
Title
Database Perspective on
LLM Inference Systems

James Pan, Guoliang Li
Department of Computer Science, Tsinghua University

LLMs: General Computing Interface

2

LLM-Powered Applications Large Language Models

Information
Retrieval

Data Analytics Content
Creation

• Spam detection
• Attribute extraction
• Classification
• Ranking
• Summarization

• Question & Answering
• Customer

Support
• Role-based, e.g.

Travel Agent
• Translation

• Recommendation

• Code generation
• NL2SQL

• Document/text
generation

• Emails, reports,
etc.

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

Generate
Code

Summarize

Q&A

NL2SQL
Classify

Rank
Write
E-mail

Recomm-
end LLM Inference System

LLM Inference System

LLM Inference Systems

3

LLM External Tools, e.g. DBMS

Chatbot Coding Assistant AI Agent

LLM-Powered Apps

...

High Performance
• Low latency, i.e. time-to-first-token (TTFT), time-

between-tokens (TBT, TPOT), end-to-end lat.
• High throughput, i.e. requests/sec, tokens/sec

High Quality
• E.g. correctness (NL2SQL, Q&A, code gen),

relevance (recommendation, customer support),
accuracy (classification, ranking), etc.

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

Goal: Build a system for High-Performance and High-Quality inference

LLM Inference Systems: Key Challenges

4

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

Latency

(a) DeepSeek-R1 picking a
random number

Goal: Build a system for High-Performance and High-Quality inference
1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it
2) Autoregressive Generation: Output generated one token at a time

Quality

vs.

(d) Output sensitivity to small
changes in prompt [Kojima ‘23]

Throughput Memory

(c) KV cache growth

The

The cat

The cat sat

The cat sat on

The cat sat on the

The cat sat on the mat

LLM

LLM

LLM

LLM

LLM

(b) Autoregressive
Generation

LLM Inference Systems: Architecture

5

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

Frontend

LLM External Tools, e.g. DBMS

Chatbot Coding Assistant AI Agent

LLM-Powered Apps

...

LLM Inference System
Scheduler

Request Processor

Optimizer / Executor

Storage Manager • Correct, Accurate, Relevant,
Trustworthy, SecureQuality

• Fast, Available

• Memory Efficient,
Elastic Resources

Latency

Memory

Throughput • Scalable

Goal: Build a system for High-Performance and High-Quality inference
1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it
2) Autoregressive Generation: Output generated one token at a time

LLM Inference Systems: Frontend

6

Request Processor

Optimizer / Executor

Storage Manager

Frontend Scheduler

LLM External Tools, e.g. DBMS

Chatbot Coding Assistant AI Agent

LLM-Powered Apps

...

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

LLM Inference System

User Interface
• Declarative Modules
• Language Extensions

I/O Interpreter
• Prompt Generator
• Constraint Checker

Seq. Generation
• Streaming Generation
• Structured Generation

• Parse user requests
into effective
prompt workflow

• Build optimized
prompts, e.g. prompt
engineering

• Coordinate seq. gen. to
balance quality and
performance

Goal: Build a system for High-Performance and High-Quality inference
1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it
2) Autoregressive Generation: Output generated one token at a time

LLM Inference Systems: Scheduler

7

Request Processor

Optimizer / Executor

Storage Manager

Frontend Scheduler

LLM External Tools, e.g. DBMS

Chatbot Coding Assistant AI Agent

LLM-Powered Apps

...

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

LLM Inference System

• Assign requests to
workers to maximize
utilization

• Prioritize jobs to
minimize queuing
delays

• Compose batches to
balance TTFT & TBT
with throughput

Load Balancer
• Job Assignment Module
• Load Prediction Model

Scheduler
• Job Prioritizer
• Job Cost Model

Batch Controller
• Chunking Module
• Batch Size Control

Goal: Build a system for High-Performance and High-Quality inference
1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it
2) Autoregressive Generation: Output generated one token at a time

LLM Inference Systems: Req. Proc.

8

Request Processor

Optimizer / Executor

Storage Manager

Frontend

LLM External Tools, e.g. DBMS

Chatbot Coding Assistant AI Agent

LLM-Powered Apps

...

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

LLM Inference System

• Efficiently generate
next token given
partial text seq.

• Effectively perform
token prediction by
contextualizing token
embeddings with
minimal CPU / mem.
cost

Operators
• Attention
• FFN / Mixture-of-Experts
• Token Sampler / Speculative

Decoder
• GeMM

Inference Workflow
• Prefill
• Decode

Scheduler

Goal: Build a system for High-Performance and High-Quality inference
1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it
2) Autoregressive Generation: Output generated one token at a time

LLM Inference Systems: Executor

9

Optimizer / Executor

Storage Manager

Frontend

LLM External Tools, e.g. DBMS

Chatbot Coding Assistant AI Agent

LLM-Powered Apps

...

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

LLM Inference System

• Minimize operator
costs by exploiting
special hardware

• Balance latency &
throughput by
coordinating batch
execution timing

Scheduler

Request Processor

Hardware Acceleration
• FlashAttention
• FlashDecoding,

RingAttention, LeanAttention

Batch Executor
• Continuous Batching
• Bursted Attention

Distributed Executor
• Data (PD-Disagg.) / Model /

Pipeline Parallel Executor

• Maximize throughput
by coordinating
execution over
distributed workers

Goal: Build a system for High-Performance and High-Quality inference
1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it
2) Autoregressive Generation: Output generated one token at a time

LLM Inference Systems: Storage

10

Storage Manager

Frontend

LLM External Tools, e.g. DBMS

Chatbot Coding Assistant AI Agent

LLM-Powered Apps

...

• Widespread LLM adoption leads to High-Volume, High-Velocity, & High-Variety inference workloads

LLM Inference System

• Manage KV cache
blocks to minimize
wasted memory

• Compress model
weights, activations,
KV to minimize
memory usage

Scheduler

Request Processor

Block Manager
• Block Storage
• Block Search & Retrieval
• Block Sharing & Eviction

Quantizer
• Quantizer Design
• Outlier Protection

Physical Storage
• Tiered Storage & Offloading
• Distributed Storage

• Store model weights
and KV caches for
efficient retrieval

Optimizer / Executor

Goal: Build a system for High-Performance and High-Quality inference
1) LLM Uncertainty Principle: Can’t know what you’ll get until you run it
2) Autoregressive Generation: Output generated one token at a time

Part 1: Request Processing

11

Efficiently and effectively generate next token by using contextualized embeddings

Request Processor

Operators
• Attention

• Naive Attention
• Multi-Headed Attention
• Grouped Attention
• Shared Attention
• Sparse Attention

• FFN
• Naive FFN
• Mixture-of-Experts

• Token Sampler
• Greedy / Stochastic
• Speculative Decoding

Inference Workflow
• Prefill
• Decode • Reduce compute complexity by exploiting KV cache

• Parallelized attention
• Parallelized attention with shared heads
• Reduce memory by sharing KV vectors
• Reduce memory & compute by discarding KVs

Technique Description / Key Idea

• Increase param. count (quality) w/o increasing cost

• Increase token/sec via fast drafter with parallel verif.

Operator Design

Optimization
Optimization

Operator Design
Operator Design

Optimization
Operator Design

Optimization
Operator Design

Technique Classification

Optimization
Workflow

Inference Workflow: Prefill

12

W
Q

W
K

W
V

At
te

nt
io

n

Ad
d

&
N

or
m

al
iz

e

Fe
ed

-F
or

w
ar

d

Ad
d

&
N

or
m

al
iz

e

To
ke

n
Sa

m
pl

er

“mat.”

The
cat
sat
on
the

The
cat
sat
on
the

Linear
Transform

C
on

te
xt

 L
en

gt
h

n
Transformer Layer i

Inference Workflow: How to efficiently perform LLM inference?

• Prefill: Exploit GPU matmul to contextualize multiple tokens at once

“The cat
sat on
the”

Prompt Predicted
Next Token

= Input Embedding = Contextualized
Embedding

= Delta Vector = Query Vector = KV Vector

Inference Workflow: Decode

13

W
Q

W
K

W
V

At
te

nt
io

n

Ad
d

&
N

or
m

al
iz

e

Fe
ed

-F
or

w
ar

d

Ad
d

&
N

or
m

al
iz

e

To
ke

n
Sa

m
pl

er

“It”
mat.

mat.

Linear
Transform

The

cat

sat

on

the

KV
 C

ac
he

Inference Workflow: How to efficiently perform LLM inference?

• Decode: After prefill, exploit KV Cache to avoid reconstructing KVs

Transformer Layer i

Previous
Token +
Cache

Predicted
Next Token

“mat.”

KV$

= Cached KVs= Input Embedding = Contextualized
Embedding

= Delta Vector = Query Vector = KV Vector

Operators: Naive Attention

14

Attention: How to efficiently contextualize an embedding vector?

• Naive: Weight contributions of other tokens by learned query-key similarity

Q

KT

Attention
Pattern

A

n

Prompt Length, n

A’ =
Softmax(A)

V

Delta
Vecs.

U

n

n

Reproj. Dim.
dv = m, e.g. 1024

U = Softmax(QKT)V

dk
e.g. 128

W
Q

Embed. Dim. m, e.g. 1024

W
K

W
V

Key Dim.
dv = m

e.g. 1024

The
cat
sat
on
the

Linear
Transform

Pr
om

pt
 L

en
gt

h
n

Layer i

Reproj. Dim.

