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ABSTRACT

Answering natural language (NL) questions about tables, known
as Tabular Question Answering (TQA), is crucial because it allows
users to quickly and efficiently extract meaningful insights from
structured data, effectively bridging the gap between human lan-
guage and machine-readable formats. Many of these tables are
derived from web sources or real-world scenarios, which require
meticulous data preparation (or data prep) to ensure accurate re-
sponses. However, preparing such tables for NL questions intro-
duces new requirements that extend beyond traditional data prepa-
ration. This question-aware data preparation involves specific tasks
such as column derivation and filtering tailored to particular ques-
tions, as well as question-aware value normalization or conversion,
highlighting the need for a more nuanced approach in this context.
Because each of the above tasks is unique, a single model (or agent)
may not perform effectively across all scenarios. In this paper, we
propose AutoPrep, a large language model (LLM)-based multi-
agent framework that leverages the strengths of multiple agents,
each specialized in a certain type of data prep, ensuring more ac-
curate and contextually relevant responses. Given an NL question
over a table, AutoPrep performs data prep through three key com-
ponents. Planner: Determines a logical plan, outlining a sequence
of high-level operations. Programmer: Translates this logical plan
into a physical plan by generating the corresponding low-level code.
Executor: Executes the generated code to process the table. To
support this multi-agent framework, we design a novel Chain-of-
Clauses reasoning mechanism for high-level operation suggestion,
and a tool-augmented method for low-level code generation. Ex-
tensive experiments on real-world TQA datasets demonstrate that
AutoPrep can significantly improve the state-of-the-art TQA solu-
tions through question-aware data preparation.
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Figure 1: An error analysis of LLM-based TQA (using GPT-4)

on two well-adopted datasets.
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1 INTRODUCTION

Tabular Question Answering (TQA) refers to the task of answering
natural language (NL) questions based on provided tables [16, 17, 35,
39]. TQA empowers non-technical users such as domain scientists
to easily analyze tabular data and has a wide range of applications,
including table-based fact verification [15, 22, 23] and table-based
question answering [37, 40]. As TQA requires NL understanding
and reasoning over tables, state-of-the-art solutions [17, 50, 51, 56,
57, 59] mainly rely on large language models (LLMs).

As many tables in TQA originate from web sources or real-world
data, they demand meticulous data preparation (or data prep)
to produce accurate answers. Figure 1 shows an error analysis
of an LLM-based approach (using GPT-4) across two TQA tasks:
table-based question answering on the WikiTQ dataset [40] and
table-based fact verification on the TabFact dataset [15] (More de-
tails of the error analysis can be found in our technical report [5]).
The results indicate that 84% and 76% of the errors stem from inad-
equately addressing data prep issues, including missing semantics,
inconsistent values, and irrelevant columns, as illustrated as follows.
(1) Missing Semantics. This data prep issue arises when a table
lacks the necessary semantics to address the specific requirements
of the NL question. That is, although some columns in the table
may be related to the question, they do not directly provide the
required semantic information. As shown in Figure 2a, the seman-
tics needed for the NL questions, such as country and GDP, are
not explicitly present in the tables. Therefore, to ensure accurate
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AutoPrep: A Hierarchical, Multi-Stage Approach. To address
the challenges, we propose AutoPrep, which features two key
ideas. First, drawing inspiration from modern DBMS, particularly
the distinction between logical operations and their physical im-
plementations, AutoPrep separates high-level, logical data prep
operations from the concrete methods used for execution. Specifi-
cally, it introduces a planning stage that generates a logical plan for
each question, consisting of a sequence of high-level data prep op-
erations tailored to the question’s needs, such as column derivation,
normalization and filtering shown in Figure 2. In the next stage,
AutoPrepmaps these logical operations to the corresponding phys-
ical implementations. This separation allows AutoPrep to break
down complex data prep tasks into smaller, more manageable sub-
tasks, making the process easier to solve. Moreover, this modular
design makes AutoPrep extensible, enabling the development of
specialized implementations for each type of data prep operation
or the introduction of new operation types.

Second, unlike conventional DBMSs, AutoPrep does not prede-
fine physical operations for each logical operation. Instead, for each
data prep operation in the logical plan, AutoPrep generates a phys-
ical implementation that is specialized to the specific question on

the fly. By considering the unique requirements of the NL question,
this customized implementation ensures that the data preparation
is closely aligned with the needs of different questions.

Building on the above insights, we design the AutoPrep system
with a multi-stage architecture.

• The Planning Stage: Unlike traditional DBMS, where log-
ical operations are already available beforehand via SQL
queries, AutoPrep has to determine the appropriate logical
data prep operations by analyzing the semantic alignment
between the table and the NL question. This process occurs
during the planning stage, where the logical plan is formed.

• The Programming Stage: This stage converts the logical
plan into a physical plan by generating low-level executable
code, selecting the appropriate programming constructs
(e.g., Python functions or APIs) for each operation, and
customizing the code to align the table’s structure with the
NL question’s semantics.

• The Executing Stage: This stage executes the generated
code for each operation and returns any errors encountered
to the Programming stage for debugging.

We implement AutoPrep using the popular LLM-based Multi-
Agent framework [25], which leverages multiple small, independent
agents working collaboratively to solve complex problems.

