
Concurrency Control as a Service
Weixing Zhou

Northeastern University
China

zhouwx@stumail.neu.edu.cn

Yanfeng Zhang
Northeastern University

China
zhangyf@mail.neu.edu.cn

Xinji Zhou
Northeastern University

China
zhouxj@stumail.neu.edu.cn

Zhiyou Wang
Northeastern University

China
wangzy@stumail.neu.edu.cn

Zeshun Peng
Northeastern University

China
pengzs@stumail.neu.edu.cn

Yang Ren
Huawei Tec. Co., Ltd

China
renyang1@huawei.com

Sihao Li
Huawei Tec. Co., Ltd

China
sean.lisihao@huawei.com

Huanchen Zhang
Tsinghua University

China
huanchen@tsinghua.edu.cn

Guoliang Li
Tsinghua University

China
liguoliang@tsinghua.edu.cn

Ge Yu
Northeastern University

China
yuge@mail.neu.edu.cn

ABSTRACT
Existing disaggregated databases separate execution and storage
layers, enabling independent and elastic scaling of resources. In
most cases, this design makes transaction concurrency control
(CC) a critical bottleneck, which demands significant computing
resources for concurrent conflict management and struggles to scale
due to the coordination overhead for concurrent conflict resolution.
Coupling CC with execution or storage limits performance and
elasticity, as CC’s resource needs do not align with the free scaling
of the transaction execution layer or the storage-bound data layer.

This paper proposes Concurrency Control as a Service (CCaaS),
which decouples CC from databases, building an execution-CC-
storage three-layer decoupled database, allowing independent scal-
ing and upgrades for improved elasticity, resource utilization, and
development agility. However, adding a new layer increases latency
due to the shift in communication from hardware to network. To
address this, we propose a Sharded Multi-Write OCC (SM-OCC)
algorithm with an asynchronous log push-downmechanism to min-
imize network communications overhead and transaction latency.
Additionally, we implement a multi-write architecture with a de-
terministic conflict resolution method to reduce coordination over-
head in the CC layer, thereby improving scalability. CCaaS is de-
signed to be connected by a variety of execution and storage engines.
Existing disaggregated databases can be revolutionized with CCaaS
to achieve high elasticity, scalability, and high performance. Res-
ults show that CCaaS achieves 1.02-3.11× higher throughput and
1.11-2.75× lower latency than SoTA disaggregated databases.

PVLDB Reference Format:
Weixing Zhou, Yanfeng Zhang, Xinji Zhou, Zhiyou Wang, Zeshun Peng,
Yang Ren, Sihao Li, Huanchen Zhang, Guoliang Li, and Ge Yu.
Concurrency Control as a Service. PVLDB, 18(9): 2761 - 2774, 2025.
doi:10.14778/3746405.3746406

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 9 ISSN 2150-8097.
doi:10.14778/3746405.3746406

Requests

SQL GraphExecution Vector …

Data Storage: …

Concurrency ControlData

Log

Concurrency Control Request

KV

Figure 1: An execution-CC-storage three-layer decoupled
database architecture.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/iDC-NEU/CCaaS.

1 INTRODUCTION
Database systems are evolving to a compute-storage disaggregated
architecture [24, 33, 48, 52, 73, 80, 83, 87], such as Amazon Aurora
[20], Socrates [23], PolarDB [28], and AlloyDB [1]. These databases
typically decouple the system into an execution layer, which re-
quires substantial computational resources, and a storage layer,
which necessitates significant storage capacity. Compared to tradi-
tional databases where execution and storage are bundled together,
these two-layer databases allow compute and storage resources
to be scaled independently, thereby providing greater elasticity in
the cloud environment, which are also called cloud-native data-
bases. A set of works [43, 80, 83, 86] are proposed to improve these
cloud-native databases from various aspects. As more and more en-
terprises move their applications to the cloud, these disaggregated
databases are gaining wide popularity.

The spirit of cloud-native architecture is decoupling. A system
should be decoupled into independent function modules, each with
specific resource requirements. Cloud provides the elasticity of
different decoupled resources (e.g., computation, memory, and stor-
age), allowing the growing or shrinking of resource capacity to
adjust to changing demands. Each decoupled function module can
be scaled independently tomeet varying demands, fully utilizing the

https://doi.org/10.14778/3746405.3746406
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3746405.3746406
https://github.com/iDC-NEU/CCaaS

decoupled resources. This approach enables the system to achieve
elasticity. Furthermore, these function modules can be designed
as independent services [2, 7, 22, 27, 29, 89], so that each function
module can be reused by various applications and can be upgraded
independently, thereby bringing more agility.

Concurrency Control (CC) is a key function module in data-
bases to ensure that concurrent data access operations proposed
by different users do not break data consistency. CC deals with
concurrent conflicts and guarantees transaction ACID properties,
and is evolving towards distributed with the evolution towards
highly scalable cloud-native architectures. Adding nodes can en-
hance distributed transaction CC performance. However, this re-
quires coordination among participates to resolve concurrent con-
flicts and ensure the ACID properties. System performance drops if
the coordination overhead outweighs the benefits of the increased
computing resources when adding too much nodes. CC has limited
scalability, but it still needs high computational resources to resolve
concurrent conflicts. The resource requirements of CC are neither
consistent with SQL execution nor with data storage. Yet, most
existing cloud-native databases simply couple CC either with the
execution layer [20, 23, 28, 33, 52] or the storage layer [48, 71, 89],
which limits the performance and elasticity of these systems (more
details are discussed in Section 2).

Furthermore, the core of CC is resolving read-write conflicts
on data items without caring about data types. Such a general
applicability is often overlooked by existing databases, which are
typically designed for specific engines and data models.

Considering the principle of cloud-native design (i.e., decoupling
functionality), it is desirable to decouple CC from the database
system to maximize scalability and elasticity. By making CC an
independent service, it can be connected to multiple engines with
different data models (e.g., relational, KV, Graph). This approach
allows the CC service to be reused more easily and independently
upgraded and evolved, promoting development agility.

This paper presents Concurrency Control as a Service (CCaaS),
a concept aimed at decoupling CC into a separate service and build-
ing an execution-CC-storage three-layer database (as shown in
Figure 1). The system can dynamically adjust the resources of each
layer based on the workloads (e.g., computation, transaction pro-
cessing, and data storage), thereby improving elasticity and resource
utilization. Machines designed for specific scenarios (e.g., compute-
intensive, parallelism, storage-oriented) achieve better resource
utilization by being deployed in different layers. In this architec-
ture, execution engines independently execute transaction requests,
read data from storage, and send resolving requests to CCaaS for
concurrency control. Once conflicts are resolved, commit or abort
notifications are sent back to the execution layer, and committed
transaction logs are pushed to the storage layer for data updates.

Software-level disaggregation results in a significant perform-
ance reduction because processing over the network is slower than
on a local machine [61]. Adding a new layer increases latency, as
communication between execution and CC is switched from hard-
ware to network. To tackle this, we propose a Sharded Multi-Write
OCC (SM-OCC) algorithmwith asynchronous log push-downmech-
anism. Employing an optimistic execution strategy can reduce the
number of network communications between the execution and CC
layer, as execution engines no longer need to send locking requests.

3 5 7 9 11 13
Execution Time 43.84 32.47 20.986 15.21 14.21 11.11
Coordination Time93.16 95.03 97.914 103.79 138.79 175.89

3 5 7 9 11 13
Exec. Time 43.84 32.47 20.986 15.21 14.21 11.11
Coor. Time188.9547 218.5449 264.3011 312.4186 355.9652 400.2843

0
120
240
360
480

3 5 7 9 11 13

Ru
nt

im
e

(s
)

Execution Time Coordination Time

0
120
240
360
480

3 5 7 9 11 13

(a)Epoch-Based OCC (b)2PL+2PC
Nodes # Nodes

Figure 2: Breakdown of total processing time for distributed
transactions with a changing number of nodes.

Asynchronous logging further decreases latency by allowing trans-
actions to commit once logs are persisted in the CC layer, instead of
waiting for data updates in the storage layer. Additionally, the CC
layer encounters limited scalability when resolving transaction con-
current conflicts, which necessitates coordinated communication
among multiple nodes. To address this, we aim to use a determin-
istic decision-making method to minimize coordination overhead
between nodes to enhance the scalability.

As CC focuses on resolving read and write conflicts on data
items, the influence of data models can be mitigated by logically
abstracting data access. We design a set of interfaces, which only
expose data operation types to the CC layer, so that CCaaS can be
connected by multiple different engines with various data models.

In summary:
• We propose Concurrency Control as a Service (CCaaS), a novel

execution-CC-storage three-layer decoupled database architec-
ture. CC is decoupled from the database and works as a service,
enhancing system scalability, elasticity, and agility. (Section 3).

• We propose a shardedmulti-write optimistic concurrency control
algorithm (SM-OCC) with asynchronous logging to enhance the
scalability of CC and overall system performance (Section 4).

• We make several case studies on connecting existing execu-
tion/storage engines to CCaaS to demonstrate the benefits of
the three-layer architecture (Section 6).

2 THE CASE FOR CCAAS
2.1 Resource Requirements of CC
To study the resource requirements of distributed CC, we evaluate
the runtime of an epoch-based optimistic concurrency control al-
gorithm (epoch-based OCC) and a distributed two phase locking +
two phase commit (2PL+2PC) algorithm under a distributed envir-
onment. The atomicity and distributed consistency are validated
in an epoch-based manner in epoch-based OCC and ensured by
2PC in 2PL+2PC. We generate 10 million distributed transactions
using the YCSB-A benchmark, with each transaction containing 10
random operations (5 reads + 5 writes). We process these distrib-
uted transactions under different environment setups with different
numbers of nodes (3 to 13 nodes), where the data is evenly and
randomly distributed among nodes in each run. For more details,
please refer to the description of Competitors and the distributed
environment setup in Section 7. We record transaction execution
time and inter-node coordination time (i.e., waiting for messages
from other nodes).

Figure 2 shows the total time for execution and coordination.
No matter epoch-based OCC or 2PL+2PC, most time is spent on
inter-node coordination. The total time for transaction execution is

Concurrency Control

Data Storage

Log

(a) Coupling CC with Execution

N
etw

ork

Data
Read

Execution

Concurrency
Control Request

Log

(c) Decoupled CC

Execution

Concurrency Control

Data Storage

N
etw

ork
D

ata R
ead

(b) Coupling CC with Storage

Data
Read / Write
operations

N
etw

ork

Execution

Data Storage

Concurrency Control

Figure 3: Comparison of different decoupled databases.

steadily decreasing as the number of nodes increases, since more
nodes are involved in performing data operations. However, the
total time for inter-node coordination is increasing as the number
of nodes increases in 2PL+2PC. This is because more nodes could
introduce more inter-node coordination overhead. Even though the
total runtime is slightly decreasing as the number of nodes increases
from 3 to 9 in epoch-based OCC, adding more nodes (greater than 9)
can introduce significant coordination overhead and then outweigh
the benefits of more compute resources. According to these results,
we observe that CC often has limited scaling capabilities due to
coordination overhead, and the resource requirement of CC is not
consistent with that of transaction execution, where execution
prefers relatively more compute nodes but CC prefers fewer nodes.
This motivates us to decouple CC from database architecture and
make it as an independent service.

2.2 Limitations of Existing Decoupled DBs
Most existing decoupled databases overlook the specific require-
ments of CC and simply couple CC with transaction execution or
data storage, leading to performance and scalability limitations.

