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NL2SQL (Text-to-SQL):
Bridges Humans and Databases
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Task Challenges
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ﬁ C4. Multiple Possible SQL Queries
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NATURAL JOIN BookOrder NATURAL JOIN Book
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C1. Ambiguous NL Query

Task Challenges

C2. Requiring Domain Knowledge

™ Natural L :
S ooraanguage Query C3. Complex Database Schema

Find the of all customer who checked out books on exactly 3 different
Labor Day in 2023.

C4. Multiple Possible SQL Queries

Database:
C5. Database Schema Dependency
Account Book
Ac<':ld PasswordlCusto;nerld Boo.kld Title|LiteraryGenre Subjecthnre C6. Database Domain Adaption

. : . Novel Magic

. [Customer | . [BookOrder

' |Customerld : : Bookld [Accld | SELECT

: v . AR - || FROM Customer

-------------------------------------------------- [ NATURAL JOIN Account
- NATURAL JOIN BookOrder
Additional Information: Note that Labor Day stand for May 1 NATURAL JOIN Book
WHERE OrderDate = 'May 1st 2023'
GROUP BY CustomerlId,
HAVING COUNT(DISTINCT SubjectGenre) = 3;
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Where Are We?

Level
Type
NL Challenges Token-level Recognition Synonym Recognition Semantic Understanding Domain Knowledge Query Multi-turn Dialogues
| Recognition
DB Challenges Single-table Queries Simple Multiple Tables Multiple Tables with Massive Tables and Values Real-world Databases
Complex Schema
NL2SQL Challenges Single-table SQL Multi-table SQL Advanced SQL Feature Adapting to Changed Efficient SQL Generation
Support Schema
(a) The Definition of Challenges Levels
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[o) o .
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NL2SQL Challenges 9 Neural LM e.g. Bert, T5
NLP Methods (1) statistical LM e.g. LSTM
e.g. N-gram Year
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(b) The Evolution of NL2SQL Solutions
Figure: The Evolution of NL2SQL Solutions from the Perspective of Language Models.



An Overview of NL2SQL Benchmarks
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NL2SQL Benchmark Discussion & Insights

* From the Redundancy Measure perspective
« We observe a trend from early datasets to recent ones where datasets
have grown in size, including increases in the number of questions and
unique queries.
- From the Database Complexity perspective
* The number of databases (and tables) in datasets correlates with the
tasks (e.g., Single-domain vs. Robustness) they serve.
* From the Query Complexity perspective

* Recent datasets show a growing emphasis on Scalar Functions and
Mathematical Computations in SQL queries, which introduces challenges
in SQL generation structure not seen in earlier datasets.
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Tutorial Roadmap

NL2SQL Solutions
with PLMs and LLMS«

Q1: How to design prompts and

train PLMs/LLMs for NL2SQL?

Prompt Settings: Few-shot/Zero-shot
Training: SFT/RL

Q2: How effective are the core

pre-processing techniques?
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Tutorial Roadmap

NL2SQL Solutions
with PLMs and LLMS«

Q1: How to design prompts and

train PLMs/LLMs for NL2SQL?

Prompt Settings: Few-shot/Zero-shot
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Tutorial Outline

Problem Definition, Preliminaries, Benchmarks
NL2SQL Solutions with PLMs and LLMs
NL2SQL Solutions with LLM Agents

Open Problems
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NL2SQL Solutions with PLMs and LLMs

« Rather than categorizing existing solutions by the specific PLMs or LLMs they
employ, we classify them according to the practical considerations of

different applications.

« Consideration #1: The resources or costs required to develop NL2SQL

— Computational resources (e.g., GPUs) for training
— The monetary cost of calling LLMs (e.g., GPT) APIs

&

| Model | _Resources | Model _|__input | Output _

API

RESDSQL + NatSQL A100*1 GPT-3.5- $0.50/ $0.50/
CodeS A800*8 turbo 1M tokens 1M tokens
gpt-4o $5/ $15/

Granite-20B-Code A100*8+H100*8 1M tokens 1M tokens 15



NL2SQL Solutions with PLMs and LLMs

« Rather than categorizing existing solutions by the specific PLMs
or LLMs they employ, we classify them according to the practical
considerations of different applications.

« Consideration #2: The amount of data required for training NL2SQL

— E.g., the CodeS model collects:

 SQL-related data (11GB), NL-to-code data (6GB), and NL-related data
(4.5GB)

— E.g., the existing benchmarks paid much efforts to collect annotated data
» Spider has 10,181 NL-SQL pairs
« BIRD has 12,751 NL-SQL pairs

16



Categorization of Existing Studies

« We categorize the existing studies of NL2SQL Solutions with PLMs and LLMs
based on two dimensions: (1) Resources/Cost; (2) Data availability

Data
Availability

Resource/Cost
Ample

I Training LLM

LLM+Few shot
Abundant
Training PLM
LLM+RAG

LLM+Zero shot

Limited 17



Categorization of Existing Studies

PLM-based LLM+Zero-shot LLM+Few-shot Training LILM
Methods Methods Methods Methods

Arctic-
Text2SQL[12]

RESDSQL .
*+ NatSQL[8] OpenSearch- Omn| SQLI21]

SQL+GPT-4[7]

C3 + ChatGPT +
Zero-Shot[1]

MCS-

SQL+GPT-4[6] Reward-SQL[13]

Reasoning-

Graphix +
PICARD[10]

ChatGPT + CoT[21]

A -l?st SQLIT4]

erankers +

T@f@gﬂs PICARD[22 MAC-SQL+GPT-4{20] CHASE-
ZE(Ig(if[\ISIiZS DAIL- CHESS[18] oLk

SQL+GPT-4[3]

o=

PICARD[1
7

Zero-shot GPT-4[13] DIN-SQL+GPT-

4[13]

DTS-SQL[14]

Zero-shot CodeX[16]

BRIDGE
v2[11]

An Overview of NL2SQL Methods
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Few-Shot NL2SQL

 Basicldea

« Utilizing the in-context learning capability of LLMs to generate SQL
queries from a few demonstration examples.

« Key Characteristics
* Requirement of a handful of examples = Reduction of annotation costs

* Technical Challenges
* How to represent the structure of the underlying database

* How to select and organize the demonstration examples



7 continents(ContId, Continent)

Few-Shot NL2SQL

« DAIL-SQL, by Alibaba

- Database Representation: representing database schema as CREATE TABLE
statements with complete primary/foreign key information

- Example Selection: combining question similarity and SQL query similarity, prioritizing
examples with both similar questions and similar SQL structures

- Example Organization: only preserving question-to-SQL mappings while removing
token-expensive database schema from examples

Below is an instruction that describes a task, paired . . .
b with an input that provides further context. Write a 1 /% Some example questions and corresponding SQL queries

L response that appropriately completes the request. b are provided based on similar problems: =x/

/* Answer the following: How many authors are there? x*/
SR O , . SELECT count(*) FROM authors
Write a sql to answer the question "How many continents

b are there?"
/* Answer the following: How many farms are there?. x/

### Input: SELECT count(*) FROM farm

0 N s W N

countries(CountryId, CountryName, Continent)

### Response:
SELECT

Gao, Dawei, et al. "Text-to-sql empowered by large language models: A benchmark evaluation." PVLDB, 17(5): 1132-1145, 2024.
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Zero-shot NL2SQL

« Zero-shot NL2SQL

A practical scenario for NL2SQL is that oftentimes, for a new test
environment, annotated NL-SQL pairs are time-consuming and labor-
intensive to acquire, and thus is not available

* Existing approaches may not perform well in this zero-shot NL2SQL
setting, as the new test environments may be very different

* New databases: an NL2SQL model trained on the Spider benchmark may not
perform well for domain-specific (e.g., academic or financial) databases

* New linguistic phenomena: varying linguistic phenomena (e.g.,
abbreviations, synonyms, etc.) in the test environments

[ Can we have a NL2SQL model generalizable to new test environments } .




Limitation of Existing Solutions

* The LM-based approaches to NL2SQL fall into two categories
* Pre-trained language models (PLMs) such as BART and T5
- Large language models (LLMs) such as GPT and PaLM

* PLM-based methods (e.g., T5) may have limited generalizability in natural
language reasoning in the zero-shot setting

Which course has the highest score for the student named timothy ward?

