matchable prefix

Zheng L., Yin L., Xie Z., Sun C., Huang J., Yu CH., Cao S., Kozyrakis C., Stoica |., Gonzalez JE., Barrett C., Sheng Y.
SGLang: Efficient Execution of Structured Language Model Programs. arXiv:2312.07104
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Physical Storage: Tiered & Offloading

Cache Offloading (Long Context): How to simultaneously reduce memory and reload costs?

« Entry-Wise: Store cache on cold storage and load significant tokens only

- Partial Query Weight: Modified W, that returns truncated query vector with few “significant” dims.
» Partial Key Cache: Key vectors truncated to few “significant” dims.

% Excluded

Attention Score

KV Selection ~
-- Partial Query Projection - ;---- Attention _____ .7 --- KV Selection ----:
! ¥ Speculation X :
| Partial Key Cache !! i ....... Y & Max!
i ¥ (Transposed) ¥ alpha i
§ --L'» x g i
. Attention 5 / /
. Input - [ f :
! ! : Selected :
Que Speculated L |

Lee W., Lee J., Seo J., and Sim J. InfiniGen: Efficient Generative Inference of Large Language Models with
Dynamic KV Cache Management. OSDI’24
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Physical Storage: Tiered & Offloading

Cache Offloading (Long Context): How to simultaneously reduce memory and reload costs?

- Layer/Model-Wise: Store % of model/layers across tiered storage

* FlexGen: Define a cost model and minimize via LP formulation
» Considerations: read/write costs, CPU-side computation

I +1J9AeT
1.J8AeT
I -1J8AeT

(a) Model-Wise (b) Layer-Wise

o7



Physical Storage: Tiered & Offloading

Cache Offloading (Preemption): For preempted requests, when to evict and when to offload?

* Cost-Aware Preemption: Use resumption cost to decide evict or offload

140 A —e— Recompute
120 4 —e— Swap in

—e— Swap out
—e— Swap in + out

Continuous Batching

Progres Progres Progres Progres
< 0% 100% 0% 100% 0% 100% 0% 100%
5 S S S ey S e 0
g _

N .
| M Active
= 17,

5 f) Batch
S

o Q|

2

(@)

-

= |:|q 40 »-
3 t=4

Decode Round t =

Risk of :
OOM? Keep in Memory

(do nothing)

Recompute Cost >

Transfer Cost?

o 100 A
80 A
60 -

Time (ms

40 1

20 A

0

1 2 4 8 16 32 64 128 256
Block size

(a) Microbenchmark

N
wv
L

—e— Recompute
—e— Swap

g
<)
!

=
wv
1

=
o
1

o
"

o
<)
!

Normalized latency (s/token)

1 2 4 8 16 32 64 128 256
Block size

(b) End-to-end performance

Kwon W., Li Z., Zhuang S., Sheng Y., Zheng L., Yu C. H., Gonzalez J. E., Zhang H., Stoica I|. Efficient Memory

Management for Large Language Model Serving with PagedAttention. arXiv:2309.06180
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Physical Storage: Tiered & Offloading

Cache Offloading (Preemption): For preempted requests, when to evict and when to offload?
- Async Recovery: Prefetch Layer i + 1 during computation of Layer i
« Disaggregated Async Transfer: Stream cache from prefill to decode

[ Load Balancer (PD) I
Layer i | Layert+1 . —~—
Attention FFI\—II Attention |FFN ,
oaaq a | > time Local
: Scheduler
Layer i s Layer ¢+ 1 . !
Attention | FEN Attention | FFN : _
; > time
I

In-Situ /

In-Situ /

Persisted KVs Persisted KVs

(a) Async
Recovery/Onloading Model Weights

Model Weights

Lee W., Lee J., Seo J., and Sim J. InfiniGen: Efficient
Generative Inference of Large Language Models with
Dynamic KV Cache Management. OSDI’24

(b) P/D Disaggregated

Asynchronous
(Asy ) -



Physical Storage: Distributed Cache

Distributed Cache: How to partition blocks to workers to balance the workload & reduce transfers?

« Cache-Aware Load Balancing: Assign jobs based on cache hits
* Preble: Use distributed radix tree to search matching blocks

incoming request

global radix tree | .o ;1764 GPU2:6req,
[GPU1:4req, GPU3:8req]
GPU2:5req] [GPU3:6req]
Global Scheduler: GPUD2
E2 Scheduling [GPU1:1req [ -2req]
[GPU2:1req]

scheduled , ¢ o pET:
,/ tree node evict

local tree 5
Ueel© Local: Local [6req]
Iteration, Scheduler [5req] Scheduler
[4req] Priority T GPUd
. [2req]
wait req GPU1 2 3 req
priority Dj:D (model copy 1) | (model parallelism [D
queues model copy 3) [Dj [Breq]
Srivatsa V., He Z., Abhyankar R., Li D., Zhang Y. Preble: Efficient Distributed Prompt Scheduling for LLM Serving.

arXiv:2407.00023
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Physical Storage: Distributed Cache

Distributed Cache: How to partition blocks to workers to balance the workload & reduce transfers?

* Hot Blocks: Store hot block replicas on multiple workers
 Mooncake: To replicate blocks “naturally”, occasionally assign requests while ignoring worker blocks

Req. 1: “You

are a helpful...”

Req. 2: “You Req. 3: “You
are a helpful...” are a helpful...”

Worker 1 Worker 2 Worker 2

Write a
story
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Quantization: Quantizer Design

Quantizer Design: How to find error-minimizing map from high to low-precision domain?