Databases like Aurora [20] and PolarDB [28] couple CC with
transaction execution, as illustrated in Figure 3a. Such a design
allows execution nodes to quickly process user requests and man-
age transaction conflicts. Adding more nodes increases comput-
ing resources, distributes the execution load, and prevents single-
node bottleneck. However, it also raises coordination overhead
by involving more nodes in conflict resolution, scaling too much
nodes will hurts the system performance (limited scalability of CC).
Moreover, coupling CC with execution limits system agility. Exe-
cution engines should be tailored to optimize execution plans for
various data models or hardware types. For instance, graph data-
bases like Nebula Graph [78] and Neo4j [12] support graph queries
such as sub-graph matching and shortest path. Vector databases
like Milvus [10] are built for similarity search, while GPU data-
bases like GDB [45], MapD [58], and GPUDB [84] are optimized
for parallel processing [68]. However, the core of CC algorithms
[44, 55, 57, 72, 81, 82, 88] are similar, i.e., handling concurrent read-
write or write-write conflicts. Coupling CCwith the execution layer
would incur redevelopment costs for resolving transaction conflicts.

Some other disaggregated databases, such as Solar [89] and TiDB
[48], couple CC with data storage, as depicted in Figure 3b. In
these systems, all persistent states reside in the storage layer, ren-
dering execution nodes stateless. The execution nodes are only
responsible for computation, forwarding data operations to storage.
This design enables dynamic adjustment of execution nodes to effi-
ciently handle varying workloads, optimizing resource utilization.
Conversely, storage nodes are stateful, and expanding them for

Interfaces for the execution layer:

Begin(ExecutionInfo)

TxnCommit(TxnID, RS, WS)

Lock(TxnID, Key[], Value[]
OpType[])

Commit(TxnID)
Abort(TxnID)

Interfaces for the storage layer:

LogPush(LogAdaptorID)

LogPull(LSN[])

Ø Try to lock requested keys, abort the transaction if lock
request fails.

Ø Commit the transaction, write logs and release locks in CCaaS.
Ø Abort the transaction, release locks in CCaaS.

Ø Validate the read and write sets and commit the transaction.

Ø Begin a transaction, generate TxnID and other metadata.

Ø Register a Callback at CCaaS, CCaaS uses it to actively push
 logs to the storage layer.
Ø Request the missed logs from CCaaS specified by LSNs for
 data recovery.

Figure 4: CCaaS Interfaces.

more capacity involves tasks like data re-sharding and migration,
making them less flexible to scale. Furthermore, storage nodes typ-
ically have large amounts of storage space but limited computing
resources, and storing large data volumes necessitates numerous
storage nodes. Coupling CC with storage makes CC hardly elast-
ically scalable. Managing CC with limited computation resources
provided by storage nodes could hurt performance.

3 SYSTEM ARCHITECTURE
Motivated by the aforementioned analysis, we build a separate CC
service for improving system scalability, elasticity, and agility.

3.1 CCaaS Interface

Execution Layer to CCaaS. Although data processing in exe-
cution engines varies significantly by data models, all have two
basic operations: read and write. Based on this, we define unified
interfaces that only expose the read and write operations to the
CC layer and hide the impact of different data models, for different
execution engines to interact with.

For OCC, after transaction execution, an execution engine gen-
erates a set of records, including read operations (i.e., readset)
and write operations (i.e., writeset). During CC conflict resolu-
tion, the readset and writeset are used to detect read-write conflict
and write-write conflict. Therefore, we define a unified interface,
TxnCommit(), where execution engines standardize transaction ex-
ecution results using a defined data structure (Unified Transaction
Read Set and Write Set, as shown in Figure 5) and send them to
CCaaS for conflict detection. On the other hand, for PCC, a set of
interfaces (Lock(), Commit(), and Abort(), as shown in Figure 4)
is provided for the execution layer to interact with CCaaS, ensuring
correct transaction processing with locks.

Notably, decoupling CC from existing compute-storage disag-
gregated databases does not change their ability to support existing
data operations. However, it encounters challenges depending on
the type of CC algorithms used in CCaaS. OCC is an ideal choice
for decoupling CC, as it requires only slight modifications to the
transaction commit process, which sends the read and write sets
of transactions to CCaaS for conflict resolution. Decoupling CC
with pessimistic mode (PCC) poses greater challenges and incurs
higher costs. Lock requests need to be sent to CCaaS for conflict
detection before accessing the data, introducing multiple network
round-trips in PCC mode. In cases where the data to be accessed is
unknown beforehand, such as accessing data via secondary indexes,
additional operations (e.g., an initial optimistic execution to identify

Adaptor

TxnCommit(rs, ws)

LogPush

SQL Executor

Storage

Data

log

CCaaS
Concurrency Control

Client
Get/Put

KV Proxy

Client
SQL

Client
GQL (Graph)

GQL Executor …

Client

Unified Transaction Read Set(rs) & Write Set(ws)

…

Log

Data

Commit/Abort

…

Figure 5: The overall architecture of CCaaS (OCC-based).

the data) are required. In this paper, we mainly focus on supporting
OCC as a first step toward achieving a decoupled CC service.

CCaaS to Storage Layer. Storage engines (e.g., columnar [21],
row-column hybrid [46], graph-native [35], and vector [75]) differ
significantly in their data structures and update interfaces, pre-
developing interfaces in CCaaS to update data for all storage en-
gines is impractical. Thus, we choose to transform the write
sets of transactions into logs and send the logs to the storage
layer. Meanwhile, a LogAdaptor is required for a storage engine
to provide a specification on how to transform the logs to the cor-
responding data with a specific schema (Section 4.4). We define a
Callback LogPush() that is registered at CCaaS, so that CCaaS will
use it to push logs to the storage layer actively, and the LogAd-
aptor receives these logs and converts them to data. Furthermore,
the storage layer relies on the LogPull() interface to verify the
completeness of the logs received according to the log sequence
number (LSN) and requests missed logs from CCaaS.

3.2 SystemWorkflow
By connecting execution and storage engines to CCaaS, we con-
struct an execution-CC-storage three-layer decoupled database.
The execution layer, which may consist of multiple engines with
different data models (e.g., KV, Relational, Graph), receives user
requests, executes computation, reads from the storage, and sends
unified CC requests to CCaaS for conflict resolution. It is notice-
able that for KV engines that lack transaction support, such as
LevelDB [9] and HBase [3], only get/put operations are supported
on a single item. An additional transaction proxy (e.g., the KV proxy
as shown in Figure 5) is required to provide transaction semantics
(e.g., BeginTransaction, Commit, Abort) for users to interact with.

When a transaction request arrives, the execution layer calls the
Begin() interface to initialize a transaction. In OCC, the execution
layer optimistically executes the transaction. For example, SQL
engine parses SQL statements (e.g., SELECT) and retrieves metadata
(e.g., table schema, data distribution) from storage to generate a
physical execution plan. Based on the plan, the engines read data
from the storage layer without locking (stale reads may occur)
and cache reads and writes locally. When transaction execution
is finished, the execution layer sends the read and write sets to
CCaaS for conflict detection. In PCC, CCaaS provides a distributed
lock manager for lock authorization and conflict detection. Unlike
OCC, PCC requires several interactions between the execution
engines and CCaaS. When the execution layer invokes the Commit()
interface in PCC or after resolving conflicts in OCC, CCaaS returns

CCaaS
…

T1:R(X,Z),W(X,Z) T2:R(X),W(X,Z) T3:R(Z),W(Y,Z)

Txn R/W(X) Read/Write Validate Write Set Transmit

T1,T2 W(X)

T3 W(Y)

T1 R(X) T1,T3 R(Z)

Write Conflict
Resolution

Storage

Execution

log log log

…

T1,T2 W(X)

T3 W(Y)

Node 1 (X,Y)

T2 R(X) Read Validation

Txn : Read & Write Sets

Data Replica

{T1(X)} {T2(X,Z)} {T1(Z),T3(Y,Z)}

Node 2 (X,Z) Node 3 (Y,Z)

{Txn(X)} Sharded Read and Write sets

T1,T2,T3 W(Z)T1,T2,T3 W(Z)

Figure 6: The architecture of CCaaS with SM-OCC.

Commit/Abort to the execution layer and pushes the updates in the
format of logs to the storage layer through the LogPush interface.

Since OCC requires much fewer interactions between the ex-
ecution layer and the CC layer, OCC is more suitable as the CC
protocol in CCaaS. To enhance CC scalability and performance, we
propose a Sharded Multi-Write OCC (SM-OCC) algorithm as
the default CC mechanism in CCaaS in Section 4.

4 CCAAS DESIGN
4.1 CCaaS Overview
Requirements. Since the CC layer operates as an independent
service, CCaaS should satisfy a set of specific requirements:

First, CCaaS must be highly available. Classic master-follower
architecture provides high availability but comes with several signi-
ficant drawbacks. 1) All the conflicts must be resolved in the master
node; a single-node bottleneck occurs when concurrent CC re-
quests increases, causing heavy resource contention. 2) The master-
follower architecture experiences temporary unavailable when the
master node goes down unexpectedly. The system necessitates a
pause for complete log replaying in the followers. To address this
challenge, we adopt aMulti-Master architecture [4, 34, 79], where
each master has the capacity to resolve transaction conflicts. CC
requests are distributed across multiple masters, preventing single-
point performance bottlenecks. If a master fails, other masters
continue providing CC services without interruption.

Second, while the use of a multi-master architecture can fully
utilize each replica and provide high availability, it incurs a write
amplification problem. The same set of writes needs to be processed
in every master to maintain replica consistency. To mitigate this,
Sharding strategies [32, 33, 65, 66, 70] can be used to enhance
the scalability, where each node handles only a subset of shards,
reducing the write amplification impact.

Third, the transaction execution should be Optimistic. Prior
studies have proposed various concurrency control algorithms,
including pessimistic [44, 57, 82], optimistic [56, 74, 81, 88], and
deterministic [47, 55, 63, 64, 72] methods, each with its own pros
and cons. Using a PCC algorithm in the CC layer involves send-
ing numerous lock requests from the execution layer, leading to
increased network traffic and transaction latency. Deterministic
algorithms provide strong consistency guarantees among multiple
replicas through deterministic execution, which reduces coordin-
ation overhead. However, they are not universally applicable, as
they struggle with interactive transactions and often require pre-
processing. To leverage the strengths of both optimistic and determ-
inistic approaches, we propose a combined method. Transactions

Node 2Node 1

Concurrency Control

W: X=5,Y=5 csn=1:1

W: X=7 csn=1:2

Local(T1)

Remote(T2)

T1 : R(Y=1), W(X=5,Y=5)

 Logging: Commit{T1}, Abort{T2}

 Write Conflict Resolution

Snapshot i

Snapshot i + 1

 Read Set Validation {T1.RS}

T2 : W(X=7)

Concurrency Control

W: X=7 csn=1:2

W: X=5,Y=5 csn=1:1

Local(T2)

Remote(T1)

 Logging: Commit{T1}, Abort{T2}

Snapshot i

Snapshot i +1

Read Set Validation {}

Note: csn = local_time : node_id

Tag Commit Info Tag Commit Info

W(X=5,Y=5)

W(X=7)

 Write Conflict Resolution

Figure 7: Conflict resolution within a data shard.

are optimistically executed in the execution layer. Once a transac-
tion is submitted to CCaaS, the multi-master nodes in the CC layer
deterministically compare the read and write sets according to
predefined rules. It is worth noting that deterministic comparisons
occur only during the validation phase. Users can still interact with
the database during transaction execution. Support for multi-round
and interactive transactions remains unaffected.

Fourth, Epoch-Based Committing suits the sharded archi-
tecture better. Typically, sharded systems use protocols like two-
phase commit (2PC) for transaction atomicity, which requires mul-
tiple round-trip acknowledgments, leading to significant network
overhead. The Epoch-Based Commit protocol [56] groups transac-
tions into epochs, using the entire epoch as the coordination unit
to minimize communication overhead. The original transaction-
granularity synchronization is transformed into epoch-granularity,
effectively reducing coordination overhead.

Given these, we propose a Sharded Multi-Write OCC (SM-
OCC) algorithm. Notably, the CC algorithm (e.g., SM-OCC) is
changeable. Lock-based algorithms like 2PL can also be used in
CCaaS to reduce the abort rate caused by using OCC. If the storage
layer supports multi-version data, MVCC can also be integrated
into CCaaS [41, 52]. Algorithms [30, 31, 38, 49, 76, 77] that leverage
RDMA to reduce network overhead can also be applied to CCaaS
to enhance performance. Users can choose an appropriate CC al-
gorithm that suits their workloads but must consider its impact on
system availability, scalability, and performance.

