
GRewriter: PracticalQuery Rewriting with Automatic
Rule Set Expansion in GaussDB

Zhe Jiang
1
Zhaoguo Wang

1
Haoning Lan

1
Chuzhe Tang

1
Haoran Ding

1
Lefeng Wang

1

Songyun Zou
1
Zhuoran Wei

1
Yongcun Liu

2
Xiang Yu

2
Yang Ren

2
Guoliang Li

3
Haibo Chen

1

1
{jz2000, zhaoguowang, sjtulhn, t.chuzhe, nhaorand, wanglefeng, zousy, 84461810, haibochen}@sjtu.edu.cn

2
{liuyongcun, yuxiang44, renyang1}@huawei.com

3
liguoliang@tsinghua.edu.cn

1
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

2
Huawei Technologies Co.

3
Department of Computer Science, Tsinghua University

ABSTRACT
Effectively rewriting a wide range of complex and diverse queries is

critical for database systems. Huawei GaussDB has been experien-

cing limited extensibility of its existing query rewriter. The problem

is rooted in the need for one-size-fits-all rewrites by its pipelined

rewrite workflow and the source code-level coupling of rewrite

logic. This makes it not only difficult to identify generic, broadly

applicable rewrites but also engineering-intensive to program them

into the system.

This paper presents GRewriter, GaussDB’s new bolt-on extens-

ible query rewriter powered by automated rewrite rule discovery.

GRewriter sits atop the existing optimizer stack to explore useful

rewrites, allowing a variety of rules to coexist and be selected on

a per-query basis. A new rule language, G-DSL, is used to express

rewrite rules so that the rewrite engine is not coupled with specific

rules. To improve rewrite efficiency, a new rule index structure

and a rewrite history cache are introduced. Rules in GRewriter

are produced by an offline rule generator. With novel enumera-

tion techniques and a new equivalence theorem, our rule gener-

ator can efficiently discover formally verified rules that are much

more expressive than prior research prototypes. For operational

convenience, GRewriter also supports manual rule authoring and

interactive management of rules through familiar SQL interfaces.

GRewriter has been integrated into GaussDB and is gradually

rolling out to customers. GRewriter equips GaussDB with over a

hundred rules while maintaining negligible overhead (<1%). These

new rewrite rules have enhanced query performance for two key

customer applications, an ERP system and a Banking transaction

system, reducing production query latency by up to 99.9%—from

26 seconds to just 17 milliseconds.

PVLDB Reference Format:
Zhe Jiang, Zhaoguo Wang, Haoning Lan, Chuzhe Tang, Haoran Ding,

Lefeng Wang, Songyun Zou, Zhuoran Wei, Yongcun Liu, Xiang Yu, Yang

Ren, Guoliang Li, and Haibo Chen. GRewriter: Practical Query Rewriting

with Automatic Rule Set Expansion in GaussDB. PVLDB, 18(12): XXX-XXX,

2025.

doi:XX.XX/XXX.XX

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.

doi:XX.XX/XXX.XX

1 INTRODUCTION
Query rewriter, which transforms a query into an equivalent yet

more efficient form, is a key component in database systems that

optimizes queries before execution. It relies on rewrite rules to

transform queries into semantically equivalent forms with better

performance [4, 13, 14, 19, 24, 25]. Therefore, the effectiveness of

a query rewriter heavily depends on the quality and quantity of

rules. Recent work has shown that adding new rules can bring up

to 86% reduction in query latency of real-world applications [4].

Huawei GaussDB [18] is a commercial database system that holds

a leading position in the Chinese market [17] and ranks among the

top 10 database systems globally by share [12]. GaussDB takes a

classic two-phase approach to query optimization, where first a

rewriter optimizes the query at the logical plan level, then a planner

generates a physical plan for execution. The rewriter transforms

the logical plan parsed from the input query by a pipeline of re-

write functions, each performing a class of generic rewrite, such as

predicate push-down. Rewrite conditions are hard-coded as various

if statements, and the rewrite is done by directly modifying the

internal data structure of the logical plan. The rewritten logical plan

is then passed to the query planner to generate a physical plan for

execution. This simple approach is straightforward to implement.

Moreover, as rewrite logic is embedded in the source code, which

gets compiled into binary, the rewrite process incurs low runtime

overhead. Therefore, many other production systems also follow

the same approach, such as MySQL [23] and PostgreSQL [16].

However, adding new rules to GaussDB’s rewriter is challenging

due to its tight coupling with the source code and the constraints

of the pipelined workflow. To begin with, it requires a deep under-

standing of database internals and significant engineering effort to

program such low-level rewrite functions. Furthermore, additional

rewrite functions may unnecessarily lengthen overall latency, since

they are always executed for all queries even if they only match

an infrequent query pattern. The more complex and diverse the

queries are, the more likely these issues will occur. As a result,

GaussDB’s rewriter has to be conservative in adding new rewrite

functions, missing potential optimization opportunities.

To address the extensibility issue, an intuitive solution is to adopt

a Cascades-style optimizer [13, 15]. Such an optimizer decouples

complex rewrite logic from the source code and decomposes it into

many basic rewrite rules. It relies on an iterative, heuristic-driven

process to explore the rules and find useful combinations. Both

logical rewrite and physical planning must be performed during

the process so that costs estimated from physical plans can be

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Figure 1: GaussDB’s query rewrite process.

used as feedback to guide and prune the exploration. As a result,

switching to a Cascades-style optimizer requires replacing not only

the existing query rewriter but also the entire query planner.

For a production system like GaussDB, this is an extraordinarily

expensive and risky undertaking, as it would involve discarding the

current optimizer—comprising 642k lines of code—and developing

a new one from scratch, all while ensuring it matches or exceeds the

existing optimization capabilities. To the best of our knowledge, the

only database system known to have undertaken such a transition

is SQL Server. It is accomplished as part of the broader 7.0 revamp of

its legacy Sybase engine written in C into a new C++ codebase [6].

This paper presents GRewriter, the new bolt-on, extensible query

rewriter in GaussDB. Like Cascades, GRewriter employs decoupled

rewrite rules and departs from the pipelined workflow. Unlike Cas-

cades, GRewriter refrains from changing either the rewriter or plan-

ner, and instead works as a bolt-on component atop the existing

optimizer of GaussDB. When GaussDB receives a query, GRewriter

finds all applicable rewrite rules and applies them to obtain a set of

equivalent logical plans. The original and rewritten plans are then

passed to GaussDB’s existing optimizer for further optimization

and cost estimation. Only the plan with the lowest estimated cost

is selected for execution. To improve rewrite efficiency, GRewriter

employs a new index structure for fast rule matching and a rewrite

history cache to amortize rewrite cost. Since GRewriter only per-

forms logical rewrite, its bolt-on design should be easily adaptable

to other relational database systems.

Instead of heuristically combining basic rewrite rules to produce

useful transformation, GRewriter leverages recent advances in auto-
mated rewrite rule discovery [4, 11, 32] to directly generate more

complex useful rewrite rules. Our rule generator is derived from

WeTune, a state-of-the-art rule discovery research prototype [32].

It generates rules by first enumerating all possible candidates and

then verifying their correctness and usefulness. While WeTune

has successfully discovered missing rules in popular systems like

Calcite [5] and SQL Server [22], it is still insufficient for commer-

cial use due to its limited support for common SQL operators and

crude rewrite conditions. Therefore, we have retrofitted three major

enhancements toWeTune. First, a more expressive rule language, G-

DSL, is proposed to specify rules involving more SQL operators and

finer-grained rewrite conditions. Then, a set of pruning heuristics

are developed to tame the exponential growth of the enumeration

space due to the increased expressive power of G-DSL. Finally, a

new verification theory is proposed that turns the verification of

query plan templates into the verification of concrete SQL quer-

ies. As a result, a more powerful SQL equivalence verifier such as

SQLSolver [10] can be integrated to verify the correctness of the

generated rules.

GRewriter also supports manual rule authoring and interactive

management of rule set at runtime. This allows resolving query

performance issues in an agile and timely manner, without patching

either the database system or the upper-layer applications. To ease

writing complex rules, imperative constructs are incorporated into

G-DSL. Administrators can use familiar SQL interfaces, such as

INSERT and DELETE, to manage the rule set at runtime without dis-

ruption or downtime. Our experience shows that a slow query can

be typically fixed within hours after being reported by customers.

This is a significant improvement compared to the previous prac-

tice, where customers either had to wait for months-long feature

release cycles of the database or manually patch their queries.

It took four months with 4 developers including part-time in-

terns to develop an initial prototype, and later took another four

months to productionize at GaussDB. This confirms that GRewriter

is a low-cost solution. Now, GRewriter has been integrated into

GaussDB and has been rolling out to its customers for evaluation

for more than 3 months. Since then, GRewriter has generated 381

optimized rules applied to GaussDB, which only incur a 0.26% op-

timization overhead. These rules have been proven to enhance

query performance for two key customers: an ERP system intern-

ally used at Huawei that covers 80% of its business volume, and

a banking transaction system that is one of the biggest banking

systems in China. GRewriter has brought significant improvement

to production query latency, including a notable 99.9% reduction

(from 26 seconds to 17 milliseconds) and a substantial improvement

of nearly 2 minutes in other cases. Most of these newly discovered

rules have not been implemented by popular relational databases

such as PostgreSQL, MySQL, and SQL Server.