Student

(a) A Text Question Q

(b) Snippets of a Database D

(c) The Ground-truth SQL Query S w.r.t. Q

SELECT course FROM Student
WHERE given_name = 'timmy' AND last_name = 'ward'
ORDER BY score LIMIT 1;

(d) An SQL query S’ translated by an SLM

Course | id | course | teacher
001 | math jordy wu

id | given_name | last_name | score

1 timmy ward 92

course SELECT course FROM Student
math WHERE (given_name = ’timothy ward’
ORDER BY score LIMIT 1;

22




Limitation of Existing Solutions

* The LM-based approaches to NL2SQL fall into two categories
* Pre-trained language models (PLMs) such as BART and T5
- Large language models (LLMs) such as GPT and PaLM

* LLMs (e.g., gpt-3.5-turbo-0613) are capable of NL reasoning, but may not
achieve precise alignment on schema and data value due to “hallucination”

(a) A Text Question Q

Which course has the highest score for the student named timothy ward?

(b) Snippets of a Database D

(c) The Ground-truth SQL Query S w.r.t. Q

SELECT course FROM Student

WHERE given_name = 'timmy' AND last_name = 'ward'

ORDER BY score LIMIT 1;

Course | id | course | teacher
001 | math jordy wu (e) An SQL query S” translated by an LLM
_ _ SELECT Course.course, Student.score
Student | id | given_name 1as§f"ame score °°”;fe FROM Student JOIN Course ON Student.id = Course.id
1 t y war o2 mat WHERE given_name = ’timothy’ AND last_name = 'ward'
ORDER BY score LIMIT 1;

23



Limitations of Existing Solutions

* A systematic error analysis that illustrates insights into limitations
of the fine-tuned T5 and vanilla GPT-3.5

@ table/column selection @ conditions keywords @ invalid @ others

LLMs PLMs

Complex  Schema

cﬁ NL Alignment
Reasoning
Schema  Complex
Alignment NL

Reasoning

(a) The error distribution of LLMs (b) The error distribution of SLMs
200 error examples sampled from Dr.Spider (GPT-3.5 and T5 respectively)

Can we combine PLMs and LLMs to solve Zero-shot NL2SQL? } ”




The ZeroNL2SQL Framework

e« ZeroNL2SQL breaks down the NL2SQL task into smaller sub-tasks

 Sub-task 1: SQL Sketch Generation

« Utilizing PLMs to generate a SQL sketch, with attributes to SELECT, tables in
FROM, and necessary keywords (e.g., ORDER BY) for composing the SQL query

* Sub-task 2: SQL Query Completion and Correction

« Utilizing LLMs to complete the missing information in the SQL sketch and
generate complete SQL queries, e.g., aligning with data values from the database

(User Question Q: )
Which course has the highest score for
the student named timmothy ward?

Database schema D,

schema

course: id, course, teacher
student: id, given_name, last_name ...

J

SQL Sketch

Generation
(SLM)

—

L e )
A Sorted SQL sketch candidate set D,

SELECT course FROM student h
WHERE ___
ORDERBY __ LIMIT ___

SELECT course FROM student, course
WHERE ___ LIMIT ___

SQL Query
== Completion and Correction
(LLM)

SELECT course FROM student
WHERE given_name = ‘timmy’
AND last_name = ‘ward’
ORDER BY score LIMIT 1

Final SQL query

Zihui Gu, Ju Fan, Nan Tang, Songyue Zhang, Yuxin Zhang, Zui Chen, Lei Cao, Guoliang Li, Sam Madden, Xiaoyong Du: Combining Pre-Trained Language
Models and Large Language Models for Zero-Shot NL2SQL Generation. VLDB 2024.



Training LLMs for NL2SQL

 Basicldea

 Training LLMs in two stages: (1) performing continual pre-training
(CPT) on SQL-related corpora to strengthen SQL knowledge, and (2)
conducting supervised fine-tuning (SFT) on curated NL2SQL datasets
to specialize in SQL geneartion.

« Key Characteristics

« Enhanced SQL domain knowledge: CPT injects rich understanding
of SQL syntax and semantics.

« Superior reasoning capabilities: SFT enables models to gain
stronger ability to parse complex natural language and map it to SQL
queries.



Training LLMs for NL2SQL

« CodeS proposes to develop a new text-to-SQL model built on open-source models.

 Solution Overview:
* COdeS lntroduces a series Of Comparison on Text-to-SQL Benchmarks Model Sizes
open-source language models j coas

(ranging from 1B to 15B GHE]
parameters) specifically tailored
for text-to-SQL tasks _
* Built on top of StarCoder, CodeS -
is further enhanced through CPT —

N 0 O
(= = -

W
(=}

Execution Accuracy (%)
S (=)
(=) (=)

W
o

Spider Bird w/ extra knowledge e
and SFT Oon a Cu rated 21 SG B ® SFT CodeS-1B = SFT CodeS-3B SFT CodeS-7B G
S Q L_ Ce ntri C CO rp u S m SFT CodeS-15B w Zero-shot ChatGPT DIN-SQL + GPT-4

Li, Haoyang, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan, Cuiping Li, and Hong Chen. "Codes:
Towards building open-source language models for text-to-sql." Proceedings of the ACM on Management of Data 2, no. 3 (2024): 1-28. 27



Data Collection for CPT and SFT

» Curated CPT corpus: 11GB SQL-related data, 6GB NL-to-code data, and

4.5GB NL-related data
* SFT corpus: NL-SQL-458K, containing 458K SQL queries paired with

corresponding natural language questions
- Enhanced capabilities: improvements in both SQL generation and natural

language understanding
| StarCoder (1B, 3B, 7B, 15B) |
SQL-related data (11GB) SQL segment from StarCoder's corpus e Training Corpus N\
SQL-related data
___________ 2 epochs

Alpaca-cleaned llGB

Pre—training CoerS ) NL-related data (4.5GB) Unnatural-instructions NL-to-code data
! ’ UltraChat o 767(‘;35 77777 1 epoch

~— CoNaLa and StadCc | Tooomossm s
. | 4.5GB L iepoch
AN NL-to-code data (6GB) | [ CodeAlpaca-20k K(Random sampling for training)
’ — Jupyter
- NL-saL-458 | CodeS (1B, 3B, 7B, 15B) |

Step 1: Collect SQL-related corpus Step 2: Incremental pre-training



Data Augmentation for SFT

* Question-to-SQL: starting from real user questions, manually annotate, and expanding

using GPT-3.5

« SQL-to-Question: leveraging Spider-style templates, populating with new domain schemas,

and refining via GPT-3.5

- Enhanced capabilities: rapid domain adaptation with minimal annotation effort

Question-to-SQL augmentation SQL-to-question augmentation
(" A few questions A few templates
L collected from for (question,
__actual users SQL) pairs
Annotate the Infill templates with new
corresponding SQL queries domain database

—r PE— A
A few (question, £ latge gt Of.
SQL) pairs templated (question,
SQL) pairs )

@ Gpr35

Simulate user preferences to Rewrite templated questions
produce new (question, SQL) pairs with the help|of comments

CAugmented (question, SQL) pairs)

Bi-directional augmentation

(@) Question-to-SQL augmentati

Stage-1: generate a new question

______________________ ,
: DDL + Comments + Sampled values :

i [QUESTIONI] “»  GPT3.5 [NEW QUESTION]

! [QUESTION] )

| DDL + Comments 1
! [QUESTION1] + [SQL1]

1
- [NEW SQL]
| [QUESTIONm] + [SQLm] !

| [NEW QUESTION] !

________________

: DDL + Comments + Sampled values
} [TEMPLATED QUESTIONI] + [TEMPLATED SQL1] + [REFINED QUESTION1]

1o
: [TEMPLATED QUESTION{] + [TEMPLATED SQL] + [REFINED QUESTION{]
1 [NEW TEMPLATED QUESTION] + [NEW TEMPLATED SQL]

1

GPT-3.5

[NEW REFINED QUESTION]

Prompt formats used in data augmentation.
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RL-based Training for NL2SQL

« Reinforcement learning based training for NL2SQL leverages execution
feedback and reasoning signals, and applies techniques such as DPO,
GRPO, and reward-based optimization to generate SQL queries.