- Uniform: Discretize a high-precision domain into low-bit numbers
« E.g.q(x) = |x/s| + z where s is a step size and z is offset

* Non-Uniform: Directly solve for error minimization mapping
« E.g. k-means clustering

Clamped Domain
|

of|1|(2||3 4 5 6 7

-0 .. ({).2 0.9\ ...  *+00  High-Precision 3-Bit Precision
T e T e f(X) el e g(X)

of1]2]3]4]5]6]7] 3BitLow- ojzfz]3 2-Bit Precision

(a) Uniform QuantizerP recision (b) Non-Uniform Quantizer

Survey: Gholami A., Kim S., Dong Z., Yao Z., Mahoney M. W., Keutzer K. A Survey of Quantization Methods for
Efficient Neural Network Inference. arXiv:.2103.13630
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Quantization: Quantizer Design

Quantizer Design: How to find error-minimizing map from high to low-precision domain?

« Tensor-Wise: Apply one quantizer over a whole tensor

« Vector-Wise: Apply different quantizers per token/KV or dim (“channel”)
 Dimension-Wise: Apply different quantizers per group of dimensions

Embedding Dim.

Tokens

(a) Tensor-Wise

Embedding Dim.

L] o

f2(x)

Tokens

aoonnik

(b) Vector-Wise

Embedding Dim.

S]]
lﬂﬂiﬂl
fo(x)

Token

eooanil

f3(x)

(c) Dimension-Wise
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Quantization: Outlier Protection

Outlier Protection: How to identify & preserve information in outliers?
* Mixed-Precision: Keep outliers in raw high-precision form

 SpQR [Dettmers et al 2023]: Use a sparse representation to hold raw values + special matmul kernel

Blk 1| Blk2 | Blk 3

Py
X =
Rososs
sl P ¢
T
—
Quantizer |solation
—r —r
Row 1 Row 2 Row 3 Row 5

-Bit Den
Bt Dense BERDEREREERBEnEn
Matrix

Full Precision Sparse Quantized Representation (SpQR)
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Quantization: Outlier Protection

Outlier Protection: How to identify & preserve information in outliers?

* Outlier Smoothing: Smooth outliers to yield more uniform tensor

Original W
(Easy to Quantize)

Inverse
Smoothing S! I
i Before Smoothing

. 1 After Smoothing

Smoothing Equivalence
(xsT)sw]=XxW

Smoothing
Matrix S

ofoli]e
(Easy to Quantize) n n n

Smoothed X

Scaled W
(Easy to Quantize)
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Storage Manager: Summary

Efficiently store KV caches to minimize wasted memory; reduce memory usage via compression

Storage Manager [ Technique Classification ] Throughput Quality

Block Manager

« Block Storage (Paged) Framework 1. l_
» Block Sharing & Eviction
* Prefix Sharing Optimization l_ 1 l_
« Partial Reconstruction Optimization l_ 1 i_ '
. Long Context Eviction Optimization E 1 E l
» Block Search & Retrieval
. Radix Tree Index a 1
Physical Storage
« Tiered Storage & Offloading Framework L ! i_
« Distributed Storage Framework L1 1 l_
* Hot Blocks Optimization R o 1
Quantizer
* Quantizer Design Operator Design l_ 1 l_ L
«  Outlier Smoothing Optimization ! 1 ! 1]
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Part 5: Frontend

Capture user intents in order to automatically optimize prompts and workflows

Frontend ] [ Technique Classification ] [ Technique Description / Key Idea

User Interface
« Declarative Modules API » Capture user intent to support prompt optimization
« Language Extensions API » Facilitate programmatic prompting
/O Interpreter
» Control Flow API| Feature
* Prompt Generator

* Prompt Optimization Optimization « Provide automatic prompt engineering

* Template Completion Optimization « PD interleave for fast and accurate templates

Seq. Generation
» Streaming Generation

. 0-Shot CoT Optimization * Increase quality by generating more context
. Few-Shot, 1-Shot CoT Optimization * Increase quality by providing more context
- [erelizee] el Optimization * Increase quality via fine-tuning
« Structured Generation
« Beam Search Framework * Increase quality via multiple candidate sequences
« x-of-Thoughts Framework * Increase quality via multiple candidate sequences
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User Interface: Declarative Modules

Declarative Modules: How to capture intent of a request in order to support automatic prompts?

- LMQL: Use SQL-like syntax to express intent via output constraints

# use constrained variable to produce a classification
"Based on this, the overall sentiment of the message\
can be considered to be[CLS]" where CLS in [" positive", " neutral”, " negative"]

I

 DSPy: Provide callable modules for common requested tasks

math = dspy.ChainOfThought("question -> answer: float")
math(question="Two dice are tossed. What is probability that the sum equals 2?")

class Extractinfo(dspy.Signature):

"""Extract structured information from text."""

text: str = dspy.InputField()

title: str = dspy.OutputField()

headings: list[str] = dspy.OutputField()

entities: list[dict[str, str]] = dspy.OutputField(desc="a list of entities and their metadata")
module = dspy.Predict(Extractinfo)
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User Interface: Declarative Modules

Declarative Modules: How to capture intent of a request in order to support automatic prompts?
« DSPy: Provide callable modules for common requested tasks

User-Submitted cot = dspy.ChainOfThought(BasicGenerateAnswer)
Program

' Your input fields are:
' 1. ‘question’ (str)

+ Your output fields are:
i 1. ‘reasoning’ (str)

120 " (st
System-Generated answer (st

Prompt All interactions will be structured in the following way, with the appropriate values filled in.

[[ ## question ## ]]
' {question}

[[ ## reasoning ## ]]
 {reasoning}

___________________________________________________________________________________________________________________________________________

Automatic zero-shot CoT prompting
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User Interface: Language Extensions

Language Extensions: How to intuitively incorporate LLM generation into imperative languages?

« SGLang: Provide LLM API with parameterized calling

s += LLM("To answer "+q+", | need "+gen("tool", choices=["calc", "www"]))
if s["tool"] == "calc":

// .. do something
elif s["tool"] == "www":

// .. do something

Example 1: Using LLM API plus imperative control flow to build a tool-using agent

character_regex=(...)
def character_gen(s, name):
s += user|(
f"{name} is a character in Harry Potter. Please fill in the following information about this character."