In summary, we make the following contributions:

• The design and implementation of GRewriter, the new bolt-on,

extensible rule-based query rewriter in GaussDB that supports

decoupled, dynamic management of rewrite rules.

• A new rule language, G-DSL, designed to express complex and

diverse rewrite rules, suitable for both automated rule discovery

and manual rule authoring.

• A new rule generator for finding rules written in G-DSL, with

new enumeration techniques and a new equivalence theorem

that enables efficient discovery of formally verified rules.

• The experience of serving production workloads with GRewriter-

integrated GaussDB as well as detailed in-house evaluation, con-

firming its effectiveness and efficiency.

2 BACKGROUND AND MOTIVATION
2.1 Query Rewrite
Query rewrite is usually implemented as part of two-phase optim-

izer [25]. First, a query is subjected to a series of predefined rewrite

functions by the query rewriter. Then, the query planner takes the

rewritten query and generates a physical execution plan. Today’s

mainstream databases adopt similar optimizer architectures.

Take GaussDB as an example. Figure 1 shows its query rewriting

process. Transformation of the logical plan is programmed as C++

Table 1: A counterintuitive fragment of a slow SQL from
GaussDB’s production workloads.

a. Original SQL Query b. Rewritten SQL Query
WHERE (SELECT count(*)

FROM t1 WHERE p1

) = (SELECT count(*)

FROM t1 WHERE p1 AND p2)

WHERE NOT EXISTS (

SELECT 1

FROM t1

WHERE p1 AND NOT p2)

functions. Both input and output are logical query plan trees. We

present a simplified version of the rewriter’s code. Rule1 eliminates

redundant ORDER BY operators of subqueries. It retrieves the data
structure representing subqueries and loops through each subquery

to remove ORDER BY operators. The rewriter applies these functions
in a predefined order, and the final output is fed to the query planner

for physical planning. The rewriter in GaussDB is implemented in

7k LoC, incorporating only 22 rewrite functions. Other mainstream

databases, such as PostgreSQL andMySQL, also adopt similar query

rewriter architectures. Consequently, they all confront same issues

discussed below.

Problem Statement. Such a rewriter architecture severely re-

stricts the extensibility of its rule set. First, the rewriter’s logic is

embedded in the code, which makes it burdensome to add new

rewrite rules or update existing ones. For example, the OR-to-UNION
rewrite rule was initially missing in GaussDB’s rewriter. It takes

more than a half year to perform requirement review, design review,

development, testing, and commercial trial to make the changes

production-ready. This slow iteration process has been causing

complaints from GaussDB customers.

Second, this architecture relies on one-size-fits-all rewrite rules

that provide universal improvements for most queries when ap-

plied in a predefined order, making it difficult to optimize complex

and diverse queries that are increasingly prevalent in cloud scen-

arios. Table 1.a shows a SQL statement from a GaussDB customer.

Table 1.b is an ideal rewritten version that brings better perform-

ance because it reduces the number of table scans on t1. However,
optimizing this pattern requires query plan structure matching and

transformation logic written in C++. Adding one new rewrite func-

tion is not scalable and feasible for GaussDB since it is difficult to

avoid rewrite quality regression when the rewrite pipeline consists

of hundreds if not thousands of rules.

We envision GaussDB’s query rewriter to be able to dynamically

manage a rich set of rewrite rules and select the most effective one

for each query, enabling more agile and efficient query optimization.

Existing work has explored the bolt-on approach to extend rewrite

capability with an additional rewrite layer and shows promising

results in both low engineering effort and rewrite effectiveness [2–

5, 26]. However, these rewriters still require non-trivial manual

effort to populate rule sets. As a result, rule set scalability remains

an unsolved challenge for them.

2.2 Automated Rewrite Rule Discovery
WeTune [32] is a state-of-the-art rewrite rule discovery framework.

Its discovery process consists of three steps: rule enumeration, rule

verification, and performance evaluation. A rule consists of a pair

of source and target query plan templates for matching the original

Table 2: Generation time of 4-node rules using WeTune.

of Op
Types

of Plan
Templates

of Candidate
Rules

Time to
Terminate

6 4800 9.4 × 1022 7 days

12 116,640 2.1 × 1028 4284 years

and rewritten queries, and a set of constraints that indicates the

rewrite condition. To discover new rules, WeTune first enumerates

all possible query plan templates with limited types of operators. It

also restricts the size of templates to reduce the search space. Then,

a Cartesian product of all templates with themselves forms template

pairs. After that, constraints are enumerated for each template pair

to form candidate rules. Finally, formal verification is performed

to filter out incorrect rules and the remaining rules are evaluated

with concrete queries and datasets to find the useful ones. Without

any human efforts, WeTune discovers 35 useful rules, 22 missing in

Calcite [5] and 7 missing in SQL Server [22].

However, WeTune’s techniques are insufficient for production

use. Specifically, WeTune has limited support for common SQL

operators and constraints. For instance, rules shown in Table 1

cannot be generated by WeTune because 1) the count() aggregate

function, EXISTS operator, and scalar subqueries are not supported,
and 2) the WHERE predicate is treated as a black box, making it

impossible to specify constraints involving its internal structures.

Making WeTune practical is non-trivial. First, the enumeration

space grows exponentially with the number of operators and con-

straint types. As a result, it has to be restricted to the following

basic operator types: projection, selection, in-subquery, join, and

input, and simple constraints. As shown in Table 2, if we simply

extend the operator types to 12, there will be a more than 200M-fold

increase in the number of candidate rules, leading to a prohibitive

rule generation time. Second, WeTune depends on the verifier’s

ability to check the correctness of the enumerated rules. But, the

built-in verifier used by WeTune can only handle a limited range

of SQL features and simple rule formats [32]. Thus, even if more

complex rules are enumerated, they cannot be formally verified.

Althoughmany advanced SQL verifiers have emerged recently, they

focus on concrete queries rather than rewrite rules [8, 10, 31, 33].

2.3 Goal and Challenges
We aim to equip GaussDB with a new bolt-on extensible query

rewriter with automatically discovered rewrite rules to enable

GaussDB to handle a broader range of complex and diverse real-

world queries, while minimizing engineering effort. Realizing this

vision, however, faces three challenges.

The first challenge lies in the representation of rules. There are

three requirements. First, it should allow a clean separation of the

rule’s structure and semantics from the rewriter’s implementation.

Second, it should be expressive enough to capture a wide range of

rewrite patterns. Third, it should be friendly to both enumeration-

based automated discovery and manual rule authoring by experts.

However, existing rule representations do not simultaneously meet

all these requirements [4, 5, 27, 32].

The second challenge is the efficiency of the rule-based rewriter.

The bolt-on rewriter works as an online component in the critical

Figure 2: GRewriter architecture.

path of query processing, making it critical to minimize its impact

on the overall latency. However, with a larger set of rewrite rules

and the fact that different queries may be optimized by different

rules, the rewriter needs to explore many potential rewrites. There-

fore, how to ensure the search efficiency and balance between the

exploration and processing cost is a challenge.

The final challenge lies in the capability of the rewrite rule gener-

ator. To find useful rules, we need a more powerful generator than

WeTune that can not only scale to more operators and constraints,

but also be able to verify the correctness of the rules it generates.

However, it is challenging to handle the exponential growth of enu-

meration space and to formally verify the more expressive rules.

3 GREWRITER OVERVIEW
Figure 2 shows the architecture of GRewriter, the new bolt-on,

extensible rule-based query rewriter in GaussDB powered by auto-

mated rewrite rule discovery. It consists of an online rewriter and
an offline rule generator, bridged by a new rule language, G-DSL.

G-DSL (Section 4) is an expressive language that supports a wide

range of SQL operators and fine-grained constraints. It supports

12 common SQL operators and incorporates the idea of expression
destructuring to allow a more flexible specification of rules. Rules

written in G-DSL are decoupled from how the rewriter matches and

applies rules and is suitable for both programmatic enumeration

and manual authoring.

The online rewriter (Section 5) takes in a user query as a logical

plan and iteratively explores possible rewrites, producing multiple

rewritten logical plans. It calls into GaussDB’s existing optimizer

to estimate the costs of the original and rewritten plans. The plan

with the lowest estimated cost is selected for execution. To improve

efficiency, a new rule index structure and a rewrite history cache are

introduced, and they are carefully designed to work in the presence

of dynamic rule set updates.

The offline rule generator (Section 6) follows the enumeration-

based paradigm of automated rewrite rule discovery. To enumerate

G-DSL rules, new procedures and heuristics are introduced to make

the enumeration space manageable. To verify now more expressive

rules, a new verification theorem is developed to turn the veri-

fication of query plan templates into the verification of concrete

SQL queries, making it possible to integrate with a more powerful

SQL equivalence verifier, SQLSolver [10]. The generator evaluates

verified rules using multiple synthetic datasets, and only those

consistently bring at least 10% latency reduction are kept.

4 REPRESENTATION OF RULES
G-DSL is our language to specify rules. A rule consists of three

parts: a source plan template, a target plan template, and constraints.

When the logical plan of a query matches the source plan template

and the constraints are satisfied, it can be rewritten to another one

that matches the target plan template.