CCaaS Architecture with SM-OCC. In CCaaS, each node main-
tains several shards of committed transaction metadata. For ex-
ample, as shown in Figure 6, node 1 manages Shards 𝑋 and 𝑌 , node
2 manages Shards 𝑋 and 𝑍 . Identical replicas are deployed across
nodes, using the Raft [59] consensus protocol to synchronize up-
dates and ensure consistency. Each node acts as a master, allowing
nodes to manage transaction conflicts independently (e.g., both
node 1 and node 2 can resolve conflicts on Shard 𝑋). They receive
read and write sets (referred to as transactions) and partition them
based on a sharding strategy (e.g., range-based or hash-based), rout-
ing subtransactions to corresponding nodes for conflict resolution.
Since each node has the capacity for conflict resolution, subtransac-
tions can be routed to any one of the nodes (masters). For instance,
node 1 shards transaction𝑇 1 into𝑇 1(𝑋) and𝑇 1(𝑍), sending𝑇 1(𝑍)
to Node3. Alternatively, 𝑇1(𝑍) can also be send to node 2 since it
holds a replica of 𝑍 .

Node 2

Concurrency Control

Snap 2: T1(X = 5, Y = 5)

Storage
Log

If the storage only supports row
granularity updates, T3 reads Y
before the storage updates Y

Read Validation Failed
Snapshot: Y=5, T3 reads: Y=1
Abort T3

Key X Y Z

Value 5 1 -> 5 1

Read Set Validation {T3}

T3 : R(X=5, Y=1), W(Y=6)

Figure 8: Read validation when connecting to the storage
engines only supports row granularity updating.

CCaaS provides a certain degree of scalability and elasticity.
When scaling out for more computational resources, CCaaS as-
signs shard replicas to the new node. After synchronizing metadata
with peers, the new node begins resolving transaction conflicts.
When scaling in, nodes transfer the replicas to other nodes for
replacement. If the access rate of a shard increases, resulting in
higher resource contention on some nodes, CCaaS can share the
overhead of read-set validation by increasing the number of rep-
licas, or re-partition the shard to distribute the overhead of write-set
resolution. CCaaS only maintains the meta-information of com-
mitted transactions, and when re-sharding is performed, only the
meta-information managed by the CC nodes is redistributed. CCaaS
does not experience significant network bandwidth usage.

4.2 Sharded Multi-Write OCC
Multi-Write OCC. For convenience, we first introduce conflict
resolution within a shard and then present the difference with
sharding. The main workflow are shown in Figure 7. First of all,
CCaaS divides physical time into epochs (e.g., 10 ms per epoch)
and assigns incremental unique numbers to these epochs. Each
node collects read and write sets (transactions) and packs them at
epoch granularity based on the reception time. Upon receiving a
transaction, CCaaS node tags it with commit-info, which includes
the commit epoch number (CEN, indicating the epoch to which
the transaction belongs) and the commit sequence number (CSN,
identifying the transaction), for subsequent processing.

Nodes synchronize transactions with each other at epoch granu-
larity, and operate in an epoch manner: after transactions of the 𝑖
epoch have been executed, snapshot 𝑖 is generated and nodes start
the conflict resolution for transactions of epoch 𝑖 + 1 (e.g., 𝑇 1,𝑇 2 in
node 1 and node 2).

There are two types of conflicts between transactions: read-write
and write-write conflicts. The core procedure of SM-OCC is divided
into Read Set Validation andWrite Set Resolution phases.
Read Set Validation. Each node first independently validates the
read sets of locally received transactions based on snapshot 𝑖 . CCaaS
adopts Snapshot Isolation (SI) by default to validate the reads. When
CCaaS connects to storage engines with only row-level updates, an
additional read-error scenario may occur: a transaction may read
data partially modified by another transaction, beyond the conflicts
seen with traditional transaction-level updates. Figure 8 shows this
issue. This read error occurs when transaction𝑇 1 updates 𝑌 , which
has already been read by𝑇 3.𝑇 1 updates 𝑋 and 𝑌 to 5 and commits.
𝑇 3 reads 𝑋 as 5 and 𝑌 as 1. Despite no conflicts in the same epoch,
𝑇3 must be aborted to maintain atomicity (i.e., it should read all

Algorithm 1:Write Set Conflict Resolution
Input: a transaction 𝑡𝑥𝑛.{𝐶𝑆𝑁,𝑊𝑆 }.
Output: Commit or Abort

1 Function WriteSetResolution(Transaction 𝑡𝑥𝑛):
2 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝐶𝑜𝑚𝑚𝑖𝑡 ;
3 foreach 𝑟 in 𝑡𝑥𝑛.𝑊𝑆 do
4 𝑟𝑜𝑤 = GlobalWriteVersionMap.Find(𝑟 .key);
5 if 𝑟𝑜𝑤 is not 𝑁𝑢𝑙𝑙 and 𝑟 .𝑡𝑦𝑝𝑒 is 𝐼𝑛𝑠𝑒𝑟𝑡 then
6 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝐴𝑏𝑜𝑟𝑡 ; //row already exists.
7 else if 𝑟𝑜𝑤 is 𝑁𝑢𝑙𝑙 and 𝑟 .𝑡𝑦𝑝𝑒 is not 𝐼𝑛𝑠𝑒𝑟𝑡 then
8 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝐴𝑏𝑜𝑟𝑡 ; //deleted in previous epoch.
9 else

10 𝑟𝑒𝑠𝑢𝑙𝑡 = Compare(𝑟);
11 if 𝑟𝑒𝑠𝑢𝑙𝑡 is 𝐴𝑏𝑜𝑟𝑡 then
12 EpochAbortSet.Insert(𝑡𝑥𝑛.𝐶𝑆𝑁);
13 else
14 foreach 𝑟𝑜𝑤 in 𝑡𝑥𝑛.𝑊𝑆 do
15 GlobalWriteVersionMap.Set(𝑟𝑜𝑤);
16 return 𝑟𝑒𝑠𝑢𝑙𝑡 ;
17 Function Compare(Record 𝑟):
18 𝑟𝑜𝑤 = EpochWriteVersionMap.Find(𝑟 .key);
19 if 𝑟𝑜𝑤 is 𝑁𝑢𝑙𝑙 then
20 //row has not been updated in current epoch.
21 𝑟𝑜𝑤.𝐶𝑆𝑁 = 𝑡𝑥𝑛.𝐶𝑆𝑁 ;
22 EpochWriteVersionMap.Set(𝑟𝑜𝑤);
23 else if (𝑟𝑜𝑤.𝐶𝑆𝑁 > 𝑡𝑥𝑛.𝐶𝑆𝑁) then
24 //mark the transaction with CSN 𝑟𝑜𝑤.𝐶𝑆𝑁 as abort.
25 EpochAbortSet.Insert(𝑟𝑜𝑤.𝐶𝑆𝑁);
26 𝑟𝑜𝑤.𝐶𝑆𝑁 = 𝑡𝑥𝑛.𝐶𝑆𝑁 ;
27 EpochWriteVersionMap.Set(𝑟𝑜𝑤);
28 else
29 return 𝐴𝑏𝑜𝑟𝑡 ;
30 return𝐶𝑜𝑚𝑚𝑖𝑡 ;

or none of 𝑇 1’s updates). To ensure atomicity, transactions like 𝑇 3
that are aborted by checking snapshots.

Write Set Conflict Resolution. For transactions passing the read
validation phase, their write sets are sent to remote nodes (other
masters) to ensure data consistency between replicas. Once all local
write sets of epoch 𝑖+1 are sent and all peers’ write sets are received
(epoch synchronization), the write resolution phase begins.

Algorithm 1 is designed as deterministic to resolve write con-
flicts, allowing each node to resolve conflicts independently without
coordination, thus reducing communication overhead. Each node
uses a GlobalWriteVersionMap (snapshot) to record information of
committed transactions. For each epoch, each node uses an Epoch-
WriteVersionMap to track transaction write intents within the cur-
rent epoch and maintains an EpochAbortSet to store the CSNs of
transactions that should be aborted.

During the resolution phase, records (e.g., rows) in the write
set are traversed to detect conflicts. For each write operation, it is
essential to first check its validity: operations that attempt to update
or delete a non-existing row, or insert a row that already exists,
are not allowed as they conflict with committed transactions. To
verify this, the GlobalWriteVersionMap is first searched to determine
the row’s current state, ensuring the write operation can proceed
correctly at the storage layer (lines 5-8).

WS

T1.s1, T2.s1 T1.s2, T2.s2 … T2.s1

… T2T2.s3

…

Txn, Txn Sharded Txn/Remote Write Set Txn Shard/Global Abort Set

T1
(s1,s2)

T2
(s1,s2,s3)

T2.s2 , T1.s2

T2.s1, T1.s1T2.s3

Txn

T2.s1

Null

T2.s1

T2

T2

Shard Abort Set

Txn

Shard Abort Set

Figure 9: Transaction processing in shardedmulti-write OCC.

If no conflicts with committed transactions are found, the Compare
function (lines 17-30) is used to check for write conflicts within the
current epoch. In the function, the EpochWriteVersionMap is used
to detect if another transaction is attempting to update the same
row : 1) 𝑟𝑜𝑤 == 𝑁𝑈𝐿𝐿 means that no other transaction has tried to
update the row, so the current transaction can proceed. The updat-
ing intent with the transaction’s CSN is inserted into the map(lines
16-19). 2) Otherwise, a write-write conflict occurs, and a partial
order ‘≺’ between CSNs is used to determine which transaction
wins (lines 20-26). The CSN of a transaction is composed of local
time + node id. To avoid single-point bottlenecks caused by using a
central sequencer, the CSN is assigned using local timestamp with
node id.

Definition 1. 𝑇1 ‘≺’ 𝑇2 if ‘𝑇1.𝑙𝑜𝑐𝑎𝑙_𝑡𝑖𝑚𝑒 < 𝑇2.𝑙𝑜𝑐𝑎𝑙_𝑡𝑖𝑚𝑒’ or
‘𝑇 1.𝑙𝑜𝑐𝑎𝑙_𝑡𝑖𝑚𝑒 = 𝑇 2.𝑙𝑜𝑐𝑎𝑙_𝑡𝑖𝑚𝑒 & 𝑇 1.𝑛𝑜𝑑𝑒_𝑖𝑑 < 𝑇 2.𝑛𝑜𝑑𝑒_𝑖𝑑’.

Notably, no two transactions with the same CSN exist. The case
of 𝑟𝑜𝑤.𝐶𝑆𝑁 == 𝑡𝑥𝑛.𝐶𝑆𝑁 will never occur by using the local clock
with node ID to assign CSN. Moreover, the comparison rules are
changeable. The rules mentioned above lead to the fact that trans-
actions arriving on nodes with smaller local times (clock skew)
have a higher probability of winning, which may lead to inequit-
ies. For example, the comparison rules can be changed to commit
transactions based on polling, making the comparison a bit fairer.

After completing the conflict resolution of all transactions, each
node updates the GlobalWriteVersionMap, and writes logs. Then, a
new snapshot based on the current epoch is generated.

To reduce data replication overhead, each node can performs
write-set conflict resolution on local received transactions (local)
first and only send the write-sets of the winning transactions to
peer nodes. In this way, part of the write conflict resolution load can
be distributed among nodes (masters), improving CCaaS scalability.
Since the comparison rule is deterministic, transactions that lose in
local conflict detection must be aborted even if their write-sets are
sent to remote nodes. Performing local resolution and only sending
wining write-sets does not affect the correctness of CCaaS.
Sharding. Figure 9 shows the sharded architecture with three
nodes, forming a three-shard, two-replica setup. In this setup, each
CCaaS node manages a portion of the read and write conflicts (e.g.,
node 1 and node 3 are both responsible for shard 1, blue shard).
Transactions are sharded into subtransactions and rerouted to the
corresponding nodes. For instance, node 1 shards𝑇 1 into𝑇 1.𝑠1 and
𝑇 1.𝑠2. Since node 1 hosts replicas of shard 1 and shard 2, it validates
both sub-transactions locally. In contrast, node 2 sends 𝑇2.𝑠1 to
node 3, as node 2 does not maintain a replica of shard 1.