» Key Characteristics:

« Stronger Reasoning: RL fosters structured, step-by-step reasoning for
better SQL generation

 Richer Feedback: dedicated rewards overcome sparsity, guiding
models more effectively

« Higher Accuracy & Generalization: outperform larger models across
benchmarks at lower cost



RL-based Training for NL2SQL

* Reasoning-SQL, RL-Enhanced NL2SQ with Partial Rewards
* Introducing the first RL-based framework for optimizing reasoning in LLMs for NL2SQL
« Leveraging Group Relative Policy Optimization (GRPO) for efficient and stable training
« Employing a novel suite of partial rewards to address the reward sparsity problem

REWARDS
+ R 5L T
9 s i
COMPLETIONS ‘ wl WEIS?J}'I"TED
f EXE ACC RLAIF SYNTAX SCHEMA  NGRAM

<reasoning> ... </reasoning>
SELECT sname FROM satscore
= WHERE cname = ‘Contra Costa’ AND 1 Q 1 1 1 6
sname IS NOT NULL ORDER BY
NumTstTakr DESC LIMIT 1

s N
<reasoning> ... </reasoning>
SELECT School FROM satscore

? Prompt R > - WHERE cname = ‘Contra Costa’ AND 0 0.75 1 0.8 0.8 4.1
. . @ POLICY sname IS NOT NULL ORDER BY
Which school in Contra Costa has & : mobeL [ | NumTstTakr DESC LIMIT 1

the highest number of test takers? \

<reasoning> ... </reasoning>

z GRPO SELECT sname, Max(NumTstTakr)
o'-q.) TRAINER = FROM satscores WHERE cname = 0 0.5 0 0.5 0.52 2.02
—

‘Contra Costa’ AND sname IS NOT

-
#" Gold Query
SELECT sname FROM satscore

WHERE cname = ‘Contra Costa’ AND NULL
sname IS NOT NULL ORDER BY > <
NumTstTakr DESC LIMIT 1 <reasoning> ... </reasoning>
\ - SELECT school FROM satscore
— WHERE county = ‘Contra Costa’ 0 0.25 1 0.33 0.52 2.35

AND school IS NOT NULL ORDER BY
NumTstTakr DESC LIMIT 1

. v, I
Pourreza, Mohammadreza, Shayan Talaei, Ruoxi Sun, Xingchen Wan, et al. "Reasoning-sql: Reinforcement learning with sgl 34
tailored partial rewards for reasoning-enhanced text-to-sql." arXiv preprint arXiv:2503.23157 (2025).




A Suite of Partial Rewards

Execution Accuracy Reward (RLEF): Binary reward for correct SQL execution

<

" Which school in Contra Costa has the highest number of test takers?

USER

{ " Gold Query

SELECT sname FROM satscore WHERE cname=‘Contra Costa’ AND
sname IS NOT NULL ORDER BY NumTstTakr DESC LIMIT 1

SELECT School FROM satscore WHERE cname=‘Contra Costa’ AND

] { Generated Query

sname IS NOT NULL ORDER BY NumTstTakr DESC LIMIT 1

J

s B
EXECUTION FEEDBACK

~

Al FEEDBACK

The query is almost
correct. The column
in select clause
should be replaced
with 'sname’.

Score: 0.75

~

SYNTAX CHECK

&)
e

~

SCHEMA LINKING

Pe@P

-shame

-satscore -sname
-cname -satscore
-NumTstTakr -cname

-school

-NumTstTakr

JACCARD
SIMILARITY

N\

-
N-GRAM SIMILARITY

ATK

l |

N

sname FROM, school FROM,

(SELECT sname, {SELECT school,
FROM satscore, FROM satscore,

=

JACCARD
SIMILARITY

LLM-as-a-Judge Reward (RLAIF): Al feedback for queries with zero execution accuracy
Syntax Check Reward: Positive score for syntactically valid and executable queries

N-gram Similarity Reward: Token-level overlap measurement using Jaccard similarity

g g g eSS p———— RSP g

Schema Linking Reward: Jaccard similarity between schema items in candidate vs. gold queries
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Process-Supervised Rewards for NL2SQL

* Reward-SQL: introducing Process Reward Models (PRMs) for NL2SQL

« PRM-Enhanced Test-Time Scaling: Adopting PRMs for test-time scaling for NL2SQL

* GRPO-Integrated Training: Incorporating PRMs into training via Group Relative Policy

Optimization to further enhance reasoning capabilities

(1) Model Initialization (2) Online RL Training (3) Reward-assistance
_______________________________ R Inference
Question | saL | | Text-to-sQL Question Pg:esi I:Rg)yard Outcorin Reward

Data Synthesis|with 01, R1 ‘098 089 079 = 1)

I l — |_Dataset | + _____ O TN oy ________________

A ———— | -, —s[CIEL[CTE2[CTE3 f; 77
i CoCTEs Chain-of-CTEs | ! L L—L—L—” ;generate *score
i data CTE1 E i :
: ez || 4 Update Policy s Traineﬁ [ICTED] (09
Question CTE3 ; CTE2 E]
""""""""""""""""""""""" i Offline Training Strategy Exploration CTE3 0 A
Policy Training - policy E o : : 5 Reward: 0.7 |
—p - i Rejection Sampling DPO Trainer ; )
PRM Training = Reward T ———. |—»Final Result

Zhang, Yuxin, Meihao Fan, Ju Fan, Mingyang Yi, Yuyu Luo, Jian Tan, and Guoliang Li. "Reward-sql: Boosting text-to-sql via stepwise
reasoning and process-supervised rewards." arXiv preprint arXiv:2505.04671 (2025).
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Process-Supervised Rewards for NL2SQL

« SQL Query Decomposition: Breaks complex queries into step-by-step Common Table
Expressions (CTEs)

 Step-Level Executability: Each CTE produces concrete, verifiable intermediate results

« PRM-Compatible Structure: Enables fine-grained evaluation at each reasoning step

4 An NL2SQL Case from [ S .——————————---————————-——————————---—————————-———7\
Bird-Challenging : [Table] TeamAttributes [Table] Team :
1| id | team_api_id date buildupplaypass id [ team_api_id | team_long_name :
[Question] L1 9930 2010-02-22 50 1 1601 KRC Genk I
Listthe longname ofteams | | |3 8485 2014-09-19 56 2 1773 Beerschot AC | |
with above-average build- | | —3 8576 2015-09-10 54 3 1957 SV Zulte-Waregem | |
up play passing in 2012. - -0 I
o * + Y
Gold SQL Straightforward SQL Generation
SELECT t.team_long_name FROM SELECT t.team_long_name FROM WITH Avg_Buildup AS (SELECT AVG(buildupplaypassing) AS
TeamAttributes AS ta INNER JOIN Team AS t INNER JOIN avg_build_up FROM TeamAttributes WHERE STRFTIME( '%Y",
Team AS t ON ta.team_api_id = TeamAttributes AS ta ON date) ='2012' AND buildupplaypass IS NOT NULL ),
t.team_api_id WHERE t.team_api_id = ta.team_api_id Above_Avg_Teams AS ( SELECT team_api_id FROM
SUBSTR(ta.'date’, 1, 4) ='2012' AND | |WHERE strftime('%Y', ta.date) = TeamAttributes WHERE STRFTIME('%Y', date) = '2012' AND
buildupplaypass > (SELECT '2012' AND ta.buildupplaypass > buildupplaypass IS NOT NULL AND buildupplaypass > ( SELECT
AVG(buildupplaypass) FROM (SELECT AVG(buildupplaypass) FROM ||avg_build_up FROM Avg_Buildup) )
TeamAttributes WHERE TeamAttributes WHERE SELECT t.team_long_name FROM Team AS t INNER JOIN
STRFTIME('%Y', date) = '2012) Q buildupplaypass IS NOT NULL) g Above_Avg_Teams AS aat ON t.team_api_id = aat.team_api_izQ
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PRM-Involved GRPO Training

 GRPO Model Update: Leveraging GRPO to update the model with PRM
preferences, maintaining consistency between training and inference distributions to
further enhance test-time scaling capabilities.