)

s += LLM(gen("json_output”, max_tokens=256, regex=character regex))

Example 2: The LLM API includes features e.g. regex constrained outputs
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I/O Interpreter: Control Flow

Control Flow: How automatically format LLM outputs to enable value-based control flow?

« SGLang: Provide LLM API with parameterized calling

s += LLM("To answer "+q+", | need "+gen("tool", choices=["calc", "www"]))
if s["tool"] == "calc":

// .. do something
elif s["tool"] == "www":

// .. do something

ib

Generated Prompt
Complete the following with one word only: “calc” or “www”.
To answer (question here), | need:
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I/O Interpreter: Prompt Generator

Prompt Generator: How to automatically optimize a prompt to decr. lat & increase quality?
* Declarative Modules: Optimize prompts based on the called module

# Initialize KNNFewShot with a sentence transformer model
knn_few_shot = KNNFewShot(k=3, trainset=trainset, vectorizer=dspy.Embedder(xyz).encode))

# Compile the QA module with few-shot learning
compiled_ga = knn_few_shot.compile(qga)

# Use the compiled module
result = compiled_ga("What is the capital of Belgium?") V%m D S Py

Example: Automatic few-shot prompting
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I/O Interpreter: Prompt Generator

Prompt Generator: How to automatically optimize a prompt to decr. lat & increase quality?
- Staggered Templates: Build progressive prompts by interleaved decode

Write a summary of Bruno Mars, the singer:
{{ "name": "[STRING_VALUE]",
JSON Template . i}
top_songs": [[
"[STRING_VALUE]",

"[STRING_VALUE]" 1] }} ] LvaL
System-Generated Wnteasu mmary ofBrunoMarsthesmger ____________________________
Prompt #1 i { unamen: " | @ Bruno Mars

———————————————————————————————————————————————————————————————————————————————————————————

System-Generated Write a summary of Bruno Mars, the singer:
Prompt #2 {"name": "Bruno Mars",

' "age":

___________________________________________________________________________________________

Automatic “staggered” template completion workflow from LMQL
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Seg. Generation: Streaming

Streaming Generation: Adding which key phrases illicit high-quality responses?

- Zero-Shot CoT: Use phrases that yield responses mirroring reasoning

Base Prompt VS.

6Ajugg|er can juggle 16 balls. Half of the balls are golf baIQ
and half of the golf balls are blue. How many blue golf balls are

there?
A: The answer (arabic numerals) is

(Output) 8 X

\_ /

Zero-Shot Chain-of-Thought (Cot)

ﬁ): A juggler can juggle 16 balls. Half of the balls are golf balls}
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls

Qre blue. That means that there are 4 blue golf balls. v j

No. Category Template

Accuracy

instructive  Let’s think step by step.
First, (*1)
Let’s think about this logically.

Let’s be realistic and think step by step.
Let’s think like a detective step by step.
Let’s think

Before we dive into the answer,

The answer is after the proof.

OO0 WN B Wi —

78.7
77.3

745 Fffect of different phrases on

Let’s solve this problem by splitting it into steps. (*2) 72.2

708 accuracy for math word problems
703 (MultiArith)

57.5

55.7

45.7

Kojima, T et al. (2022) Large Language Models are Zero-Shot Reasoners, arxiv:2205.11916
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Seg. Generation: Streaming

Streaming Generation: Adding which key phrases illicit high-quality responses?
 Few-Shot Examples: Use examples to yield pattern-matching outputs

Base Zero-Shot Prompt VS. Few-Shot Prompt
Translate English to French: task description Translate English to French: task description
cheese => prompt sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
Setting En—Fr Fr—En En—De De—En En—Ro Ro—En
SOTA (Supervised)  45.6°  35.0°  41.2¢ 40.24 38.5¢ 39.9¢
XLM [LC19] 33.4 33.3 26.4 34.3 33.3 31.8 Providing few-shot examples
MASS [STQ " 19] 37.5 34.9 28.3 35.2 35.2 33.1 ; ;
mBART [LGG*20] - i 298 340 350 305 increases BLEU score for translation
GPT-3 Zero-Shot 252 212 24.6 272 14.1 19.9 tasks
GPT-3 One-Shot 28.3 33.7 26.2 30.4 20.6 38.6
GPT-3 Few-Shot 32.6 39.2 29.7 40.6 21.0 39.5

Brown, T et al. (2020) Language Models are Few-Shot Learners, NeurlPS’'20
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Seg. Generation: Streaming

Streaming Generation: Adding which key phrases illicit high-quality responses?
 One-Shot CoT: Add example reasoning to yield reasoning-like output

Base Zero-Shot Prompt VS.

/( Model Input \

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

\do they have? j

A: The answer is 27. x )

Wei, J et al. (2022) Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,

NeurlPS’22

One-Shot CoT Prompt

/( Model Input w

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many

_tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?

N

bought 6 more

answeris 9. ¢/
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Seg. Generation: Streaming

Streaming Generation: Adding which key phrases illicit high-quality responses?

 Internalized CoT: Fine-tune to yield reasoning-like output w/o key phrases

Prompt: Evaluate -7xx*x2 + 7xx + 5 at x = 1

<scratch>
Model R

Output: 7xx: 7
P 52 15
</scratch>

total: 5

Few-shot  Fine-tuning Fine-tuning with supervised scratchpad

Direct prediction  8.8% 31.8% increases accuracy over few-shot (i.e.
Scratchpad 20.1% 50.7 % one-shot CoT) alone

Nye, M et al. (2021) Show Your Work: Scratchpads for Intermediate Computation with Language
Models, ICLR’21
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Seq. Generation: Structured

Structured Generation: Which candidate sequences to generate and how to organize?
« Beam Search: Advance the top-k sequences based on logit score

Beam Search (k> 1, e.g. k = 3)

“The cat sat on the” Score | Candidate
0.35 The cat sat on the mat

mat

0.35 0.25 015 0.25 The cat sat on the couch

e 0.15 The cat sat on the table
o

Score | Candidate

table

- m - m - m 0.14 The cat sat on the mat.
040 0.30 0.15 035 025 0.20 050 020 015 0.11 Th
: . e cat sat on the mat and
e
0.09 The cat sat on the couch.
0.35 0.25 couch B .
IS — Score | Candidate