Add

The
cat
sat
on
the

Contextualized
Embeddings

• Compute Cost: two matmuls + row-wise softmax
• Memory Cost: |Q|, |K|, |V|, |A|

Single-Head
(Prefill)

Operators: Multi-Headed Attention

15

Attention: How to efficiently contextualize an embedding vector?

• Multi-Head (MHA): Split V across parallel “heads”

Q

KT

Attention
Pattern

An,
 e

.g
. 3

2k

Prompt Length
n, e.g. 32k

A’ =
Softmax(A)

V

Delta
Vecs.

U

n, e.g. 32k

n,
 e

.g
. 3

2k

Embedding Dim.
dv = m, e.g. 1024

U = Softmax(QKT)V

Q
K

V

Single-Head

U = Concat(Hi...)Wo
Hi = Softmax(QiKi

T)Vi

Ai’

Vi

Hi

dv =
m/h

e.g. 256

Head i

At
te

nt
io

n
H

ea
ds

h,
 e

.g
. 4

H =
Concat(

Hi...)

W
o

Delta
Vecs.

Un,
 e

.g
. 2

04
8

hdv

hd
v

Reproj. Dim
m, e.g. 1024

Ai

Ki

Q
i

Multi-Head

Q1

K1

V
1

Qh

Kh

V
h

...
...

...

vs.

Operators: Grouped Attention

16

Attention: How to efficiently contextualize an embedding vector?

• Grouped Attention (GQA, MQA): Share KV projections across the heads

M
H

A

A1 A1’

V1

H1

Head 1

A2 A2’

V2

H2

Head 2

A3 A3’

V3

H3

Head 3

A4 A4’

V4

H4

Head 4
K1 K2 K3

Q
4

K4

Q
3

Q
2Q
1

G
Q

A

A1 A1’

V1

H1

Head 1

A2 A2’

V1

H2

Head 2

A3 A3’

V2

H3

Head 3

A4 A4’

V2

H4

Head 4
K1 K1 K2 K2

Q
1

Q
2

Q
3 Q
4

M
Q

A

A1 A1’

V

H1

Head 1

A2 A2’

V

H2

Head 2

A3 A3’

V

H3

Head 3

A4 A4’

V

H4

Head 4
K K K K

Q
1 Q
2

Q
3

Q
4

Multi-Head

Grouped-
Query

Multi-
Query

Operators: Shared Attention

17

Attention: How to efficiently contextualize an embedding vector?

• Shared Attention: Share KVs across multiple (sub)-requests

= Shareable KVs = New KVs (Prompt)

= New KVs (Response)

Zheng, L et al. (2025) SGLang: Efficient Execution of Structured Language Model Programs,
arXiv:2312.07104

(a) Reusing few-shot examples across
multiple prompts

(b) Reusing ”thoughts” across multiple
branches of a Tree-of-Thoughts process

Operators: Sparse Attention

18

Attention: How to efficiently contextualize an embedding vector?

• Sparse Attention: Compute QK similarities for only small subset of tokens

1

.8 .2

.5 .2 .3

.3 .3 .1 .2

.4 .1 .1 .2 .2

0 0 0 0

0 0 0

0 0

0

Q

KT

Pr
ef

ill

.5 .1 .1 .1 .1 .1

.5 .1 0 0 .1 .1 .2

.3 0 0 .1 .1 .1 .1 .3

q 1
q 2

q 3

KT k1

KT k1 k2

KT k1 k2 k3

D
ec

od
e

0 0 .2 .2 .2 .2

0 0 0 0 .3 .3 .4

0 0 0 0 .2 .2 .2 .4

q 1
q 2

q 3

k1X X

k1X X k2X

k1X X k2X X k3

D
ec

od
e= Cached Keys

= New Keys

X = Evicted Keys

= Attention Score

(a) Dense

(b) Sparse
(e.g. Sliding Window)

Token Pruning
• Heuristic Mask

• Sliding Window (Sparse Transformers)
• Attention Sink (StreamingLLM)

• Score-Based Pruning
• Attention Threshold (Scissorhands)
• Accum. Attention (H2o “Heavy Hitters”)
• Approx. Attention (Loki, SparQ)

• Learned Pruning
• Block Gating (SeerAttention)

Operators: Feed-Forward Network

19

Feed-Forward: How to predict next token given contextualized token?

• Naive: Construct next-token embedding via multi-layer perceptrons
g(f1) f2

A

B

C

D

E

F

𝑥’!

𝑏"

𝑥!

𝑏#

Embedding
i

DE F

1 1 1

×

𝑓!(𝐴) = 𝐴𝑊! + 𝑏!

𝑎! 𝑏"
𝑎" 𝑏"

𝑎# 𝑏"

..
.

A BC
𝑥! 𝑏!

1 1 1

× g = ReLU
a.k.a. ElemMax(0, a)

𝑥" 𝑏!

𝑥# 𝑏!

..
.

𝑓"(𝑋) = 𝑋𝑊" + 𝑏"

𝑥’!

𝑥’"

𝑥’#

..
.

Operators: Mixture-of-Experts

20

Feed-Forward: How to predict next token given contextualized token?

• Mixture-of-Experts: Replace FFN with a m different “experts”
• Single FFN: n total parameters, n activated parameters during inference
• m Experts: m x n total parameters, k x n activated parameters during inference

Attention

Add & Norm

Add & Norm

FFN
(MoE)

Expert 1 Expert 2 Expert n

...

Router

X

X’

Yu, H et al. (2025) fMoE: Fine-Grained Expert Offloading for Large Mixture-of-Experts Serving,
arXiv:2502.05370

MoE Architecture

Operators: Greedy / Stochastic Sampler

21

Token Sampler: How to select next token given predicted next-token embedding?

• Greedy: Map from embedding onto token set & select max logit
• Stochastic: Randomly sample from the logit map according to logit value
• Top-K: Randomly sample from k-largest logits
• p-Nucleus: Set k so that logits sum to p

Token Sampler

The
cat
sat
on
the

W
b

Linear
Transform

of all possible next tokens

0 0 0 .6 0 0 0 .4

0 0 0 0 0 .40

Dictionary

.6

m
at

m
ast

m
aster

m
ass

m
aterial

m
ath

m
atrix

m
attress

... ...

......

... ...
p

p

Temperature / Softmax

Token Sampler

Logit Map

Operators: Speculative Decoding

22

Token Sampler: How to select next token given predicted next-token embedding?

• Speculative Decoding: Quickly draft next k tokens, then quickly verify

The
cat Pr

ef
ill

The
cat

Sa
m

pl
e

sat

KV
Cach

e

Contextualized
Embeddings

Warmup: Prefill

Raw
Embeddings

The
cat

Draft
Draft
Draft
Draft

on

the

mat
.
<EOS>

Phase 1: Draft

The
cat

sat

KV Cache

Raw
Embed.

on
the
floor.sat

on
the

mat.

The
cat
sat
on
the

m
at.

Raw
Embeddings

sat
on
the

mat.

New
QKVs

WQ, WK, WV

Prefill
Attention

Contextualized
Embeddings

Phase 2: Verify

sat
on
the

mat.

Sample
Sample
Sample

SKIP
Phase 1:

Draft
..
.

The
cat
sat
on
the

The
cat
sat
on
the

floor
. floor.

Next iter.

= Cached Keys

= New Keys

= Raw Embedding

= Contextualized Embedding

Request Processing: Summary

23

Efficiently and effectively generate next token by using contextualized embeddings

Request Processor

Operators
• Attention

• Naive Attention
• Multi-Headed Attention
• Grouped Attention
• Shared Attention
• Sparse Attention

• FFN
• Naive FFN
• Mixture-of-Experts

• Token Sampler
• Greedy / Stochastic
• Speculative Decoding

Inference Workflow
• Prefill
• Decode

Operator Design

Optimization
Optimization

Operator Design
Operator Design

Optimization
Operator Design

Optimization
Operator Design

Latency Throughput Memory Quality

↑

Technique Classification

Optimization
Workflow

↑

↑ ↑↑ ↑

↑

↑

↑

↑

↑

↑
↑

↑

↑ ↑

↑ ↑

↑

↑

↑

Distributed Executor
• Model Parallelism
• Pipeline Parallelism
• Data Parallelism

• Multi-Replica
• PD-Disaggregated

Part 2: Optimizer / Execution

24

Minimize op. costs via hardware kernels; balance throughput / lat. by coordinating execution

Optimizer / Execution

Batch Executor
• Static Batching
• Continuous Batching
• Bursted Attention

Hardware Acceleration
• FlashAttention
• FlashDecoding, RingAttention
• LeanAttention

Workflow

Workflow
Workflow

Workflow
Workflow

Architecture
Architecture

Kernel Design
Kernel Design

• Parallelized blockwise attention

• Mitigate straggler effects via dynamic rebatching
• Batch splitting and merging

Technique Classification Technique Description / Key Idea

• Parallelize across layers

• Add multiple LLM replicas to increase throughput

• Reduce memory & I/O via kernel fusion

• Parallelize across requests in different stages

• Decouple P and D replicas to allow flexibility

Optimization • Maximize core utilization via streaming load balanc.

Hardware Accel.: FlashAttention

25

Hardware Accel.: How to implement efficient operators over specialized hardware?

• FlashAttention: Update delta vector in place via online softmax & matmul

qT xT

KT

xkx1 xn... ...

Scan Direction
(Columns)

uk-1T

Update M, D

uT = softmax(qTKT)V

uk
T

Update u

kth
row

V

Scan Direction
(Rows)

M, D

xk

Version k-1

Version k
Updated in place

Hardware Accel.: How to implement efficient operators over specialized hardware?