« Combined Reward Structure: Process Reward (PR) + Outcome Reward (OR) for
comprehensive feedback

« Fine-Grained Advantages: Step-level advantages reflecting both solution quality
and internal step variations

Question Process Reward Outcom Reward
P I O;
+ ----- IR A | S —

098 (089 (078 (L0) Reward
-, —[CTE1 [ CTE2 [ CTE3

4__U_pg a t_e_P_o_Iigx GRPO Trainer

Online GRPO Training

"=
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Takeaways

« Architectural Simplification: Text-to-SQL has evolved from complex
multi-stage PLM pipelines to streamlined end-to-end training, with RL-
based frameworks eliminating auxiliary components while achieving
superior performance.

« Escalating Data Demands: Simplified architectures paradoxically require
exponentially more training data, making synthetic data generation
critical while demanding unprecedented quality and diversity for robust
generalization.

* Performance-Cost Trade-off: State-of-the-art methods introduce
substantial computational overhead, creating fundamental tensions
between model performance and practical deployment in resource-
constrained environments.



Tutorial Outline

Problem Definition, Preliminaries, Benchmarks
NL2SQL Solutions with PLMs and LLMs

NL2SQL Solutions with LLM Agents
Open Problems
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What is the (Reasoning) Agent?

LLW Tools
e Qug
C
Response - «- 8. oeel < / g
ooo
A |
L2 s A @
- Result ! | Action
Reasoning : v

[ Environment }

https://blog.dailydoseofds.com/p/intro-to-react-reasoning-and-action
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Where Are We? 0

« CHASE-SQL (/ICLR 2025, Google Cloud and Stanford) Closed-source

« Utilizes the MinHash LSH to search for values related to the user query LLMs

« Multiple prompting strategies to generate various candidate SQL queries using LLMs,
and corrects SQL queries with execution errors through prompting LLMs.

« Employs an SQL selection agent fine-tuned specifically for the database to select the
final SQL from multiple candidates.

What is the eligible free rate of the @
10th and 11th schools with the highest
enrolment for students in grades 1 4 ) ()
through 12? SELECT ('Free Meal Count (K-12)' / 'Enroliment Y
USER (K-12)°) FROM ‘frpm’ ... rd
L FIXER
@ CANDIDATE GENERATORS SELECT Percent (%) Eligible Free (K-12) 0 o
h FROM ‘frpm’ ...
_ ) FIXER
- * i coo) ' ‘
~—x pC cor | SELECT ('Free Meal Count (K-12)" / ‘Enroliment Q 3
.y (K-12)°) FROM ‘frpm’ ... -
@ - 4 ) FIXER
;‘ | %
£SH VALUE RETRIEVER QP COT WITH Frre RateAS ( SELECT Percent (%) Eligible ‘)A
Free (K-12) FROM ‘frpm’ ...

’:}b FIXER
P EYL
DATABASES *
[snsc'r ('Free Meal Count (K-12)' / ‘Enroliment ‘_‘
(K-12)") FROM ‘frpm’ ...

SELECTION AGENT
FINAL RESPONSE DATABASES 39




Where Are We? 0

« CHASE-SQL (/ICLR 2025, Google Cloud and Stanford) Closed-source
o LLMs

What is the eligible free rate of the
10th and 11th schools with the highest
USER

enrolment for students in grades 1 ( _ . ) Q
through 12? SELECT (‘'Free Meal Count (K-12)" / 'Enroliment 3
—| (K-12)°) FROM ‘frpm’ ... FIXER
L )
C N
@ CANDIDATE GENERATORS SELECT Percent (%) Eligible Free (K-12) Q .
) FROM ‘frpm’ ...
\ ) FIXER
L, ¢ H: aoo)| ,
- pC coT SELECT ('Free Meal Count (K-12)' / 'Enroliment XY
N - (K-12)') FROM “frpm’ ...
@ . FIXER
S 4 5 oo | |— O
EORNEE REIRIENES ap cot ) (WITH Frre RateAS ( SELECT Percent (%) Eligible N
— Free (K-12) FROM ‘frpm’ ...
:}@ FIXER
§ O os |
"
DATABASES *
SELECT ('Free Meal Count (K-12)' / 'Enroliment
(K-12)°) FROM ‘frpm’ ...
FINAL RESPONSE SELECTION AGENT

DATABASES

Key Limitations:

* Reliance on closed-source large models
* High cost (0.6 USD/query), making it difficult to widely deploy in real-world industrial scenarios.

« SQL selection agent requires fine-tuning
* The Google team fine-tuned the Gemini-1.5-Flash model specifically.
« Limited flexibility due to reliance on domain-specific data.
» Predefined and Fixed Reasoning Workflows 40



Where Are We? 0

« OpenSearch (SIGMOD 25, Alibaba)

« Modular Architecture: Divides the task into four stages (Preprocessing,
Extraction, Generation, and Refinement) and adds an Alignment module
to ensure consistency between steps.

 Intermediate Language: A custom language named SQL-Like is
designed to structure the model's reasoning process.

Closed-source
LLMs

Preprocessing \
&)
Database 1 :Shema and values ‘¥
- .. C] [__ID Vector Database y {—] [ ))
s ES NG 10> O Gif3 ) Fewstr
Database n :Shema and values s +— Database Train Few shot v/;SAini“?S:)L‘:) .+{Query}*/ LLM g0 500
- G Query-CoT-SQL /
Extraction Generation Refinement B <
AR #
‘ Similar columns __ Gj{O Similar values rreason SQLs  saul sQL2 sQL3 sQLn
and tables LLM #SQL-Like
NLQ —= + i § P T
s aw
Entities #reason SQL (ol | K @ Correction
| > (@11S]
#SQL-Like
Vector #SQL
m:ic LLM Q @ Self-consistency & vote
- o

Ny

SELECT Alignment

N

\
ent Alignment ﬂ
v
Function Alignment SQL
v

Style Alignment
Alignment
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Where Are We?

« OpenSearch (SIGMOD 25, Alibaba)

)

Closed-source

Preprocessing

Database 1 :Shema and values g — e

&4+ P o

S Dalabase Train

[—_J[j Vector Database

(JL) #olumns
E:>(“~) :> Few-shot i

#SQL fke:
#SQL:{SQL}

/*Answer the...: {Query}*/
reason:Analyze hor

W ..
} CoT [ ]

L/

Database n :Shema and values ' Few-shot g e -.+{Query}* LLM
0 " 0 y Query-CoT-SQL
Query-SQL
) !
Extractlon Generation Refinement
Similar columns g " ) Similar values f’_r_c’m" SQLs SQL1 sQL2 SQL3 SQLn.
and tables LLM #SQL-Like
NLQ — #SOL T
Raw N, %
Entmes Hireason SQLs [l | B @ Correction
(@118
#SQL-Like
Ve ctnr #SQL
' LLM @ Self-consistency & vote
fireason....

=

}h

r

7

SELECT Aljj

\<

Key Limitations:

* Reliance on closed-source large models
* Privacy Risks

 Rigidity of the Alignment Module:

Alignment

« The alignment mechanism enforces consistency but risks over-constraining SQL

Age lAlgnm nt ﬂ
Functio Algnmel SQL

Style Al ignment
Alignment

generation and limiting adaptability across scenarios.

« Predefined and fixed reasoning workflows

LLMs
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Where Are We?

« XiYan-SQL (SIGMOD 25, Alibaba)

o

Open-source LLMs
e M-Schema: Uses column and value retrieval to select relevant schema items from DBs.

« Fine-tunes a base LLM on SQL-specific data, then creates multiple specialized SQL-
generation models by fine-tuning with diverse Text-to-SQL syntax datasets.

« Employs a fine-tuned SQL selection model to choose the best SQL from predictions
made by multiple generators.

______________________________________________________________________________________

[ 4 ! Schema Linking Candidate Generation Candidate
dh | Selection
What is the highest |

SELECT MAX(T1. Free Meal

1

1

\

]

1

:

1

. 1

t (K-12)° / T1." Enrollment '

Generator Count ( ) nrollment Refiner :
1

1

1

1

1

1

1

(K-12)') FROM. ..