040 [ 030 [ and }J 1 oas LU U LU
) 0.10 The cat sat on the mat.<EOS>

0.07 | The cat sat on the mat and then
0.70 0.10 0.05 0.60 0.30 0.05 0.75 0.10 0.05
L/r\& 0.07 The cat sat on the couch.<EOS>
=/
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Seq. Generation: Structured

Structured Generation: Which candidate sequences to generate and how to organize?
« Tree-of-Thoughts: Advance multiple “thought chains”, i.e. sub-requests

The cat sat on the

T ST oo o = User Prompt
Inference System

/ = Internal Prompt

List a few plans...: - Int R
The cat sat on the - Internal Response

V |
Here are a few
possible plans: ...

Is this plan good? Is this plan good? Is this plan good? |
“Sentence Completion...” “Creative Writing...” “‘Grammar Analysis...” |

| | ! |

Sentence Completion is Creative Writing is a Grammar Analysis is |

\ a good plan good plan a bad plan ;

J / ! e

N e e e e e e En En Em Em e e S R R R R e S Em Em Em R R R S G S S S S N N m Em SR e Em S S EE R R R e Em Gm em M M R e e e e e e e e e =

79



Seq. Generation: Structured

Structured Generation: Which candidate sequences to generate and how to organize?
« Tree-of-Thoughts: Advance multiple “thought chains”, i.e. sub-requests

The cat sat on the

T

, ] Inference System \

; [ Pre-Planner ] E.g.Ask LLM for \
7 possible plans

Here are a few
possible plans: ...
v
[ Plan Enumeration ] E.g. Parse response

|’
Thoughts

N e e o e - - - ———

‘ “Sentence Completion...” “Creative Writing...” “‘Grammar Analysis...” ‘
\V A4 \4
[ Plan Evaluator ] [ Plan Evaluator ] [ Plan Evaluator ]
v \
v f/ X E.g.Ask LLM
\ V \
“. | Pre-Planner | | PrePlanner | ’

S
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Seq. Generation: Structured

Structured Generation: Which candidate sequences to generate and how to organize?
Graph-of-Thoughts: ToT with more ops., e.g. “aggregation”, “refine”

Tree of Thoughts (ToT)

Input Backtracking

Branching out from a chain
from a chain

7
" *"ﬁ\
£ /v

Graph of Thoughts (GoT) [This work]

Refining w Input

/&\
/t\

Aggregatin Aggregatmg
gfha’;”ns E thoughts
Key novelty
(beyond CoT-SC): Key novelty (beyond ToT):
Ge“etl]'imn Se‘éerald ; & Arbitrary graph-based thought OUtPUt
new thoughts base ntermediate transformations (aggregating
on a given arbitrary thoughts are th ts int
thought, exploring also scored ough Into a new one,
it further, and possibly looping over a thought to
backtracking from it refine it)

M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski, L. Gianinazzi, J. Gajda, T. Lehmann,
H. Niewiadomski, P. Nyczyk, and T. Hoefler. Graph of thoughts: Solving elaborate problems with large language models. AAAI'24,
38(16):17682-17690, 2024

81



Frontend: Summary

Capture user intents in order to automatically optimize prompts and workflows

User Interface
« Declarative Modules API
« Language Extensions API

1/O Interpreter

« Control Flow API| Feature
* Prompt Generator
« Prompt Optimization Optimization -
- Template Completion Optimization 1
Seq. Generation
» Streaming Generation
. 0-Shot CoT Optimization 1 ! ) 1
. Few-Shot, 1-Shot CoT Optimization 1 ' 1 1
* Internalized CoT Optimization 1 : ! 1
» Structured Generation
« Beam Search Framework 1 ! T 1
« x-of-Thoughts Framework T \ 1 -
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Single-
Replica

Part 6: Inference Systems

Build a system for High-Performance and High-Quality inference

Orca (2022)
vLLM (2023)
Sarathi (2024)
SGLang (2024)
FastServe (2024)

Single copy of LLM weights
Fundamental Scalability
Limitation: Linear Transform
(Wo, Wk, Wy matmul) and FFN
cannot be scaled up — Low
Throughput

Increase throughput via latency and
memory reduction — faster request
processing & larger batch sizes

Multi-
Replica

Preble (2024)
DistServe (2024)
Tetrilnfer (2024)
SplitWise (2024)
Mooncake (2024)
DeepServe (2025)

Multiple copies of LLM weights
Raises total system mem.
Allows Data Parallelism &
Distributed Cache for larger in-
memory persisted KV caches

Increase throughput and reduce
latency via techniques for distributed
execution, e.g. Load Balancing, PD
Disaggregation, & Hot Block
Replicas
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Single-Replica Systems

Increase throughput via lat. and mem. reduction — faster request processing & larger batch sizes

Request
Processing

Optimizer /
Execution

Scheduler

Storage Manager

Frontend

Latency Memory Throughput Quality
KV Cache (decode) Grouped / Shared/ |+ Speculative « MoE
Efficient attention Sparse Attention Decoding
Fused / Blockwise Fused Kernels
Kernels Model Parallelism N/A
Cont. Batching (device mem.)
Pipeline Parallelism Low lat. — greater
Job Prioritization throughput
supported by Job Low lat. — faster N/A
Cost Prediction reclamation
Chunked Prefills
Cache Sharing Paged Memory
Block Search Cache Sharing Low mem. — larger N/A
Quantization Offloading batch sizes

Quantization

Constrained Outputs Low lat. — faster Low lat. — greater *  Prompt Opt/Eng.

Staggered Templ.

reclamation

throughput

Structured Gen.
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Single-Replica: Orca (2022)

* Orca (2022): Reduce TTFT via continuous batching and reduce TBT via model/pipeline par.