• FlashAttention: Shard across the queries

• FlashDecoding: Shard across KV followed by global reduction

Hardware Accel.: FlashDecoding

26
Dao, T., Haziza, D., Massa, F., and Sizov, G. Flash-decoding for long-context inference, 2023

Inter-query: Each worker
gets different query block
but share key-value blocks

Intra-query: Each worker
gets different key-value
blocks followed by global
reduction step

Hardware Accel.: How to implement efficient operators over specialized hardware?

• LeanAttention: Stream mini-blocks to GPU cores followed by global reduct.

Hardware Accel.: LeanAttention

27

Rya S., Srikant B., Renee SA., Victor R., Saravan R. Lean Attention: Hardware-Aware Scalable
Attention Mechanism for the Decode-Phase of Transformers. arXiv:2405.10480

Hardware Accel.: RingAttention

28

K1 K2 K5 K5 K6 K3K3 K4 K1

K6 K2 K5 K4 K6 K3K2 K4 K1

K6 K3 K5 K4 K1 K3K2 K5 K1

K6 K3 K4 K4 K1 K2K2 K5 K6

K1 K3 K4 K5 K1 K2K3 K5 K6

Worker 1 Worker 2 Worker 3

Time t0

t1

t2

t3

t4

K 1 K 2 K 3 K 4 K 5 K 6
Q1

Q2

Q3

Worker 1

Worker 2

Worker 3

Key Tiles

Q
ue

ry
 T

ile
s

Active Tile

Completed Tile

Incoming Tile

Hardware Accel.: How to implement efficient operators over specialized hardware?

• RingAttention: Distributed blocks + fixed transfer sequence
• Each worker needs to read every cache block, but what to do if cache exceeds worker memory?
• Distribute blocks across workers, then use fixed transfer sequence to hide transfer overhead

Batching: Continuous Batching

29

r1

r2

r3

Progres
s0% 100%

75

r4 0

60

r1

r2

r3

Progres
s0% 100%

33

25

20

Empty

r1

r2

r3

Progres
s0% 100%

66

50

40

r1

r2

r3

Progres
s0% 100%

H
ig

h
Lo

w
Pr

io
rit

y

Decode Round t = 1 t = 2 t = 3 t = 4

Queue

Active
Batch

r4 0

80

r4 0

(a) Static Batching

Ba
tc

h
Si

ze
r1

r4

r2

Progres
s0% 100%

50

r3 40

75

r1

r2

r3

Progres
s0% 100%

33

25

20

Empty

r1

r2

r3

Progres
s0% 100%

66

50

40

r4

r2

r3

Progres
s0% 100%

60

Empty

H
ig

h
Lo

w
Pr

io
rit

y

Decode Round t = 1 t = 2 t = 3 t = 4

Queue

Active
Batch

r4 0

(b) Continuous Batching

Ba
tc

h
Si

ze

Batching: How to avoid stragglers during batch formation?

• Continuous Batching: Reconstitute the batch after each round
Static Batching
• Requests 1 and 2 are held up by

Request 3 (straggler)
• Request 4 cannot start until the

R1R2R3 batch completes

Continuous Batching
e.g. Shortest-Job First
• Request 4 starts immediately b.c.

higher priority than e.g. R3
• Requests 1 and 2 can return

immediately once they finish
• Request 3 takes longer b.c. it got

preempted by R4

Batching: Bursted Attention

30

Batching: How to avoid stragglers during batch formation?

• Bursted Attention: Split for attention and rejoin for matrix ops.

(K1)T

(K3)T

of Keys (output length)

(K2)T

Key
Dim.

of

Q

ue
rie

s

Q1

q2
q3

Batc
h S

ize

A1

A2

A3

U1

U2

U3

of

 V
al

ue
s

=

of
 K

ey
s

V3
V2

V1

= Cached KVs

= New KVs
Q1

K1

V1

q2

(K2)iK2

(V2)iV2

q3

(K3)iK3

(V3)iV3

At
te

nt
io

n
Ke

rn
el

At
te

nt
io

n
Ke

rn
el

At
te

nt
io

n
Ke

rn
el

R
ej

oi
n

Sp
lit

Batched Attention Bursted Attentionvs

Wasted
FLOPs

Distributed Exec.: Model Parallelism

31

Worker 1 Worker 2

Yu G. I., Jeong J. S., Kim G. W., Kim S., Chun B. G. ORCA: A Distributed Serving System for Transformer-Based
Generative Models. OSDI’22

Distributed Exec.: How to take advantage of multiple executors?

• Model Parallelism: Split large model across transformer layers
• Avoid memory pressure on a single worker

Distributed Exec.: Pipeline Parallelism

32

Distributed Exec.: How to take advantage of multiple executors?

• Pipeline Parallelism: Concurrently execute multiple pipelines

Aminabadi R. Y., Rajbhandari S., Zhang M., Awan A. A., Li C., Li D., Zheng E., Rasley J., Smith S., Ruwase O., He
Y. DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale.
arXiv:2207.00032

Se
ria

l
Pi

pe
lin

es
Pa

ra
lle

l
Pi

pe
lin

es

G
PU

 (L
ay

er
)

G
PU

 (L
ay

er
)

1

2
3

4

1
2
3

4

Distributed Exec.: Data Parallelism

33

Distributed Exec.: How to take advantage of multiple executors?

• Data Parallelism: Deploy multiple LLM replicas to increase throughput

Job
Queue

Model Weights

In-Situ /
Persisted KVs

Mixed Batch Exec.

CPU

...

Local
Scheduler

Global Load Balancer

GPU

GPU

(a) Monolithic

Load Balancer (P) Load Balancer (D)

Job
Queue

Model Weights

In-Situ /
Persisted KVs

Batched Prefill Exec.

CPU

...

Local
Scheduler

GPU

GPU

Job
Queue

Model Weights

In-Situ /
Persisted KVs

Batched Decode Exec.

CPU

...

Local
Scheduler

CPU

GPU

Prompt KVs
Sync (b) P/D Disaggregated

(Synchronous)

Distributed Executor
• Model Parallelism
• Pipeline Parallelism
• Data Parallelism

• Multi-Replica
• PD-Disaggregated

Optimizer / Execution: Summary

34

Minimize op. costs via hardware kernels; balance throughput / lat. by coordinating execution

Optimizer / Execution

Batch Executor
• Static Batching
• Continuous Batching
• Bursted Attention

Hardware Acceleration
• FlashAttention
• FlashDecoding, RingAttention
• LeanAttention

Workflow

Workflow
Workflow

Workflow
Workflow

Architecture
Architecture

Kernel Design
Kernel Design

Technique Classification

Optimization

Latency Throughput Memory Quality

↑

↑

↑

↑

↑

↑

↑

↑

↑ ↑

↑

↑ ↑

↑
↑↑

↑
↑

↑
↑ ↑

↑

↑

Batch Controller
• Chunking Module
• Batch Size Control

Part 3: Scheduler

35

Minimize queuing delays and maximize resource utilization by balancing the load

Scheduler

Scheduler
• Job Prioritizer

• First-Come First-Serve
• Shortest-Job
• Multi-Level Queue

• Job Cost Prediction
• Cache / Prompt Based
• Learning-Based

Load Balancer
• Job Assignment

• Greedy
• Power-of-2

• Load Prediction (SAL)

Optimization

Algorithm
• Reduce overloading by 2-phase assignment

• Minimize queueing delays by prioritizing fast jobs
• Simulate shortest-job by using multiple queues

Technique Classification Technique Description / Key Idea

• Train a model to predict job cost

• Balance latency / throughput via batch sizing

Model (Heuristic)

Algorithm
Algorithm
Algorithm

Model (Learned)
Model (Heuristic)

Algorithm

Optimization

• Develop a model for predicting worker load

• Use cache / prompt length as proxy for job cost

• Balance latency / throughput via chunk sizing

Load Balancer: Job Assignment

36

Job Assignment: How to assign jobs to workers under dynamic and uncertain loads?

• Greedy: Assign requests to least-load worker at time of assignment
• Under static loads, this is 2-competitive in worst-case but requires accurate load prediction

• Power-of-Two: Assign to greedy worker out of random 2 [Hu et al 2024 “TetriInfer”]
• Exponentially smaller makespan compared to random (but not as good as greedy) [Mitzenmacher 2001]

• Under dynamic loads, avoids overloading workers

Prefill

Decoder 3

Decoder 2

Decoder 1

Decoder 4

Prefill

(a) Greedy

Prefill

Prefill

Prefill

Prefill

Decoder 3

Decoder 2

Decoder 1

Decoder 4

Prefill

(b) Power-of-Two

Prefill

Prefill

Prefill

Load Balancer: Load Prediction

37

Load Prediction: How to measure worker load while considering dynamic job costs?
• Sources of Uncertainty:

• Dynamic memory growth:
• In-situ KV caches from existing / new requests
• Reloaded caches from request resumptions

• Dynamic memory reclamation:
• Offloaded or evicted caches from preempted / finished requests

• Naive: Sum cost of in-situ jobs using request-level job cost prediction
• SAL: Factor in memory reclamation rate [Kossman et al 2025]

Decoder 4
Decoder 4

Decoder 4
?

Scheduler: Job Prioritization

38

Job Prioritization: How to prioritize jobs to minimize queuing time?

• First-Come First-Serve (FCFS): Process requests in order of arrival

Queue Batch
Former

Req.

OlderNewer

Req 1 Req 2

Head of Line (HOL) Blocking

Time

Wu B., Zhong Y., Zhang Z., Liu S., Liu F., Sun Y., Huang G., Liu X., Jin X. Fast Distributed Inference
Serving for Large Language Models. arXiv:2305.05920

Real-World Datasets

Scheduler: Job Prioritization

39

Job Prioritization: How to prioritize jobs to minimize queuing time?