1
1
1
1
I
1
eligible free rate for ! :
1
1
1
1
1
1

1
K-12 students in the 1
schools in Alameda : Col U i
County? Retrieval
SELECT MAX(T1. Free

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
(o) |
1 1
1 1
1 1
1 1
i - !
' 1
b 1
) Column | i SEIMEC T e Lyl S (LS i[ Candidate Meal Count (K-12)' /
- — 1 ! G S e N : eal Count (K-12)
- 1> enerator 12)' / "Enrollment (K-12 Refiner ! S .
= Selector | T FR)OM L) ' selection T1. Enrollment (K-12)")
:
1 1
1 [N 1
1 1
| 1
| 1
| I
1 1
1 1
1 1
1 1
1 1
L I

. — i i FROM ...

1

1 1

M—Sc?wema | Value :
- ' | Retrieval '
— : i

i :

1 1

1 1

Final Response

1

1

:

1

Select ‘Percent (%) Eligible Free l 1

Generator (K-12)' FROM ... Refiner !
1

1

1

1
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Where Are We?

o

° XiYaI‘I-SQL (SIGMOD 25, A//baba) 0pen-source LLMs

_______________________________________________________________________________________

Candidate Generation

(e
o
S
Qo
[}
o
~+
o

What is the highest
eligible free rate for

1 1
1 1
1 1 1
1 1 1
1 I 1
1 1 1
1 | 1
1 1 1
: - : !
K-12 stu.dents in the Column ! - i '
schools in Alameda : 1 1 1
County? Retrieval ! : :
i 5
[ SELECT 'Free Meal Count (K- ! : ;| SELECT MAX(T]" Free
- — Gl ' Generator 12)' / “Enrollment (K-12)" Refiner U ec i N L Corn (2
=| I Selector | 11 = ' selection Ji"| T1. Enroliment (K-12)")
- — ! : ! : i | FROM ...
1 'R [N} 1 1
M—Sc?]ema ' [ Value i i :
1 s 1 1
s | Lewes :: s =
: ¥ | !
1 1! 1 1
1 1! : 1

7
o,
(1]
(2]
.
o
>

SELECT MAX(T1. Free Meal

1

1

1

1

1

|

1

A b ¢ 5 !
Generator Count (K-12)' / T1. Enrollment Refiner :
1

1

1

1

1

1

1

(K-12)") FROM. ..

Final Response

—

Database

1

1

i

1

Select ‘Percent (%) Eligible Free I 1

Generator (K-12)' FROM ... Refiner :
i

1

1

Key Limitations:

« High dependency on extensive domain-specific data.

 Significant costs associated with fine-tuning multiple models.

 Difficulty in rapid adaptation and generalization across varied scenarios.

* Predefined and Fixed Reasoning Workflows. 44



Key Takeaways

Closed-source LLMs for Text-to-SQL:

* High inference API cost limits practical deployments.
 Potential data privacy concerns for sensitive applications.

{) Open-source LLMs for Text-to-SQL:

* Dependence on extensive domain-specific data for model fine-tuning.

 Limited generalization capability across different use cases.

.{\ Common Limitations in Existing Solutions:
« Predefined and fixed reasoning workflows restrict adaptability.
* Domain adaptation and generalization across DB and text queries
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Where Are We Going?

Challenges Key Idea
[l High Inference APl Cost B3 Open-source LLMs o 2
Lower deployment cost and Our Goal

improved flexibility

. | Reasoning Agents
N M Training-free Paradigm 282 based on

Zero-shot reasoning without
additional tuning

Adaptive reasoning workflows
guided by task

Open-source LLMs

46



Alpha-SQL:
A Plug-and-Play NL2SQL Reasoning Framework

B Plug-in Alpha-SQL
W Directly prompting Qwen2.5 without fine-tuning
- Zero-shot Text-to-SQL SOTA (RSL-SQL with GPT-40)

75%

Open-source
LLMs

Training-free

Paradigm

Alpha-SQL

Dynamic
Reasoning

7B 14B 32B
BIRD (Dev) & A {3;

Boyan Li, Yuyu Luo, Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search, ICML 2025.
https://github.com/HKUSTDial/Alpha-SQL 47



https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL

NL2SQL Human Workflow

Step-1 NL Understanding

r [ Find the number of dog pets that are raised by iemale student J
= — ]

Columns Linking
e mmmmmm o ; --->» Database Content

Step-3 Translating the NL Intent into the SQL e--e Foreign Key

PetID PetType PetAge r=-® StulD Sex Age
(] : !
. Dog < HO000000CO0NNE0000000000000000000dponacooonoooooooooooc TG ! F
i | s E
| I —> Table Linking
L e e PetID StulD E

Select count(*) FROM student AS T1 JOIN has_pet AS T2 ON T1.stuid=T2.stuid
JOIN pets AS T3 ON T2.petid=T3.petid WHERE T1.:cx=F> AND T3.pettype=‘Dog’
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Task Formulation: Mimic Human Experts
* Human Expert Workflow for Text-to-SQL

Understand Link to Design SQL

Intent Schema Logic Compose SQL

49



Task Formulation: Mimic Human Experts
* Human Expert Workflow for Text-to-SQL

E llllllllllllllllllllllllll ‘: llllllllllllllllllllllllllll : lllllllllllllllllllllllllllll Ellllllllllllllllllllllllll:NO

v
Understand Link to Design SQL

Intent Schema Logic Compose SQL

* From Human Actions to Agenf Actions

o )

Understand Intent (NI LL W ET LIEHL W (Revise, clarify ambiguities, rephrasing)

Schema Selection
Link to Schema (decides which tables / columns / values)

Cell Value Selection

Design SQL Logic Column Function (joins, aggregations, functions)
Compose SQL SQL Generation (assemble an initial executable query)
Validate & lIter. SQL Revision (iteratively test, debug, and optimize the query)



Task Formulation: Mimic Human Experts
* Human Expert Workflow for Text-to-SQL

E llllllllllllllllllllllllll E llllllllllllllllllllllllllll : lllllllllllllllllllllllllllll Ellllllllllllllllllllllllll:NO

Understand
Intent

Link to
Schema

Design SQL
Logic

Compose SQL

* From the Fixed Action to Dynamic Actions

Edges (Actions)

Vo
a,: Column Value
Identification
[m———m—————
| @z: Column Function |
1 Identification :
I az:SQL Generation | /\
e e

Nodes

q = “What’s the rank of Bob in the
football match?”
D =“CREATE TABLE " players™ (...)”

Column Value Thinking:

In the above question, thereis a
specific filter about match type and
player name. So | need use
“player’. name" =‘Bob’and
“match’ .  match_type" =‘football’.

Column Function Thinking: ...

SQL Generation Thinking:

Based on my previous thoughts, |
need a WHERE clause to filter the
match type and player, and there is
no functions needed. Thus, the final
SQL queryis:

SELECT T1.rank FROM players AST1
JOIN matches AST2 ON T1.id =

T2.player_id WHERE T1.name = ‘Bob’

AND T2.match_type = ‘football’;

Tree-based Search:

« Each edge corresponds to an agentic action
in the query construction process,

« Each node represents a reasoning state at a
specific step, and

« Each path corresponds to a sequence of SOL

construction actions for Text-to-SQL task.
51



Text-to-SQL as a Tree-based Search Problem

Action Space

a
as
as
Qg
as
Qe

as

Rephrase Question

Schema Selection

Column Value

Identification

Column Function Identification
SQL Generation

SQL Revision

Termination

LLM-as-Action-Model

®m G
589

Question

Previous

Database Actions

\ J
Y
a; —>—> Vin
O\
LLM

Action

Next State

Edges (Actions)

asz: Column Value
|dentification

a4: Column Function
Identification I

LLM-as-Action-Model

Nodes (Reasoning States)

- q = "What's the rank of Bob in the

football match?”
D = "CREATE TABLE ‘players‘ (...)"

Column Value Thinking:

In the above question, there is a specific
filter about match type and player name.
So | need use “player.’name’ = '‘Bob’ and
‘match’."match_type" = football’.

Column Function Thinking: ...