More specifically, we design a Planner agent, which corre-
sponds to the Planning Stage and suggests a tailored sequence
of high-level operations to meet the specific needs of the question,
leveraging the semantics understanding and reasoning capabilities
of LLMs. The core technical idea behind this Planner agent is a
novel Chain-of-Clauses (CoC) reasoning method. This method trans-
lates the NL question into an Analysis Sketch, which outlines how
the table should be prepared to produce the answer, guiding the
agent’s reasoning based on this sketch. Compared to the popular
Chain of Thoughts (CoT) methods [51], which decompose ques-
tions into sub-questions, our approach more effectively captures
the semantic relationships between questions and tables.

AutoPrep also includes a set of Programmer agents, each of
which synthesizes a question-specific implementation for a given
logical data prep operation. However, existing LLM-based code
synthesis often generates overly generic code that struggles to
effectively address the heterogeneity challenges of tables. For in-
stance, values may have diverse syntactic formats (e.g., “September

1” and “11-24” in 𝑇6) or semantic representations (e.g., “ITA” and
“Italia” in 𝑇1), making it difficult to generate code tailored to these
variations. To address this, we propose a tool-augmented approach
that enhances the LLM’s code generation capabilities by incorpo-
rating predefined API functions, which allows the LLM to generate
more specialized code that accounts for variations in table values.
Furthermore, corresponding to the Executing stage, we design an
Executor agent that executes the code to process the table.
Contributions. Our contributions are summarized as follows.
(1) We introduce a novel problem of question-aware data prepara-
tion for TQA, which is formally defined in Section 2.
(2) We propose AutoPrep, an LLM-based multi-agent framework
for question-aware data prep (Section 3). We develop effective tech-
niques in AutoPrep for the Planner agent (Section 4) and the
Programmer agents (Section 5).
(3) We conduct a thorough evaluation on data prep in TQA (Sec-
tion 6). Extensive experiments show that AutoPrep achieves new
SOTA accuracy, outperforming existing TQA methods without data
prep by 12.22 points on WikiTQ and 13.23 points on TabFact, and
surpassing TQA methods with data prep by 3.05 points on WikiTQ
and 1.96 points on TabFact.

2 QUESTION-AWARE DATA PREP FOR TQA

2.1 Tabular Question Answering

Let 𝑄 be a natural language (NL) question, and 𝑇 a table con-
sisting of𝑚 columns (i.e., attributes) {𝐴1, 𝐴2, . . . , 𝐴𝑚} and 𝑛 rows
{𝑟1, 𝑟2, . . . , 𝑟𝑛}, where 𝑣𝑖 𝑗 denotes the value in the 𝑖-th row and 𝑗-th
column of the table. The problem of tabular question answering

(TQA) is to generate an answer 𝐴𝑛𝑠 , in response to question 𝑄

based on the information in table 𝑇 . By the purposes of the ques-
tions, there are two main types of TQA problems: (1) table-based
fact verification [7, 15], which determines whether𝑄 can be entailed
or refuted by 𝑇 , and (2) table-based question answering [37, 40],
which extracts or reasons the answer to 𝑄 from 𝑇 .

Example 1. Figure 2 provides several examples of TQA. Consider

table 𝑇1, which contains medal information for cyclists from different

countries, with two columns: Cyclist and Medal. Given the question

𝑄1, “Which country has the most medals?”, the answer should be ITA,

as two Italian cyclists, “Dav” and “Alex”, have won a total of 4 medals,

more than the ESP cyclist “Alej”. TQA often requires reasoning over

tables. For instance, to answer question 𝑄2, we first need to calculate
the “GDP growth rate” for all countries, then sort the countries by

growth rate, and finally identify the country with the highest GDP

growth rate, i.e., CHN.

2.2 Data Prep for TQA

In contrast to traditional data prep, question-aware data prep for TQA
focuses on adapting the table 𝑇 to the specific informational needs



of a given question 𝑄 , thereby enhancing the semantic alignment
between the structured table and the NL question.
Data Prep Operations. To meet the new requirements of data
prep for TQA, this paper defines high-level, logical data prep op-

erations (or operations for short) to formalize the question-aware
data prep tasks. Formally, an operation, denoted as 𝑜 , encapsulates
a specific question-aware data prep task that transforms table 𝑇
into another table 𝑇 ′, i.e., 𝑇 ′ = 𝑜 (𝑇 ).

As shown in Figure 1, the majority of TQA errors arise from
inadequately addressing three key data prep issues: missing se-

mantics, inconsistent values, and irrelevant columns. To address the
challenges, we introduce three types of data prep operations.

• Derive: A data prep task that derives a new column for
table 𝑇 from existing columns, aimed at addressing the
challenge of missing semantics. This task typically involves
operations such as combining columns through arithmetic
computations, extracting relevant values, etc.

• Normalize: a data prep task that normalizes types or for-
mats of the values in a column of 𝑇 based on the needs of
𝑄 , aimed at addressing the challenge of inconsistent values.
This task typically involves value representation or format
normalization, type conversion, etc.

• Filter: A data prep task that filters out columns in 𝑇 that
are not relevant to answer question 𝑄 , aimed at addressing
the challenge of irrelevant columns. This is crucial for han-
dling large tables to address the input token limitations and
challenges in long-context understanding of LLMs [34].

Given a high-level operation 𝑜𝑖 , we define 𝑓𝑖 as its low-level
implementation, either by calling a well-established algorithm from
a known Python library or using a customized Python program to
meet the requirements of 𝑜𝑖 .

Example 2. Figure 2 shows examples of question-aware data prep

operations for TQA, along with their implementations in Python.

(a) The Derive operation: Figure 2a shows three examples of the

Derive operations, i.e., extracting Country information from col-

umn Cyclist in 𝑇1, computing new column GrowthRate using two
columns in 𝑇2, and inferring a status of IfLost by analyzing the

scores in column Result.