Request .., : .
Processing Optimization / Execution Scheduling Storage Frontend
« KV Cache » Fused Attention - FCFS » Static Preallocated
« Cont. Batching Memory
N/A

 Bursted Attention
* Model/Pipeline Par.

Execution Engine tokens =
C 103+
Orca System @ Control Plane "g ]
request| = = \ conttrol control =
— > o D I~ > -2 8 ' mespage | Controll MPPEE ! Controll a
+~ . ontroller »| Controller
= Scheduler | @ #1,22,23,%4 = 5D Ll 5 — =
- = O GREEEEPEEEPPPEEPPREE V] ;_5 N B e O o
response | H A @15, T23, T3z, Tas| K = 2 5
(D P GPU| }Lc;
' || 2 =T = || 2107
Request Pool - GPUJ=» ; g
IR N P L 14 L
:1:1|.’I711|.’I?12|£l?13|£1714| 1133|.’1231|.’B32| Zo it ft(1, 1) —e—orca(1) —*—orca(16)
=, R = . | 7 | P | T | Data Plane B I Rl 1 — = ft(8,8) —®—orca(8) —*—orca(32)
2-21-22 4| T41| L42( T43 N e
Worker 1 Worker 2 0 2 4 6
Throughput (req/s)

YuG. |, Jeong J. S., Kim G. W., Kim S., Chun B. G. ORCA: A Distributed Serving System for Transformer-Based

Generative Models. OSDI’22
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Single-Replica: vLLM (2023)

vLLM (2023): Reduce memory waste via paged memory and block sharing

Request

: Optimization / Execution Scheduling Storage Frontend
Processing
« KV Cache » Fused Attention - FCFS « Paged Memo
g ry
* Multi-Head Attn. « Cont. Batchin « Cache Sharin
J g N/A
« Shared Attn. * Model/Pipeline Par. « Offloading
(Preemption)
Worker 0 35 150
Scheduler Cache Model : 9 30 3022 8125 -
Engine Shard 0 -‘ 3] - §
% s 100
Worker 1 5% 5 75
KV Cache Manager Q15 )
Cache Model i S 2 50 43.24
Engine Shard 1 .' = 10 1 7.00 2Rl a
# 25-
* 3 7.00
Block tables 0 - 0 -
Orca Orca Orca VLLM Orca Orca Orca VLLM
/\ Worker N - 1 (Max) (Pow2) (Oracle) (Max) (Pow2) (Oracle)
CPU Block | | GPU Block Cach Model 1 2
Allocator Allocator E:gcinee Sharz 3 -1 .' (a) ShareGPT (b) Alpaca

Kwon W., Li Z., Zhuang S., Sheng Y., Zheng L., Yu C. H., Gonzalez J. E., Zhang H., Stoica |. Efficient Memory
Management for Large Language Model Serving with PagedAttention. arXiv:2309.06180
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Single-Replica: Sarathi (2024)

« Sarathi (2024): Use Chunked Prefills to reduce TBT from straggler batches

Request

: Optimization / Execution Scheduling Storage Frontend
Processing
« KV Cache » Fused Attention - FCFS « Paged Memory
* Multi-Head Attn. « Cont. Batching  Chunked N/A
* Model/Pipeline Par. Prefills
1.35

= —e— SARATHI (chunk size = 128)

0 1.30; ~w- SARATHI (chunk size = 256)

= . —i— SARATHI (chunk size = 512)

g 1.254 8 +- Orca (best-case)

- 1 P N

=1, :

< 1.20

2 1.15

-

Té 1.10;

© 1.05

4

1.00 . ~ . . ; - . ; .
0 10 20 30 40 50 60 70 80 90 100

Prefill / Decode Ratio

Agrawal, A, Panwar, A, Mohan, J, Kwatra, N, Gulavani, BS, Ramjee, R. SARATHI: Efficient LLM
Inference by Piggybacking Decodes with Chunked Prefills. arXiv:2308.16369
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Single-Replica: SGLang (2024)

« SGLang (2024): Co-design frontend to support fast/accurate template completion, structured gen.

Reque§t Optimization / Execution Scheduling Storage Frontend
Processing
« KV Cache » Fused Attention « Cache Hits « Paged Memory « Constrained Gen.
* Multi-Head Attn. « Cont. Batching Priority » Cache Sharing « Staggered Temp.
« Shared Attn. * Model/Pipeline Par. * Block Search » Structured Gen.
(Radix Tree)

e SGlLang s vLLM

Multi-Turn  Multi-Turn DSPy RAG

MMLU ReAct Generative Tree of Skeleton LLM Judge HellaSwag JSON
Agents Agents  Thought of Thought Decoding Chat(short) Chat(long) Pipeline

Throughput
(Normalized)

© 0 o o~
O N U ® O

Zheng L., Yin L., Xie Z., Sun C., Huang J., Yu CH., Cao S., Kozyrakis C., Stoica |., Gonzalez JE., Barrett C., Sheng Y.
SGLang: Efficient Execution of Structured Language Model Programs. arXiv:2312.07104
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Single-Replica: FastServe (2024)

« FastServe (2024): Reduce latency from Head-of-Line blocking using MLQ

Request

Processing

« KV Cache * Fused Attention * Multi-Level  Paged Memory
* Multi-Head Attn. « Cont. Batching Queue » Offloading N/A
* Model/Pipeline Par. (Preemption)

Optimization / Execution Scheduling

Storage Frontend

SLO —e— FasterTransformer ———  VLLM —a— FastServe-FCFS —+— FastServe

~05
c
Lo4g
O

o]

50.2
c

201

‘(-U' .
-

% 1 2 3 1 5
Job Arrival Rate (job/s)

(a) OPT-13B, 1 GPU, ShareGPT.

~05
c
Lo4
o
20.2
cC

201
©

"0 1 2 3 4 5
Job Arrival Rate (job/s)

(b) OPT-66B, 4 GPUs, ShareGPT.