SQL Generation Thinking:

Based on my previous thoughts, | need a
WHERE clause to filter the match type
and player, and there is no functions
needed. Thus, the final SQL query is:
SELECT T1.rank FROM players AS T1
JOIN matches AST2 ON T1.id =
T2.player_id WHERE T1.name = ‘Bob’
AND T2.match_type = ‘football’;

)
n

Question Database

Input

A
“
v

Output
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Text-to-SQL as a Tree-based Search Problem

* Q1: How to select the next action (edge)?
* Q2: How to effectively navigate the vast search space?

* Q3: How to evaluate the quality of the candidate SQL queries?

Q1 & Q2 - Monte Carlo Tree Search (MCTS) addresses this by balancing
exploration (testing uncertain actions) and exploitation
(choosing actions likely to yield good results)

Q3 * We need a self-supervised reward function since our goal is to avoid
reliance on labeled data
« Resampling the LLMs M times to compute the self-consistent scores



Alpha-SQL Solution Overview

- ®
() . & oo
-U = kY g
§ 3 0 e~
Previous
1 .
g Question  Database Actions
b \ J
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P E
clu ai # ) m—p Vi1
U
Z ’
- Action LLM Next
State
Q4 Rephrase Question
a3 Schema Selection
[}
(&)
g a3 Column Value Identification
(/2]
g Q@4 Column Function Identification
=
O Qs SQL Generation
<
Qg SQL Revision
Q7 Termination

MCTS for Candidate SQL Generation

Repeat

\

(a) Selection

a; 170
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1

=P Visted Edge

History Node

. Visited Node
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Boyan Li, Yuyu Luo, Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search, ICML 2025.
https://github.com/HKUSTDial/Alpha-SQL
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Alpha-SQL: Plug-and-Play Capabilities

Table 4. Comparison with Baseline LLMs on the SDS dataset.

Model Accuracy (%)
Deepseek-V3 512 I Directly prompting Qwen2.5 without fine-tuning [ Plug-in Alpha-SQL
GPT-4o0 53.7
Gemini-1.5-Pro 56.2
QwQ-32B-Preview 38.8
DeepSeek-R1 50.3
Gemini-2.0-Flash-Thinking-Exp 60.8
Qwen2.5-Coder-7B 47.6
+ Alpha-SQL (Ours) 64.6 (1 17.0) 8 18 308 Alpha-SQL
Phi-4 43.5 BIRD (Dev) & & g;
+ Alpha-SQL (Ours) 60.0 (1 16.5)
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Performance-Scale Trade-off Analysis

Agents: Small LLMs, Big Gains
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Tutorial Outline

Problem Definition, Preliminaries, Benchmarks
NL2SQL Solutions with PLMs and LLMs
NL2SQL Solutions with LLM Agents

Open Problems
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Rethinking: Limitations of NL2SQL Agent
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Boyan Li, Yuyu Luo, Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search, ICML 2025.

https://github.com/HKUSTDial/Alpha-SQL
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Rethinking: Limitations of NL2SQL Agent
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Boyan Li, Yuyu Luo, Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search, ICML 2025.
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Rethinking: Limitations of NL2SQL Agent
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Rethinking: Limitations of NL2SQL Agent
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These limitations highlight the need for more diverse

actions, efficient reasoning, and richer memory

3 g q L2: Single LLM is prone to errors and lacks diverse [REEEIIElL
-c L] L] L] ofe
2 b perspectives, reducing reasoning stability
1 ion re\{lous
5 QUTS'EO R Actions (a) Selection (b) Expansion (c) Simulation (d) Backprogation ‘ ‘ ‘ ‘
)
< oY 9 " L.
b3 : : :
S Adion LM : L3: Limited constrained to : o
only predefined, LLM-based actions ; .| L
RCCIITI I T I I oo - I : I I
: a3 Rephrase Question . l ¥ v l
——> Visted Edg =z B = £
a3 Schema Selection i ° : i i i i
. History Node 4 \ J
a3 Column Value ldentification 5 . . |
. . Visited Node Termination ‘ oL
Execution Sl

4]
()
1]
Q.
n m -
- g ay ColumnFunctionldentificatior
; L}
(]
<

a eneration E e o ° . o o ° ° o . o

> oo 4l L1: Efficiency is a significant limitation of MCTS with edge scaling

@ QL Revision : « On average, it takes around 5 minutes to complete a single Text-to-SQL task.
..., @ Teminaion : » This severely restricts its applicability in real-world scenarios.

Boyan Li, Yuyu Luo, Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search, ICML 2025.

https://github.com/HKUSTDial/Alpha-SQL 62



https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL
https://github.com/HKUSTDial/Alpha-SQL

What Alpha-SQL Reveals About NL2SQL Agents

(Alpha-SQL) Opportunity
Limitation Axis

Design Lever (what to change)

Adaptive search budgets, routing by query difficulty, test-time compute

allocation
L1. Efficiency
bottleneck Tools Early pruning via validators / partial execution; cost-aware candidates
(MCTS is slow)
Memory Cache schema/context/results; reuse prior plans
Actions Multi-agent/committee, self-consistency, human-as-an-agent for
L2. Reasoning disambiguation
instability / low _ .
diversity Perception Better query & schema understapdlng (scope detection, value
grounding)
o ] Tools Add retrievers, value lookups, execution-guided rewrite, SQL checkers
L3. Limited actions &
tool use (1) Long context + vector memory for task state & user prefs;
Memory

(2) Metadata Management and Schema Interpretation
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Opportunities for NL2SQL Agents: Five Key Aspects

NL2SQL Agent

Perception

— Pre-Processing

— SQL Generation

— Post-Processing

64



Opportunities for NL2SQL Agents: Five Key Aspects

NL2SQL Agent

Perception

— Pre-Processing

— SQL Generation

— Post-Processing
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Is your model reliable?
You can’t achieve 100% accuracy.
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“Execution ACC ~30%
Spider 2.0

Evaluating Language Models on Real-World Enterprise Text-to-SQL Workflows

Execution ACC ~75%
BIRD-SQL

A Big Bench for Large-Scale Database Grounded Text-to-SQLs
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Types of Errors That Require Verification

Syntax Error
}s_oﬁ.l Predict SQL

Semantic Error
=) Predict SQL

SELECT id

FROM highschooler
INTERSECT
SELECT student_id
FROM friend;

EJExecution result

DBMS:
) 1247,1304,
1316 ...

- NL Query S Database
R = 100ler
highschooler
What are the ids of high school id name
students who do not have friends? |fieng
student_id | friend_id |... sult
Gold Answer:
Eﬁ, Gold SQL @ Execution result imn: id
— O .
SELECT id
FROM highschooler DBMS: Less proportion
EXCEPT 0 1025,16
SELECT student_id ,1648asy to Detect

FROM friend;

B

Spider

Large proportion
Difficult to Detect

. Total Errors . Syntax Errors . Semantic Errors

B

667

BIRD



Semantic Errors Detection

NL2SQL Translation Semantic Errors Detection
Soe =P8
=] 9|Q|NL28QL%@ B @N?@Debuggerﬁ
Q7N saL | s @A L
Error Types

Question:
List all students and their course grades. (including students who haven’t taken any courses)

Predicted SOQL by NL2SQL methods:

SELECT s.name, e.grade _m_ This SQL is incorrect.

FROM student s
INNER JOIN enrollment e

ON s.id=-e.id




Research Gap: Lack of Robust Verifiers

NL2SQL Translation Semantic Errors Detection
SDBAQ —> =] o rDebugger—
saL ebuqger
S\ ENL2saL . 61/ - O GANL 3xEDebugg o
Error Types

| Spider BIRD | l EX VES")




NL2SQL-BUGs Benchmark for Verifier

NL2SQL Translation Semantic Errors Detection
Sk X =os |
RQNL%IQNLZSQL%@] o RQNL @Debugger9 P

SQL
' Benchmark Metrics
 Spider BIRD - (EX VES-] | NL2SQL-BUGs | Acc Recall- |

Xinyu Liu, Shuyu Shen, Boyan Li, Nan Tang, Yuyu Luo: NL2SQL-BUGs: A Benchmark for Detecting
Semantic Errors in NL2SQL Translation. SIGKDD 2025

Error Types




Error Taxonomy

To systematically

analyze semantic errors,
we propose a two-level

taxonomy with

9 main type
31 subtype

to analysis semantic
errors in NL2SQL
translation.