(b) The Normalize operation: Figure 2b shows three examples

of Normalize operations, i.e., normalizing the formats of Surface,
Time and Date for tables 𝑇4, 𝑇5 and 𝑇6 respectively.

(c) The Filter operation: Figure 2c illustrates two examples of

Filter operations in tables 𝑇7 and 𝑇8. The Summary column in 𝑇7
contains an average of 100 words, increasing the difficulty for LLMs to

identify the relevant AirDate column. Additionally, although 𝑇8 has
12 columns, only two are relevant to 𝑄8, and providing all columns

may cause long-context understanding challenges of LLMs [34].

Remarks. While issues such as missing values and duplicates are
common in real-world datasets, they are significantly less prevalent
than the three highlighted challenges in existing TQA benchmarks.
Thanks to AutoPrep’s separation of logical operations and physi-
cal implementations, the set of data prep operations can be easily
extended to accommodate new types of tasks. We leave the explo-
ration of broader data prep challenges to future work.

LLM

Generate python code to process the table.

× N

col1: date | name | age
row1: 19-Oct | mike | 29
… … 

seralized 
table

question
python 
codes

import pandas as pd
df = … ...

col: Date | Cyclist | Medal | Age
row1: 02-28 | Alej(ESP) | 3 | 35
row2: Jan. 1st | Dav. ITA | "2" | 28
row3: 02/22 | Alex.(ITA) | "2*" | 28
… … 

seralized 
table

question

Please generate target python code:

who is youngest?

which country has the most medals 
in total in February?

import pandas as pd
df = pd.read_csv("data.csv")
# Cast 'Medal' and 'age' to numeric
df["Medal"] = df["Medal"].str\

.replace('"', '').str.strip()
df["Age"] = pd.to_numeric(

df["Age"].str.strip(), 
errors="coerce")

# Extract month from Date
df["Month"] = pd.to_datetime(
                   df["Date"], 

format="%m-%d").dt.month
# Filter for February (month 2)
df = df[df["Month"] == 2]
# Extract country from Cyclist
df["Country"] = df["Cyclist"].str\

.extract(r"\((.*?)\)")[0]

1

2

3

4

5

import pandas as pd
df = pd.read_csv("data.csv")
# Cast 'Medal' and 'age' to numeric
df["Medal"] = df["Medal"].str\

.replace('"', '').str.strip()
df["Age"] = pd.to_numeric(

df["Age"].str.strip(), 
errors="coerce")

# Extract month from Date
df["Month"] = pd.to_datetime(
                   df["Date"], 

format="%m-%d").dt.month
# Filter for February (month 2)
df = df[df["Month"] == 2]
# Extract country from Cyclist
df["Country"] = df["Cyclist"].str\

.extract(r"\((.*?)\)")[0]

1

2

3

4

5

Figure 3: An LLM-based method with few-shot prompting

for question-aware data prep.

Question-Aware Data Prep for TQA. Given an NL question 𝑄

posed over table𝑇 , question-aware data prep for TQA is to generate a
sequence of high-level operations𝑂 = {𝑜1, 𝑜2, . . . , 𝑜 |𝑂 | } as a logical
plan. Then, it generates a physical plan, where each operation 𝑜𝑖
is implemented by low-level code 𝑓𝑖 , such that these operations
transform 𝑇 into a new table 𝑇 ′ that meets the needs of 𝑄 .

2.3 A Straightforward LLM-based Solution

A straightforward solution to question-aware data prep is to prompt
an LLM to prepare tables, leveraging its ability to interpret the spe-
cific requirements of NL questions. For instance, consider the table
in Figure 3 with columns Date, Cyclist, Medal and Age, and ques-
tion: “Which country has the most medals in total in February”. A
few-shot prompting strategy prompts an LLM with a task descrip-
tion and a few demonstrations, and requests the LLM to generate
Python programs as shown in Figure 3.

However, this LLM-based solution may encounter the following
limitations when performing question-aware data prep for TQA.

First, at the logical-operation level, given the inherent difficulties
in understanding both NL questions and tables, it is challenging
to accurately identify which data prep operations are specifically
required to satisfy the needs of the NL question. This often leads
to false negatives and false positives. For example, as shown in
Figure 3, converting the Age column to a numerical format in code
block 2○ is a false positive, as it is irrelevant to the question. In
contrast, failing to normalize the Date column before extracting the
month in code block 3○ constitutes a false negative, as the method
ignores the inconsistency in Date formats.

Second, at the physical-operation level, due to input token limita-
tions and challenges in long-context understanding [34], it is not
easy to fully understand all possible issues in a table, and thus may
struggle to generate customized programs to correct issues. For
example, in Figure 3, the normalization of Medal in code block 1○
overlooks certain corner cases (e.g., “2*”), and the country extrac-
tion in code block 5○ fails to handle “Dav.ITA”, which is formatted
differently from other values.

Recent methods, such as CoTable [50] and ReAcTable [59], can
improve few-shot prompting by employing techniques like Chain-
of-Thoughts (CoT) and ReAct. However, these methods remain



insufficient to tackle the challenges, as they combine all diverse
tasks, such as determining operations and implementing them,
within a single LLM agent. Existing studies [30] have shown that a
single LLM agent is often ineffective when tasked with handling a
diverse range of operations, due to limited context length in LLMs
and decreased inference performance with more input tokens.