Once conflict resolution is completed, each node generates an
EpochAbortSet (Shard). Since each node only manages part of the
sub-transactions, the AbortSet on each node may do not account

for all transactions that need to be aborted. Therefore, an addi-
tional round of EpochAbortSet replication is needed to construct a
globally consistent abort set for the epoch to ensure transaction
atomicity. Then, each node aborts the relevant transactions based
on the globally abort set and logs the committed write sets.

4.3 Isolation
CCaaS uses an epoch-based mechanism and defaults to Snapshot
Isolation (SI). For storage engines with multi-version read support,
read set validation can be skipped to speed up conflict resolution.
At the start of a transaction, a start timestamp is recorded for valid-
ation. Upon commit, the transaction’s read and write sets, along
with the timestamp, are sent to CCaaS. CCaaS uses this timestamp
to determine the appropriate snapshot for validation. Unlike tradi-
tional methods of preventing phantom reads, such as using index
locks, CCaaS detects phantom reads based on the transaction’s exe-
cution result. If the read version does not match the snapshot, the
transaction is aborted.

CCaaS also supports Read Committed (RC) and Repeatable Read
(RR) levels when the storage engine supports transaction-level up-
dates. However, achieving Serializable (SER) isolation would require
global read-write dependency tracking across nodes and epochs,
introducing high network and computation overhead, which limits
scalability. Considering these performance concerns, CCaaS cur-
rently does not support this isolation level. A possible approach
is to build a read-write dependency graph and break dependency
cycles [40].

4.4 Log Pushing
As discussed in Section 3, LogAdaptor converts logs into data struc-
tures compatible with each storage engine. To minimize engine
modifications, the adaptor is preferably implemented in CCaaS. For
example, for HBase [3], we implement the adaptor in CCaaS, which
converts logs into structures (rowArray, rowOffset, and rowLength),
and then invoke HBase’s interface Put to update data. For en-
gines without direct data modification support, modifications to
the database are required. For instance, openGauss [13], which only
provides SQL interfaces for updates, the log adaptor is implemented
within openGauss, invoking internal update mechanisms to apply
changes.

During logging, CCaaS first writes logs to local disks for per-
sistence before pushing them to the storage layer and returning
resolution results to the execution layer. When using SM-OCC, an
asynchronous log-pushing mechanism can be used to reduce com-
mitting latency, where each node returns the resolution results to
the execution layer before finishing pushing the log. This does not
affect correctness, as CCaaSmaintains up-to-date meta-information
for conflict resolution. However, in write-intensive workloads, it
may increase transaction abort rates due to stale data reads.

4.5 Fault Recovery
Building a execution-CC-storage three layered database requires
careful handling of failures at each layer.
Failure in the execution layer. Execution nodes optimistically
read data and temporarily store updates in memory. If a node fails
before committing the transaction to CCaaS, the updates are lost,

but the other layers remains unaffected. The user can resubmit the
transaction to another active node. If a node fails while waiting
for the CC result, the user can connect to another node to check
if the data has been updated and confirm if the transaction was
committed. Since the transaction is already sent to CCaaS, it will
be correctly processed without effectiveness.

Failure in the CCaaS layer. CCaaS uses the Raft protocol [60] to
ensure fault tolerance. In SM-OCC, each shard master maintains
a Raft instance (Shard Raft) for to make a consensus on the status
of live masters, which can prevent permanent blocking (waiting
for the write sets from a failed master). Additionally, each node
maintains a Raft instance (Txn Raft) to replicate its locally received
transactions to other nodes for backup. Once Txn Raft replication
completes, nodes proceed with transaction sharding and conflict
resolution.

When a node fails, CCaaS takes different actions depending on
whether the node completed the write set exchange for the current
epoch. For simplicity, consider a non-sharded example: node 1 and
node 2 receive transactions 𝑇1 and 𝑇2 respectively, which have a
write-write conflict. If node 1 fails before𝑇 1’s write set is replicated,
node 2 produces a GlobalAbortSet without 𝑇1. During log push,
the newly elected Txn Raft leader checks the GlobalAbortSet and
pushes 𝑇1’s log, leading to inconsistencies as both 𝑇1 and 𝑇2 are
pushed to the storage layer. To prevent this, CCaaS re-executes the
CC for the current epoch if a failed node hasn’t completed write set
replication. The newly elected Txn Raft leader takes over conflict
resolution for the failed node and transmits the write sets of the
transactions received by the faulty node to other nodes.

In a sharded setup, incomplete EpochShardAbortSets from differ-
ent masters can result in an incorrect GlobalAbortSet, necessitating
epoch re-execution. When a node fails, new Raft leaders are elected.
The new Shard Raft leader takes response for the failed node. If
the write set transfer was completed before the failure, other shard
masters can process the complete write sets for the current shard
and produce a correct conflict resolution result (i.e., EpochShard-
AbortSet). If not, CCaaS will re-execute the current epoch with the
updated Raft leaders.

CCaaS ’s multi-master architecture ensures that individual node
failures do not affect availability. Execution nodes connected to
failed nodes can reroute to healthy ones, ensuring uninterrupted CC
service. When the failed node recovers, Raft leadership is restored,
and the system returns to normal. In cases where multiple nodes
in a Raft instance fail, conflict resolution cannot proceed without
achieving Raft consensus. CCaaS responds by re-sharding the data,
rebuilding Raft instances, and re-executing the epochs. Even if a
majority of CCaaS nodes fail due to network partitions or power
outages, the database system can still provide read-only service by
passing CCaaS. In such cases, no Raft leader is elected, log push-
down is terminated. Upon recovery, nodes first push their remaining
local logs. As all states stored in main memory are lost, the nodes
then catch up with the latest state by fetching Raft logs before
resuming service.

Failure in the storage layer. As described in Section 3, the storage
layer may include distributed systems like HBase [3] or standalone
databases like openGauss [13]. Distributed systems already provide

CCaaSHBase
RowKey Data

X 100->0

Y 0

GetData

Read Set T1:R (X=100, Y=0) T2:R(X=100) T3:R(X=0,Y=0)

Write Set T1:W (X=0, Y=100) T2:W(X=50) T3:W(X=50,Y=50)

TxnCommit(rs, ws)

Concurrency Control

T1: W(X=0,Y=100) cen=1, csn=2:1

T2: W(X=50) cen=1, csn=5:1(Abort)

Read Validate

T3: R(X=0,Y!=100) cen=2, csn=12:2(Abort)

HBase only supports row-
level atomicity updates,
when T3 reads, Y has not
been updated yet.

KV Proxy

Snapshot : X = 0, Y= 100

Figure 10: An example of empowering HBase with TP capab-
ility.

fault tolerance, so no additional mechanisms are needed. For stan-
dalone databases, multiple instances must be deployed, each with
a full replica (see Section 6.2). The failure of a majority of storage
nodes does not affect the storage layer’s ability to serve data. When
a node recovers, it pulls and replays logs from CCaaS or peer nodes.

5 DISCUSSION

Opportunities of Decoupling. Most database developers tend to
decouple database systems based on the disaggregation of storage
and computing provided by cloud providers, often prioritizing hard-
ware disaggregation while overlooking resource contention among
functional modules. Considering the principles of decoupling, the
performance implications of module coupling need to be considered.
For example, CC requires efficient handling of concurrent trans-
actions, while logging favors sequential I/O, and record storage
demands efficient random access. In serverless architectures, dif-
ferent query operators exhibit varying computational demands,
necessitating tailored resource allocation (e.g., parallel scanning vs.
high-frequency processing).

Another key aspect is functional generality. Decoupled function
modules can be designed as generalized services, e.g., CCaaS not
only resolves conflicts across execution nodes but also supports
heterogeneous execution engines, facilitating a heterogeneous exe-
cution layer (Section 6.3). Additionally, CCaaS ensures broad com-
patibility through log adaptors, allowing integration with various
storage engines (e.g., columnar, row-based, disk, or memory) based
on system requirements.

Trade-offs. Decoupling CC offers several benefits, and we demon-
strate several case studies in Section 6 for illustration. However, the
impact on system performance and maintenance complexity should
also be considered. Decoupling CC introduces additional network
communication overhead, and CCaaS is more suitable for OCC.
Decoupling CC in the case of using PCC algorithms tends to incur
higher overhead. Furthermore, decoupling may lead to increased
overhead due to the need to manage the three distinct layers. Each
layer will have its own maintenance requirements, which could in-
crease maintenance complexity. Additionally, in highly partitioned
workloads, coordination overhead across database nodes is min-
imal. The scalability of the system can not be limited by coupling
CC with other layers. In such situations, decoupling CC for higher
scalability is not necessary.

Full ReplicaStorage
Layer

CCaaS

Execution
Layer

Get
Local
Data

BU
S

Cached
Read&Write Set

Executor

StandaloneDB
Instance

Cached
Read&Write Set

Executor

BU
S

Cached
Read&Write Set

Executor

Full Replica Full Replica

StandaloneDB
Instance

StandaloneDB
Instance

Figure 11: An illustration of building a multi-master DB.

Implications to Existing Cloud-Native Databases. Existing
cloud-native databases adopt the Log-as-the-Database principle to
reduce network I/O. CCaaS and the SM-OCC algorithm can seam-
lessly integrate with the storage-disaggregated architectures [61],
introducing several key improvements: CCaaS enables traditional
master-follower architectures to evolve into multi-master architec-
tures, improving elasticity and availability. Execution nodes can
retain their local CC mechanisms while CCaaS enforces global con-
sistency, allowing for a flexible concurrency control design that
adapts to different workload characteristics. Furthermore, SM-OCC
employs row-level conflict resolution, improving parallelism com-
pared to page-level approaches [34, 79, 90]. With CCaaS, existing
databases can gain more flexibility in system architecture and per-
formance optimization.

6 CASE STUDIES
In this section, we demonstrate several advantages of CCaaS by
presenting some study cases.

6.1 Empowering NoSQL DBs with TP Capability
Most NoSQL databases [3, 9, 12, 78] do not provide transaction
semantics for better scaling. We offer a solution to add transaction
support without modifying the original logic. By connecting exist-
ing NoSQL databases to CCaaS, these databases can be empowered
with TP capability and ACID properties. For example, Figure 10
shows how we connect HBase, a distributed key-value store, to
CCaaS to enable TP. First, we implement a KV Proxy to provide
transaction semantics, linking it with both CCaaS and HBase. The
proxy provides Start, Get, Put, RollBack and Commit inter-
faces for transaction operations and executes user read/write re-
quests, and caches the data locally.When a transaction is committed,
the proxy sends the cached read and write sets to CCaaS. As de-
scribed in Section 4.4, a log adaptor in CCaaS uses HBase’s putRow
interface to update the data. We use HBase [3] as an example, and
CCaaS has also been connected to NoSQL DBs like LevelDB [9] and
NebulaGraph [78].

6.2 Making Standalone TP Distributed
The performance of standalone databases like openGauss [13], Post-
greSQL [15], and MySQL [11] is inherently constrained by the
scalability limits of single-node hardware. These systems struggle
under high TP workloads and face availability challenges due to
their single-node deployment model. By connecting multiple stan-
dalone instances to CCaaS, a multi-master distributed TP system
can be easily established (Figure 11). Each instance maintains a full
replica of data, independently processes users’ requests, and sends

Transaction 1:
Get Orders H1(0)
Update Products R1_Field1=130
Update Vertex on User set Ali.Count=10

HBase Orders openGauss
MOT

Products

RowKey Value

H1 0

ID Field1 Field2

R1 30 R1_2

Transaction 2:
Lookup on User where Name=Ali (Ali,30,10)
Select From Products .. R1_Field1 (30)
Set Orders ..