4.1 Plan Template
Plan templates are tree-structured: each node represents a relational

operator and each edge represents the relations passed between

operators. Formally, a plan template is defined as op<params>(ops).
op is the operator of the root node, params are the parameters of

op, and ops are the children of the node. A plan template matches

a logical plan subtree only when they have the same tree structure.

Each leaf node is always an Input operator. Its parameter r is a

symbolic wildcard relation, which can be instantiated to arbitrary

logical plan subtrees, e.g., a single concrete table or a subquery.

Operator parameters are symbolic, which are placeholders for

the concrete values in the query. There are three types of symbolic

parameters: symbolic attribute lists, symbolic expression lists, and

symbolic relations. The comma between two symbolic lists repres-

ents the concatenation of all elements in two lists. For example,

projection is denoted as Proj<e(a),s>, where a is a symbolic at-

tribute list, e is a symbolic expression list, and s is the symbolic

relation produced by the projection. e(a) returns expressions built

from a. As a syntax sugar, the underscore symbol “_” is used for

matching parameters whose specific values are irrelevant to the

rewrite process, i.e., not used by the constraints, including the im-

plicit equivalence relationships implied by the repetitive use of the

same symbol.

Table 3: Operators supported in G-DSL.

Operator Type Definition Matching Query Fragment
Input Input<r> ... r ...

Projection Proj<e(a),s>, ProjDedup<e(a),s> (SELECT [DISTINCT] e(a) FROM ...) AS s

Selection Filter<e(a)> ... WHERE e(a)

Join (left & inner) JoinLeft<a0,a1>, JoinInner<a0,a1> ... LEFT/INNER JOIN ... ON a0 = a1

In-Subquery InSub<e(a)> ... WHERE e(a) in (<subquery>)

Aggregation AggFunc<e0(a0), e1(a1), e2(a2)> SELECT e0(a0), Func(e1(a1))...GROUP BY e0(a0) HAVING e2(a2)

Union, Union-All Union<>, UnionAll<> ... UNION [ALL] ...

Exists-Subquery Exists<> ... WHERE EXISTS (<subquery>)

Limit Limit<a0, a1> ... LIMIT a0 OFFSET a1

Sort SortAsc<e(a)>, SortDesc<e(a)> ... ORDER BY e(a) ASC/DESC

Table 3 defines the supported operators in G-DSL, accompanied

by illustrative SQL fragments. The projection operator can match

fragment (SELECT c0+c1 FROM ...) AS twith a corresponding to
the concrete attribute list [c0,c1], e(a) corresponding to [c0+c1],
and s corresponding to the alias name t. Aggregate functions are
denoted as AggFunc<e0(a0),e1(a1),e2(a2)>, where Func is the

function name (e.g., sum). In this operator, e0(a0) specifies the

expressions in the GROUP BY list, e1(a1) represents the input to the
aggregate function, and e2(a2) represents the HAVING condition.
For example, SELECT c0, min(c1) FROM ... GROUP BY c0
HAVING c2>0 can be represented by an AggMin node: a0, a1, and a2
correspond to [c0], [c1], and [c2], respectively. e0(a0), e1(a1),
and e2(a2) correspond to [c0], [c1], and [c2 > 0], respectively.
Other operators are defined similarly and we omit due to space

limitations.

4.2 G-Constraints
Constraints are expressed as G-Constraint statements, each return-

ing a boolean value. Given a query whose logical plan matches the

source plan template of a rule, constraint statements are evaluated

one by one. Only when all statements return true is the rule ap-

plicable. Statements involving the target template’s symbols are

always considered true, as they are used to determine the values of

rewritten queries. There are five types of statements. The former

three are declarative and the latter two are imperative.

Expression Destructure. EXP(S1,S2,...):=S0 decomposes

symbol S0 into symbols S1, S2, etc. It returns true if the structure
of the query fragment corresponding to S0 matches the syntax

structure specified by EXP. Otherwise, it returns false. EXP can be

either arithmetic or boolean operators (e.g., AND, >, and +). For
example, given a symbol e that corresponds to fragment a>1 AND
a<2, AND(e1,e2):=e will return true. e1 and e2 are assigned to

be [a>1] and [a<2], respectively. If symbols on the left side are

already defined, this statement returns false if the decomposed

fragments do not match the defined symbols. When S0 is a list of
expressions or attributes, scalar expressions indicated by EXP are
promoted to element-wise list operations.

Symbol Definition. Statement S0:=EXP(S1,S2,...) assigns

a symbol 𝑆0 to EXP(S1,S2,...) which combines the symbols 𝑆1,

𝑆2, and others into a new syntax structure. This statement can also

redefine an existing symbol. Since it does not check constraints, it

always returns true.

ConstraintCheck. Statement [!]CONS(S0,S1,...) checks the
relationship among symbols and integrity constraints. Specifically,

AttrEq(a0,a1), TableEq(r0,r1), ExpressionEq(e0,e1) checks
if two attribute lists, tables, and expression lists are the same, re-

spectively. AttrsSub(a,r) checks if an attribute list a belongs to
a relation r. Notnull(a,r) checks if the attribute list a in the re-

lation r is not null. UNIQUE(a,r) checks if the attribute list a in

the relation r is unique. FOREIGN (a0,r0,a1,r1) checks if the

attribute a0 in the relation r0 is a foreign key that references a1 in

r1. We also introduce the negation operator !, which means the

constraint should not be satisfied.

Conditional. For the statement IF ST1 DO ST2;... ELSE
ST3;... END IF, if ST1 returns true, ST2;...will be executed and
the conditional statement returns true if and only if all statements

in ST2;... return true. Otherwise, ST3;... will be executed and

the conditional statement returns true if and only if all statements

in ST3;... return true.

Loop. For the statement WHILE ST1 DO ST2;... END WHILE,
when ST1 returns false, the loop terminates and the loop state-

ment returns true. If any statement in ST2;ST3;... returns false,
the loop also terminates and returns false. Loops are usually used

to recursively decompose the query fragment into sub-fragments

and check their syntax structures without a presumed number of

iterations.

4.3 Example and Discussion
Example. Figure 3 gives an example rule written in G-DSL and

shows the whole match and rewrite process of G-DSL. If a query

contains a Filter operator whose parameters are two predicates

connected by an OR operator, it can be rewritten as the union of

the results filtered by each predicate separately. Given a query,

we first obtain its logical plan tree and try to match each subtree

against the source template. If a match is successful, we record the

matched variable values in a variable mapping. We then execute

the G-Constraint to check constraints via the variable mapping.

Specifically, the G-Constraint checks whether the Filter operator

consists of two predicates connected by an OR operator. Finally, we

construct the new logical plan based on the variable mapping, the

target template, and the G-Constraint.

Proj<e0(a0) _>(
Filter<e1(a1)>(Input<r0>))

G-DSL Rule
Source Template

Target Template
UnionAll<>(Proj<e0(a0) _>(

Filter<e2(a2)>(Input<r0>)),
Proj<e0(a0) _>(

Filter<e4(a4)>(Input<r0>)))

select t1.a, t1.b from t1
where t1.a > 10 or t1.a < 0

Proj
t1.a, t1.b

Filter
t1.a>10 or t1.a<0

Scan t1

select * from t1 where t1.a > 10
union all select * from t1

where t1.a <= 10 and t1.a < 0

e0(a0) => t1.a, t1.b
e1(a1) => t1.a>10 or t1.a<0
r0 => t1
e2(a2) => t1.a>10
e3(a3) => t1.a<0
e4(a4) => t1.a<=10 and t1.a<0

G-Constraints
Or(e2(a2),e3(a3)) := e1(a1);
e4(a4):=And(Not(e2(a2)),e3(a3));

Variable Mapping

①Parse
Input SQL

Output (illustration only)

②Match

③Process

Proj
t1.a, t1.b

Filter
t1.a > 10

Scan t1

Proj
t1.a, t1.b

Filter
t1.a <= 10
and t1.a < 0

Scan t1

UnionAll ④Construct

Figure 3: An example rule written in G-DSL. This rule trans-
forms OR predicates into UNION ALL.

Other Rule Representations. SlabCity [11] formally defines

the syntax to describe supported queries. However, it cannot be

used to define rewrite rules as it lacks symbolic parameters and

constraints, which are essential for describing the condition for

a rule to apply. Meanwhile, although there are some other rule

representations, they cannot simultaneously meet all three require-

ments in Section 2.3. The DSL in WeTune [32] cannot support some

SQL features and constraints supported by G-DSL. In evaluation,

381 discovered useful rules cannot be expressed in WeTune’s DSL.

PostgreSQL allows users to define custom data transformation and

view creation for specific tables or columns. It is hard to create

general rules applicable for various workloads. The DSL in Query-

Booster [4] is more expressive than WeTune’s DSL but cannot sup-

port constraints in imperative constructs, which are necessary to

express some useful rules. In evaluation, rules with such constraints

can bring up to 72% latency reduction for production queries. To en-

hance the expressiveness, CockroachDB [27] represents rules with

a language called OptGen, which expresses imperative constraints

by Go procedures. Apache Calcite [5] defines rewrite rules as in-

dividual Java classes, which also supports imperative constraints.

However, rules in these representations would be intractable to

enumerate and verify, which essentially requires the ability to enu-

merate and verify arbitrary programs written in Go or Java. We

carefully design the syntax of G-DSL such that it is more friendly to

enumeration-based rule discovery while being expressive enough

to capture a wide range of rewrite patterns.