3 AN OVERVIEW OF AUTOPREP

To address the limitations, we propose AutoPrep, a multi-agent

LLM framework that automatically prepares tables for given NL
questions. Figure 4 provides an overview of our framework. Given
an NL question 𝑄 posed over table 𝑇 , AutoPrep decomposes the
data prep process into three stages:

(1) Planner Agent: the Planning stage. It guides the LLM to
suggest logical data prep operations 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜 |𝑂 | },
which are tailored to specific question 𝑄 ,

(2) Multiple Programmer Agents (e.g., Normalize): the Pro-
gramming stage. It directs the LLM to generate physical
implementation 𝑓𝑖 (e.g., Python code) for each operation
𝑜𝑖 customized for the table 𝑇 . Besides, it is also tasked for
code debugging if any execution errors occur.

(3) An Executor Agent: the Executing stage. It executes the
generated code and reports errors if any bugs occur.

After that, an Analyzer agent extracts the answer from the
prepared table. This agent can either use LLMs as black-boxes
or leverage them for code generation, which is orthogonal to the
question-aware data prep problem studied in this paper. For simplic-
ity, we use a Text-to-SQL strategy that translates the question into
an SQL query over the prepared table to obtain the final answer, as
shown in Figure 4. Note that other strategies could also be used by
the agent in a “plug-and-play” manner.

Example 3. Figure 4 illustrates how AutoPrep supports data prep

for an NL question posed over a table with 4 columns.

(a) The Planning stage: The Planner suggests the following high-
level operations to address the specific NL question:

• 𝑇 ′[Country]=Derive(“Extract country code”, Cyclist) that
extracts the country information from column Cyclist, pro-
ducing a new Country column, in response to the “which

country” part of the question.

• Normalize(“Case to INT”, Medal) that standardizes the value
formats in the Medal column (e.g., removing quotation marks

and asterisks) and then converts the strings to integers, as the

question requires “the most medals”;

• Normalize(“Format date as %m-%d”, Date) standardizes the
values in the Date column into a unified format to support

the “in February” condition in the question.

• 𝑇 ′ = Filter([Date, Country, Medal], 𝑇) that filters out

column Age, which is irrelevant to the question;

(b) The Programming stage: AutoPrep designs specialized Pro-

grammer agents for each operation type, i.e., Derive, Normalize
and Filter. Each specialized Programmer focuses on generating exe-

cutable code for its assigned operations.

(c) The Executing stage: an Executor agent iteratively refines the
generated code if any error occurs.

After these stages, AutoPrep generates a prepared table 𝑇 ∗
, which

is then fed into an Analyzer agent to produce the answer ITA.

The Planner Agent. The key challenge is how to suggest a log-
ical plan that address specific NL questions. Even for the same
table, different NL questions may require not only different logi-
cal operations but also varying sequences of those operations. To
address this challenge, we propose a novel Chain-of-Clauses (CoC)
reasoning method for the Planner agent. This method translates
the NL question into an Analysis Sketch, outlining how the table
should be transformed to produce the answer, thereby guiding the
agent’s reasoning based on this sketch. More details of the method
are given in Section 4.
The Programmer Agents. The key challenge is that a given
logical operation can have multiple executable code alternatives
(e.g., Python functions), and the difference in outcomes between
the best and worst options can be substantial. For example, the
Derive agent may generate an overly generic regular expression
that extracts countries based on parentheses. Unfortunately, this
code fails to correctly process “Dav. ITA”, which is formatted dif-
ferently from other values. To tackle this challenge, we develop a
tool-augmented approach that enhances the LLM’s code generation
capabilities by utilizing predefined API functions. More details of
our tool-augmented approach are discussed in Section 5.
Remarks.Our proposedAutoPrep framework is extensible. When
additional question-aware data prep operations are required, more
specialized Programmer agents can be designed to handle them.
The central Planner agent can then determine which operations
should be performed and assign them accordingly.

4 THE PLANNER

4.1 A Direct Prompting Method

The most common way to generate a logical plan is to directly
prompt an LLM using a typical in-context learning approach. The
inputs are a question 𝑄 , a table 𝑇 , a set Σ of specifications for
each operation type, and an LLM 𝜃 . Here, each specification 𝜎 ∈
Σ describes the purpose of an operation type, e.g., “an Derive
operation creates a new column for a table based on existing columns,

in response to the specific needs of a question”. The output of the
algorithm is a set 𝑂 of high-level operations

Example 4. Figure 5(a) illustrates the direct prompting method,

which produces two logical operations, Filter and Normalize. How-
ever, this logical plan might not be accurate, as discussed below.

(a) Incorrect operations: The Filter operation retains the Country
column simply because the question mentions “which country.” How-

ever, it fails to recognize that the original table does not actually

contain a Country column. Worse yet, it incorrectly filters out the

Cyclist column, merely because Cyclist is not explicitly mentioned

in the question. This mistake is critical, as the country information is

implicitly embedded within the Cyclist values.

(b) Missing operations: Observing the ground-truth in Figure 4,

we can see that the Derive operation on Cyclist is not generated,

as the column has already been filtered out. Moreover, although the

Normalize operation on Medal is generated, the Normalize opera-
tion on Date is missing. This is because the phrase “the most” in the









Table 1: Statistics of Datasets.