HBase
Proxy

openGauss
executor

Nebular
executor

TxnInfoCross-Model Proxy

subTxn Snapshot: ... R1_Field1=130 ...

Name Age Count

Ali 30 10

CCaaS
Concurrency Control

T1: st1, st2, st3 ... csn, cen

Read Set Validation {T2}

…

Nebula
Storage

User

…

LogData

Figure 12: Cross-model transaction processing with CCaaS.

CC requests to CCaaS to resolve transaction conflicts within and
between instances. Compared to the master-follower architecture,
this design can maximize resource utilization across all instances,
distribute the workload, and eliminate single-node bottlenecks. The
system also achieves high availability, as other instances can con-
tinue serving user requests when some fail.

6.3 Supporting Cross-Model Transactions
Modern business involves multiple data models (e.g., Relational, KV,
Graph, Vector) stored in various databases, often adopting different
storage engines for diverse data needs. Businesses may need a trans-
action with ACID properties to modify data in different databases.
We assume that a cross-model database is a database that can store,
index, and query data across multiple data models. However, ensur-
ing ACID transactions across these databases is challenging due to
heterogeneous query languages and the complexity of maintaining
consistency across multiple data stores [36, 41, 50, 85].

CCaaS provides a trivial solution by decoupling concurrency
control from data models, enabling cross-model transaction sup-
port. As shown in Figure 12, users send requests to a Cross-Model
Proxy, which forwards them to relevant execution engines, split-
ting a cross-model transaction into multiple single-model sub-
transactions. Once all single-model transactions are executed, the
Proxy sends commit commands to each execution engine to submit
single-model transactions to CCaaS. Meanwhile, it sends transaction
information to CCaaS, indicating which single-model transactions
belong to the same cross-model transaction. Upon receiving all
sub-transactions and metadata, CCaaS merges them and applies
the same conflict resolution algorithm, ensuring consistency across
heterogeneous storage engines.

Since different storage engines cannot directly communicate,
updates in a cross-model transaction cannot occur atomically across
engines. This may lead to inconsistent reads in new transactions
(e.g.,𝑇 2 in Figure 12), violating transaction atomicity. CCaaS detects
such anomalies by validating 𝑇2’s read set against snapshots and
aborts 𝑇2 if inconsistency is found. After resolving concurrency
conflicts, CCaaS returns the results to the Proxy and execution
nodes, then pushes logs to the respective storage engines. Since
cross-model transactions span multiple engines, each log entry is
labeled with an identifier specifying its target engine, ensuring
correct log propagation and consistency.

7 EVALUATION
This section evaluates the performance of CCaaS with SM-OCC.

Implementation. We implement CCaaS with ∼10,000 lines of
C++ code. We develop a KV Proxy as the KV execution engine
based on code [14] to support transaction semantics for LevelDB
[9] and HBase [3]. Since LevelDB is a standalone KV store, we
implement data access interfaces by using brpc [5] to enable remote
data access. OpenGauss [13] is a standalone database and only
exposes its query interfaces for users. We modify its source code
(less than 1,500 LoC), decouple the execution engines (openGauss-
execution) and the storage engines (openGuass-MOT [25]), and
build an openGauss-execution - CCaaS- openGauss-MOT database.
Similar to openGauss, we also modified NebulaGraph [78] source
code, enabling its execution engine (Nebula Graph) and storage
engine (Nebula Storage) to connect to CCaaS.
Physical Environment. Our experimental cluster is deployed on
Aliyun, and each layer consists of 3 nodes by default. Each node
(ecs.c6.4xlarge instance) is equipped with 16 vCPUs and 32 GB RAM
and runs Ubuntu 22.04 LTS. All nodes are connected with a local
area network of 5 Gbps. The default epoch length of CCaaS is 5ms.
We use openGauss-execution - CCaaS- openGauss-MOT database
as our default choice. Since openGauss-MOT [25] is an in-memory
store, we deployed it on a 16vCPU and 64GB RAM node to store a
large amount of data in memory.
Competitors. We implement an epoch-based OCC protocol and a
2PL+2PC protocol under the same codebase with CCaaS for compar-
ison. The data is evenly divided according to the number of nodes.
During the 2PC, the node, which receives the transaction requests
will participate in the transaction committing as the coordinator.

To compare the performance in the cloud as well as across data
models, we select TiDB [48], FoundationDB [87] and Epoxy [50]
as competitors. TiDB is a compute-storage disaggregated NewSQL
database with the storage layer handling concurrency control (CC).
It uses optimistic execution and Percolator [62] for transaction con-
flict resolution. FoundationDB (FDB) is a distributed key-value store
that decouples CC from logging and storage, building a transaction-
log-storage three-layer data store. FDB uses lock-free concurrency
management with a deterministic transaction order and imple-
ments Serializable Snapshot Isolation (SSI) by combining OCC with
MVCC. Epoxy is a middleware that enables connectivity to existing
databases and ensures ACID transactions across heterogeneous
storage systems by building a transaction metadata management
layer. While Epoxy and CCaaS have different objectives in the ar-
chitecture, both enhance distributed transaction processing. This
shared approach makes Epoxy a relevant competitor for evaluating
CCaaS’s performance in multi-engine and disaggregated databases.
Deployment. We follow the official documents [6, 16] to deploy
TiDB and FoundationDB. In TiDB, where the CC and storage layers
are coupled, we deploy the execution layer with 3 machines, each
with 16 vCPUs, and the storage layer with 3 machines, each with 32
vCPUs (16 for CC and 16 for storage). For FDB,We deploy each layer
with 3 machines, each with 16 vCPUs. We deploy Epoxy with 3
machines, each with 16 vCPUs. Since the execution and data storage
of the underlying databases (openGauss-MOT, LevelDB, Nebula)
are coupled together, we deployed them on 32 vCPUs machines. We
deployed stand-alone database instances on three nodes by default,
forming a multi-master architecture. Distributed databases (e.g.,
HBase) are also built on a three-node configuration. By default, we

Table 1: Summary of Workloads
Name Data Size Operation Type

YCSB [19] YCSB-A 1 M rows 10op/txn (50% read - 50% write)
YCSB-B 10op/txn (95% read - 5% write)

TPC-C [17] 100 warehouse 50% NewOrder - 50% Payment
LDBC-SNB [8] SF10 10op/txn (50% fetch - 50% insert)

Cross-Model
1 M rows (KV) 10op/txn (5 KV, 4 SQL, 1 Graph)
1 M rows (SQL) (KV, SQL: 80% read - 20% write)
SF10 (Graph) (Graph: 50% fetch - 50% insert)

configure 3 client servers for each database, with each client-server
hosting 32 clients that connect to the database and send transaction
requests. When the number of execution nodes is expanded, the
number of client servers scales correspondingly.

Workloads. Table 1 presents the workloads used in the evaluation.
To make YCSB a transactional workload, we wrap 10 operations
into transactions (txn) with a Zipfian access distribution. For the
TPC-C workload, we run a 50% NewOrder - 50% Payment mix to
focuse on conflict resolution. In LDBC-SNB, we wrap 10 random
fetch/insert operations into a transaction. Additionally, to evaluate
the cross-model transactions, we synthetically generate a multi-
model transactional workload.

7.1 Overall Performance
We compared CCaaSwith TiDB [48], FoundationDB [87] and Epoxy
[50]. Figure 13 reports the throughput and latency results. Since
FoundationDB does not support TPC-C, we only compare TiDB
and Epoxy for the TPC-C workload. For the YCSB-B workload,
CCaaS achieves 1.11-2.62 times higher throughput and 1.02-2.62
times lower latency than others. For the TPC-C workload, CCaaS
achieves 1.19-2.05 times higher throughput and 1.21-2.15 times
lower latency. Additionally, we evaluate TiDB, FDB, and CCaaS
under the YCSB-B workload by varying the number of nodes per
layer (from 3 to 7) and scaling the execution nodes while keeping
other layers constant. The results in Figure 14 demonstrate that
CCaaS achieves 1.31–3.11 times higher throughput.

The performance of CCaaS benefits from SM-OCC (Section 4.2),
allowing each node to resolve transaction conflicts independently.
Specifically, our epoch-based mechanism only requires replicating
write sets among the CCaaS nodes, which reduces network round-
trips (RTTs) caused by coordination. Additionally, the asynchronous
log push-down method reduces transaction latency caused by up-
dating data storage. The results can immediately be returned after
finishing conflict resolution. In CCaaS, committing a transaction
only requires 3 RTTs of network communication.

FoundationDB decouples logging from CC. Transaction com-
mit results cannot be returned until the corresponding logs are
replicated, requiring 4 RTTs and resulting in higher latency. TiDB
uses a variation of Percolator [62] for CC and Raft [60] to replic-
ate logs. Committing a transaction requires multiple RTTs (2PC
+ Raft, over 4.5 RTTs), increasing latency. Additionally, its pess-
imistic locking mechanism limits transaction concurrency. Epoxy
uses multiple standalone databases for data storage. The execution
time of a single statement in Epoxy is low. However, it needs to
use Epoxy Coordinator and Epoxy Shim as proxies to forward user
requests, maintain additional meta-information to ensure MVCC
across multiple storage engines, and use an optimized two-phase

0
5
10
15
20

0
5

10
15
20

Av
g

la
te

nc
y

(m
s)

Th
ro

ug
hp

ut

(k
tx

n/
s)

Throughput Abort Latency

0
10
20
30
40

0
100
200
300
400

TiDB Epoxy CCaaS

Av
g

la
te

nc
y

(m
s)

Th
ro

ug
hp

ut
(x

10
3

tp
m

C)

(a)YCSB (b)TPC-C

Figure 13: Experiment results with competitors.

0
10
20
30
40

3 5 7 9 11

Th
ro

ug
hp

ut
(k

tx
n/

s)

TiDB FDB CCaaS

3 5 7 9 11 3 5 7 9 11
Exec Nodes# Exec Nodes # Exec Nodes

(a) 3 Nodes (b) 5 Nodes (c) 7 Nodes
Figure 14: Comparison with existing disaggregated databases
under YCSB-B workload.

commit protocol to ensure that transactions are committed atom-
ically, introducing a certain amount of latency into the system.
Therefore, its performance is approximate to that of CCaaS using
SM-OCC for concurrency control.

7.2 Scalability
In this experiment, we evaluate the scaling performance when CC
is coupled with the execution engine and when scaling execution
nodes and CC nodes independently. The results in Figure 15 show
that the CC-execution decoupled system shows better throughput
performance than the CC-execution coupled system, with various
CC-execution node number combinations under both YCSB-A and
YCSB-B workloads. Especially under the YCSB-B workload, the
optimal performance is obtained with 17 execution nodes and 7
CC nodes. This verifies the necessity of independent scaling of CC,
which also requires much less cost. In addition, CCaaS shows better
performance under the read-intensive YCSB-B workload than under
the write-intensive YCSB-A workload. This is because large write
sets incur more network overhead in the CC-decoupled system,
reducing system performance.

7.3 Elasticity
To evaluate the elasticity improvements facilitated by CCaaS, we
test the system under dynamic workloads using a mix of TPC-H
and YCSB-B. TPC-H represents computationally heavy analytical
processing (AP) workloads handled by the execution layer, while
YCSB-B models transactional processing (TP) workloads requiring
conflict resolution in the CC layer. We dynamically adjust the num-
ber of AP and TP clients over time to simulate the dynamic AP-TP
mixed workloads, as shown at the bottom of Figure 16. In response
to these workload changes, we dynamically adjust the number of
nodes in the execution and CC layers and observe changes in TP
throughput, as shown in the upper part of Figure 16.

As shown in Figure 16, when the AP workload increases at 12s,
TP throughput drops due to CPU contention in the execution layer.
To mitigate this, we scale out the execution layer by adding 2 nodes
at 18s, quickly restoring TP throughput. At 45s, increasing TP cli-
ents makes the CC layer a bottleneck due to its limited capacity
for handling concurrent transactions. Scaling out the CC layer at

(a) YCSB-A (b) YCSB-B

Figure 15: Throughput when scaling the number of exe-
cution nodes and CC nodes in CCaaS.