5 ONLINE REWRITER
The rewriter is responsible for exploring potential rewrites and

outputting an optimized logical query plan for subsequent execu-

tion. At a high level, it takes in a logical query plan parsed from

the original query, performs iterative rewrites, and produces a set

of semantically equivalent, potentially more efficient logical plans.

Among all equivalent candidates, the one with the lowest cost es-

timated by GaussDB’s existing optimizer is selected for execution.

5.1 Workflow
Algorithm 1 shows the general workflow of the online rewriter. For

simplicity, we skip rewrite caching (lines 2 and 20) for now, and

discuss it in Section 5.3. First, given a logical plan Q, the rewriter

prepares an empty rewrite path without applying any rule (line 4).

A rewrite path is a tuple that consists of the starting and ending

plans, the rules applied, the estimated cost, and whether the iterat-

ive exploration should continue. It then starts a loop over the paths

marked unexplored (lines 7–19). For each unexplored path, it re-

trieves all potentially applicable rules from the rule set (line 8). This

lookup only performs a structural match between the given logical

plan and the source template of each rule. The lookup algorithm is

discussed in Section 5.2. Next, for each potential match, the rewriter

consults the system catalog for the relevant schema information

and discard rules whose rewrite conditions are not satisfied (line 9).

It then applies each remaining rule to the logical plan, generating a

set of new paths with rewritten, equivalent plans and the corres-

ponding rules applied (lines 10–13). Now all the possible rewrites

on the current path are explored, so we mark it explored with True
(line 14). This process is repeated using previously rewritten paths

as the starting point until all paths is marked explored (i.e., no more

rules can be applied) or a fixed number of iterations is reached (line

16). Finally, the rewriter passes all generated plans along with the

initial plan to the existing optimizer for physical planning and cost

estimation (lines 17–19). The cheapest plan is returned for final

execution (lines 21–22).

5.2 Storing and Indexing Rules
GRewriter stores rewrite rules in a separate system table, G_RULES,
which persists the rules in plain text and remembers if a rule is

enabled or not (Section 5.4). To speed up rule lookup and matching,

GRewriter introduces a new index structure, called the Rule Index,

to efficiently store and retrieve rules. Rule Index is a concurrent

trie structure that maps the fingerprint of a plan template to the

row IDs of rules whose source templates have the same fingerprint.

A fingerprint of a tree structure is defined as a string generated

through a preorder traversal of the template tree, retaining only

node type information. For example, the fingerprint for a query

plan structure Filter(Filter(Input)) is represented as FFI. The
Rule Index maps the fingerprints of rule templates to their corres-

ponding rule sets. When a query arrives, the rewriter computes

its fingerprint and queries the Rule Index. When searching in the

trie, all rule sets associated with the nodes along the path of the

fingerprint are collected and returned. For instance, when querying

FFI, the process retrieves the rule set at the F node, followed by the
set at the FF node (treating the I node as a wildcard). Additionally,

all suffixes of the fingerprint are queried. For FFI, this includes FFI
and FI. This design avoids exhaustive rule set searches, signific-

antly enhancing rewrite performance, particularly for large rule

sets. To ensure correctness under concurrent access, the Rule Index

employs a hierarchical read-write locking mechanism.

5.3 Rewrite History Caching
Caching helps to avoid redundant rewriting and to chunk the long

iterative rewriting process for queries with many applicable rules.

Each time a query plan arrives, the rewriter first checks the rewrite

Algorithm 1 Rewrite Workflow

1: function Rewrite(Q)

2: paths← cache.get(Q)
3: if paths.empty() then
4: paths.add(Path(Q,Q, {}, F))
5: iter← 0

6: repeat
7: for all path ∈ paths.getUnexplored() do
8: psblRules← RULESET.get(path.Q)
9: rules← consCheck(psblRules, path.targetQ)

10: for all rule ∈ rules do
11: newQ← apply(rule, path.targetQ)

12: usedRules← path.usedRules + rule
13: paths.add(Path(path.srcQ, newQ, usedRules, F))
14: path.explored← True

15: iter← iter + 1

16: until !paths.hasUnexplored() or iter == 3

17: for all path ∈ paths do
18: if path.plan == null then
19: path.plan← native.plan(path.targetQ)

20: cache.put(Q, paths)
21: optimalPlan← paths.getMinCostPlan()

22: return optimalPlan

history cache (line 2). The rewriter will start the iterative rewriting

from scratch if we have not cached any path for the input query

plan. It may also continue from cached unexplored paths that are

created in previous rewrite invocations where the exploration was

not finished but the iteration limit was reached. Otherwise, if all

cached paths are marked explored, the cached plan with the lowest

average estimated cost is returned and iterative rewriting is finished.

Finally, when the existing optimizer has returned the estimated

cost of each plan, the rewriter updates the rewrite history cache

with the new written plans and their costs (line 20).

We implement the rewrite history cache as an in-memory con-

current multimap. It uses parameterized query strings, with all

parameter values removed, as the keys, and maps them to a list of

previously explored rewrite paths along with their most recent five

estimated costs. Remembering multiple estimated costs helps avoid

trashing caused by queries that only differ in parameter values but

have different optimal plans. Since the cost of cache entries may

become stale, we implemented a trigger to clear the cost informa-

tion in the Rewrite history Cache whenever the existing optimizer

updates the statistical data used in its cost model. This can happen

when the underlying data referenced by a query is modified, or

when the cost model performs its periodical update.

5.4 Dynamic Rule Set Update
Administrators can easily manage rules by modifying the G_RULES
table using familiar SQL syntax. For example, a statement like

UPDATE G_RULES SET ENABLE=OFF WHERE RULE_ID=? to deactiv-

ate a specific rule or use DELETE/INSERT to remove/add a new rule.

When rules are added or deactivated, the Rule Index is updated to

reflect the changes. Our concurrent index uses fine-grained locking

to avoid unnecessary blocking between concurrent readers and

writers. Read requests to the index sequentially acquire read locks

on each node along the path. When inserting a new rule, read locks

are acquired sequentially on each node along the path, culminating

in a write lock on the node where the rule is to be inserted. If the

corresponding node cannot be found, meaning no existing rule in

the index matches the source template of the rule to be inserted,

a new node must be created in the index. Thus, a write lock on

the parent node must be acquired beforehand. Rule set updates

also trigger a rewrite history cache partial invalidation. Specifically,

when we add a rule with a certain source template, we need to

traverse all paths in the cache to find query plans with the same

pattern and mark their explored status as false. This ensures the

query will have the opportunity to be optimized by new rules upon

its next encounter. Similarly, when a rule is removed or deactivated,

corresponding cached paths are removed.

6 OFFLINE RULE GENERATOR
The generator follows the three-step workflow of prior work [32],

i.e., enumeration, verification, and selection, while adapting each

step to accommodate the more expressive G-DSL rule language.

6.1 Rule Enumeration and Pruning
The rule enumerator is responsible for generating a large number

of candidate rules written in G-DSL. First, we enumerate all pos-

sible templates and combine them into template pairs. This process

is similar to the work mentioned in Section 2.2, but we use the

extended operator types defined in Table 3. Then we enumerate

constraints for each template pair to form a candidate rule. We

extract all expression symbols from the source and target templates

and combine them to form possible G-Constraint statements, in-

cluding expression destructure, symbol definition and constraint

check. With the new operator types and constraints introduced, we

propose the following techniques to narrow the search space.

Template Pruning. After enumerating plan templates, we can

prune templates that lead to invalid or unpromising rules. Templates

that do not adhere to correct SQL syntax are considered invalid. A

template like Join(Filter,*) falls into this category, since when

a SQL is parsed into logical plan, Filter node cannot directly

appear under a Join node without Proj. Note that, although a

simple fix could sometimes turn these templates into valid ones,

we choose not to fix them since the correct ones should already be

enumerated in the first place. To prune unpromising templates, we

collect queries from user workloads. Source templates that do not

appear in the query set are considered unpromising and discarded.

In other words, we only enumerate the source templates that have

appeared in the collected query set.

Template Pair Pruning. After we have all candidate templates,

we need to enumerate all possible source-target pairs before adding

constraints. A set of heuristics are used to prune the template pairs.

One notable heuristic is built on the potential transitivity of the

inequality property. Suppose there are three templates 𝑡𝑎 , 𝑡𝑏 , and 𝑡𝑐
and we have already paired 𝑡𝑎 and 𝑡𝑏 with all possible constraints. If

our verifier, which will be introduced shortly, finds that 𝑡𝑎 and 𝑡𝑏 are

never equivalent under any constraints, but there are constraints

under which 𝑡𝑎 could be equivalent to 𝑡𝑐 , then we can consider 𝑡𝑏

and 𝑡𝑐 to be likely never equivalent under any constraints. This

heuristic allows us to skip a large number of template pairs like 𝑡𝑏
and 𝑡𝑐 , significantly reducing the enumeration space.

Candidate Rule Pruning. Given a pair of source and target

templates, we need to enumerate all possible constraints. We enu-

merate all possible constraint statements as defined in Section 4.2

and each subset of constraints is paired to the source and target

templates to form a candidate rule. We prune candidate rules by

checking the containment relationship between the constraint sets

and known verification results. Specifically, if a candidate rule with

a constraint set 𝑡𝑎 is verified to be correct, then all candidate rules

with a constraint set 𝑡𝑏 that is a superset of 𝑡𝑎 are also correct, and

we can skip verifying them. Likewise, if a candidate rule with a

constraint set 𝑡𝑎 is verified to be incorrect, then all candidate rules

with a constraint set 𝑡𝑏 that is a subset of 𝑡𝑎 are also incorrect, and

we can skip verifying them as well.