Dataset # Rec. # Row. # Col. Ans. Types

WikiTQ 22, 033 4∼753 3∼25 string / list (3.05%)
TabFact 2, 024 5∼47 5∼14 true / false (49.60%)

TableBench 886 2∼212 2∼20 string / list (31.49%)

End2EndQA (End2End) [14] utilizes the in-context learning abili-
ties of LLMs to generate the answer for TQA task based on the super-
vision of human-designed demonstrations. We implement End2End
method with prompt and demonstrations provided by [17].
Chain-of-Thought (CoT) [51] prompts LLMs to generate the rea-
soning process step-by-step before generating the final answer. We
implement CoT with the prompt provided by [14].
NL2SQL [44] first translates the question into an SQL program
and then executes it to get the final answer from the table for the
question. We use the prompt from [17] to implement NL2SQL.
NL2Py uses Python code to process and reason over the tables. To
construct the prompt for NL2Py, we use TQA instances in NL2SQL
prompt and manually write the Python code to process the table
and generate the final answer.
(2) Data Prep Baselines. We consider the following data prep
baselines. For each baseline, we first perform data prep and then
use the above NL2SQL to extract answers from the prepared tables.
Offline DataPrep (Off-Prep) performs offline data prep operations
for all tables in TQA. To this end, we have surveyed and consoli-
dated the offline data prep operations, such as data cleaning, value
normalization and column renaming, adopted by current SOTA
TQA methods [17, 32, 50, 55, 60] to construct a comprehensive of-
fline data prep pipeline, by utilizing the Pandas library [36] and the
popular DataPrep toolkit [42].
ICL-Prep uses few-shot ICL demonstrations to guide LLMs in gen-
erating Python programs for data prep, as shown in Figure 3.
(3) SOTA TQA Methods with Data Prep. We investigate four
SOTA TQA methods considering data prep tasks for TQA task.
Dater [57] addresses the TQA task by decomposing the table and
question. It first selects relevant columns and rows to obtain a sub-
table and then decomposes the origin question into sub-questions.
Dater answers these sub-questions based on the sub-tables to gen-
erate the final answer. We use code in [2] for implementation.
Binder [17] enhances the NL2SQL method by integrating LLMs
into SQL programs. It uses LLMs to incorporate external knowledge
bases and directly answer questions that are difficult to resolve
using SQL alone. We utilize the original code provided by [1].
AutoTQA [60] uses a multi-agent framework for TQA. Since the
official code for AutoTQA is not publicly available, we reimple-
ment it under the guidance of the authors (see our repository
(https://github.com/fmh1art/AutoPrep/src/model/autotqa). Given
the high time and API costs, we evaluate AutoTQA on a sampled
subset of 500 instances from each of WikiTQ and TabFact.
ReAcTable [59] uses the ReAct paradigm to extract relevant data
from the table using Python or SQL code generated by LLMs. Once
all relevant data is gathered, it asks the LLMs to predict the answer.
We run the original code from [4] and keep all settings as default.

Notice that the original code does not include prompts for TabFact,
we generate it based the WikiTQ prompt.
Chain-of-Table (CoTable) [50] enhances the table reasoning ca-
pabilities of LLMs by predefining several common atomic opera-
tions (including data prep operations) that can be dynamically se-
lected by the LLM. These operations form an “operation chain” that
represents the reasoning process over a table and can be executed
either via Python code or by prompting the LLM. We implement
CoTable using the original code from [3].
Evaluation Metrics.We consider both accuracy and cost.
Accuracy. We adopt the evaluator from Binder [17] to address
cases where program executions are semantically correct but do
not exactly match the golden answers.
Cost. We measure both the time and API cost for all methods. For
time cost, we ensure a stable network environment and record
the end-to-end processing time for each method on a single TQA
instance. For API cost, we follow the official pricing guidelines
(https://api-docs.deepseek.com/quick_start/pricing/) and calculate
the cost based on the default LLM backbones used.
Backbone LLMs. We evaluate our methods using representative
LLMs as backbones. For closed-source LLMs, we select DeepSeek [24]
(DeepSeek-V2.5-Chat) and GPT3.5 [9] (GPT3.5-Turbo-0613). For
open-source LLMs, we choose Llama3 [18] (Llama-3.1-70B-Instruct)
and QWen2.5 [53] (QWen2.5-72B-Instruct) for evaluation.
Experiment Settings. We provide detailed prompts of each com-
ponent in AutoPrep in our technical report [5] due to the space
limit. Moreover, for fair comparison, we set the maximum token
input of all methods as 8192. Moreover, we set the temperature
parameter of all methods to 0.01 for reproducibility.

6.2 Improvement of Data Prep for TQA

Exp-1: Impact of question-aware data prep on TQA perfor-

mance.We integrate AutoPrep into our four TQA baselines w/o
data prep, and report the results in Table 2.

As demonstrated, integrating AutoPrep significantly improves
the performance of all evaluated methods. Notably, NL2SQL shows
the most substantial gains, achieving an average accuracy improve-
ment of 12.22 on WikiTQ and 13.23 on TabFact across all LLM
backbones. Similarly, NL2Py also shows notable improvements in
its performance, after being integrated with AutoPrep. This signif-
icant improvement is attributed to the sensitivity of NL2SQL and
NL2Py to data incompleteness and inconsistency, which can lead
to erroneous outcomes when performing operations on improperly
formatted data. Thus, data prep operations, such as Derive and
Normalize can solve these cases and improve the overall results.

Moreover, End2End and CoT methods also show considerable
performance gains. These improvements are largely due to the fil-
tering mechanism of AutoPrep, which removes irrelevant columns,
thereby simplifying the reasoning process for extracting answers
from tables. Since “NL2SQL +AutoPrep” achieves the best accuracy
in most cases, we take its results as default for further comparison.