0
10
20
30
40

Th
ro

ug
hp

ut
(k

Tx
n/

s) TP Throughput # TP clients # AP clients
- 2 CC Nodes- 2 Exec Nodes+ 2 Exec Nodes + 2 CC Nodes

0
10
20
30
40

0
100
200
300
400

0 20 40 60 80 100

AP

 C
lie

nt
s

#T
P

Cl
ie

nt
s

Elasped Time(s)

Figure 16: Elasticity performance under changing
workloads.

0
5
10
15
20

0
5

10
15
20

HBase CCaaS
(b)HBase

Throughput Abort Latency

0
5
10
15
20

0
5

10
15
20

Nebula CCaaS Av
g

la
te

nc
y

(m
s)

(c)Nebula

0
5
10
15
20

0
5

10
15
20

LevelDB CCaaS

Th
ro

ug
hp

ut
 (k

tx
n/

s)

(a)LevelDB

Figure 17: Performance of NoSQL DBs empowered with
ACID TP capability.

0
4
8
12
16
20

0
40
80

120
160
200

SA 1 3 5 7 9 11 13 15 Av
g

la
te

nc
y

(m
s)

Th
ro

ug
hp

ut
 (k

tx
n/

s)
openGauss Instances

Throughput Abort Latency

Figure 18: Performance of
serving standalone TP engines.

0
4
8
12
16

0
5

10
15
20

Av
g

la
te

nc
y

(m
s)

Th
ro

ug
hp

ut
 (k

tx
n/

s) Throughput Abort Latency

Figure 19: Performance of cross-
model (CM) transactions.

60s improves throughput but triggers re-sharding in CCaaS, caus-
ing a temporary 27% drop due to the redistribution of committed
transaction metadata. After 40s, the AP workload ends, reducing
computational demand. At 80s, we remove 2 execution nodes to
save costs, causing a slight TP throughput drop. At 100s, with fewer
TP clients, the CC layer is over-provisioned, so we remove 2 CC
nodes, with minimal performance impact. The results demonstrate
that the decoupled CC layer enables flexible resource allocation and
efficient response to workload changes. By allowing independent
scaling of the execution and CC layers, CCaaS enhances elasticity
while reducing costs.

Notably, CCaaS supports re-sharding without interrupting the
CC service. When re-sharding begins, CCaaS first requires that con-
flict resolution follows the new sharding policy in a pre-determined
number of epochs. During re-sharding, CC nodes transfer metadata
(snapshot and subsequent metadata updates) to designated nodes
while continuing conflict resolution under the original sharding
strategy. Once re-sharding is completed, CCaaS switches to the new
sharding policy and resumes normal processing.

7.4 Case Studies

Supporting TP for NoSQL DBs. To demonstrate the TP perform-
ance provided by CCaaS, we use the YCSB-B workload to evaluate
the throughput and the average latency of original NoSQL data-
bases and that of the CCaaS-enhanced ones. As shown in Figure 17,
by connecting to CCaaS, these NoSQL databases gain transaction
processing capability and show higher operation throughput and
lower latency due to the log asynchronous push-down method.

Building a Multi-Master Database. Figure 18 shows the TP’s ho-
rizontal scalability by connecting multiple openGauss instances to
CCaaS under the YCSB-B workload. When only one openGauss in-
stance is connected to CCaaS, the performance is lower, and latency
is higher compared to the standalone instance due to the additional
network I/O introduced by CCaaS. Decoupling allows modules to

scale independently to meet resource demands under varying work-
loads. However, when the workload is within the capacity of a
single instance, the benefits of decoupling are not realized, and the
network overhead becomes a burden. In contrast, as system load
increases, adding more execution nodes allows the workload to be
distributed across multiple nodes, avoiding single-point bottlenecks
and improving throughput.

Cross-Model Transactions. We use the cross-model workload
to test CCaaS and Epoxy. For comparison, we use the same data
to generate a single model transaction (10 op/txn) to test each
single-model storage engine. The weighted average throughput
and latency of these single-model transactions are also reported.
The results are shown in Figure 19. As shown, the KV storage en-
gine is the fastest since it does not incur overhead from statement
parsing, execution plan generation, etc. Due to the processing of
Graphs in the workload is simpler than that of SQL, SQL has the
lowest performance with the highest latency. Because CCaaS needs
to collect all single-model sub-transactions, the performance of
multi-model transactions is determined by the slowest engine. In
supporting for cross-model transaction processing, Epoxy demon-
strates performance that approximates that of CCaaS.

7.5 Varying Workloads
We evaluate the performance of CCaaS under zipfian and uniform
access distributions using YCSB workloads. As shown in Figure 20,
a high write rate with Zipfian distribution will cause more trans-
actions to be aborted. This is because the SM-OCC only commits
one transaction when multiple transactions update the same record.
Under the Zipfian distribution, transactions are easier to access
the same records, causing a higher abort rate. Comparing system
performance under YCSB-A and B workloads, CCaaS has better per-
formance under YCSB-B workloads. This is because under YCSB-A
load, transactions have more write operations, causing higher net-
work overhead in CCaaS and reducing system performance.

0
4
8
12
16
20

0
5

10
15
20
25

YCSB-A
zipfian

YCSB-A
uniform

YCSB-B
zipfian

YCSB-B
uniform

Av
g

la
te

nc
y

(m
s)

Th
ro

ug
hp

ut
 (k

tx
n/

s)

Abort Commit Latency

Figure 20: Performance under
different contention.

0
5
10
15
20
25

0
5

10
15
20
25

1 3 5 7 10 20 30 40 50 M
es

sa
ge

 S
iz(

KB
/t

xn
)

Th
ro

ug
hp

ut
(k

tx
n/

s)

Operations per Transaction

YCSB-A YCSB-B
YCSB-A YCSB-B

Throughput
Message Size

Figure 21: Performance when
varying number of operations.

3.2

3.2

2.5

2.3

2.5

2.5 2.4

async.

sync.

(ms)

Execution Batching CC Logging

Figure 22: Runtime break-
down (sync./async. logging).

0
10
20
30
40
50

0
5

10
15
20
25

X+0 X+10 X+20 X+30

Av
g

la
te

nc
y(

m
s)

Th
ro

ug
hp

ut
(k

tx
n/

s)

Elasped Time(s)

Throughput Latency
Failure Recover Re-join

Figure 23: Performance vari-
ation when system recovery.

Additionally, we adjust the operation count of transactions to
evaluate system performance with varying read-write set sizes.
Figure 21 shows that the system works well with low operation
numbers. Adding more operations lead to longer execution times
and larger message sizes, reducing throughput. CCaaS performs
better under the read-intensive workload (YCSB-B) because it val-
idates reads by checking metadata in the read set (e.g., CSN), which
increases slowly. In the write-intensive workload (YCSB-A), addi-
tional write operations significantly increase the message size, and
increasing write operations increases transmission and replication
overhead in CCaaS. The write sets replication consume a lot of
computation resources, causing performance degradation.

7.6 Sync. Logging vs. Async. Logging
As shown in Figure 22, we perform a breakdown analysis for a single
transaction under the YCSB-A workload. Since YCSB-A is a write-
intensive workload, the log push-down takes 2.4 ms on average per
transaction. In comparison, the log push down in the read-intensive
workload YCSB-B is less than 1ms (not shown in Figure 22 due to
space constraints). When using asynchronous logging, the overall
latency is reduced. However, since more transactions are processed
per epoch, the batching and CC phases take longer.

7.7 Fault Recovery
To evaluate performance under failure, we manually shut down a
CCaaS node and see how CCaaS acts. Figure 23 shows the changes
in throughput and latency. There is a temporary performance drop
following a node failure at 16 seconds, as active nodes wait for write
sets from the failed node. CCaaS quickly responds to this failure
due to Raft-based membership management (with a 500 ms timeout
setup). After changing the leader of the Raft instances (Section 4.5),
CCaaS resumes providing service. With only two nodes in CCaaS,
overall throughput slightly decreases and latency increases due to
the increased load on each node. After the crashed node recovers (at
26 seconds), the Raft-based membership management notices and
adds the recovery node back to the cluster, and then the throughput
and latency return to normal.

8 RELATEDWORK

Decouple TransactionManagementComponent. Earlier works
[33, 39, 51, 53, 54, 67] introduce transaction components (TM) to
handle conflicts via virtual resources. Deuteronomy [51] uses TM
to provide transaction processing (TP) capabilities for KV stores.
In [39], TM is used to detect transaction dependencies and release
locks early during 2PC. Omid [26, 41, 67] and Tell [52] use TM to
implement multi-version concurrency control (MVCC), improving

transaction throughput. DIBS [42] implements the TM with pre-
dicate locking to guarantee transaction isolation. These systems
generally focus on enabling TP for existing data stores, using cent-
ralized TM to resolve conflicts. FoundationDB [87] decouple the
TM based on the roles (coordinator and participant) in the 2PC
for better scalability. CCaaS follows the principle of cloud-native
design to decouple the CC layer, tries to use a multi-master archi-
tecture to improve the scalability of CC, and supports processing
with multiple models by abstracting the CC from the data models.

Cross-Engine Transaction. Conventionally, cross-data store
transactions are implemented through a distributed transaction
protocol such as X/Open XA [69] or WS-TX [18]. Such protocols
use two-phase commit to ensure atomicity. Cherry Garcia [37] and
Omid [41] provide ACID transactions across multiple key-value
stores but only support key-value operations. Skeena [85] proposes
a holistic approach to cross-engine transactions and uses an atomic
commit protocol to efficiently ensure correctness and isolation.
Epoxy [50] provides ACID transactions across heterogeneous data
stores by using an additional MVCC control panel, but it needs a
primary transactional DBMS as a transaction coordinator for trans-
action processing. In comparison, CCaaS makes the CC module an
independent service, allowing it to be connected by various data
stores concurrently. By maintaining transaction meta-information
and resolving conflicts at epoch-granularity, CCaaS allows the sys-
tem to connect to multiple storage engines simultaneously.

9 CONCLUSION
This paper proposes Concurrency Control as a Service (CCaaS), an
execution-CC-storage three-layer database architecture. We demon-
strate that databases can be revolutionized with CCaaS: NoSQL
databases can gain ACID TP ability, standalone TP databases can
support distributed transactions with horizontal scalability, and
cross-model transactions can be realized. Our evaluation results
show that CCaaS outperforms existing disaggregated databases, in-
cluding TiDB and FoundationDB, and exhibits a certain degree of
scalability of transaction processing. CC, as an independent service,
has potential that has not been fully developed. Our future work
will focus on optimizations like the support of more isolation levels
and consistency choices, and even cross-device CC service.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program of
China (2023YFB4503601), the National Natural Science Foundation
of China (62461146205), the Distinguished Youth Foundation of
Liaoning Province (2024021148-JH3/501), and Huawei. Yanfeng
Zhang and Zeshun Peng are the corresponding authors.

REFERENCES
[1] . 2024. AlloyDB for PostgreSQL. https://cloud.google.com/alloydb?hl=en.
[2] . 2024. Amazon S3. https://aws.amazon.com/s3/.
[3] . 2024. Apache HBase. https://hbase.apache.org/.
[4] . 2024. AWS Aurora Multi-Master. https://d1.awsstatic.com/events/reinvent/

2019/REPEAT_1_Amazon_Aurora_Multi-Master_Scaling_out_database_
write_performance_DAT404-R1.pdf.