~05
c

2 0.41
o

0.2

c
201
©

-
% 2 3 4 5 6 7
Job Arrival Rate (job/s)

(c) OPT-175B, 16 GPUs, ShareGPT.

Wu B., Zhong Y., Zhang Z., Liu S., Liu F., Sun Y., Huang G., Liu X., Jin X. Fast Distributed Inference
Serving for Large Language Models. arXiv:2305.05920
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Multi-Replica Systems

Increase throughput and reduce latency via techniques for distributed execution

Request
Processing

Optimizer /
Execution

Scheduler

Storage
Manager

Frontend

Latency Memory Throughput Quality

KV Cache (decode) * Grouped/ Shared / » Speculative Decoding + MoE
Efficient attention Sparse Attention
Fused / Blockwise Kernels * Fused Kernels « Data Parallelism
Cont. Batching « Model Parallelism (device |. pp Disaggregation
Pipeline Parallelism mem.) | lat

: (low lat.) N/A
Data Parallelism
PD Disaggregation
Job Prioritization supported
by Job Cost Prediction
Chunked Prefills
Job Assignment Low lat. — faster reclamation | Low lat. — greater throughput N/A
supported by Load
Prediction
Cache Sharing « Paged Memory  Hot Block Replicas
Block Search « Cache Sharing (low lat.)
Quantization « Offloading N/A
Hot Block Replicas « Quantization

* Distributed Cache

Constrained Outputs *  Prompt Opt/Eng.

Staggered Templ.

Low lat. — faster reclamation

Low lat. — greater throughput

Structured Gen.




Multi-Replica: Preble (2024)

Preble (2024): Decrease workload latency by assigning requests based on cache hits

Request Optimization /
: : Schedulin Storage Frontend
Processing Execution g J
KV Cache Fused Attention « Cache Hits Priority  Paged Memory « SGLang
Multi-Head Attn. Cont. Batching « Cache Hits Load » Offloading (Preemption)
Shared Attn. Model/Pipeline Par. Balancing « Block Search (Radix
Data Parallelism Tree)
incoming request
global radix tree _ ) K
[GPU1:7req,GPU2:6req, 12 70 - 0.30 - 1.04
[GPU1:4req, GPU3:8req] .
GPU2:5 GPU3:6
Global Scheduler: redl arussred 101 60 0.25 1
E2 Scheduling  JETIET® [GPU2:2req] _
scheduled /¢ |33 [GPU2:1req] v g GRS S 0.20 - 0
request:/’ req finish, \\ R > > £ 0
,/ tree node evict c c 40 .y =
26 g O 0.15 =
local tree a3 — 304 = o
K& Local: Local [6req] 5 o o E
Iteration, Scheduler [5req] Scheduler I 47 2 0] 461x z 0.10
[4req] Priority o GPU4 6.02x ' 5.60x
7 [2req] :
[1req] Scheduling (model copy 3) 2 10 0.05
GPU GPU [1req]
wait req GPUA1 2 3 [[] [8req]
priority (model copy 1) | (model parallelism 0 - 0 - 0.00 - i
queues [ model copy 3) [IT] [Breq] SGLang Preble SGLang Preble SGLang Preble

SGLang Preble

Srivatsa V., He Z., Abhyankar R., Li D., Zhang Y. Preble: Efficient Distributed Prompt Scheduling for LLM Serving.

arXiv:2407.00023
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Multi-Replica: DistServe (2024)

« DistServe (2024): Provision GPUs in a cluster to P/D in order to maximize goodput

Optimization /

Request Processing . Scheduling Storage Frontend
Execution
« KV Cache » Fused Attention « FCFS + Paged Memory
* Multi-Head Attn. « Cont. Batching * Greedy Job Assignment (P:
* Model/Pipeline Par. Shortest-Queue, D: Least- N/A
« Data Parallelism (PD- Load)
Disagg.)
—e— Existing systems —e— Decode-only
—e— Prefill-only ---- SLA
—e— DistServe-High —¢— DistServe-Low —¥%— vLLM++ —— VLLM
) Prefill | Decoding
X 1001 100
< B i Model Dataset TP TPP | TP | PP
3 OPT-13B | ShareGPT | 2 | 1 | 1 | 1
£ ol 50 OPT-66B | ShareGPT | 4 | 1 | 2 | 2
2000 £ OPT-66B | LongBench | 4 | 1 | 2 2
5 0.041 < OPT-66B | HumanEval | 4 [ 1 | 2 | 2
- o0 | | 9 | | | , | | | OPT-175B | ShareGPT | 3 | 3 | 4 | 3
o e e T n 0 0
2o01{  imps7Le 1ps=5.6 jrps=10 0O 02 04 06 08 1.2 1.0 08 06 0.4
05 3 A G 5 10 12 Per-GPU Rate (req/s) SLO Scale
Rate (reqgs/s) =
(a) Mixed vs Pure Batches (b) Allocation Strategy (¢) Example Allocations

Zhong Y., Liu S., Chen J., Hu J., Zhu Y., Liu X., Jin X., Zhang H. DistServe: Disaggregating Prefill and Decoding for
Goodput-optimized Large Language Model Serving. arXiv:2401.09670 92




Multi-Replica: Tetrilnfer (2024)

» Tetrilnfer (2024): Decouple P and D scheduling to allow workload targeted scheduling