6.3 Data Prep Method Comparison

Exp-2: Comparison of AutoPrep with data prep baselines.

We compare AutoPrep against two representative baselines: a



Table 2: Improvement of data prep for TQA (the best results are in bold and the second-best are underlined).

Method

DeepSeek GPT3.5 Llama3 QWen2.5

WikiTQ TabFact WikiTQ TabFact WikiTQ TabFact WikiTQ TabFact

End2End 56.65 81.77 52.56 71.54 58.72 81.27 60.01 81.17
+ AutoPrep 63.14 ↑ 6.49 82.11 ↑ 0.34 61.21 ↑ 8.65 71.79 ↑ 0.25 61.23 ↑ 2.51 84.19 ↑ 2.92 63.42 ↑ 3.41 83.05 ↑ 1.88

CoT 54.95 82.02 53.48 65.37 40.75 80.93 59.67 82.31
+ AutoPrep 61.12 ↑ 6.17 82.26 ↑ 0.24 60.01 ↑ 6.53 74.36 ↑ 8.99 56.01 ↑ 15.26 83.65 ↑ 2.72 62.02 ↑ 2.35 85.67 ↑ 3.36

NL2Py 59.35 68.13 53.59 66.15 50.12 76.24 53.02 72.63
+ AutoPrep 65.86 ↑ 6.51 87.35 ↑ 19.22 64.69 ↑ 11.1 84.83 ↑ 18.68 62.55 ↑ 12.43 85.42 ↑ 9.18 68.65 ↑ 15.63 85.72 ↑ 13.09

NL2SQL 52.83 70.21 52.90 64.71 51.80 75.15 56.86 80.09
+ AutoPrep 66.09 ↑ 13.26 87.85 ↑ 17.64 64.75 ↑ 11.85 84.19 ↑ 19.48 63.72 ↑ 11.92 85.72 ↑ 10.57 68.72 ↑ 11.86 85.33 ↑ 5.24

Table 3: Experimental results of AutoPrep and TQA methods with data prep.

Method

DeepSeek GPT3.5 Llama3 QWen2.5

WikiTQ TabFact WikiTQ TabFact WikiTQ TabFact WikiTQ TabFact

Off-Prep 55.32 81.67 56.86 81.52 53.02 75.40 58.01 82.31
ICL-Prep 56.54 80.53 55.71 73.91 50.05 75.20 57.00 80.14
Dater 48.32 83.05 52.81 72.08 43.53 74.01 58.78 79.84
Binder 56.81 82.81 56.74 79.17 50.51 78.16 55.43 81.72

AutoTQA* 60.80 84.40 58.40 80.60 58.80 82.40 62.40 83.00
ReAcTable 64.13 85.71 51.80 72.80 58.01 80.00 60.15 81.67
CoTable 64.53 86.22 59.94 80.20 62.22 85.62 64.41 83.20
AutoPrep 66.09 87.85 64.75 84.19 63.72 85.72 68.72 85.33

traditional offline data prep method Off-Prep and an LLM-based
in-context learning data prep method ICL-Prep.

As shown in Table 3, AutoPrep consistently outperforms both
baselines onWikiTQ and TabFact. Specifically, AutoPrep improves
over Off-Prep by 10.02 and 5.55 on average, respectively. The
performance gap can be attributed to the fact that Off-Prep lacks
question guidance, making it ineffective in addressing question-
specific issues such as missing semantics and irrelevant columns.
Moreover, predefined normalization routines struggle with table
heterogeneity, whereasAutoPrep can generate specialized code for
such cases via LLMs. Similarly, AutoPrep outperforms ICL-Prep by
11.00 and 8.33 on average on the two datasets. This highlights that
a multi-agent framework is essential for producing comprehensive
data prep requirements and precise, executable programs.
Exp-3: Comparison of AutoPrep with previous SOTA TQA

methods with data prep.We compare AutoPrepwith TQAmeth-
ods that integrate data prep tasks in their question-answering pro-
cess. The results, shown in Table 3, highlight that AutoPrep sets a
new SOTA performance on both the WikiTQ and TabFact datasets
across LLM backbones. Although CoTable achieves the best over-
all performance among existing SOTA methods, AutoPrep out-
performs it with an impressive average improvement of 3.05 on
WikiTQ and 1.96 on TabFact. These improvements are largely attrib-
uted to our multi-agent framework, which effectively addresses the
question-aware data prep challenges. Furthermore, when compared
to AutoTQA, AutoPrep shows significant gains of 5.81 on WikiTQ
and 2.77 on TabFact. This is because AutoTQA lacks comprehensive
data prep, leading to execution errors or incorrect answers.

The results demonstrate that data prep is inherently complex
and cannot be solved with a one-size-fits-all solution. Instead, a
more effective strategy involves specialized LLM-based agents for

Figure 7: Efficiency evaluation. The �-axis and �-axis repre-

sent the time cost (in seconds) and monetary cost (in dollars)

for processing a single instance, respectively. The color in-

tensity of each scatter point reflects the overall accuracy.

each type of data prep task, coordinated by a centralized planning
agent. Moreover, AutoPrep covers a broader range of data prep
operations, filling gaps (e.g.,Derive and Normalize) that previous
solutions have not fully addressed.

Moreover, we also evaluate AutoPrep on tables with various
sizes. We find that, by employing multiple agents and program-
based operations, AutoPrep maintains stable performance as table
size grows, ensuring that each data prep task is handled effectively
without overwhelming a single model. More details on the experi-
mental results and analysis can be found in our technical report [5].