[5] . 2024. bRPC: An industrial-grade RPC framework. https://brpc.apache.org/.
[6] . 2024. FoundationDB Official Documents. https://apple.github.io/foundationdb/

configuration.html.
[7] . 2024. Google Cloud Storage. https://cloud.google.com/storage?hl=en.
[8] . 2024. LDBC-SNB. https://ldbcouncil.org/benchmarks/snb/.
[9] . 2024. LevelDB. https://github.com/google/leveldb.
[10] . 2024. Milvus. https://milvus.io/.
[11] . 2024. MySQL. https://dev.mysql.com/.
[12] . 2024. Neo4j. https://neo4j.com/.
[13] . 2024. openGauss. r̆lhttps://opengauss.org/.
[14] . 2024. PingCAP Go-YCSB. https://github.com/pingcap/go-ycsb.
[15] . 2024. PostgreSQL. https://www.postgresql.org/.
[16] . 2024. TiDB Official Documents. https://docs.pingcap.com/tidb/stable/hardware-

and-software-requirements.
[17] . 2024. TPC-C. https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-

c_v5.11.0.pdf.
[18] . 2024. Web Services Atomic Transaction. https://docs.oasis-open.org/ws-tx/

wsat/2006/06.
[19] . 2024. YCSB. https://github.com/brianfrankcooper/YCSB/.
[20] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez,

M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R.
Yan, and S. Zdonik. 2003. Aurora: a data stream management system. In Proceed-
ings of the 2003 ACM SIGMOD International Conference on Management of Data
(San Diego, California) (SIGMOD ’03). Association for Computing Machinery,
New York, NY, USA, 666. https://doi.org/10.1145/872757.872855

[21] Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. 2008. Column-stores vs.
row-stores: how different are they really?. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (Vancouver, Canada) (SIGMOD
’08). Association for Computing Machinery, New York, NY, USA, 967–980. https:
//doi.org/10.1145/1376616.1376712

[22] Nuha Alshuqayran, Nour Ali, and Roger Evans. 2016. A systematic mapping
study in microservice architecture. In 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications (SOCA). IEEE, SOCA, 44–51.

[23] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernan-
dez Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam,
Umar Farooq Minhas, Naveen Prakash, Vijendra Purohit, Hugh Qu, Chait-
anya Sreenivas Ravella, Krystyna Reisteter, Sheetal Shrotri, Dixin Tang, and
Vikram Wakade. 2019. Socrates: The New SQL Server in the Cloud. In Proceed-
ings of the 2019 International Conference on Management of Data (Amsterdam,
Netherlands) (SIGMOD ’19). Association for Computing Machinery, New York,
NY, USA, 1743–1756. https://doi.org/10.1145/3299869.3314047

[24] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh Chain-
ani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish Gupta,
Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy,
Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Poly-
chroniou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram Sub-
ramanian, and Doug Terry. 2022. Amazon Redshift Re-Invented. In Proceedings
of the 2022 International Conference on Management of Data (Philadelphia, PA,
USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA,
2205–2217. https://doi.org/10.1145/3514221.3526045

[25] Hillel Avni, Alisher Aliev, Oren Amor, Aharon Avitzur, Ilan Bronshtein, Eli Ginot,
Shay Goikhman, Eliezer Levy, Idan Levy, Fuyang Lu, et al. 2020. Industrial-
strength OLTP using main memory and many cores. Proceedings of the VLDB
Endowment 13, 12 (2020), 3099–3111.

[26] Edward Bortnikov, Eshcar Hillel, Idit Keidar, Ivan Kelly, Matthieu Morel, Sameer
Paranjpye, Francisco Perez-Sorrosal, and Ohad Shacham. 2017. Omid, reloaded:
scalable and highly-available transaction processing. In 15th USENIX Conference
on File and Storage Technologies (FAST 17). 167–180.

[27] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song Zheng, Yuhui
Wang, and Guoqing Ma. 2018. PolarFS: an ultra-low latency and failure resilient
distributed file system for shared storage cloud database. Proceedings of the VLDB
Endowment 11, 12 (2018), 1849–1862.

[28] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu,
Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang,
Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei Zhao,
Yusong Gao, Songlu Cai, Yunyang Zhang, and Jiawang Tong. 2021. PolarDB
Serverless: A Cloud Native Database for Disaggregated Data Centers. In Pro-
ceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD ’21). Association for Computing Machinery, New York,
NY, USA, 2477–2489. https://doi.org/10.1145/3448016.3457560

[29] Tomas Cerny, Michael J Donahoo, and Michal Trnka. 2018. Contextual un-
derstanding of microservice architecture: current and future directions. ACM
SIGAPP Applied Computing Review 17, 4 (2018), 29–45.

[30] Haibo Chen, Rong Chen, Xingda Wei, Jiaxin Shi, Yanzhe Chen, Zhaoguo Wang,
Binyu Zang, and Haibing Guan. 2017. Fast In-Memory Transaction Processing
Using RDMA and HTM. ACM Trans. Comput. Syst. 35, 1, Article 3 (July 2017),
37 pages. https://doi.org/10.1145/3092701

[31] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen. 2016. Fast
and general distributed transactions using RDMA and HTM. In Proceedings of the
Eleventh European Conference on Computer Systems (London, United Kingdom)
(EuroSys ’16). Association for Computing Machinery, New York, NY, USA, Article
26, 17 pages. https://doi.org/10.1145/2901318.2901349

[32] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: a
workload-driven approach to database replication and partitioning. Proc. VLDB
Endow. 3, 1–2 (sep 2010), 48–57. https://doi.org/10.14778/1920841.1920853

[33] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2013. Elastras: An elastic,
scalable, and self-managing transactional database for the cloud. ACM Transac-
tions on Database Systems (TODS) 38, 1 (2013), 1–45.

[34] Alex Depoutovitch, Chong Chen, Per-Ake Larson, Jack Ng, Shu Lin, Guanzhu
Xiong, Paul Lee, Emad Boctor, Samiao Ren, Lengdong Wu, Yuchen Zhang, and
Calvin Sun. 2023. Taurus MM: Bringing Multi-Master to the Cloud. Proc. VLDB
Endow. 16, 12 (aug 2023), 3488–3500. https://doi.org/10.14778/3611540.3611542

[35] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor Lee. 2019. Tigergraph: A native
MPP graph database. arXiv preprint arXiv:1901.08248 (2019).

[36] Akon Dey, Alan Fekete, and Uwe Röhm. 2015. Scalable distributed transactions
across heterogeneous stores. In 2015 IEEE 31st International Conference on Data
Engineering. IEEE, 125–136.

[37] Akon Dey, Alan Fekete, and Uwe Röhm. 2015. Scalable distributed transactions
across heterogeneous stores. In 2015 IEEE 31st International Conference on Data
Engineering. IEEE, 125–136.

[38] Jingwen Du, Fang Wang, Dan Feng, Changchen Gan, Yuchao Cao, Xiaomin Zou,
and Fan Li. 2023. Fast One-Sided RDMA-Based State Machine Replication for
Disaggregated Memory. ACM Trans. Archit. Code Optim. 20, 2, Article 31 (April
2023), 25 pages. https://doi.org/10.1145/3587096

[39] Tamer Eldeeb and Phil Bernstein. 2016. Transactions for Distributed Actors in the
Cloud. Technical Report MSR-TR-2016-1001. https://www.microsoft.com/en-
us/research/publication/transactions-distributed-actors-cloud-2/

[40] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis
Shasha. 2005. Making Snapshot Isolation Serializable. ACM Trans. Database Syst.
30, 2 (jun 2005), 492–528. https://doi.org/10.1145/1071610.1071615

[41] Daniel Gomez Ferro, Flavio Junqueira, Ivan Kelly, Benjamin Reed, and Maysam
Yabandeh. 2014. Omid: Lock-free transactional support for distributed data stores.
In 2014 IEEE 30th International Conference on Data Engineering. IEEE, 676–687.

[42] Kevin P Gaffney, Robert Claus, and Jignesh M Patel. 2021. Database isolation by
scheduling. Proceedings of the VLDB Endowment 14, 9 (2021).

[43] Zhihan Guo, Xinyu Zeng, Kan Wu, Wuh-Chwen Hwang, Ziwei Ren, Xiangyao
Yu, Mahesh Balakrishnan, and Philip A. Bernstein. 2022. Cornus: atomic commit
for a cloud DBMS with storage disaggregation. Proc. VLDB Endow. 16, 2 (oct
2022), 379–392. https://doi.org/10.14778/3565816.3565837

[44] Theo Härder. 1984. Observations on optimistic concurrency control schemes.
Information Systems 9, 2 (1984), 111–120.

[45] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K Govindaraju, Qiong Luo,
and Pedro V Sander. 2009. Relational query coprocessing on graphics processors.
ACM Transactions on Database Systems (TODS) 34, 4 (2009), 1–39.

[46] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong Zhang,
and Zhiwei Xu. 2011. RCFile: A fast and space-efficient data placement struc-
ture in MapReduce-based warehouse systems. In 2011 IEEE 27th International
Conference on Data Engineering. 1199–1208.

[47] Joshua Hildred, Michael Abebe, and Khuzaima Daudjee. 2023. Caerus: Low-
Latency Distributed Transactions for Geo-Replicated Systems. Proc. VLDB Endow.
17, 3 (nov 2023), 469–482. https://doi.org/10.14778/3632093.3632109

[48] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[49] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST: fast, scalable
and simple distributed transactions with two-sided (RDMA) datagram RPCs. In
Proceedings of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation (Savannah, GA, USA) (OSDI’16). USENIX Association, USA, 185–201.

[50] Peter Kraft, Qian Li, Xinjing Zhou, Peter Bailis, Michael Stonebraker, Matei
Zaharia, and Xiangyao Yu. 2023. Epoxy: ACID Transactions Across Diverse Data
Stores. Proceedings of the VLDB Endowment 16, 11 (2023), 2742–2754.

[51] Justin Levandoski, David Lomet, and Kevin Keliang Zhao. 2011. Deuteronomy:
Transaction support for cloud data. In Conference on innovative data systems
research (CIDR).

[52] Simon Loesing, Markus Pilman, Thomas Etter, and Donald Kossmann. 2015. On
the Design and Scalability of Distributed Shared-Data Databases. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data (Mel-
bourne, Victoria, Australia) (SIGMOD ’15). Association for ComputingMachinery,

https://cloud.google.com/alloydb?hl=en
https://aws.amazon.com/s3/
https://hbase.apache.org/
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Amazon_Aurora_Multi-Master_Scaling_out_database_write_performance_DAT404-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Amazon_Aurora_Multi-Master_Scaling_out_database_write_performance_DAT404-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Amazon_Aurora_Multi-Master_Scaling_out_database_write_performance_DAT404-R1.pdf
https://brpc.apache.org/
https://apple.github.io/foundationdb/configuration.html
https://apple.github.io/foundationdb/configuration.html
https://cloud.google.com/storage?hl=en
https://ldbcouncil.org/benchmarks/snb/
https://github.com/google/leveldb
https://milvus.io/
https://dev.mysql.com/
https://neo4j.com/
https://github.com/pingcap/go-ycsb
https://www.postgresql.org/
https://docs.pingcap.com/tidb/stable/hardware-and-software-requirements
https://docs.pingcap.com/tidb/stable/hardware-and-software-requirements
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://docs.oasis-open.org/ws-tx/wsat/2006/06
https://docs.oasis-open.org/ws-tx/wsat/2006/06
https://github.com/brianfrankcooper/YCSB/
https://doi.org/10.1145/872757.872855
https://doi.org/10.1145/1376616.1376712
https://doi.org/10.1145/1376616.1376712
https://doi.org/10.1145/3299869.3314047
https://doi.org/10.1145/3514221.3526045
https://doi.org/10.1145/3448016.3457560
https://doi.org/10.1145/3092701
https://doi.org/10.1145/2901318.2901349
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.14778/3611540.3611542
https://doi.org/10.1145/3587096
https://www.microsoft.com/en-us/research/publication/transactions-distributed-actors-cloud-2/
https://www.microsoft.com/en-us/research/publication/transactions-distributed-actors-cloud-2/
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.14778/3565816.3565837
https://doi.org/10.14778/3632093.3632109

New York, NY, USA, 663–676. https://doi.org/10.1145/2723372.2751519
[53] David Lomet, Alan Fekete, Gerhard Weikum, and Mike Zwilling. 2009. Unbund-

ling transaction services in the cloud. arXiv preprint arXiv:0909.1768 (2009).
[54] David Lomet and Mohamed F. Mokbel. 2009. Locking key ranges with unbundled

transaction services. Proceedings of the VLDB Endowment 2, 1 (aug 2009), 265–276.
https://doi.org/10.14778/1687627.1687658

[55] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: a fast and practical
deterministic OLTP database. Proceedings of the VLDB Endowment 13, 12 (jul
2020), 2047–2060. https://doi.org/10.14778/3407790.3407808

[56] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2021. Epoch-based commit and
replication in distributed OLTP databases. Proceedings of the VLDB Endowment
14, 5 (jan 2021), 743–756. https://doi.org/10.14778/3446095.3446098

[57] Yi Lu, Xiangyao Yu, and Samuel Madden. 2019. STAR: scaling transactions
through asymmetric replication. Proceedings of the VLDB Endowment 12, 11 (jul
2019), 1316–1329. https://doi.org/10.14778/3342263.3342270

[58] Todd Mostak. 2013. An overview of MapD (massively parallel database). White
paper. Massachusetts Institute of Technology (2013).