The Taxonomy of
NL2SQL Translation
Semantic Errors

Attribute-related Errors

(§3.2.1)

Table-related Errors

(§3.2.2)

Value-related Errors

(§3.2.3)

Operator-related Errors

(§3.2.4)

Condition-related Errors

(§3.2.5)

Function-related Errors

(§3.2:6)

Clause-related Errors

(§3.2.7)

Subquery-related Errors
(§3.2.8)

Other Errors
(§3.2.9)

Attribute Mismatch
Attribute Redundancy
Attribute Missing

Table Mismatch

Table Redundancy

Table Missing

Join Condition Mismatch
Join Type Mismatch
Value Mismatch

Data Format Mismatch

Comparison Operator Mismatch
Logical Operator Mismatch
Explicit Condition Missing
Explicit Condition Mismatch
Explicit Condition Redundancy
Implicit Condition Missing

Aggregate Functions
Window Functions
Date/Time Functions
Conversion Functions
Math Functions
String Functions
Conditional Functions

[Clause Missing

[Clause Redundancy

Subquery Missing
Subquery Mismatch
Partial Query
ASC/DESC
DISTINCT

Other

The attribute [A] may be wrong.

The attribute [A] may not be mentioned in the NL.

The attribute [A] may be missing.

The table [T] may be wrong.

The table [T] may be unnecessary.

The table [T] may be missing.

The join condition between table [T] and table [T] is incorrect.

The join type [K] (e.g., LEFT JOIN) is inconsistent with the NL.

The value [V] in condition [C] may be wrong.

The data format of value [V] in attribute [A] may be wrong.

The comparison operator [O] in condition [C] may be wrong.

The boolean operator [O] or the logical operator precedence may be wrong.
The condition [C] in NL may be missing.

The condition [C] may be wrong.

The condition [C] which not mentioned in NL.

The SQL fails to include implicit conditions [C] (e.g., IS NOT NULL).

The usage of aggregate functions [F] (e.g., SUM, AVG) is incorrect.

The usage of window functions [F] (e.g., OVER, PARTITION BY) is incorrect.
The usage of date/time functions [F] (e.g., JULIANDAY, strftime) is incorrect.
The usage of conversion functions [F] (e.g., CAST) is incorrect.

The usage of math functions [F] (e.g., ROUND) is incorrect.

The usage of string functions [F] (e.g., SUBSTR) is incorrect.

The usage of conditional functions [F] (e.g., IIF, CASE WHEN) is incorrect.

The clause [K] (e.g., GROUP BY) is missing.

The clause [K] (e.g., GROUP BY) is redundancy.

The subquery [Q] is missing.

The subquery [Q] is mismatch with the logic with NL.

The query [Q] is a partial query that contributes to the complete SQL.
The usage of ASC/DESC is incorrect.

The usage of DISTINCT is either omitted or incorrectly applied.

The SQL generated by the model almost necessitates a complete rewrite.




J=) saL 8% NL
ECT Fname, Sex ind the first name and

NL2SQL-BUGs Benchmark

expert-annotated examples, 1,019

"MainType": "Table Error", i
g s s e correct examples, 999 incorrect examples

"SubType": "Condition Error"},
{"MainType": "Table Error",
"SubType": "Table Missing"}

Mismatched case structure

(a) Data Structure of NL2SQL-BUGs

Xinyu Liu, Shuyu Shen, Boyan Li, Nan Tang, Yuyu Luo:
NL2SQL-BUGs: A Benchmark for Detecting Semantic
Errors in NL2SQL Translation. SIGKDD 2025

:
]
1
1
1
FROM Student gender of student who :
WHERE StulD IN ( have more thanone pet. |
1
SELECT StulD = DB '
1
FROM Has_Pet oS :
' 9, Attr (473): Attribute-related Errors COM (24): Comparison Operator Mismatch
o
GROUP BY StulD : d'% %\ ':EJS IS Table (363): Table-related Errors ECM (118): Explicit Condition Missing
1 0 Value (252): Value-related Errors ECMi (95): Explicit Condition Mismatch
HAVING Count(PetID) = 1) : fe) ng (2] ~ v Op (40): Operator-related ECR (29): Explicit Condition Redundancy
H o) Cond (270): Condition-related Errors ~ ICM (28): Implicit Condition Missing
MatChlng case structure : OZF ~ da% %‘ Func (178): Function-related Errors AF (71): Aggregate Functions
! )7 :l ! ;ﬁ/ V167 [ Attr ; 8 Clause (131): Clause-related Errors CF (43): Conditional Functions
SQL SQ L R NL : g,_- ANWS Subq (46): Subquery-related Errors SF (19): String Functions
’ . Func AR Other (135): Other Errors DTF (21): Date/Time Functions
SELECT DISTINCT Which distinct car : AF AM (3(28)) Attribute Mismatch ConF (11): Conversion Functions
\C AMis (60): Attribute Missing MF (10): Math Functions
) ' ECR  Cond Table TR AR (53): Attribute Redundancy WF (3): Window Functions
model_list.Model models are the 1 90‘4\\ op TR (119): Table Redundancy CM (94): Clause Missing
] 1 Value );17 TM (96): Table Mismatch CR (37): Clause Redundancy
FROM model_list roduced after 19807 : S JCM (79): Join Condition Mismatch - SM (33): Subquery Missing
= ' <N A o) TMis (66): Table Missing SMis (7): Subquery Mismatch
JOIN cars_data ON = DB ' > O% A % JTM (3): Join Type Mismatch PQ (6): Partial Query
) : Og E AT VM (238): Value Mismatch DIST (88): DISTINCT
model_list.Modelld = car_1 . DFM (14): Data Format Mismatch OTH (35): Other
. LOM (16): Logical Operator Mismatch AD (12): ASC/DESC
1
cars_data.ld @Label 1 (b) Proportion of error types in NL2SQL-BUGs
1
WHERE cars_data.Year > 1980 False '
1
1
Error Type :
:
1
1
1
1
1
1
1
1
]
1
1
1
1
1



Opportunities: NL2SQL Agents

 Human-as-an-Agent and Human-in-the-Reasoning-Loop

* How can we dynamically integrate human experts into the reasoning loop to address
complex tasks beyond LLM agents’ current capabilities and clarify the question ambiguities?

- Explainable and Interpretable SQL Reasoning Agents

« Users typically require explanations for the reasoning steps and decisions underlying SQL
generation (i.e., knowing both "what” and “why").
* How can we design reasoning agents that transparently communicate their thought

processes, decisions, and final SQL statements to improve system transparency and foster
user trust?

- Metadata Management and Schema Interpretation

* Real-world databases commonly feature complex schemas, detailed metadata (e.g., column
annotations, table descriptions, foreign key constraints, data types).

* How can we enable data agents to effectively extract, manage, and utilize this metadata to
generate more accurate semantic mappings, informed reasoning processes, and precise

SQL generation?
74



Are NL2SQL Agents Enough?

(N * Bound to SQL-only interaction

* Weak in cross-DB or heterogeneous sources

NL2SQL

Agent

Document

Visualization
X, =

Insight Report

% »90

Insight Video
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Unified Query Interface: SOL - Semantic Operators
Multimodal Data Analysis

Adaptive Reasoning and Orchestration

Long-term Memory and Knowledge Augmentation gy
Trustworthy and Cost-Aware Execution

Table Table

O

Visualization

Video

ia =
Image Insight Report
— QO
=
[

Document Insight Video



Data Agent

Collaborate to determine
how to analyze the data

 Data Agent: designed to autonomously @)
carry out data-related tasks with capabilities 8

for knowledge comprehension, automatlc
planning, and self-reflection of LLMs —
NL Query g
d Challenges: -

 How can data agents understand queries, data, other agents, and tools?

 How can data agents orchestrate effective and efficient pipelines to
bridge the gaps between user requirements and underlying
heterogeneous data?

* How to schedule and coordinate agents/tools to improve effectiveness?