• Shortest-Job First (SJF): Process requests in order of remaining time
• Guarantees minimum average latency (incl. queuing time) but requires accurate completion time pred.
• Preemptive SJF:

• Can lead to stalls for perpetually low-priority requests
• Context-switch cost (offloading / evicting in-situ cache + reloading the cache upon resumption)

Req 1Req 2

Time

Queue Batch
FormerLo

ad
 P

re
di

ct
io

n

Stall
Prevention

Lo
ad

-B
as

ed

Pr
io

rit
iz

er

Req.

High
Priority

Low
Priority

Scheduler: Job Prioritization

40

Job Prioritization: How to prioritize jobs to minimize queuing time?

• Multi-Level Queue (MLQ): Gradually demote requests to simulate SJF
• Naive MLQ: place all new jobs in highest priority queue, then gradually demote
• Skip-Join MLQ: place all new jobs in queue based on prefix length

Level 1 Queue

Level 2 Queue

Level n Queue

..

.

Pr
om

pt
-B

as
ed

Pr

io
rit

iz
er

Batch
Former

Req
.

Round-Based
Demotion

High
Priority

Low
Priority

Wu B., Zhong Y., Zhang Z., Liu S., Liu F., Sun Y., Huang G., Liu X., Jin X. Fast Distributed Inference
Serving for Large Language Models. arXiv:2305.05920

(d) Shortest Remaining
Processing Time (Optimal)

(c) Skip-Join MLQ

(b) Naive MLQ(a) FCFS

Scheduler: Job Prioritization

41

Job Prioritization: How to prioritize jobs to minimize queuing time?

• Maximum Cache Hits: Process requests based on cache hits
• Simulates SJF since large cache hit could mean low job cost
• Avoids cache thrashing

Zheng L., Yin L., Xie Z., Sun C., Huang J., Yu CH., Cao S., Kozyrakis C., Stoica I., Gonzalez JE., Barrett C., Sheng Y.
SGLang: Efficient Execution of Structured Language Model Programs. arXiv:2312.07104

t1: “Solve this question...” t2: “Write a story...” t3: “Solve this question...” t4: “Write a story...”

Scheduler: Job Cost Prediction

42

Job Cost Prediction: How to measure job cost without knowing final output length?

• Ask the LLM: Add output length prediction request to original prompt

E.g. Perception-in-Advance (PiA):
Prompt
Create a fun math question for children. Before
responding to the above instruction, you have to
predict the length of your response. Print the
estimated number of words in your response in the
first line. Then change to a new line to respond to the
instruction.

GPT-4
Estimated response length: 60 words.
Sure, here’s a fun math problem: There are 7 apples in a
basket. A friendly squirrel comes and...

Zheng Z., Ren X., Xue F., Luo Y., Jiang X., You Y. Response Length Perception and Sequence
Scheduling: An LLM-Empowered LLM Inference Pipeline. NeurIPS’23

Scheduler: Job Cost Prediction

43

Job Cost Prediction: How to measure job cost without knowing final output length?

• Train an Estimator: Use separate estimator to predict output length

Shahout R., Malach E., Liu C., Jiang W., Yu M., Mitzenmacher M. Don't Stop Me Now: Embedding
Based Scheduling for LLMs. arXiv:2410.01035

Scheduler: Job Cost Prediction

44

Job Cost Prediction: How to measure job cost without knowing final output length?

• Certaindex: Use beam consistency as heuristic for remaining job time

“The cat sat on the”

mat couch table

. and quietly . and comfortably . and knocking

0.35 0.25 0.15

0.40 0.30 0.15 0.35 0.25 0.20 0.50 0.20 0.15

“The cat sat on the”

mat couch table
0.35 0.25 0.15

“The cat sat on the”

mat couch

. and .

0.35 0.25

0.40 0.30 0.35

<EOS> Then It then it was <EOS> It But
0.70 0.10 0.05 0.60 0.30 0.05 0.75 0.10 0.05

Beam Search (k > 1, e.g. k = 3)

Group beams into m
clusters based on

similarity

Measure cluster entropy
using size of each

cluster |Ci| relative to
number of beams, n

Normalize to yield a
score between [0, 1]

Fu Y., Chen J., Zhu S., Fu Z., Dai Z., Zhuang Y., Ma Y., Qiao A., Rosing T., Stoica I., Zhang H.
Efficiently Scaling LLM Reasoning with Certaindex. arXiv:2412.20993

Batch Controller: Prefix Chunking

45

Batch Controller: How to compose the batch to balance throughput and latency?

• Chunked Prefills: Split prefill across multiple rounds

Agrawal, A, Panwar, A, Mohan, J, Kwatra, N, Gulavani, BS, Ramjee, R. SARATHI: Efficient LLM
Inference by Piggybacking Decodes with Chunked Prefills. arXiv:2308.16369

GPU 1

GPU 2

GPU 1

GPU 2

Batch Controller: Batch Sizing

46

Batch Controller: How to compose the batch to balance throughput and latency?

• Batch Sizing: Inc. batch size to raise throughput & dec. to lower latency

w/o chunked prefills w/chunked prefills

Agrawal, A, Panwar, A, Mohan, J, Kwatra, N,
Gulavani, BS, Ramjee, R. SARATHI: Efficient
LLM Inference by Piggybacking Decodes with
Chunked Prefills. arXiv:2308.16369

Yu G. I., Jeong J. S., Kim G. W., Kim S., Chun B. G.
ORCA: A Distributed Serving System for Transformer-
Based Generative Models. OSDI’22

Batch Controller
• Chunking Module
• Batch Size Control

Scheduler: Summary

47

Minimize queuing delays and maximize resource utilization by balancing the load

Scheduler

Scheduler
• Job Prioritizer

• First-Come First-Serve
• Shortest-Job
• Multi-Level Queue

• Job Cost Prediction
• Cache / Prompt Based
• Learning-Based

Load Balancer
• Job Assignment

• Greedy
• Power-of-2

• Load Prediction (SAL)

Optimization

Algorithm

Technique Classification

Model (Heuristic)

Algorithm
Algorithm
Algorithm

Model (Learned)
Model (Heuristic)

Algorithm

Optimization

Latency Throughput Memory Quality

↑

↑

↑

↑

↑

↑

↑
↑

↑
↑

↑

↑

↑

↑

↑

↑

↑

Part 4: Storage Manager

48

Efficiently store KV caches to minimize wasted memory; reduce memory usage via compression

Storage Manager

Quantizer
• Quantizer Design
• Outlier Smoothing

Block Manager
• Block Storage (Paged)
• Block Sharing & Eviction

• Prefix Sharing
• Partial Reconstruction
• Long Context Eviction

• Block Search & Retrieval
• Radix Tree

Framework • Dynamic block-based memory allocation

• Organize blocks by prefix to support efficient search

• Reduce memory by lowering numerical precision

Technique Classification Technique Description / Key Idea

• Reduce quantization error by smoothing outliersOptimization
Operator Design

Index

Physical Storage
• Tiered Storage & Offloading
• Distributed Storage

• Hot Blocks
Framework

• Increase capacity by exploiting tiered storageFramework
• Increase capacity by storing across multiple workers

• Reconstruct KV vectors for imperfect matches
• Reduce memory by discarding unimportant KVs

Optimization
Optimization
Optimization

Optimization • Replicate hot blocks to avoid block transfer

Block Manager: Block Storage

49

Block Storage: How to allocate memory for tasks with dynamic memory usage?

• PagedAtten.: Dynamically allocate small blocks managed by block table
• vAttention [Prabhu et al 2025], vTensor [Xu et al 2024 FlexInfer]: use GPU native memory management

capabilities to keep track of blocks

Global Mem. (e.g. 80GB)

Req. 1 KV
(Reserved)

Current
Usage

Final Usage

Current Usage

Total
Reserve
d

Current
Usage

Over-
allocation

Under-
allocation

Req. 2 KV
(Reserved)

Req. 3 KV
(Reserved)

M
od

el
 W

ei
gh

ts

KV Memory

Global Mem. (e.g. 80GB)

Blk 1 Blk 3

Blk 6

Blk 2 Blk 4 Blk 5

Blk 8Blk 7 Blk 9

Blk 11

Blk 12

Blk 10

R
esv
.

Unallocated
(Available)

Block Size Global KV Memory

M
od

el
 W

ei
gh

ts

R
esv.

vs.

(a) Static Allocation (b) Paged Allocation

Block Manager: Sharing & Eviction

50

Block Sharing: How to reuse cache blocks when KV vectors are context-dependent?
• Key vectors KY for Chunk Y are influenced by value vectors from the prefix X

• Prefix Sharing: Reuse up to longest exact-match prefix
• Cache Reconstruction: Recalculate KV vectors for a few significant tokens

• E.g. position-based, template-based, score-based

Layer
1 Att.

Layer 2: W
K

X’ L2:
KX

L2
:
KY

Y’

Chunk Y Cache
Construction

Layer
1 Att.

Layer 2: W
K

Z’ L2:
KZ

Y’
Reconstructed

Read from
Cache

1
1
1
0
0
0
0

M
ask

Chunk Y Selective
Reconstruction

Block Manager: Sharing & Eviction

51

Block Sharing: How to reuse cache blocks when KV vectors are context-dependent?