6.2 Rule Verification
GRewriter develops a rule verifier for the enumerate rules that

fully reuses the verification capabilities of existing query verifi-

ers Query verifiers [9, 10, 31, 33] are powerful but they target

concrete queries rather than rules. To fully reuse their verifica-

tion capabilities, we observe that given a rewrite rule, there are

finite representative concrete query pairs such that their equival-

ence implies rule correctness. For example, assume the source

template is Proj<a0,r2> (Proj<a0, r1>(Input<r0>)), the tar-
get template is Proj<a0, r1>(Input<r0>), and the constraint is

AttrsSub(a0,r0). If SELECT C0 FROM (SELECT C0 FROM R0) and
SELECT C0 FROM R0 are equivalent, the rule is correct. The schema

is R0(C0 INT). Based on the observation, we verify rules by gen-

erating representative query pairs. First, we assign each symbolic

expression in templates to a random function. Second, for each sym-

bolic schema, we enumerate all possible concrete schemas under

two cases: the schema only contains the attributes used in the query,

or the schema contains one more unused attribute. Since symbolic

schemas are finite, enumerated concrete schemas are also finite.

Finally, since each operator in G-DSL has corresponding SQL fea-

tures, it is easy to translate the plan templates into concrete queries

that can be verified by existing verifiers (e.g., SQLSolver [10]).

The correctness of our verification algorithm is ensured by The-

orem 6.1. Due to space limitation, we only provide a proof sketch

here. The detailed proof can be found in our appendix [1].

Theorem 6.1. For each candidate rewrite rule, if each representat-
ive pair of queries is equivalent, the rule is correct.

Proof Sketch.We prove the theorem by proving that for each

non-representative query pair 𝑝1, there exists a representative query

pair whose equivalence implies the equivalence of 𝑝1. We classify 𝑝1
into three cases. First, 𝑝1 can become the same as a representative

query pair 𝑝2 by renaming 𝑝1’s attributes and tables. Specifically,

there is a one-to-one name mapping between names used in 𝑝1 and

𝑝2. Since renaming does not affect whether two queries are equi-

valent, the equivalence of 𝑝2 implies the equivalence of 𝑝1. Second,

after renaming, 𝑝1 is the same as a representative query pair 𝑝2
except for concrete expressions. The expressions of 𝑝2 are unin-

terpreted user-defined functions, which can represent any kind

of concrete expression. Thus, the equivalence of 𝑝2 implies the

equivalence of 𝑝1. Third, after renaming, 𝑝1 is the same as a repres-

entative query pair 𝑝2 except for concrete schemas. According to

the steps of constructing representative query pairs, their schemas

will differ in attributes not used in queries or the length of some

attribute lists. The attributes not used in queries do not affect the

equivalence of queries. For the attribute lists, existing verifiers treat

them to be a whole and the length will not affect the verification

results. Thus, the equivalence of 𝑝2 implies the equivalence of 𝑝1.

Note that 𝑝1 always belongs to one of the above cases, because

queries in 𝑝1 and representative query pairs all satisfy the syntax

structures and constraints specified in the rule. They can only differ

in concrete names, expressions, and schemas. In conclusion, the

equivalence of representaive query pairs can imply the equivalence

of any non-representative query pairs, which further implies the

rule correctness. Theorem 6.1 is proved to be true. □

6.3 Rule Selection
The rules obtained through enumeration and verification ensure

semantic equivalence of SQL before and after rewriting, but whether

the rewrite improves SQL performance is unknown. We developed

a workload generation algorithm for G-DSL rules. Given a schema,

the algorithm generates an SQL query that can be matched by the

rule based on the rule’s source template and constraints. It is similar

to transforming rules into SQL pairs described in Section 6.2, but

instead of enumerating all possible schemas, it generates only one

SQL based on the existing schema. Once the SQL is generated, we

compare the performance of the rewritten and original SQL under

different data sizes for that schema. We have prepared six setups

for data distribution and data size: micro benchmarks in uniform

distributionwith 100k and 1M rows, the official TPC-H [30] 1GB and

5GB datasets, and the official TPC-DS [29] 1GB and 5GB datasets.

Only rules that bring at least 10% latency reduction in all setups

are considered useful and incorporated into the rewriter.

7 DISCUSSION
Exponential Growth of Paths.While exponential growth of

paths explored is possible due to the recursive nature of our rewrite

process (Algorithm 1), three design choices help reduce its likeli-

hood and performance impact. First, as mentioned in Section 6.1, we

prune unpromising source templates, keeping only those that ap-

pear in the queries collected from application workloads. Therefore,

rewritten queries are unlikely to be recursively matched. Second,

due to our manual cap on the number of rewrite iterations, which

is currently set to three (line 16 in Algorithm 1), the number of

paths explored during a single query execution is limited. This

number is at most 6 in our evaluation using GaussDB customer

workloads. Finally, offline filtering that removes rules not bring-

ing actual latency reduction (Section 6.3) reduces the number of

applicable rules, which also helps lower the number of paths.

Rule Prioritization. Since we limit the number of iterations

during rewrite, when there are multiple applicable rules, rule prior-

itization helps producing better plans more quickly, i.e., in fewer

repetition of queries, which is especially useful for infrequent quer-

ies. However, prioritizing rules opens up a large design space and

can be a challenging task. For example, LearnedRewrite [34] lever-

ages Monte Carlo Tree Search (MCTS) and GenRewrite [20] utilizes

LLMs to select appropriate rule sequence for the incoming query.

Meanwhile, heuristics such as the historical performance gains of

rules may also be helpful in prioritizing rules. Our current imple-

mentation simply selects rules based on their inclusion times, and

we leave rule prioritization as future work.

Adapting to Specific Workloads. Different workloads may

benefit from different rewrite rules. Currently, GRewriter exploits

this observation by collecting workload queries to extract source

templates for offline rule generation and provides APIs for admin-

istrators to interactively manage the rules. Further adapting to

dynamically changing workloads may require continuously mon-

itoring the workload and automatically adjusting the active rule

set. For example, we can sample queries and periodically trigger

the rule generation process to produce new rules. Alternatively,

for alternating workload patterns like workday-weekend cycles,

selective activation of rules based on their recent performance gains

may be beneficial. Exploring these options is left as future work.

8 EVALUATION
We evaluate GRewriter to answer these questions:

(1) How does GRewriter benefit GaussDB customers?

(2) What is the quantity and quality of rules added by GRewriter?

(3) How is the efficiency of components in GRewriter?

8.1 Setup
Implementation. We implemented the online rewriter from

scratch using 26k lines of C++ code, which has been successfully

integrated into the current preview version of GaussDB for beta

evaluation by customers. It includes configurable options to de-

termine whether to disable the Rule Index and Rewrite History

Cache. The offline rule generator is based on the source code of

WeTune[32] and SQLSolver[10]. Besides, we wrote 4k lines of Java

code for missing operators and expressions, 15k lines for our new

G-Constraint constraints enumeration and search space pruning.

Testbed. Production workloads are evaluated using on-premise

deployment of the latest GaussDB. In-house benchmarks are evalu-

ated on a cloud server with 8 vCPUs and 32GB DRAM. Our offline

rule generator runs on a server with Intel Xeon Gold 5317 CPU

(3.00GHz, 24x2 cores), 188GB DRAM, and 7TB NVMe SSD.

Workloads. There are two types of workloads used to evaluate
GaussDB with GRewriter. The first is the production workload

which consists of two customer applications deployed on GaussDB:

1) a banking transaction system from a top domestic bank in China,

serving tens of millions of corporate customers and much more

personal customers. This banking transaction system is one of the

largest banking systems in China; 2) an ERP system internally used

at Huawei, which has been used to serve all Huawei’s business and

cover 80% of its business volume. GaussDB is the core database

system backing these applications handling a total of 1250 GB data

and a high volume of queries. We report the performance benefits

brought by GRewriter on their production queries
1
.

The second is the in-houseworkloadwith six datasets for detailed

performance analysis. Two datasets are created from a uniform

distribution, containing 100k and 1M rows, respectively. They share

1
Due to the confidentiality of the data, we do not disclose the specific queries.

the same schema designed for matching all generated rules. There

are four tables and each table has six integer columns and one string

column
2
. The other four datasets are created from the standard

schemas of the TPC-H and TPC-DS benchmarks, each populated

with 1GB and 5GB data using their official data generation tools.

To discover the useful rules, we synthesize queries that can be

rewritten by the rules and evaluate across the six datasets to check

if the rewriting will incur performance improvement. For the Rule

Index and Rewrite History Cache evaluation, we use the standard

queries from TPC-H [30] to evaluate their performance impacts.

8.2 Benefits to Customer Applications
We have partnered with teams from these two customers to eval-

uate GRewriter on-premise with their production workloads. We

focus on critical components in their applications where GRewriter

is most likely to bring benefits, i.e., those that not only are business-

essential but also face high query volume or latency requirements.