[59] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In 2014 USENIX Annual Technical Conference (USENIX
ATC 14). USENIX Association, Philadelphia, PA, 305–319.

[60] Diego Ongaro and John Ousterhout. 2014. In search of an understandable
consensus algorithm. In 2014 USENIX annual technical conference (USENIX ATC
14). 305–319.

[61] Xi Pang and Jianguo Wang. 2024. Understanding the Performance Implications
of the Design Principles in Storage-Disaggregated Databases. Proc. ACM Manag.
Data 2, 3, Article 180 (May 2024), 26 pages. https://doi.org/10.1145/3654983

[62] Daniel Peng and Frank Dabek. 2010. Large-scale incremental processing us-
ing distributed transactions and notifications. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (Vancouver, BC,
Canada) (OSDI’10). USENIX Association, USA, 251–264.

[63] Thamir Qadah, Suyash Gupta, and Mohammad Sadoghi. 2020. Q-Store: Distrib-
uted, Multi-partition Transactions via Queue-oriented Execution and Commu-
nication.. In EDBT. 73–84.

[64] Kun Ren, Dennis Li, and Daniel J. Abadi. 2019. SLOG: serializable, low-latency,
geo-replicated transactions. Proc. VLDB Endow. 12, 11 (jul 2019), 1747–1761.
https://doi.org/10.14778/3342263.3342647

[65] Marco Serafini, Essam Mansour, Ashraf Aboulnaga, Kenneth Salem, Taha Rafiq,
and Umar Farooq Minhas. 2014. Accordion: elastic scalability for database
systems supporting distributed transactions. Proc. VLDB Endow. 7, 12 (aug 2014),
1035–1046. https://doi.org/10.14778/2732977.2732979

[66] Marco Serafini, Rebecca Taft, Aaron J. Elmore, Andrew Pavlo, Ashraf Aboulnaga,
and Michael Stonebraker. 2016. Clay: fine-grained adaptive partitioning for
general database schemas. Proc. VLDB Endow. 10, 4 (nov 2016), 445–456. https:
//doi.org/10.14778/3025111.3025125

[67] Ohad Shacham, Yonatan Gottesman, Aran Bergman, Edward Bortnikov, Eshcar
Hillel, and Idit Keidar. 2018. Taking omid to the clouds: Fast, scalable transactions
for real-time cloud analytics. Proceedings of the VLDB Endowment 11, 12 (2018),
1795–1808.

[68] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Funda-
mental Performance Characteristics of GPUs and CPUs for Database Analytics. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1617–1632. https://doi.org/10.1145/3318464.3380595

[69] CAE Specification. 1991. Distributed Transaction Processing: the XA Specification.
X/Open.

[70] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-store: fine-
grained elastic partitioning for distributed transaction processing systems. Proc.
VLDB Endow. 8, 3 (nov 2014), 245–256. https://doi.org/10.14778/2735508.2735514

[71] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1493–1509. https://doi.org/10.1145/3318464.3386134

[72] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J. Abadi. 2012. Calvin: fast distributed transactions for par-
titioned database systems. In Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data (Scottsdale, Arizona, USA) (SIG-
MOD ’12). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/2213836.2213838

[73] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: a
warehousing solution over a map-reduce framework. Proceedings of the VLDB
Endowment 2, 2 (2009), 1626–1629.

[74] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In Proceedings of

the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,
USA, 18–32. https://doi.org/10.1145/2517349.2522713

[75] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li,
Xiangyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing
Yuan, Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang,
Yihua Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A
Purpose-Built Vector Data Management System. In Proceedings of the 2021 In-
ternational Conference on Management of Data (Virtual Event, China) (SIGMOD
’21). Association for Computing Machinery, New York, NY, USA, 2614–2627.
https://doi.org/10.1145/3448016.3457550

[76] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Deconstructing
RDMA-enabled distributed transactions: hybrid is better. In Proceedings of the 13th
USENIX Conference on Operating Systems Design and Implementation (Carlsbad,
CA, USA) (OSDI’18). USENIX Association, USA, 233–251.

[77] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast
in-memory transaction processing using RDMA and HTM. In Proceedings of the
25th Symposium on Operating Systems Principles (Monterey, California) (SOSP
’15). Association for Computing Machinery, New York, NY, USA, 87–104. https:
//doi.org/10.1145/2815400.2815419

[78] Min Wu, Xinglu Yi, Hui Yu, Yu Liu, and Yujue Wang. 2022. Nebula Graph: An
open source distributed graph database. arXiv preprint arXiv:2206.07278 (2022).

[79] Xinjun Yang, Yingqiang Zhang, Hao Chen, Feifei Li, Bo Wang, Jing Fang, Chuan
Sun, and Yuhui Wang. 2024. PolarDB-MP: A Multi-Primary Cloud-Native
Database via Disaggregated Shared Memory. In Companion of the 2024 Inter-
national Conference on Management of Data (Santiago AA, Chile) (SIGMOD/-
PODS ’24). Association for Computing Machinery, New York, NY, USA, 295–308.
https://doi.org/10.1145/3626246.3653377

[80] Yifei Yang, Matt Youill, MatthewWoicik, Yizhou Liu, Xiangyao Yu, Marco Serafini,
Ashraf Aboulnaga, and Michael Stonebraker. 2021. FlexPushdownDB: hybrid
pushdown and caching in a cloud DBMS. Proc. VLDB Endow. 14, 11 (jul 2021),
2101–2113. https://doi.org/10.14778/3476249.3476265

[81] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. TicToc:
Time Traveling Optimistic Concurrency Control. In Proceedings of the 2016 Inter-
national Conference on Management of Data (San Francisco, California, USA) (SIG-
MOD ’16). Association for ComputingMachinery, New York, NY, USA, 1629–1642.
https://doi.org/10.1145/2882903.2882935

[82] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sanchez, Larry Rudolph, and Srinivas
Devadas. 2018. Sundial: harmonizing concurrency control and caching in a dis-
tributed oltp database management system. Proceedings of the VLDB Endowment
11, 10 (2018), 1289–1302.

[83] Xiangyao Yu, Matt Youill, Matthew Woicik, Abdurrahman Ghanem, Marco Ser-
afini, Ashraf Aboulnaga, and Michael Stonebraker. 2020. PushdownDB: Acceler-
ating a DBMS using S3 computation. In 2020 IEEE 36th International Conference
on Data Engineering (ICDE). IEEE, 1802–1805.

[84] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin and Yang of pro-
cessing data warehousing queries on GPU devices. Proceedings of the VLDB
Endowment 6, 10 (2013), 817–828.

[85] Jianqiu Zhang, Kaisong Huang, Tianzheng Wang, and King Lv. 2022. Skeena:
Efficient and Consistent Cross-Engine Transactions. In Proceedings of the 2022
International Conference on Management of Data (Philadelphia, PA, USA) (SIG-
MOD ’22). Association for Computing Machinery, New York, NY, USA, 34–48.
https://doi.org/10.1145/3514221.3526171

[86] Yingqiang Zhang, Chaoyi Ruan, Cheng Li, Xinjun Yang, Wei Cao, Feifei Li, Bo
Wang, Jing Fang, Yuhui Wang, Jingze Huo, and Chao Bi. 2021. Towards Cost-
Effective and Elastic Cloud Database Deployment via Memory Disaggregation.
Proc. VLDB Endow. 14, 10 (jun 2021), 1900–1912.

[87] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan
Tschannen, Steve Atherton, Andrew J. Beamon, Rusty Sears, John Leach, Dave
Rosenthal, Xin Dong, Will Wilson, Ben Collins, David Scherer, Alec Grieser,
Young Liu, Alvin Moore, Bhaskar Muppana, Xiaoge Su, and Vishesh Yadav. 2021.
FoundationDB: A Distributed Unbundled Transactional Key Value Store. In
Proceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD ’21). Association for Computing Machinery, New York,
NY, USA, 2653–2666. https://doi.org/10.1145/3448016.3457559

[88] Weixing Zhou, Qi Peng, Zijie Zhang, Yanfeng Zhang, Yang Ren, Sihao Li, Guo
Fu, Yulong Cui, Qiang Li, Caiyi Wu, et al. 2023. GeoGauss: Strongly Consistent
and Light-Coordinated OLTP for Geo-Replicated SQL Database. Proceedings of
the ACM on Management of Data 1, 1 (2023), 1–27.

[89] Tao Zhu, Zhuoyue Zhao, Feifei Li, Weining Qian, Aoying Zhou, Dong Xie, Ryan
Stutsman, Haining Li, and Huiqi Hu. 2019. SolarDB: Toward a Shared-Everything
Database onDistributed Log-Structured Storage. ACMTrans. Storage 15, 2, Article
11, 26 pages. https://doi.org/10.1145/3318158

[90] Tobias Ziegler, Carsten Binnig, and Viktor Leis. 2022. ScaleStore: A Fast and
Cost-Efficient Storage Engine using DRAM, NVMe, and RDMA. In Proceedings
of the 2022 International Conference on Management of Data (Philadelphia, PA,
USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA,
685–699. https://doi.org/10.1145/3514221.3526187

https://doi.org/10.1145/2723372.2751519
https://doi.org/10.14778/1687627.1687658
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.14778/3446095.3446098
https://doi.org/10.14778/3342263.3342270
https://doi.org/10.1145/3654983
https://doi.org/10.14778/3342263.3342647
https://doi.org/10.14778/2732977.2732979
https://doi.org/10.14778/3025111.3025125
https://doi.org/10.14778/3025111.3025125
https://doi.org/10.1145/3318464.3380595
https://doi.org/10.14778/2735508.2735514
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/3448016.3457550
https://doi.org/10.1145/2815400.2815419
https://doi.org/10.1145/2815400.2815419
https://doi.org/10.1145/3626246.3653377
https://doi.org/10.14778/3476249.3476265
https://doi.org/10.1145/2882903.2882935
https://doi.org/10.1145/3514221.3526171
https://doi.org/10.1145/3448016.3457559
https://doi.org/10.1145/3318158
https://doi.org/10.1145/3514221.3526187

	Abstract
	1 Introduction
	2 The case for CCaaS
	2.1 Resource Requirements of CC
	2.2 Limitations of Existing Decoupled DBs

	3 System Architecture
	3.1 CCaaS Interface
	3.2 System Workflow

	4 CCaaS Design
	4.1 CCaaS Overview
	4.2 Sharded Multi-Write OCC
	4.3 Isolation
	4.4 Log Pushing
	4.5 Fault Recovery

	5 Discussion
	6 Case Studies
	6.1 Empowering NoSQL DBs with TP Capability
	6.2 Making Standalone TP Distributed
	6.3 Supporting Cross-Model Transactions

	7 Evaluation
	7.1 Overall Performance
	7.2 Scalability
	7.3 Elasticity
	7.4 Case Studies
	7.5 Varying Workloads
	7.6 Sync. Logging vs. Async. Logging
	7.7 Fault Recovery

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