• Cache Reconstruction: Recalculate KV vectors for a few significant tokens
• Position-Based [Hu et al 2024 Epic]: Recalculate at fixed positions, e.g. chunk boundaries

Hu J., Huang W., Wang H., Wang W., Hu T., Zhang Q., Feng H., Chen X., Shan Y., Xie T. EPIC: Efficient Position-
Independent Caching for Serving Large Language Models. arXiv:2410.15332

Block Manager: Sharing & Eviction

52

Block Sharing: How to reuse cache blocks when KV vectors are context-dependent?

• Cache Reconstruction: Recalculate KV vectors for a few significant tokens
• Template-Based [Gim et al 2024 Prompt Cache]: Recalculate only the “parameter” tokens of a template

Gim I., Chen G., Lee S., Sarda N., Khandelwal A., Zhong L. Prompt Cache: Modular Attention Reuse for Low-
Latency Inference. arXiv:2311.04934

Block Manager: Sharing & Eviction

53

Block Sharing: How to reuse cache blocks when KV vectors are context-dependent?

• Cache Reconstruction: Recalculate KV vectors for a few significant tokens
• Score-Based [Yao et al 2024 CacheBlend]: Identify significant tokens based on attention score deviation

Yao J., Li H., Liu Y., Ray S., Cheng Y., Zhang Q., Du K., Lu S., Jiang J. CacheBlend: Fast Large Language Model
Serving for RAG with Cached Knowledge Fusion. arXiv:2405.16444

Block Manager: Sharing & Eviction

54

1

.8 .2

.5 .2 .3

.3 .3 .1 .2

.4 .1 .1 .2 .2

0 0 .2 .2 .2 .2

0 0 0 0 .3 .3 .4

0 0 0 0

0 0 0

0 0

0

0 0 0 0 .2 .2 .2 .4

Q

KT

q 1
q 2

q 3

Pr
ef
ill

k1X X

k1X X k2X

k1X X k2X X k3

D
ec
od
e

1

.8 .2

.5 .2 .3

.3 .3 .1 .2

.4 .1 .1 .2 .2

.5 0 0 .2 .2 .2

.5 0 0 0 .1 .1 .2

0 0 0 0

0 0 0

0 0

0

.3 0 0 0 0 .1 .1 .3

Q

KT

q 1
q 2

q 3

Pr
ef
ill

k1X

k1XX k2X

k1XX k2X X k3

D
ec
od
e

X

1

.8 .2

.5 .2 .3

.3 .3 .1 .2

.4 .1 .1 .2 .2

.5 0 0 .2 .2 .2

.5 .1 0 0 0 .1 .2

0 0 0 0

0 0 0

0 0

0

.3 0 0 .1 0 0 .1 .3

Q

KT

q 1
q 2

q 3

Pr
ef
ill

k1X

k1X X k2X

k1XX k2X X k3

D
ec
od
e

X

(a) Sliding Window
e.g. LongFormer

(b) Attention Sink
e.g. StreamingLLM

(c) Least-Score
e.g. TOVA, Keyformer, H2O

Block Eviction (Long Context): How to reduce cache size without reducing quality?

• Sparse Attention: Compute QK similarities for small subset of tokens
Heuristic Masks Score-Based

Block Manager: Block Search & Retriev.

55

Block Search & Retrieval: How to find and retrieve reusable blocks from a persisted cache?

• Radix Tree: Split persisted prefixes along shared prefix branches

(a) Each branch stores a
matchable prefix

(b) To keep cache size under control, whole
least-used branches can be evicted as the

tree grows

Zheng L., Yin L., Xie Z., Sun C., Huang J., Yu CH., Cao S., Kozyrakis C., Stoica I., Gonzalez JE., Barrett C., Sheng Y.
SGLang: Efficient Execution of Structured Language Model Programs. arXiv:2312.07104

Physical Storage: Tiered & Offloading

56

Cache Offloading (Long Context): How to simultaneously reduce memory and reload costs?

• Entry-Wise: Store cache on cold storage and load significant tokens only
• Partial Query Weight: Modified Wq that returns truncated query vector with few “significant” dims.
• Partial Key Cache: Key vectors truncated to few “significant” dims.

Lee W., Lee J., Seo J., and Sim J. InfiniGen: Efficient Generative Inference of Large Language Models with
Dynamic KV Cache Management. OSDI’24

Physical Storage: Tiered & Offloading

57

Cache Offloading (Long Context): How to simultaneously reduce memory and reload costs?

• Layer/Model-Wise: Store % of model/layers across tiered storage
• FlexGen: Define a cost model and minimize via LP formulation

• Considerations: read/write costs, CPU-side computation

Layer i

Layer i -1

Layer i + 1

CPU
DRAM Lo

ad

KV CacheWeights

CPU
DRAM Lo

ad

KV CacheWeights

Layer i + 1

Layer i

Layer i -1

(a) Model-Wise (b) Layer-Wise

Physical Storage: Tiered & Offloading

58

r1

r4

r2

Progres
s0% 100%

50

r3 40

75

r1

r2

r3

Progres
s0% 100%

33

25

20

Empty

r1

r2

r3

Progres
s0% 100%

66

50

40

r4

r2

r3

Progres
s0% 100%

60

Empty

H
ig

h
Lo

w
Pr

io
rit

y

Decode Round t = 1 t = 2 t = 3 t = 4

Queue

Active
Batch

r4 0

Continuous Batching

Ba
tc

h
Si

ze
Cache Offloading (Preemption): For preempted requests, when to evict and when to offload?

• Cost-Aware Preemption: Use resumption cost to decide evict or offload

Recompute Cost >
Transfer Cost? EvictOffload

Risk of
OOM? Keep in Memory

(do nothing)Yes
No

Yes
No

Kwon W., Li Z., Zhuang S., Sheng Y., Zheng L., Yu C. H., Gonzalez J. E., Zhang H., Stoica I. Efficient Memory
Management for Large Language Model Serving with PagedAttention. arXiv:2309.06180

Physical Storage: Tiered & Offloading

59

Cache Offloading (Preemption): For preempted requests, when to evict and when to offload?

• Async Recovery: Prefetch Layer i + 1 during computation of Layer i
• Disaggregated Async Transfer: Stream cache from prefill to decode

Lee W., Lee J., Seo J., and Sim J. InfiniGen: Efficient
Generative Inference of Large Language Models with
Dynamic KV Cache Management. OSDI’24

Layer i Layer i + 1

Layer i Layer i + 1

(a) Async
Recovery/Onloading

Load Balancer (PD)

Job
Queue

Model Weights

In-Situ /
Persisted KVs

Batched Prefill Exec.

CPU

...

Local
Scheduler

GPU

GPU

Job
Queue

Model Weights

In-Situ /
Persisted KVs

Batched Decode Exec.

CPU

...

Local
Scheduler

CPU

GPU

Prompt KVs
Async

(b) P/D Disaggregated
(Asynchronous)

Physical Storage: Distributed Cache

60

Distributed Cache: How to partition blocks to workers to balance the workload & reduce transfers?

• Cache-Aware Load Balancing: Assign jobs based on cache hits
• Preble: Use distributed radix tree to search matching blocks

Srivatsa V., He Z., Abhyankar R., Li D., Zhang Y. Preble: Efficient Distributed Prompt Scheduling for LLM Serving.
arXiv:2407.00023

Physical Storage: Distributed Cache

61

Distributed Cache: How to partition blocks to workers to balance the workload & reduce transfers?

• Hot Blocks: Store hot block replicas on multiple workers
• Mooncake: To replicate blocks “naturally”, occasionally assign requests while ignoring worker blocks

Worker 1

You are a
helpful

When...

What...

Worker 2

Why...

Solve this
question

Write a
story

Worker 2

Why...

Solve this
question

You are a
helpful

Req. 1: “You
are a helpful...”

Req. 2: “You
are a helpful...”

Req. 3: “You
are a helpful...”

Quantization: Quantizer Design

62

0 1 2 3 4 5 6 7

-∞ +∞0.2 0.9... High-Precision

3-Bit Low-
Precision

f(x)

Clamped Domain

0 1 2 3

0 1 2 3 4 5 6 7 3-Bit Precision

2-Bit Precision
g(x)

(a) Uniform Quantizer (b) Non-Uniform Quantizer

Quantizer Design: How to find error-minimizing map from high to low-precision domain?

• Uniform: Discretize a high-precision domain into low-bit numbers
• E.g. 𝑞(𝑥) = 𝑥/𝑠 + 𝑧 where s is a step size and z is offset

• Non-Uniform: Directly solve for error minimization mapping
• E.g. k-means clustering

Survey: Gholami A., Kim S., Dong Z., Yao Z., Mahoney M. W., Keutzer K. A Survey of Quantization Methods for
Efficient Neural Network Inference. arXiv:2103.13630

Quantization: Quantizer Design

63

Quantizer Design: How to find error-minimizing map from high to low-precision domain?

• Tensor-Wise: Apply one quantizer over a whole tensor
• Vector-Wise: Apply different quantizers per token/KV or dim (“channel”)
• Dimension-Wise: Apply different quantizers per group of dimensions

.4

1 .8

.1 1 0

.4 .8 .8 .9

.5 .6 .1 .1 .4

.9 .4 .6 .1

0 .9 .7

.6 1

.4

f(x)

.4

1 .8

.1 1 0

.4 .8 .8 .9

.5 .6 .1 .1 .4

.9 .4 .6 .1

0 .9 .7

.6 1

.4

f1(x)

f2(x)

f1(x)

To
ke

ns

Embedding Dim.

To
ke

ns

Embedding Dim.