These queries span from OLTP-style reads and updates, like man-

agement of operational routing for assembly items, to OLAP-style

analytics, like producing portfolio reports for financial products.

Query Speed-Up. We first report the end-to-end improvement

on query performance in GaussDB production workloads. After

enabling GRewriter with newly generated rules, we have observed

speed-ups over 18 recurring queries. The absolute query latency

varies greatly as they cover a wide range of workloads, and we

therefore show the relative speed-up ratio for each query in Table 4.

We observe that GRewriter brings a maximum speed up of 1,543×,
and more than half of the queries have a 3.5× speed up or more. In

terms of absolute time saved, eight queries have saved more than

500 milliseconds, and the maximum time saved nearly reaches 2

minutes. Interestingly, while some query only have a seemingly

moderate relative speed-up, such as Q1 and Q2, the absolute time

saved is significant as their latency is initially high.

How Rewrite Helps.We next examine the rules that success-

fully optimized these production queries. As summarized in Table 5,

these rewrites are resulted from 7 different new rules that were

absent in the existing rewriter in GaussDB. Among them, 5 were

discovered via enumeration and 2 were manually crafted by experts

experts from GaussDB. We observe that, these rules are useful in

optimizing a wide range of queries and bring notable speed-ups.

Q3 shows the largest speed-up, from 26 seconds to 17 milli-

seconds, by transforming a COUNT=0 predicate to a join operation.

This query has a complex WHERE predicate that checks the return
value of a scalar subquery: ... FROM t1 WHERE (SELECT COUNT(*)
FROM t2 WHERE t1.c=t2.c) = 0. Executing this query results in

nested execution of the subquery for each row in t1, leading to a

high latency. This is effectively an anti-join operation and there

exists an efficient anti-join physical operator in the GaussDB op-

timizer. Rewriting the query into ... FROM t1 LEFT JOIN t2
ON t1.c=t2.c WHERE t2.c IS NULL allows the planner to use

it. However, this rewrite does not fall into any of the existing 22

functions in the GaussDB rewriter. Fortunately, GRewriter is able

to automatically discover and apply this rewrite.

2
Our rules are oblivious to data types. The use of a string column is simply for show-

casing GRewriter’s ability to handle different data types.

Table 4: End-to-end latency of production queries, before and after optimization.

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Original 4.7 min 4.3 min 26 sec 6.5 sec 791 ms 690 ms 623 ms 620 ms 608 ms

Optimized 2.8 min 2.5 min 17 ms 5.4 sec 243 ms 190 ms 147 ms 173 ms 118 ms

Speed-Up ↑ 1.7× 1.8× 1543× 1.2× 3.3× 3.6× 4.2× 3.6× 5.2×
Query Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18
Original 602 ms 602 ms 127 ms 52 ms 50 ms 48 ms 47 ms 15 ms 13 ms

Optimized 96 ms 96 ms 117 ms 15 ms 14 ms 14 ms 13 ms 14 ms 11 ms

Speed-Up ↑ 6.3× 6.3× 1.1× 3.5× 3.6× 3.4× 3.6× 1.1× 1.2×

Table 5: Rules used by GRewriter, the geometric means of speed-up and whether listed DBs performed the same rewrite.

Rule Queries GaussDB+GRewriter
(Speed-Up↑) PostgreSQL MySQL SQL Server

Transform COUNT=COUNT to EXISTS. Q13, Q14, Q15, Q16 ✓ (3.5×) - - -

Remove same condition joins. Q9, Q10, Q11 ✓ (5.9×) - - -

Remove unused joins. Q7, Q8, Q12 ✓ (2.6×) - - -

Predicate pull-up to scalar subqueries. Q5, Q6, Q18 ✓ (2.4×) - - -

Build common table expressions. Q1, Q2, Q4, Q17 ✓ (1.4×) - ✓ ✓
Transform subquery counting to joins. Q3 ✓(1543×) - - ✓
Filter and join condition propagation. Q5, Q6 ✓ (3.4×) - - -

Another typical rewrite pattern is the 1st rule in Table 5, which

has successfully optimized Q13, Q14, Q15, and Q16 with an aver-

age speed-up of 3.5×. This rule is exemplified earlier in Table 1.

The query consists of a WHERE predicate that checks if the rows

counts using two different conditions are the same. This is a typ-

ical condition especially in auditing or data consistency checking

scenarios. When there is a containment relationship between the

two conditions, the predicate can be rewritten into a NOT EXISTS
subquery, which is more efficient as repeated counting is avoided.

Similar to the anti-join rewrite above, this rewrite is not covered

by the existing rewriter in GaussDB. Thanks to the fine-grained

constraint expression in G-DSL, GRewriter can discover this rule

and optimize queries of this pattern.

We investigated the presence of these rules in other popular

relational databases, including PostgreSQL 16.8, MySQL 8.0, and

SQL Server 18.4. The results are shown to the right of Table 5.

We use the same 18 queries and, due to confidentiality reason,

use synthetic datasets where 10k-row tables are generated from

a uniform distribution on their respective schemas. We manually

checked the physical plans produced by these databases for the

original queries to see if the same rewrites are performed. We

validated the result by comparing the execution time of the original

and GRewriter-rewritten queries in these databases. PostgreSQL

was missing all 7 rules, MySQL was missing 6 rules, and SQL Server

was missing 5 rules. This indicates that our rewriting rules are also

valuable for other databases. They could integrate GRewriter as a

bolt-on rewriter to accelerate these queries.

Runtime Overhead.While GRewriter works as a bolt-on layer

to the existing optimizer in GaussDB, it introduces a negligible

overhead to the query execution. According to rewriter logs, there

are 103 queries with matching rewrite rules. Among them, 73/17/7/6

queries need to explore 1/2/3/4+ rewrite paths, thus adding 1/2/3/4+

Table 6: Efficiency of different rule generator.

Generator # of Rule
Candidates

Time to
Terminate

of Rules
Verified

WeTune 9.4 × 1022 7 days 1023

WeTune+ 2.1 × 1028 4284 years (est.) N/A

GRewriter

w/o pruning

5.7 × 1029 116,640 years

(est.)

N/A

GRewriter

w/ pruning

9.7 × 1022 8 days 13,973

calls to the existing optimizer. Due to the manual limit of rewrite

iterations, at most 6 paths are explored in a single query execution.

As a result, we observed that GRewriter adds 4.5 us on average to

the latency of queries that do not match any rules, and 221.7 us to

that of queries with matched rules but the query planner considers

the rewrite non-beneficial. For other queries, i.e., those that benefit

from the rewrite, their latency is reduced as shown in Table 4.

8.3 Quantity and Quality of Rules
Rule Quantity. The effectiveness of GRewriter heavily depends

on how many more complex rules the rule generator can discover

compared to existing systems. We evaluate this by comparing with

the prior research prototype, WeTune. We also use a configurable

denoted as WeTune+, where we increase the number of operat-

ors from 6 to the same number as GRewriter, 12. Table 6 shows

the numbers of rules discovered and verified, and the time taken.

Neither WeTune+ nor GRewriter without pruning could terminate

within an acceptable time frame, so the number of candidate rules

and termination times provided are estimates. These results are

consistent with our expectation that WeTune cannot scale to more

0 1000 20000.0
0.2
0.4
0.6
0.8
1.0

La
te

nc
y

Re
du

ct
io

n

Micro 100K

0 500 10000.0
0.2
0.4
0.6
0.8
1.0 TPC-H 1G

0 500 10000.0
0.2
0.4
0.6
0.8
1.0 TPC-DS 1G

1000 2000
Sorted Rules

0.0
0.2
0.4
0.6
0.8
1.0 Micro 1M

0 500 1000
Sorted Rules

0.0
0.2
0.4
0.6
0.8
1.0 TPC-H 5G

0 500 1000
Sorted Rules

0.0
0.2
0.4
0.6
0.8
1.0 TPC-DS 5G

0

Figure 4: Latency reduction under different datasets.

From
 GRewriter

On
 PostgreSQL

On
 SQL Server

On
 MySQL

Across All
 Systems

0

200

400

Ef
fe

ct
iv

e
Ru

le
s

of Effective Rules P25/Avg/P75 Latency Reduction

0

50

100

La
te

nc
y

Re
du

ct
io

n
(%

)

Figure 5: Rules effective on other DBs.Larger numbers indicate

greater portions of our rules might be absent in other DBs.

complex rules, and introducing more fine-grained rule represent-

ation, G-DSL, would further increase the search space. However,

with the set of pruning techniques introduced in Section 6.1, GRe-

writer can effectively reduce the search space and terminate within

8 days, producing near 14k verified rules. These rules will later be

evaluated for their quality and applicability before being integrated

into GRewriter’s online rewriter. Also thanks to the pruning, the

discovery efficiency as measured by the number of verified rules

per unit time is increased by more than 10 times.

Rule Quality. We use the six in-house datasets as described

in Section 8.1 to evaluate the quality of the rules. Queries that

match these rules are generated the same way as described in

Section 6.3. The results are shown in Figure 4. For each dataset,

we sort the rewrites by latency reduction and plot the ones that

bring positive reduction. To select useful rules, we use a threshold

of 10% latency reduction. There are 2034 out of the verified 13,973

rules are useful under at least one benchmark and 381 rules are

useful in all datasets. The latter portion of rules are more likely to

have more applicability, and we use them as the set of rules to be

integrated into GaussDB. For each dataset, among the useful rules,

the maximum latency reductions are 80.8%, 92.1%, 98.7%, 82.0%,

91.1%, and 98.8%, following the left-to-right, top-to-bottom order

shown in Figure 4. More than half of these rules bring a reduction

at least 31.8%, 75.2%, 90.2%, 29.4%, 71.1%, and 89.8%, respectively;

and the top 10% of the useful rules bring a reduction at least 71.7%,

83.9%, 97.1%, 73.5%, 82.9%, and 97.1%, respectively.