Optimization /

Execution Frontend

Request Processing Scheduling Storage

« KV Cache » Fused Attention » Chunked Prefills  Paged Memory
* Multi-Head Attn. « Cont. Batching « Job Priority (P: SJF, D: » Cache Sharing
* Model/Pipeline Par. Conservative FCFS) « Offloading N/A
« Data Parallelism (PD- |+ Job Assignment (P: Least- (Preemption)
Disagg.) Load, D: Power-2)
: (a) TTFT (b) JCT (a) Total Time
Fine-Tuning Global Cluster Centralized 1 . 0 E 1 5
7" Predict Model Scheduler Monitor Control Plane
: T
| . 0.8 12
Regs Streaming Outputs | L
Prefill Instance Decode Instance 0 0.6 @ 91
Raw Regs (@) O
DE—* Scheduler Dispatcher g Recv Scheduler lL_) 0.4 E 64
: 0.2 —_— ULLM 0.2 —_— VLLM B Imbalance
.| Length Chunked Main LLM Main LLM Variable ' == TS-NVLink ) — TS-NVLink 31 E= Random
Predictor .- Prefil Decode [ = == TS-RoCE = == TS-RoCE WM Ours
. 0.01 . 0.0; 0-
i KV Cache KV Cache 0 50 100 0 50 100 151 2 4 8
Prefilled Prefilled é/:) [ PrefiledKey $ || Decoge Time (s) Time (s) Num. of Instances
- | |[romedvaies]{_* (a) Disaggregation vs. vLLM (b) Power-2 vs. Random

Hu C., Huang H., Xu L., Chen X., Xu J., Chen S., Feng H., \Wang C., Wang S., Bao Y., Sun N., Shan Y. Inference
without Interference: Disaggregate LLM Inference for Mixed Downstream Workloads. arXiv:2401.11181
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Multi-Replica: SplitWise (2024)

« SplitWise (2024): Use one-shot load balancing to allow asynchronous PD cache transfer

Optimization /

Request Processing Execution Scheduling Storage Frontend
« KV Cache » Fused Attention « FCFS  Paged Memory
* Multi-Head Attn. « Cont. Batching * One-Shot Greedy Job « Cache Sharing
« Shared Attn. * Model/Pipeline Par. Assignment (Shortest Queue) | + Offloading N/A
- Data Parallelism (PD- (Preemption)
Disagg.)
[ E2E Per-layer [ TTFT Per-layer (QRTESbwom L, | pONEsosimn |, | pROTIF Sowes o,

[ EZ2E Serialized
[ E2E 1-machine Baseline

[ TTFT Serialized

I TTFT 1-machine Baseline

600

B
o
o

I

I

|

Latency (ms)

N
o
o

[

I

|

|

0 128 256 384 512 640 768 896 1024 1536 2048

Batched Token Size
(a) Async vs Serial Transfer

Patel P., Choukse E., Zhang C., Shah A., Goiri |., Maleki S., Bianchini R. Splitwise: Efficient Generative LLM Inference
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Multi-Replica: Mooncake (2024)

 Mooncake (2024): Hot blocks & one-shot load balancing with early rejection for overload protection

PReque§t Optlmlza.tlon J Scheduling Storage Frontend
rocessing Execution
« KV Cache » Fused Attention - FCFS  Paged Memory
* Multi-Head Attn. « Cont. Batching * One-Shot Greedy Job « Cache Sharing
« Shared Attn. * Model/Pipeline Par. Assignment (P: Cache Hits, |+ Offloading (Preemption, N/A
« Data Parallelism D: Least-Load) Distributed Cache)
(PD-Disagg.) « Early Rejection * Hot Blocks
S 3 — || [ —
B EEEE
e e T | ¢ ¢ ¢
§ N\ ' = g ===t =
% -7 - ¢ % - \ _ % d 2T | o -
" Y Accept 0 *Reiectv/D*Accept " K Reject " Y Accept O*Accept O*Accept D *Accept
Stage 1 Stage 2 Stage 3 Stage 4 Stage 1 Stage 2 Stage 3 Stage 4
(a) Early Rejection (Instantaneous Load) (b) Early Rejection (Predicted Load)

QinR,, Li Z., He W., Zhang M., Wu Y., Zheng W., Xu X. Mooncake: A KVVCache-centric Disaggregated Architecture

for LLM Serving. arXiv.2407.00079 95




Multi-Replica: DeepServe (2025)

 DeepServe (2025): Serverless inference system over shared Al infrastructure

Request Optimization /

: : Schedulin Storage Frontend
Processing Execution g 9
« KV Cache » Fused Attention * One-Shot Greedy  Paged Memory
* Multi-Head Attn. « Cont. Batching Job Assignment « Cache Sharing
« Shared Attn. * Model/Pipeline Par. (Heuristic) « Offloading (Preemption, N/A
- Data Parallelism Distributed Cache)
(PD-Disagg.) « Block Search (Radix Tree)
Table 2: A Summary of DEEPSERVE’s End-to-End Scaling Steps, Challenges, and Solutions. Scaler-Pre
ID | Step Definition Major Issues Our Solutions e o2
1 | Scaler-Pre Creating pods to hold the TE. 1. Resource allocation is slow 1. Pre-warmed Pods o 1 Post load 4165
Pra. . . 1. Python startup is slow ) |
2 | TE-Pre-Load | Launching the TE w/o model loading 5 NPU init is slow 1. Pre-warmed TEs 80 25 56
3 | TE-Load Loading the model onto the NPU 1. Model weight is large 1. DRAM pre-loading é 601 2177 22059
2. NPU-fork = 17.08
1. Offline profiling wi —

1. Engine warmup is slow 2. Async allocation

2. Block alloc is slow 3. Dummy req warmup 0] 4212

4 | TE-Post-Load | Preparing TE to serve requests

45.42 46.92

26.45 29.53 31.69

5 | Scaler-Post From TE ready to serve first request 1. The update of the global TE | 1. Proactive pushing

list is slow pre-opt post-opt pre-opt post-opt pre-opt post-opt
Llama3 8B TP=1 CodelLlama 34B TP=4 Qwen 72B TP=8

Hu J., Xu J., LiuZ., He Y., Chen Y., Xu H., Liu J., Meng J., Zhang B., Wan S., Dan G., Dong Z., Ren Z., Liu C., Xie T., Lin D.,
Zhang Q., Yu Y., Feng H., Chen X., Shan Y. DeepServe: Serverless Large Language Model Serving at Scale. arXiv:2501.14417
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Inference Systems: Summary

Fundamental techniques + workload/performance-driven design and system configuration

Fundamental Techniques Design Choices Configuration Tuning

Fundamentally efficient Based on workload or resource Based on performance objectives
techniques considerations « Batch Size
» KV Cache « Job Priority/Assignment « Chunk Size
* Fused/Blockwise Kernels « Cost-Based vs. Cost-Agnostic « Resource Provisioning (e.g. # of
« Continuous Batching « Cache Management P and D workers, # of GPUs per
« Paged Memory » Persisted vs. Non-Persisted layer, etc.)