.4

1 .8

.1 1 0

.4 .8 .8 .9

.5 .6 .1 .1 .4

.9 .4 .6 .1

0 .9 .7

.6 1

.4

f1(x)

f2(x)

f1(x)

f3(x)

To
ke

ns

Embedding Dim.

(a) Tensor-Wise (b) Vector-Wise (c) Dimension-Wise

Quantization: Outlier Protection

64

Blk 1 Blk 2 Blk 3

Blk 4 Blk 5 Blk 6

Blk 7 Blk 8 Blk 9

c d

e f

a

b

1

2

4

4

6

0

5

10

15

20
Po

s.
 In

de
x

R
unning C

ount

a 4 1 b 7 2 c 10 d 12 4 e 22 f 23 6

Full Precision Sparse Quantized Representation (SpQR)

Row 1 Row 2 Row 3 Row 5
3-Bit Dense

Matrix

Blockwise
Quantizer

Outlier
Isolation

Outlier Protection: How to identify & preserve information in outliers?

• Mixed-Precision: Keep outliers in raw high-precision form
• SpQR [Dettmers et al 2023]: Use a sparse representation to hold raw values + special matmul kernel

Quantization: Outlier Protection

65

Outlier Protection: How to identify & preserve information in outliers?

• Outlier Smoothing: Smooth outliers to yield more uniform tensor

1

-2 8

-16 2 6

-1 -9

1

0 1/4

0 0 0

0 0

0

0 0

0 1 0

0 1/3

1

-2 2

-4 2 2

-1 -3

Smoothed X
(Easy to Quantize)

Original X
(Hard to Quantize)

Inverse
Smoothing S-1

1

0 4

0 0 0

0 0

0

0 0

0 1 0

0 3

2

1 -1

1 -2

-1

2

-1 -1

-1 -2

1

2

4 -4

1 -2

-4

2

-3 -3

-1 -2

3

Scaled W
(Easy to Quantize)

Original W
(Easy to Quantize)

Smoothing
Matrix S

XS-1 SW = XW

Before Smoothing

After Smoothing

Smoothing Equivalence

Storage Manager: Summary

66

Efficiently store KV caches to minimize wasted memory; reduce memory usage via compression

Storage Manager

Quantizer
• Quantizer Design
• Outlier Smoothing

Block Manager
• Block Storage (Paged)
• Block Sharing & Eviction

• Prefix Sharing
• Partial Reconstruction
• Long Context Eviction

• Block Search & Retrieval
• Radix Tree

Framework

Technique Classification

Optimization
Operator Design

Index

Physical Storage
• Tiered Storage & Offloading
• Distributed Storage

• Hot Blocks
Framework
Framework

Optimization
Optimization
Optimization

Optimization

Latency Throughput Memory Quality

↑

↑

↑

↑

↑
↑

↑

↑
↑
↑

↑
↑ ↑

↑
↑

↑

↑

↑↑

↑

↑

↑
↑ ↑

↑

↑ ↑ ↑

↑

↑ ↑ ↑

I/O Interpreter
• Control Flow
• Prompt Generator

• Prompt Optimization
• Template Completion

User Interface
• Declarative Modules
• Language Extensions

Seq. Generation
• Streaming Generation

• 0-Shot CoT
• Few-Shot, 1-Shot CoT
• Internalized CoT

• Structured Generation
• Beam Search
• x-of-Thoughts

Part 5: Frontend

67

Capture user intents in order to automatically optimize prompts and workflows

Frontend

Framework

API • Capture user intent to support prompt optimization

• Provide automatic prompt engineering

• Increase quality by generating more context

• PD interleave for fast and accurate templates

Technique Classification Technique Description / Key Idea

• Increase quality by providing more context

• Increase quality via multiple candidate sequences

API Feature

Optimization
Optimization

Optimization

Framework
• Increase quality via multiple candidate sequences

API • Facilitate programmatic prompting

Optimization

Optimization • Increase quality via fine-tuning

User Interface: Declarative Modules

68

Declarative Modules: How to capture intent of a request in order to support automatic prompts?

• LMQL: Use SQL-like syntax to express intent via output constraints

• DSPy: Provide callable modules for common requested tasks

use constrained variable to produce a classification
"Based on this, the overall sentiment of the message\
can be considered to be[CLS]" where CLS in [" positive", " neutral", " negative"]

math = dspy.ChainOfThought("question -> answer: float")
math(question="Two dice are tossed. What is probability that the sum equals 2?")

class ExtractInfo(dspy.Signature):
"""Extract structured information from text."""
text: str = dspy.InputField()
title: str = dspy.OutputField()
headings: list[str] = dspy.OutputField()
entities: list[dict[str, str]] = dspy.OutputField(desc="a list of entities and their metadata")

module = dspy.Predict(ExtractInfo)

User Interface: Declarative Modules

69

Declarative Modules: How to capture intent of a request in order to support automatic prompts?

• DSPy: Provide callable modules for common requested tasks

Automatic zero-shot CoT prompting

cot = dspy.ChainOfThought(BasicGenerateAnswer)User-Submitted
Program

Your input fields are:
1. `question` (str)

Your output fields are:
1. `reasoning` (str)
2. `answer` (str)

All interactions will be structured in the following way, with the appropriate values filled in.

[[## question ##]]
{question}

[[## reasoning ##]]
{reasoning}

System-Generated
Prompt

User Interface: Language Extensions

70

Language Extensions: How to intuitively incorporate LLM generation into imperative languages?

• SGLang: Provide LLM API with parameterized calling
s += LLM("To answer "+q+", I need "+gen("tool", choices=["calc", "www"]))
if s["tool"] == "calc":

// .. do something
elif s["tool"] == "www":

// .. do something

Example 1: Using LLM API plus imperative control flow to build a tool-using agent

character_regex=(...)
def character_gen(s, name):

s += user(
f"{name} is a character in Harry Potter. Please fill in the following information about this character."

)
s += LLM(gen("json_output", max_tokens=256, regex=character_regex))

Example 2: The LLM API includes features e.g. regex constrained outputs

I/O Interpreter: Control Flow

71

Control Flow: How automatically format LLM outputs to enable value-based control flow?

• SGLang: Provide LLM API with parameterized calling
s += LLM("To answer "+q+", I need "+gen("tool", choices=["calc", "www"]))
if s["tool"] == "calc":

// .. do something
elif s["tool"] == "www":

// .. do something

Generated Prompt
Complete the following with one word only: “calc” or “www”.
To answer (question here), I need:

I/O Interpreter: Prompt Generator

72

Prompt Generator: How to automatically optimize a prompt to decr. lat & increase quality?

• Declarative Modules: Optimize prompts based on the called module

Example: Automatic few-shot prompting

Initialize KNNFewShot with a sentence transformer model
knn_few_shot = KNNFewShot(k=3, trainset=trainset, vectorizer=dspy.Embedder(xyz).encode))

Compile the QA module with few-shot learning
compiled_qa = knn_few_shot.compile(qa)

Use the compiled module
result = compiled_qa("What is the capital of Belgium?")

I/O Interpreter: Prompt Generator

73

Prompt Generator: How to automatically optimize a prompt to decr. lat & increase quality?

• Staggered Templates: Build progressive prompts by interleaved decode

Write a summary of Bruno Mars, the singer:
{{ "name": "[STRING_VALUE]",

"age": [INT_VALUE],
"top_songs": [[

"[STRING_VALUE]",
"[STRING_VALUE]"]] }}

Write a summary of Bruno Mars, the singer:
{ "name": " Bruno Mars

Write a summary of Bruno Mars, the singer:
{ "name": "Bruno Mars",
"age": "

User-Submitted
JSON Template

System-Generated
Prompt #1

System-Generated
Prompt #2

Automatic “staggered” template completion workflow from LMQL

LMQL

Seq. Generation: Streaming

74

Streaming Generation: Adding which key phrases illicit high-quality responses?

• Zero-Shot CoT: Use phrases that yield responses mirroring reasoning
Base Prompt Zero-Shot Chain-of-Thought (Cot)vs.

Kojima, T et al. (2022) Large Language Models are Zero-Shot Reasoners, arxiv:2205.11916

Effect of different phrases on
accuracy for math word problems
(MultiArith)

Seq. Generation: Streaming

75

Streaming Generation: Adding which key phrases illicit high-quality responses?

• Few-Shot Examples: Use examples to yield pattern-matching outputs

Brown, T et al. (2020) Language Models are Few-Shot Learners, NeurIPS’20

Base Zero-Shot Prompt Few-Shot Promptvs.

Providing few-shot examples
increases BLEU score for translation
tasks

Seq. Generation: Streaming

76

Streaming Generation: Adding which key phrases illicit high-quality responses?

• One-Shot CoT: Add example reasoning to yield reasoning-like output
Base Zero-Shot Prompt One-Shot CoT Promptvs.

Wei, J et al. (2022) Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,
NeurIPS’22

Seq. Generation: Streaming

77

Streaming Generation: Adding which key phrases illicit high-quality responses?

• Internalized CoT: Fine-tune to yield reasoning-like output w/o key phrases

Nye, M et al. (2021) Show Your Work: Scratchpads for Intermediate Computation with Language
Models, ICLR’21

Prompt:

Model
Output:

Fine-tuning with supervised scratchpad
increases accuracy over few-shot (i.e.
one-shot CoT) alone

Seq. Generation: Structured

78

“The cat sat on the”

mat couch table

. and quietly . and comfortably . and knocking

0.35 0.25 0.15

0.40 0.30 0.15 0.35 0.25 0.20 0.50 0.20 0.15

“The cat sat on the”

mat couch table
0.35 0.25 0.15

“The cat sat on the”

mat couch

. and .