As DeepSeek achieves the best accuracy at lower cost, we select
it as our default backbone LLM for subsequent experiments.

6.4 Evaluation on Efficiency

Exp-4: How efficient isAutoPrep comparedwith othermeth-

ods? To evaluate the efficiency of AutoPrep, we compare it with



Table 4: Evaluating Extensibility for New Operation Types.

Method TransTQ

WikiTQ

origin after

ICL-Prep 58.92 56.54 55.00
ReAcTable 51.04 64.13 63.03
AutoTQA 59.75 60.80 61.20
AutoPrep 68.88 66.09 66.28

other TQA methods in terms of time cost, monetary cost, and ac-
curacy. The results for both small and large tables are shown in
Figure 7. As shown, AutoPrep achieves the best overall perfor-
mance with insignificant time and monetary costs. Specifically, its
cost is lower than all methods except Off-Prep and ICL-Prep. How-
ever, AutoPrep significantly outperforms these two baselines in
accuracy, achieving improvements of at least 9.36 and 5.77 points
on small and large tables, respectively. Furthermore, as table size
increases, AutoPrep maintains a much more stable time and cost
overhead compared to other state-of-the-art TQA methods.

This efficiency stems from the program-based data prep mecha-
nism of AutoPrep, which avoids high latency and API expenses
associated with directly processing tables via LLMs. For instance, in
the column derivation task on Table�1 (Figure 2a), CoTable invokes
LLMs to generate a full list of country codes. In contrast, Auto-
Prep only generates a physical operator extract and executes it
to produce the column, which results in significantly lower time
and monetary costs, particularly on large tables.

6.5 In-Depth Exploration of System Capabilities

Exp-5: Evaluating generalization on unseen datasets. As dis-
cussed in Section 6.1, we evaluate the generalization capabilities
of AutoPrep on the TabBench datasets. Specifically, we directly
use the designed prompting strategies on the WikiTQ dataset, and
examine whether these strategies can be generalized to TabBench.

As shown in Figure 8, AutoPrep achieves the highest overall
accuracy among all methods. Specifically, comparedwith the second
best method ReAcTable,AutoPrep improves by 5.28, indicating the
strong generalization capabilities of our method. The main reason
is that AutoPrep utilizes tool-augmented method for physical plan
generation and execution, generalizing well on unseen datasets.
Exp-6: Evaluating extensibility on datasets requiring new

logical operation types. To further evaluate the extensibility of
AutoPrep, we evaluate it on a more complex dataset involving
logical operations not originally supported. Since no existing TQA
dataset presents sufficiently complex data quality issues, we con-
struct a new dataset TransTQ with the assistance of LLMs, which
is available on our GitHub repository. Specifically, we prompt an
LLM to identify tables from WikiTQ where inverse transformation
operations (e.g., pivot and stack [33]) can be applied. These opera-
tions are then executed to generate non-relational table formats,
introducing new challenges for TQA on table transformation.

As shown in Table 4, without explicit guidance for handling
table transformations, all baseline TQA methods exhibit poor ac-
curacy. In contrast, after incorporating a new logical operation
Transform, AutoPrep achieves the best performance, outperform-
ing the second-best method by 9.31 points. Moreover, we also

Figure 8: Evaluating generalization on the TabBench dataset.

validate that adding this new operation does not degrade the per-
formance of AutoPrep on the original WikiTQ dataset, confirming
that its multi-agent architecture is well extensible to support the
seamless integration of new data prep functionalities.

6.6 Ablation Studies

Exp-7: Evaluation on the Planner agent.We compare two Plan-
ner variants with different high-level operation suggestion meth-
ods, namely Direct Prompting and our proposed Chain-of-Clauses
method, and report the results in Table 5a.

We observe that Chain-of-Clauses outperforms Direct Prompting
by 7.92, 4.50, 5.27 in accuracy on WikiTQ, TabFact and TabBench
respectively. This indicates the superiority of our proposed method
in generating more accurate logical operations. Moreover, we find
that the performance improvement on WikiTQ is more significant
than that on other datasets. This is because the WikiTQ dataset has
relatively large tables and complex questions, which could make
the logical operation suggestion problem more challenging to be
solved using Direct Prompting.
Exp-8: Evaluation on the Programmer Agents. We evaluate
the low-level operation generation methods in the Programmer
agents and keep other settings of AutoPrep as default.

As illustrated in Table 5b, our proposed tool-augmented method
achieves better performance compared with the code generation
method. Considering the logical operations input to the Program-
mer agents are the same, we can conclude that selecting a func-
tion from a function pool and then completing its arguments can
generate more accurate and high-quality programs to implement
the high-level operations. Moreover, when using demonstrations
constructed from same table-question pairs for the prompt of pro-
grammer agents, Tool-augmented method can save 18.07% input
tokens for low-level operation generation. We also record the error
ratio of these two methods, as shown in Table 5b. The probability
of bugs in our tool-augmented method is greatly reduced (e.g., from
4.51% to 1.50%), demonstrating its effectiveness.
Exp-9: Contribution of each agent in AutoPrep. We ablate
each Programmer agent including Filter, Derive and Normalize
and compare the performance with AutoPrep.

As shown in Table 5c, for WikiTQ, without column derivation,
the accuracy drops the most (4.30). For TabFact and TabBench, the
Normalize matters the most with an accuracy drop by 4.06 and 8.52.
This is because that WikiTQ has more instances requiring string
extraction or calculation to generate new columns for answering
the question, while normalization is a primary issue in TabFact



Table 5: Experimental Results of Ablation Studies.