* In-Memory vs. Tiered Storage * Quantization Scheme

« Replicated vs. Non-Replicated

* Frontend

« Specialized vs. General Regs.
Architecture

« Single vs. Multi-Replica

« Mono. vs. Disaggregated
Quantization

* Quantized vs. Raw
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Inference Systems: Summary

Existing systems are general-purpose and tend towards memory-rich environments

System ][ Architecture ][ Job Priority/Assign. ] [ Cache Management ][ Frontend
Single-Replica
. Orca (2022) Single Cost-Agnostic In-Mem General
. VvLLM (2023) Single Cost-Agnostic Persisted In-Mem General
. Sarathi (2024) Single Cost-Agnostic In-Mem General
. SGLang (2024) Single Cost-Agnostic Persisted In-Mem Special + Gen
. FastServe (2024) Single Cost-Agnostic In-Mem General
Multi-Replica
*  Preble (2024) Multi Mono Cost-Agnostic Persisted In-Mem General
- DistServe (2024) Multi Disagg Cost-Agnostic .In-Mem General
. Tetrilnfer (2024) Multi Disagg Cost-Based g:::::zg :z:mzm g:zz:::
«  SplitWise (2024) Multi Disagg Cost-Agnostic Persisted In-Mem General
* Mooncake (2024) Multi Disagg Cost-Base Persisted Tiered Repl General
» DeepServe (2025) Multi Disagg Cost-Agnostic Persisted In-Mem General
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First-Come First- Multi-Level
Serve (FCFS) Queue (MLQ)

Future Opportunities: Scheduling

Scheduling techniques raise throughput by minimizing queueing delays

<Schedulers>

< Cost-Agnostic >

< Cost-Based _>

Shortest-Job

First (SJF)

Heuristic-Based
« “Certaindex” [Dynasor]

* Prompt length [LARRY; Mooncake]
-

Key Challenges for the DB Community

Scheduler Design
* Robust Schedulers: Stall Prevention, Rebalancing
Job Cost & Load Prediction

AN

Learning-Based

* Train an Estimator [TRAIL; S3]
 Ask the LLM [PiA]

System Integration: Co-design scheduler + batcher, e.g. adaptive chunk/batch size & job

priority while balancing TTFT, TBT, SLO
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Future Opportunities: Storage Manager

Paged memory increases memory efficiency via dynamic memory allocation & block sharing

Key Challenges for the DB Community

Stage

Techniques

Things to Consider

Block Storage

Block Search

Block Retrieval

Block Reuse

Block Eviction

Direct Storage, e.g. GPU Shared Memory
Tiered Storage, i.e. Offloading

e Exact-match hash table
 Exact-match radix tree

« GPU to GPU
« DRAM to GPU (offloaded blocks)
* Remote DRAM (distributed blocks)

» Use without modification (i.e. prefix sharing)
» Selective Reconstruction

« LRU, score-based

Hot blocks, search & retrieval costs, transfer cost

Block granularity, partial matches, searching by
other than matched tokens, integrating with entry-
based techniques

For offloaded / distributed blocks, balancing
retrieval + reconstruction cost with savings from
reuse

Balancing accuracy with overhead from reuse,
e.g. amount of reconstructed vectors

Potentially useful vs. historically useful blocks

100



Future Opportunities: Frontend

Seq. Gen. techniques can increase quality by increasing context but raises inference cost
Prompt Eng. Structured Gen.
| |

[ \ I |

Auto Auto Few- Auto Control Structured Template Auto Auto Auto
Frontend

CoT Shot Reasoning Flow Output Comp. Beam ToT GoT

LMQL (Declarative) Random v v v Manual

, Random,
DSPy (Declarative) |Module | \n v v Module
SGLang v v 4
Guidance v v

Random,

LangChain NN v v

Key Challenges for the DB Community

« LLM Query Optimization: Which generation technique to use given a user request?
« Capturing user intent (Query Parsing)
« Optimizing prompt contents (Prompt Engineering)

» Optimizing prompt workflows (Structured Generation) 0



Future Opportunities: Other

Key Challenges for the DB Community
* LLM Query Execution: How to coordinate memory / compute resources?
* Managing experts / low-rank adapters for MoE & LoRA (Model Offloading)
» Integrating speculative drafters / small models for SpecDec (Model Management)
« Data Structures + Algorithms: How to design operators for modern hardware?
» Heterogenous hardware; CXL; PIM (Processing-In-Memory) DRAM
* Quantization: How to effectively quantize weights / KV cache / activations?

1 Operations on PIM

Main Memory GPU Memory I Operations on PNM
| Adapter1 || Adapter2 | Unified memory pool - Prefil ‘ Decodi
: [ omdDim refilling ecoding
| Adapter3 || Adapter4 | for dynamic tensors Base headDim @score[lll(] —_— @ GetTopk @ Attention
Model (Approx:mate) (Select/ve)
Q| T '
Fetch active ‘/ 8 H (1) K?g?:rfll:;d i (3) I{:Ert;:tfs W (5] F{ect;:?heK)V Block-level Cache
| Adapter 2 | Other mi-® - U
adapters for Temporary Zesl * {},9 BdiConsuuclionloveria) ™[ centroids and Codes f
the current batch | Adapter5 | e CPU
| Uncompressed KVCache U
(d) SoftMax(score)
Swappable Low-Rank (LoRA) adapters.  Softmax with CXL. Product quantization KV compression.
Sheng et al ‘25 S-LoRA : Zhang et al 25
ueta
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