Guoliang Li et al. Data+Al: LLM4Data and Data4LLM. SIGMOD 2025
https://dbgroup.cs.tsinghua.edu.cn/ligl/papers/SIGMOD2025-Data+LLM.pdf 77
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Data Agent: A High-level View

Applications
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Agentic Data Systems
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13

A
Name
Wii Sports
Mario Kart Wii
Wii Sports Resort
New Super Mario Bros.
Wii Play
New Super Mario Bros. Wii
Mario Kart DS
Wii Fit
Kinect Adventures!
Wii Fit Plus
Grand Theft Auto V
Grand Theft Auto: San Andreas

14 3rain Age: Train Your Brain in Minutes a Da

15
16

Grand Theft Auto V
Grand Theft Auto: Vice City

17 Brain Age 2: More Training in Minutes a Day

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Gran Turismo 3: A-Spec
Call of Duty: Modern Warfare 3
Call of Duty: Black Ops
Call of Duty: Black Ops IT
Call of Duty: Black Ops I1
Call of Duty: Modern Warfare 2
Call of Duty: Modern Warfare 3
Grand Theft Auto I1I
Super Smash Bros. Brawl
Mario Kart 7
Call of Duty: Black Ops
Grand Theft Auto V
Animal Crossing: Wild World
Halo 3
Gran Turismo 4
Super Mario Galaxy
Grand Theft Auto IV
Gran Turismo
Super Mario 3D Land

B

Platform

PS2
X360
X360

PS3
X360
X360

PS3

PS2

3DS
PS3
PS4

C
Ycar_of_Release
2006
2008
2009
2006
2006
2009
2005
2007
2010
2009
2013
2004
2005
2013
2002
2005
2001
2011
2010
2012
2012
2009
2011
2001
2008
2011
2010
2014
2005
2007
2004

D
Genre
Sports
Racing
Sports

Platform
Misc
Platform
Racing
Sports
Misc
Sports
Action
Action
Misc
Action
Action
Puzzle
Racing
Shooter
Shooter
Shooter
Shooter
Shooter
Shooter
Action
Fighting
Racing
Shooter
Action
Simulation
Shooter

Racing

E
Publisher
Nintendo
Nintendo
Nintendo
Nintendo
Nintendo
Nintendo
Nintendo
Nintendo
Microsoft Game Studios
Nintendo
Take-Two Interactive
Take-Two Interactive
Nintendo
Take-Two Interactive
Take-Two Interactive
Nintendo
Sony Computer Entertainment
Activision
Activision
Activision
Activision
Activision
Activision
Take-Two Interactive
Nintendo
Nintendo
Activision
Take-Two Interactive
Nintendo
Microsoft Game Studios

Sony Computer Entertainment

F
NA_Sales
41.36
15.68
15.61
11.28
13.96
14.44
9.71
8.92
15
9.01
7.02
943
4.74
9.66
8.41
343
6.85
9.04
9.7
4.99
8.25
8.52
5.54
6.99
6.62
5.03
5.99
3.96
2.5
7.97
3.01

G
EU_Sales
2896
12.76
10.93
9.14
9.18
6.94
7.47
8.03
4.89
8.49
9.09
0.4
9.2
5.14
5.49
5.35
5.09
4.24
3.68
5.73
4.24
3.59
5.73
4.51
2.55
4.02
4.37
6.31
3.45
2.81
0.01

H
JP_Sales
377
379
3.28
6.5
293
47
413
3.6
0.24
2.53
0.98
0.41
4.16
0.06
0.47
5.32
1.87
0.13
0.11
0.65
0.07
0.08
0.49
03
2.66
2.69
0.48
0.38
5.33
0.13
1.1

|
Other_Sales
845
329
295
2.88
2.84
224
1.9
215
1.69
1.77
3.96
10.57
204
1.41
1.78
1.18
1.16
1.32
113
242
112
1.28
1.57
13
1.01
091
1.79
1.97
0.86
1.21
7.53

J
Global_Sales
82.53
35.52
3277
29.8
28.92
2832
2321
227
21.81
21.79
21.04
20.81
20.15
16.27
16.15
15.29
14.98
1473
14.61
13.79
13.67
13.47
13.32
13.1
12.84
12.66
12.63
12,61
12.13
1212
11.66

K
User_Count
322
709
192
431
129
594
464

106
52
3994
1588
50
3711
730
19
314
8713
1454
922
2256
2698
5234
664
1662
632
1094
2899
242
4100
272

This is game sales data for market analysis

Nintendo

21

L M N O
Rating Critic_Score Critic_Count User_Score

E 76 51 8

E 82 73 83
E 80 73 8

E 89 65 8.5
E 58 41 6.6
E 87 80 8.4
E 91 64 8.6
E 80 63 7.7
E 61 45 6.3
E 80 33 7.4
M 97 50 8.2
M 95 80 9

E 77 58 79
M 97 58 8.1
M 95 62 8.7
E Tr 37 7.1
E 95 54 8.4
M 88 81 34
M 87 89 6.3
M 83 21 53
M 83 7 4.8
M 94 100 6.3
M 88 39 32
M 97 56 8.5
T 93 81 8.9
E 85 T 8.2
M 88 58 6.4
M 97 66 8.3
E 86 57 8.7
M 94 86 7.8
E 89 74 8.5
E 97 73 8.9
M 98 86 7.9
E 96 16 8.7
E 90 82 B4
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Opportunities for Data Agents: Five Key Aspects

Data Agent

B Task
Decomposition

—  COT/GOT

—  Reflection

—  Meta-Agent




From NL2SQL Agents to Data Agents

* Cross-DB & heterogeneous orchestration

 Plan over multiple stores/APIs with join-path inference and result fusion; measure
success beyond single-DB EM

- Semantic operator layer

* Lift from raw SQL to semantic operators that unify tabular, text, image, and report
generation tasks—support table 2 viz 2 insight report/video workflows

« Meta-planning & reflection

« A meta-agent that decomposes tasks, schedules tools/agents, and reflects with
feedback loops

 Memory & Semantic Catalog
« Unified task-specific+ long-term memory;

 Auto-induce units, constraints, keys, value normalizations, synonyms, KPI definitions,
policies, lineage from DDL/docs/logs/queries;

https://github.com/HKUSTDial/awesome-data-agents 82
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NL2SQL:
Paper List & Slides

ae
me-°

Paper List

Thanks!

TQRCG

Data Agents:

Y NL2SQL_Handbook Public s EditPins ~+  ®uUnwatch 19 ~ % Fork 57  ~ Starred 912~

¥ main ~ ¥ 1Branch © 0 Tags Q Go to file t Add file ~ <> Code ~ About &

[TKDE'25] This is a continuously
updated handbook for readers to easily
track the latest Text-to-SQL techniques
assets Update Readme.md 2 months ago in the literature and provide practical
guidance for researchers and
practitioners. Official repo for A Survey
report update Archer Benchmark last year of Text-to-SQL in the Era of LLMs:
Where are we, and where are we going?

%3 Apricity-Ixy Update README.md 69732ff - last week ) 136 Commits

chapter Update Pre_Processing.md 11 months ago

slides update 2 months ago
& arxiv.org/abs/2408.05109
src/dataset_analyze update Archer Benchmark last year
nlp  awesome  tutorial  ai  survey
Q .gitignore update Archer Benchmark last year dataset db nip-resources
text-to-sql  nl2sql  text2sql  aiddb
[ README.md Update README.md last week
text-to-code lims nl-to-code
ni-to-sql  awesome-agents
(1 README 7 =
2sql ql

awesome-ni2sql

Text-to-SQL Handbook

0 Readme
A~ Activity
NL2SQL Handbook E Custom properties
¢ 912 stars
From this repository, you can view the €latest advancements in Text-to-SQL (a.k.a NL2SQL). This handbook .
corresponds to our survey paper[TKDE'2025]: LLA Survey of Text-to-SQL in the Era of LLMs: Where are we, and 3 19 watching
57 forks

where are we going?. We also provide tutorial slides [Update soon for VLDB'2025 Tutorial]to summarize the key
points of this survey. Based on language model trends, we've created a river diagram of Text-to-SQL methods to Report repository
trace the field's evolution.
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