0.35 0.25

0.40 0.30 0.35

<EOS> Then It then it was <EOS> It But
0.70 0.10 0.05 0.60 0.30 0.05 0.75 0.10 0.05

Structured Generation: Which candidate sequences to generate and how to organize?

• Beam Search: Advance the top-k sequences based on logit score

Beam Search (k > 1, e.g. k = 3)
Score Candidate

0.35 The cat sat on the mat

0.25 The cat sat on the couch

0.15 The cat sat on the table

Score Candidate

0.14 The cat sat on the mat.

0.11 The cat sat on the mat and

0.09 The cat sat on the couch.

Score Candidate

0.10 The cat sat on the mat.<EOS>

0.07 The cat sat on the mat and then

0.07 The cat sat on the couch.<EOS>

Seq. Generation: Structured

79

List a few plans...:
The cat sat on the

Here are a few
possible plans: ...

Is this plan good?
“Sentence Completion...”

Is this plan good?
“Creative Writing...”

Is this plan good?
“Grammar Analysis...”

Sentence Completion is
a good plan

Creative Writing is a
good plan

Grammar Analysis is
a bad plan

Structured Generation: Which candidate sequences to generate and how to organize?

• Tree-of-Thoughts: Advance multiple “thought chains”, i.e. sub-requests
The cat sat on the

Inference System
= Internal Prompt
= Internal Response

= User Prompt

Seq. Generation: Structured

80

Here are a few
possible plans: ...

“Sentence Completion...” “Creative Writing...” “Grammar Analysis...”

Plan Evaluator Plan Evaluator Plan Evaluator

The cat sat on the

Inference System
Pre-Planner E.g. Ask LLM for

possible plans

Plan Enumeration E.g. Parse response

Pre-Planner Pre-Planner

E.g. Ask LLM

Thoughts

Structured Generation: Which candidate sequences to generate and how to organize?

• Tree-of-Thoughts: Advance multiple “thought chains”, i.e. sub-requests

Seq. Generation: Structured

81

Structured Generation: Which candidate sequences to generate and how to organize?

• Graph-of-Thoughts: ToT with more ops., e.g. “aggregation”, “refine”

M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski, L. Gianinazzi, J. Gajda, T. Lehmann,
H. Niewiadomski, P. Nyczyk, and T. Hoefler. Graph of thoughts: Solving elaborate problems with large language models. AAAI’24,
38(16):17682–17690, 2024

I/O Interpreter
• Control Flow
• Prompt Generator

• Prompt Optimization
• Template Completion

User Interface
• Declarative Modules
• Language Extensions

Seq. Generation
• Streaming Generation

• 0-Shot CoT
• Few-Shot, 1-Shot CoT
• Internalized CoT

• Structured Generation
• Beam Search
• x-of-Thoughts

Frontend: Summary

82

Capture user intents in order to automatically optimize prompts and workflows

Frontend

Framework

API

Technique Classification

API Feature

Optimization
Optimization

Optimization

Framework

API

Optimization

Optimization

Latency Throughput Memory Quality

↑
↑

↑

↑

↑↑
↑

↑

↑↑
↑

↑

↑↑

↑

↑

↑↑
↑

↑

↑↑

Part 6: Inference Systems

83

Examples Key Features Key Design Aims

Single-
Replica

• Orca (2022)
• vLLM (2023)
• Sarathi (2024)
• SGLang (2024)
• FastServe (2024)

• Single copy of LLM weights
• Fundamental Scalability

Limitation: Linear Transform
(WQ, WK, WV matmul) and FFN
cannot be scaled up → Low
Throughput

• Increase throughput via latency and
memory reduction → faster request
processing & larger batch sizes

Multi-
Replica

• Preble (2024)
• DistServe (2024)
• TetriInfer (2024)
• SplitWise (2024)
• Mooncake (2024)
• DeepServe (2025)

• Multiple copies of LLM weights
• Raises total system mem.
• Allows Data Parallelism &

Distributed Cache for larger in-
memory persisted KV caches

• Increase throughput and reduce
latency via techniques for distributed
execution, e.g. Load Balancing, PD
Disaggregation, & Hot Block
Replicas

Build a system for High-Performance and High-Quality inference

Single-Replica Systems

84

Latency Memory Throughput Quality
Request

Processing
• KV Cache (decode)
• Efficient attention

• Grouped / Shared /
Sparse Attention

• Speculative
Decoding

• MoE

Optimizer /
Execution

• Fused / Blockwise
Kernels

• Cont. Batching
• Pipeline Parallelism

• Fused Kernels
• Model Parallelism

(device mem.)
Low lat. → greater

throughput

N/A

Scheduler
• Job Prioritization

supported by Job
Cost Prediction

• Chunked Prefills

Low lat. → faster
reclamation N/A

Storage Manager
• Cache Sharing
• Block Search
• Quantization

• Paged Memory
• Cache Sharing
• Offloading
• Quantization

Low mem. → larger
batch sizes N/A

Frontend • Constrained Outputs
• Staggered Templ.

Low lat. → faster
reclamation

Low lat. → greater
throughput

• Prompt Opt/Eng.
• Structured Gen.

Increase throughput via lat. and mem. reduction → faster request processing & larger batch sizes

Single-Replica: Orca (2022)

85

Request
Processing Optimization / Execution Scheduling Storage Frontend

• KV Cache • Fused Attention
• Cont. Batching
• Bursted Attention
• Model/Pipeline Par.

• FCFS • Static Preallocated
Memory

N/A

Yu G. I., Jeong J. S., Kim G. W., Kim S., Chun B. G. ORCA: A Distributed Serving System for Transformer-Based
Generative Models. OSDI’22

• Orca (2022): Reduce TTFT via continuous batching and reduce TBT via model/pipeline par.

Single-Replica: vLLM (2023)

86

Request
Processing Optimization / Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.
• Shared Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.

• FCFS • Paged Memory
• Cache Sharing
• Offloading

(Preemption)

N/A

• vLLM (2023): Reduce memory waste via paged memory and block sharing

Kwon W., Li Z., Zhuang S., Sheng Y., Zheng L., Yu C. H., Gonzalez J. E., Zhang H., Stoica I. Efficient Memory
Management for Large Language Model Serving with PagedAttention. arXiv:2309.06180

Single-Replica: Sarathi (2024)

87

Request
Processing Optimization / Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.

• FCFS
• Chunked

Prefills

• Paged Memory
N/A

• Sarathi (2024): Use Chunked Prefills to reduce TBT from straggler batches

Agrawal, A, Panwar, A, Mohan, J, Kwatra, N, Gulavani, BS, Ramjee, R. SARATHI: Efficient LLM
Inference by Piggybacking Decodes with Chunked Prefills. arXiv:2308.16369

Single-Replica: SGLang (2024)

88

Request
Processing Optimization / Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.
• Shared Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.

• Cache Hits
Priority

• Paged Memory
• Cache Sharing
• Block Search

(Radix Tree)

• Constrained Gen.
• Staggered Temp.
• Structured Gen.

• SGLang (2024): Co-design frontend to support fast/accurate template completion, structured gen.

Zheng L., Yin L., Xie Z., Sun C., Huang J., Yu CH., Cao S., Kozyrakis C., Stoica I., Gonzalez JE., Barrett C., Sheng Y.
SGLang: Efficient Execution of Structured Language Model Programs. arXiv:2312.07104

Single-Replica: FastServe (2024)

89

Request
Processing Optimization / Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.

• Multi-Level
Queue

• Paged Memory
• Offloading

(Preemption)
N/A

• FastServe (2024): Reduce latency from Head-of-Line blocking using MLQ

Wu B., Zhong Y., Zhang Z., Liu S., Liu F., Sun Y., Huang G., Liu X., Jin X. Fast Distributed Inference
Serving for Large Language Models. arXiv:2305.05920

Multi-Replica Systems

90

Latency Memory Throughput Quality
Request

Processing
• KV Cache (decode)
• Efficient attention

• Grouped / Shared /
Sparse Attention

• Speculative Decoding • MoE

Optimizer /
Execution

• Fused / Blockwise Kernels
• Cont. Batching
• Pipeline Parallelism
• Data Parallelism
• PD Disaggregation

• Fused Kernels
• Model Parallelism (device

mem.)

• Data Parallelism
• PD Disaggregation

(low lat.) N/A

Scheduler

• Job Prioritization supported
by Job Cost Prediction

• Chunked Prefills
• Job Assignment

supported by Load
Prediction

Low lat. → faster reclamation Low lat. → greater throughput N/A

Storage
Manager

• Cache Sharing
• Block Search
• Quantization
• Hot Block Replicas

• Paged Memory
• Cache Sharing
• Offloading
• Quantization
• Distributed Cache

• Hot Block Replicas
(low lat.)

N/A

Frontend • Constrained Outputs
• Staggered Templ. Low lat. → faster reclamation Low lat. → greater throughput • Prompt Opt/Eng.

• Structured Gen.

Increase throughput and reduce latency via techniques for distributed execution

Multi-Replica: Preble (2024)

91

Request
Processing

Optimization /
Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.
• Shared Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.
• Data Parallelism

• Cache Hits Priority
• Cache Hits Load

Balancing

• Paged Memory
• Offloading (Preemption)
• Block Search (Radix

Tree)

• SGLang

• Preble (2024): Decrease workload latency by assigning requests based on cache hits

Srivatsa V., He Z., Abhyankar R., Li D., Zhang Y. Preble: Efficient Distributed Prompt Scheduling for LLM Serving.
arXiv:2407.00023

Multi-Replica: DistServe (2024)

92

Request Processing Optimization /
Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.
• Data Parallelism (PD-

Disagg.)