(a) Evaluation on the Planner agent.

Method WikiTQ TabFact TabBench

Direct Prompting 58.17 83.35 44.83
Chain-of-Clauses 66.09 87.85 50.10

(b) Evaluation on the Programmer Agents.

Method Metric WikiTQ TabFact TabBench

Code
Generation

Acc ↑ 62.82 81.97 47.26
Err ↓ 4.51% 4.50% 4.73%

Tool
Augmented

Acc ↑ 66.09 87.85 50.10

Err ↓ 1.50% 0.05% 1.01%

(c) Contribution of Each Programmer Agent in AutoPrep.

Method WikiTQ TabFact TabBench

AutoPrep 66.09 87.85 50.10

- Filter 62.78 (−3.31) 84.98 (−2.87) 47.67 (−2.43)
- Derive 61.79 (−4.30) 85.67 (−2.18) 45.44 (−4.66)

- Normalize 62.02 (−4.07) 83.79 (−4.06) 41.58 (−8.52)

and TabBench. Moreover, for all datasets, each agent plays an es-
sential role in data preparation for TQA, which brings accuracy
improvement by at least 2.43, 2.18 and 4.06.

7 RELATEDWORK

Tabular Question Answering. Most of the SOTA solutions for
TQA rely on LLMs [9, 24], as TQA requires NL understanding and
reasoning over tables. There are two types of methods for TQA
named Direct Prompting [14, 51] and Code Generation [44]. Previ-
ous TQA methods, like Dater [57], Binder [17], CoTable [50] and
ReAcTable [59] also consider data prep in their question answering
process. Specifically, Dater [57] prompts LLMs to select relevant
columns related to answering the question, targeted at solving filter-
ing tasks. Binder [17] proposes to integrate SQL with an LLM-based
API to incorporate external knowledge, which may partly address
derivation tasks. Similarly, CoTable [50] addresses the filtering tasks
and derivation tasks by designing operators which are implemented
by LLM completion. ReAcTable [59] uses few-shot demonstrations
to instruct LLMs to generate python code or SQL to address the
derivation and filtering tasks.

However, previous TQA methods do not address the column
normalization tasks, which account for the most significant error
types, as indicated in Figure 1. Second, the methods utilize a single
LLM agent for both data prep and answer reasoning. Given that
data prep is a complex challenge, these one-size-fits-all solutions
may not achieve satisfactory performance.
Traditional Data Preparation. Data prep techniques are widely
used across various tasks [10, 20, 49]. For training machine learning
models for data analytics, Auto-Weka [48] leverages Bayesian opti-
mization to identify data prep operations. Auto-Sklearn [21, 29] and
TensorOBOE [54] apply meta-learning to discover promising oper-
ations. Alpine Meadow [45] introduces an exploration-exploitation
strategy, while TPOT [38] uses a tree-based representation of data
prep and genetic programming optimization techniques. Several
studies [8, 19, 27, 58] explore reinforcement learning techniques.

HAIPipe [13] integrates both human-orchestrated and automati-
cally generated data prep operations.

We propose AutoPrep to generate question-aware data prep
operations for TQA tasks. Traditional data prep methods typically
operate at an offline stage, independent of any specific downstream
question or query. In contrast, question-aware data prep studied
in AutoPreptailors the tables to the specific needs of the question
during the online stage, directly addressing the challenge of aligning
the table’s structure with the NL question’s semantics.
LLMs-basedMulti-Agent Framework.Amulti-agent LLM frame-
work refers to a well-designed hierarchical structure consisting of
multiple LLM-based agents and scheduling algorithms [25]. Com-
pared with single-agent methods based on prompting techniques,
such structures are better suited for handling complex tasks like
software development, issue resolution, and code generation [12,
28, 30, 31, 43, 46]. The structure of multi-agent frameworks can be
categorized into equi-level [47], hierarchical [6, 26], and nested [11]
structures. AutoTQA [60] proposes a multi-agent framework with
hierarchical structure for supporting Tabular Question Answering.

We adopt the hierarchical structure because our design intro-
duces a Planner agent that decomposes the overall data preparation
task into three distinct sub-tasks, each handled by specialized agents.
This top-down coordination naturally aligns with the principles
of the hierarchical multi-agent framework. Moreover, while Au-
toTQA focuses on improving table analysis, this paper focuses on
the performance bottleneck caused by data prep issues in TQA. Our
proposed framework, AutoPrep, addresses question-aware data
prep for TQA and can be integrated as a plugin into current TQA
approaches to further improve the overall performance.

8 CONCLUSION AND FUTUREWORK

In this paper, we have introduced AutoPrep, an LLM-based multi-
agent framework to support data prep for TQA tasks. AutoPrep
consists of three stages: (1) the Planning stage, which suggests
logical data prep operations, (2) the Programming stage, which
generates physical implementations for each logical operation, and
(3) the Executing stage, which executes the Python code and re-
ports error messages. We propose a Chain-of-Clauses method to
generate high-quality logical plans and a Tool-augmented method
for effective physical plan generation. Extensive experiments on
real datasets demonstrate the superiority of AutoPrep.

For future work, we identify three promising directions. First,
we aim to extend the system’s data prep capabilities by integrating
a broader set of operations to handle more complex issues such as
missing values, duplicates, etc. Second,AutoPrep currently focuses
on single-table question answering, and extending its capabilities to
support multi-table TQA is essential for tackling more realistic and
complex scenarios. The third direction is to enable question-aware
data preparation over enterprise datasets, which are more complex
than existing TQA benchmarks.
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