Rule Novelty.We examine the coverage of 381 useful rules in

PostgreSQL 16.8, MySQL 8.0, and SQL Server 18.4 using the 1GB

TPC-H dataset and the synthesized rewritable queries. We compare

the latencies of queries before and after GRewriter’s rewrite and

report the number of rules that bring a latency reduction exceeding

10% in each system. As shown in Figure 5, 201 rules are useful

0

1

2

3

Ti
m

e
(m

s)

100 500 10002500 100 500 10002500 100 500 10002500Base Base+RI Base+RI+RC

GRewriter < 1.2us

Existing Opt.
GRewriter
Parser
Original

Figure 6: Query optimization time break down under 100,
500, 1000, and 2500 rules. The time spent in the original optimizer

includes invocations from GRewriter’s rewriter for estimated cost

of the rewritten plans.

across all systems, bringing at least a 10% latency reduction with an

average reduction of 70.3%. These results indicate that most rules

may not be present in these systems, and the bolt-on approach of

GRewriter can be used to accelerate these systems as well.

8.4 System Performance Analysis
We evaluated and analyzed the overhead of GRewriter’s online

rewriter and the impact of Rule Index and Rewrite History Cache.

We use the following configurations: (1) Base, where GRewriter
disables both Rule Index and Rewrite History Cache; (2) Base+RI,
where only Rule Index is enabled; and (3) Base+RI+RC, where both
Rule Index and Rewrite History Cache are enabled. As a reference

point, we also include the original GaussDB optimizer without

GRewriter, denoted as Original. Since the overhead of GRewriter

is closely related to the number of rules, we load different number

of rules sampled from the 13,973 verified rules: 100, 500, 1000, and

2500. We use the standard queries from the TPC-H benchmarks as

the workload since these queries are complex, potentially matching

many rewrite rules and taking longer to perform the logical plan

rewrite. Figure 6 shows the latency breakdown of the whole query

optimization process. We break down the time spent on the parser

(Parser), GRewriter’s online rewriter (GRewriter), and the existing
optimizer (Existring Opt.).

Rule Index. Enabling the Rule Index significantly reduces the

time of our online rewriter. Without the Rule Index and Rewrite

History Cache, the overhead of GRewriter is significant, especially

when the number of rules is large. When the number of rules

reaches 2500, the GRewriter time is reduced by 91.4% compared

to when the Rule Index is disabled, and is no larger than 0.17 ms.

In terms of overall optimization time, Rule Index has significantly

reduced it from 3.32 ms to 1.69 ms with 2500 rules. However, it

remains considerably higher than the original GaussDB, mostly

spent on the additional invocations to the existing optimizer for

physical planning and cost estimation.

Rewrite History Cache. Rewrite History Cache further re-

duces the query optimization time by caching previous rewrites and

their estimated costs. As Figure 6 shows, Rewrite History Cache

reduces the time spent on the existing optimizer by 74.3% when the

number of rules is 2500. Furthermore, since rewrite paths are now

cached, the time previously spent on looking up the Rule Index

and applying rewrite is eliminated and replaced by a simple cache

lookup. This further reduces time in GRewriter’s rewriter to less

than 1.2us. With these effects combined, the overall optimization

0 50 100 150 200 250 300
Time (s)

2

4

La
te

nc
y

(s
)

Query 1 Query 2 Query 3 Query 4 # of Rules

0

200

400

of

 R
ul

es

Corresponding rules added Corresponding rules removed

Figure 7: Rule set management’s impact on query latency.

time is reduced to 463.2 us, almost identical to the time used by the

original optimizer without GRewriter, 462.0 us (0.26% overhead).

Runtime Rule Set Management.We evaluate the impact on

query latency of concurrently inserting and removing rules at

runtime. We picked three queries that can be optimized by the

discovered rules (queries 1, 2, and 3) and one query that cannot

be optimized (query 4), and used the 5GB TPC-H dataset. We re-

peatedly submitted these queries to the server while using another

process to insert and remove those 381 rules. As shown in Figure 7,

dynamic addition of rules brings immediate improvement to optim-

izable queries. Regarding impact on irrelevant queries, the average

latency of query 4 increases by 0.3% when rule set changed.

9 RELATEDWORK
Two-PhaseQueryOptimization. System R [25] has pioneered

the two-phase query optimization approach, which separates lo-

gical query rewrite from physical query planning. This idea has

influenced many subsequent systems, such as PostgreSQL [16].

However, this approach is inherently static, as rules must be pre-

defined in the code, limiting scalability.

Cascades-Style Query Optimization. To enhance extensib-

ility, cascades-style optimizers can be easily extended with new

rules [3, 5, 13–15, 24, 26, 27]. Although they decouple rules, they

require encoding new rules with imperative languages, such as Java

or Go, and integrating the code into the optimizer. In contrast, rules

in G-DSL can be directly loaded into GRewriter without modifying

the running database and its optimizer. Additionally, the automated

rule discovery in GRewriter complements existing optimizers as

discovered rules can further enhance their optimization capabilities.

ML-Based Query Optimization. Recent works [2, 19–21, 28,
34] have made significant progress in ML-based query optimization.

Bao [21] and AutoSteer [2] focus on how to select optimization hint

sets, which indicate the rewrite rules to be considered during optim-

ization. Given a collection of hint sets, Bao predicts which hint set

will be most beneficial using reinforcement learning. AutoSteer fur-

ther extends Bao with automated hint set discovery, which achieves

better optimization capability and can be easily adapted to various

databases. LearnedRewrite [34] leverages Monte Carlo Tree Search

to explore possible sequences of applying rewrite rules and finds

the one with high benefits. LLM-R2 [19] leverages LLMs to recom-

mend rewrite rules. Since these works depend on predefined rewrite

rules, GRewriter complements them by automatically discovering

new rules, which can further improve their optimization capab-

ilities. Others generate optimized queries or plans without using

predefined rewrite rules, such as GenRewrite [20] and BayesQO [28].

Their optimization process can be expensive: GenRewrite needs

multiple rounds to rewrite a query, each taking 29.6 seconds on av-

erage; BayesQO can take several hours. Thus, they target frequently

executed queries. In contrast, GRewriter discovers rules offline and

incurs around one millisecond (disabling cache) to rewrite a query

at runtime, making it suitable for a wider range of queries.

Program Synthesis for Query Optimization. Program syn-

thesis have been applied to query optimization. QueryBooster [4]

automatically generalize given rewrite examples to synthesize re-

write rules. However, it requires human efforts to collect useful

examples. To avoid such human efforts, WeTune [32] automatically

synthesizes rewrite rules based on rule enumeration and verifica-

tion. However, it is a research prototype that is not yet ready for use

in commercial databases. While GRewriter is inspired byWeTune, it

proposes a new DSL and enumeration algorithms to discover more

useful rules while maintaining efficiency. Particularly, all useful

rules reported in the evaluation cannot be supported by WeTune.

GRewriter additionally proposes an efficient online rewriter with

a new rule index and a rewrite history cache that has been integ-

rated into GaussDB. SlabCity [11] proposes to directly synthesize

optimized queries rather than synthesizing rewrite rules. Due to

the large search space of optimized queries, it typically takes nearly

a second to rewrite a query. Thus, it targets scenarios where quer-

ies are frequently executed (e.g., BI dashboards) or very expensive

(e.g., OLAP). Meanwhile, the rule-based rewrite in GRewriter takes

around only one millisecond and is applicable in more scenarios.

Middleware Query Optimizer. Recent optimizers have taken

a middleware architecture for ease of integration with existing data-

bases. One approach is to interact with user-facing database APIs to

execute SQL and explain statements, such as AutoSteer-G [2], Gen-

Rewrite [20], and QueryBooster [4]. This approach eliminates the

need to modify existing optimizers within the databases. Another

approach is to directly modify existing optimizers, which requires

more programming efforts but may offer better efficiency. For ex-

ample, AutoSteer-C [2] has implemented a connector integrated

into the optimizer. GRewriter also adopts the latter approach. The

main difference is that AutoSteer depends on existing rules, while

GRewriter uses newly discovered or crafted rules. GRewriter may

complement AutoSteer by connecting to it and enabling a larger

optimization space.

Query Equivalence Verification. There has been a long line

of work on query equivalence verification [7–10, 31, 33]. They

target concrete queries rather than rewrite rules in G-DSL. Thus,

we design a rule verifier based on query verifiers.

10 CONCLUSION
GRewriter is a new query rewriter that incorporates hundreds

of new rewrite rules and selects suitable ones for given queries

efficiently. Rules are automatically generated by a novel generator.

GRewriter has offered notable benefits for key GaussDB customers.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Found-

ation of China (Grant Nos. 62422209, 62132014, 62525202, and

62232009), the National Key R&D Program of China (Grant No.

2023YFB4503600), and Huawei. Zhaoguo Wang is the correspond-

ing author.