• FCFS
• Greedy Job Assignment (P:

Shortest-Queue, D: Least-
Load)

• Paged Memory

N/A

• DistServe (2024): Provision GPUs in a cluster to P/D in order to maximize goodput

Zhong Y., Liu S., Chen J., Hu J., Zhu Y., Liu X., Jin X., Zhang H. DistServe: Disaggregating Prefill and Decoding for
Goodput-optimized Large Language Model Serving. arXiv:2401.09670

(a) Mixed vs Pure Batches (b) Allocation Strategy (c) Example Allocations

Multi-Replica: TetriInfer (2024)

93

Request Processing Optimization /
Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.
• Data Parallelism (PD-

Disagg.)

• Chunked Prefills
• Job Priority (P: SJF, D:

Conservative FCFS)
• Job Assignment (P: Least-

Load, D: Power-2)

• Paged Memory
• Cache Sharing
• Offloading

(Preemption)
N/A

• TetriInfer (2024): Decouple P and D scheduling to allow workload targeted scheduling

Hu C., Huang H., Xu L., Chen X., Xu J., Chen S., Feng H., \Wang C., Wang S., Bao Y., Sun N., Shan Y. Inference
without Interference: Disaggregate LLM Inference for Mixed Downstream Workloads. arXiv:2401.11181

(a) Disaggregation vs. vLLM (b) Power-2 vs. Random

Multi-Replica: SplitWise (2024)

94

Request Processing Optimization /
Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.
• Shared Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.
• Data Parallelism (PD-

Disagg.)

• FCFS
• One-Shot Greedy Job

Assignment (Shortest Queue)

• Paged Memory
• Cache Sharing
• Offloading

(Preemption)
N/A

• SplitWise (2024): Use one-shot load balancing to allow asynchronous PD cache transfer

Patel P., Choukse E., Zhang C., Shah A., Goiri I., Maleki S., Bianchini R. Splitwise: Efficient Generative LLM Inference
Using Phase Splitting. ISCA’24

(a) Async vs Serial Transfer (b) Provisioning Simulator and Results

Multi-Replica: Mooncake (2024)

95

Request
Processing

Optimization /
Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.
• Shared Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.
• Data Parallelism

(PD-Disagg.)

• FCFS
• One-Shot Greedy Job

Assignment (P: Cache Hits,
D: Least-Load)

• Early Rejection

• Paged Memory
• Cache Sharing
• Offloading (Preemption,

Distributed Cache)
• Hot Blocks

N/A

• Mooncake (2024): Hot blocks & one-shot load balancing with early rejection for overload protection

(a) Early Rejection (Instantaneous Load) (b) Early Rejection (Predicted Load)
Qin R., Li Z., He W., Zhang M., Wu Y., Zheng W., Xu X. Mooncake: A KVCache-centric Disaggregated Architecture
for LLM Serving. arXiv:2407.00079

Multi-Replica: DeepServe (2025)

96

Request
Processing

Optimization /
Execution Scheduling Storage Frontend

• KV Cache
• Multi-Head Attn.
• Shared Attn.

• Fused Attention
• Cont. Batching
• Model/Pipeline Par.
• Data Parallelism

(PD-Disagg.)

• One-Shot Greedy
Job Assignment
(Heuristic)

• Paged Memory
• Cache Sharing
• Offloading (Preemption,

Distributed Cache)
• Block Search (Radix Tree)

N/A

• DeepServe (2025): Serverless inference system over shared AI infrastructure

Hu J., Xu J., Liu Z., He Y., Chen Y., Xu H., Liu J., Meng J., Zhang B., Wan S., Dan G., Dong Z., Ren Z., Liu C., Xie T., Lin D.,
Zhang Q., Yu Y., Feng H., Chen X., Shan Y. DeepServe: Serverless Large Language Model Serving at Scale. arXiv:2501.14417

Inference Systems: Summary

97

Fundamental techniques + workload/performance-driven design and system configuration

Fundamental Techniques Design Choices Configuration Tuning

Fundamentally efficient
techniques
• KV Cache
• Fused/Blockwise Kernels
• Continuous Batching
• Paged Memory

Based on workload or resource
considerations
• Job Priority/Assignment

• Cost-Based vs. Cost-Agnostic
• Cache Management

• Persisted vs. Non-Persisted
• In-Memory vs. Tiered Storage
• Replicated vs. Non-Replicated

• Frontend
• Specialized vs. General Reqs.

• Architecture
• Single vs. Multi-Replica
• Mono. vs. Disaggregated

• Quantization
• Quantized vs. Raw

Based on performance objectives
• Batch Size
• Chunk Size
• Resource Provisioning (e.g. # of

P and D workers, # of GPUs per
layer, etc.)

• Quantization Scheme

Single-Replica
• Orca (2022)
• vLLM (2023)
• Sarathi (2024)
• SGLang (2024)
• FastServe (2024)

Multi-Replica
• Preble (2024)
• DistServe (2024)
• TetriInfer (2024)
• SplitWise (2024)
• Mooncake (2024)
• DeepServe (2025)

Inference Systems: Summary

98

Existing systems are general-purpose and tend towards memory-rich environments

System Job Priority/Assign. Cache ManagementArchitecture Frontend

Single
Single
Single
Single
Single

Multi Mono
Multi Disagg
Multi Disagg
Multi Disagg
Multi Disagg
Multi Disagg

Cost-Agnostic
Cost-Agnostic
Cost-Agnostic
Cost-Agnostic
Cost-Agnostic

Cost-Agnostic
Cost-Agnostic
Cost-Based

Cost-Agnostic
Cost-Base

Cost-Agnostic

In-Mem
Persisted In-Mem

In-Mem
Persisted In-Mem

In-Mem

Persisted In-Mem
In-Mem

Persisted In-Mem
Persisted In-Mem
Persisted In-Mem

Persisted Tiered Repl
Persisted In-Mem

General
General
General

Special + Gen
General

General
General
General
General
General
General
General

Future Opportunities: Scheduling

99

Scheduling techniques raise throughput by minimizing queueing delays

Shortest-Job
First (SJF)

First-Come First-
Serve (FCFS)

Multi-Level
Queue (MLQ)

Heuristic-Based
• “Certaindex” [Dynasor]
• Prompt length [LARRY; Mooncake]

Learning-Based
• Train an Estimator [TRAIL; S3]

• Ask the LLM [PiA]

Cost-BasedCost-Agnostic

Schedulers

Key Challenges for the DB Community
• Scheduler Design

• Robust Schedulers: Stall Prevention, Rebalancing
• Job Cost & Load Prediction
• System Integration: Co-design scheduler + batcher, e.g. adaptive chunk/batch size & job

priority while balancing TTFT, TBT, SLO

Future Opportunities: Storage Manager

100

Paged memory increases memory efficiency via dynamic memory allocation & block sharing

Stage Techniques Things to Consider

Block Storage • Direct Storage, e.g. GPU Shared Memory
• Tiered Storage, i.e. Offloading

Hot blocks, search & retrieval costs, transfer cost

Block Search • Exact-match hash table
• Exact-match radix tree

Block granularity, partial matches, searching by
other than matched tokens, integrating with entry-
based techniques

Block Retrieval • GPU to GPU
• DRAM to GPU (offloaded blocks)
• Remote DRAM (distributed blocks)

For offloaded / distributed blocks, balancing
retrieval + reconstruction cost with savings from
reuse

Block Reuse • Use without modification (i.e. prefix sharing)
• Selective Reconstruction

Balancing accuracy with overhead from reuse,
e.g. amount of reconstructed vectors

Block Eviction • LRU, score-based Potentially useful vs. historically useful blocks

Key Challenges for the DB Community

Future Opportunities: Frontend

101

Seq. Gen. techniques can increase quality by increasing context but raises inference cost

Frontend Auto
CoT

Auto Few-
Shot

Auto
Reasoning

Control
Flow

Structured
Output

Template
Comp.

Auto
Beam

Auto
ToT

Auto
GoT

LMQL (Declarative) Random ✔ ✔ ✔ Manual

DSPy (Declarative) Module
Random,

k-NN ✔ ✔ Module

SGLang ✔ ✔ ✔
Guidance ✔ ✔

LangChain
Random,

k-NN ✔ ✔

Key Challenges for the DB Community
• LLM Query Optimization: Which generation technique to use given a user request?

• Capturing user intent (Query Parsing)
• Optimizing prompt contents (Prompt Engineering)
• Optimizing prompt workflows (Structured Generation)

Manual Auto

Prompt Eng. Structured Gen.

Future Opportunities: Other

102

Key Challenges for the DB Community
• LLM Query Execution: How to coordinate memory / compute resources?

• Managing experts / low-rank adapters for MoE & LoRA (Model Offloading)
• Integrating speculative drafters / small models for SpecDec (Model Management)

• Data Structures + Algorithms: How to design operators for modern hardware?
• Heterogenous hardware; CXL; PIM (Processing-In-Memory) DRAM

• Quantization: How to effectively quantize weights / KV cache / activations?

Swappable Low-Rank (LoRA) adapters.
[Sheng et al ‘25 S-LoRA]

Softmax with CXL.
[Gu et al ‘25]

Product quantization KV compression.
[Zhang et al ‘25]

Thanks!

Slides: https://dbgroup.cs.tsinghua.edu.cn/ligl/activities.html

Survey of LLM Inference
Systems arXiv:2506.21901

James Pan
jpan@tsinghua.edu.cn

https://dbgroup.cs.tsinghua.edu.cn/ligl/activities.html