REFERENCES
[1] 2025. GRewriter: Practical Query Rewriting with Automatic Rule Set Ex-

pansion in GaussDB (Appendix). https://ipads.se.sjtu.edu.cn:1313/seafhttp/f/

69dc90c86248426d9376/?op=view.

[2] Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithviraj

Pandian, Nikolay Laptev, and Ryan Marcus. 2023. AutoSteer: Learned Query

Optimization for Any SQL Database. Proc. VLDB Endow. 16, 12 (Aug. 2023),

3515–3527. https://doi.org/10.14778/3611540.3611544

[3] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei

Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data (Mel-

bourne, Victoria, Australia) (SIGMOD ’15). Association for Computing Machinery,

New York, NY, USA, 1383–1394. https://doi.org/10.1145/2723372.2742797

[4] Qiushi Bai, Sadeem Alsudais, and Chen Li. 2023. QueryBooster: Improving SQL

Performance Using Middleware Services for Human-Centered Query Rewriting.

Proceedings of the VLDB Endowment 16, 11 (2023), 2911–2924.
[5] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J Mior, and

Daniel Lemire. 2018. Apache calcite: A foundational framework for optimized

query processing over heterogeneous data sources. In Proceedings of the 2018
International Conference on Management of Data. 221–230.

[6] Nico Bruno and Cesar Galindo-Legaria. 2021. The Cascades Framework for Query

Optimization at Microsoft. https://youtu.be/pQe1LQJiXN0.

[7] Shumo Chu, Daniel Li, Chenglong Wang, Alvin Cheung, and Dan Suciu. 2017.

Demonstration of the cosette automated sql prover. In Proceedings of the 2017
ACM International Conference on Management of Data. 1591–1594.

[8] Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Cheung, and Dan Suciu. 2018.

Axiomatic Foundations and Algorithms for Deciding Semantic Equivalences of

SQL Queries. Proc. VLDB Endow. 11, 11 (jul 2018), 1482–1495. https://doi.org/10.

14778/3236187.3236200

[9] Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017.

Cosette: An Automated Prover for SQL.. In Proceedings of the 8th Biennial Con-
ference on Innovative Data Systems Research (Chaminade, California, USA) (CIDR
’17).

[10] Haoran Ding, Zhaoguo Wang, Yicun Yang, Dexin Zhang, Zhenglin Xu, Haibo

Chen, Ruzica Piskac, and Jinyang Li. 2023. Proving Query Equivalence Using

Linear Integer Arithmetic. Proc. ACM Manag. Data 1, 4, Article 227 (Dec. 2023),
26 pages. https://doi.org/10.1145/3626768

[11] Rui Dong, Jie Liu, Yuxuan Zhu, Cong Yan, Barzan Mozafari, and Xinyu Wang.

2023. SlabCity: Whole-Query Optimization Using Program Synthesis. Proceedings
of the VLDB Endowment 16, 11 (2023), 3151–3164.

[12] Gartner. 2023. Market Share: All Software Markets, Worldwide, 2022.

[13] Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data
Eng. Bull. 18, 3 (1995), 19–29.

[14] Goetz Graefe and David J DeWitt. 1987. The EXODUS optimizer generator. In

Proceedings of the 1987 ACM SIGMOD international conference on Management of
data. 160–172.

[15] Goetz Graefe andWilliam J McKenna. 1993. The volcano optimizer generator: Ex-

tensibility and efficient search. In Proceedings of IEEE 9th international conference
on data engineering. IEEE, 209–218.

[16] The PostgreSQL Global Development Group. 2024. PostgreSQL. https://www.

postgresql.org.

[17] IDC. 2024. 2024 First-Half China Relational Database Software Market Tracking

Report (in Chinese).

[18] Guoliang Li, Wengang Tian, Jinyu Zhang, Ronen Grosman, Zongchao Liu, and

Sihao Li. 2024. GaussDB: A Cloud-Native Multi-Primary Database with Compute-

Memory-Storage Disaggregation. Proceedings of the VLDB Endowment 17, 12
(2024), 3786–3798.

[19] Zhaodonghui Li, Haitao Yuan, Huiming Wang, Gao Cong, and Lidong Bing. 2024.

LLM-R2: A Large Language Model Enhanced Rule-based Rewrite System for

Boosting Query Efficiency. arXiv preprint arXiv:2404.12872 (2024).
[20] Jie Liu and Barzan Mozafari. 2024. Query Rewriting via Large Language Models.

arXiv:2403.09060 [cs.DB] https://arxiv.org/abs/2403.09060

[21] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Aliza-

deh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization Practical.

In Proceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD ’21). Association for Computing Machinery, New York,

NY, USA, 1275–1288. https://doi.org/10.1145/3448016.3452838

[22] Microsoft. 2024. SQL Server. https://www.microsoft.com/sql-server.

[23] Oracle. 2024. MySQL. https://www.mysql.com.

[24] Hamid Pirahesh, Joseph M Hellerstein, and Waqar Hasan. 1992. Extensible/rule

based query rewrite optimization in Starburst. ACM Sigmod Record 21, 2 (1992),

39–48.

[25] P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A

Lorie, and Thomas G Price. 1979. Access path selection in a relational database

management system. In Proceedings of the 1979 ACM SIGMOD international
conference on Management of data. 23–34.

[26] Mohamed A Soliman, Lyublena Antova, Venkatesh Raghavan, Amr El-Helw,

Zhongxian Gu, Entong Shen, George C Caragea, Carlos Garcia-Alvarado, Foyzur

Rahman, Michalis Petropoulos, et al. 2014. Orca: a modular query optimizer

architecture for big data. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. 337–348.

[27] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,

Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. 2020.

Cockroachdb: The resilient geo-distributed sql database. In Proceedings of the
2020 ACM SIGMOD international conference on management of data. 1493–1509.

[28] Jeffrey Tao, Natalie Maus, Haydn Jones, Yimeng Zeng, Jacob R. Gardner, and

Ryan Marcus. 2025. Learned Offline Query Planning via Bayesian Optimization.

arXiv:2502.05256 [cs.DB] https://arxiv.org/abs/2502.05256

[29] TPC. 2024. TPC-DS. https://www.tpc.org/tpcds/.

[30] TPC. 2024. TPC-H. https://www.tpc.org/tpch/.

[31] Shuxian Wang, Sicheng Pan, and Alvin Cheung. 2024. QED: A Powerful Query

Equivalence Decider for SQL. Proc. VLDB Endow. 17, 11 (Aug. 2024), 3602–3614.
https://doi.org/10.14778/3681954.3682024

[32] Zhaoguo Wang, Zhou Zhou, Yicun Yang, Haoran Ding, Gansen Hu, Ding Ding,

Chuzhe Tang, Haibo Chen, and Jinyang Li. 2022. WeTune: Automatic discovery

and verification of query rewrite rules. In Proceedings of the 2022 International
Conference on Management of Data. 94–107.

[33] Qi Zhou, Joy Arulraj, Shamkant B. Navathe, William Harris, and Jinpeng Wu.

2022. SPES: A Symbolic Approach to Proving Query Equivalence Under Bag

Semantics. (2022), 2735–2748. https://doi.org/10.1109/ICDE53745.2022.00250

[34] Xuanhe Zhou, Guoliang Li, Chengliang Chai, and Jianhua Feng. 2021. A learned

query rewrite system using monte carlo tree search. Proceedings of the VLDB
Endowment 15, 1 (2021), 46–58.

https://ipads.se.sjtu.edu.cn:1313/seafhttp/f/69dc90c86248426d9376/?op=view
https://ipads.se.sjtu.edu.cn:1313/seafhttp/f/69dc90c86248426d9376/?op=view
https://doi.org/10.14778/3611540.3611544
https://doi.org/10.1145/2723372.2742797
https://youtu.be/pQe1LQJiXN0
https://doi.org/10.14778/3236187.3236200
https://doi.org/10.14778/3236187.3236200
https://doi.org/10.1145/3626768
https://www.postgresql.org
https://www.postgresql.org
https://arxiv.org/abs/2403.09060
https://arxiv.org/abs/2403.09060
https://doi.org/10.1145/3448016.3452838
https://www.microsoft.com/sql-server
https://www.mysql.com
https://arxiv.org/abs/2502.05256
https://arxiv.org/abs/2502.05256
https://www.tpc.org/tpcds/
https://www.tpc.org/tpch/
https://doi.org/10.14778/3681954.3682024
https://doi.org/10.1109/ICDE53745.2022.00250

	Abstract
	1 Introduction
	2 Background And Motivation
	2.1 Query Rewrite
	2.2 Automated Rewrite Rule Discovery
	2.3 Goal and Challenges

	3 GRewriter Overview
	4 Representation of Rules
	4.1 Plan Template
	4.2 G-Constraints
	4.3 Example and Discussion

	5 Online Rewriter
	5.1 Workflow
	5.2 Storing and Indexing Rules
	5.3 Rewrite History Caching
	5.4 Dynamic Rule Set Update

	6 Offline Rule Generator
	6.1 Rule Enumeration and Pruning
	6.2 Rule Verification
	6.3 Rule Selection

	7 Discussion
	8 Evaluation
	8.1 Setup
	8.2 Benefits to Customer Applications
	8.3 Quantity and Quality of Rules
	8.4 System Performance Analysis

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

