
LETIndex: A Secure Learned Index with TEE

Shuting Cao
Tsinghua University

Beijing, China
cst23@mails.tsinghua.edu.cn

Zeping Niu
Tsinghua University

Beijing, China
niuzp20@mails.tsinghua.edu.cn

Guoliang Li
Tsinghua University

Beijing, China
liguoliang@tsinghua.edu.cn

ABSTRACT

Trusted execution environment (TEE) o�ers a promising approach

to building encrypted databases, which keep data con�dential for

users. However, designing an e�cient index for TEE databases re-

mains a signi�cant challenge. Due to the limited enclave memory

and system call support in enclaves, traditional indexes incur mas-

sive context switches (including enclave entry and exiting), which

cause performance regression. Existing approaches, such as intro-

ducing rich execution environment (REE) bu�er pools or index

parameter optimization, may not alleviate these problems e�ec-

tively. To address these limitations, we propose LETIndex, an e�-

cient learned dynamic index designed for TEE databases. LETIndex

adopts LSM-structured Piecewise Geometric Model (PGM) indexes

and an adaptive prefetch mechanism to support lookup, range

queries, and updates with signi�cantly reduced context switches

and disk I/O overhead. Experimental results show that LETIndex

achieves superior performance compared to existing approaches

on the SOSD benchmark. We demonstrate LETIndex with two real

scenarios, binary join and multi-tale join.

PVLDB Reference Format:

Shuting Cao, Zeping Niu, and Guoliang Li. LETIndex: A Secure Learned

Index with TEE. PVLDB, 18(12): 5403 - 5406, 2025.

doi:10.14778/3750601.3750682

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/chiiips/LETIndex.

1 INTRODUCTION

Indexes are essential for speeding up database query execution. In

recent years, with the advancement of trusted execution environ-

ments (TEEs) such as Intel SGX and AMD SEV, researchers have

increasingly focused on building encrypted databases within se-

cure and isolated enclaves. However, designing an index for TEE

database is di�cult due to some inherent characteristics of TEE.

First, the size of enclave memory is limited. For the commonly used

Intel SGX (software guard extensions), SGXv1 supports only 128

MB of memory space in the enclave. While SGXv2 o�ers some

improvements, it remains constrained in cloud multi-tenant scenar-

ios. Second, the overhead of switching between enclaves and the

rich execution environment (REE) is also non-negligible, ranging

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 12 ISSN 2150-8097.
doi:10.14778/3750601.3750682

from 10000 to 18000 cycle [8]. Such context switches are relatively

frequent because the enclave is a part of the user process (in ring 3).

When executing a system call (e.g., reading data from a �le), it �rst

exits the enclave using an OCall and then re-enters the enclave

with an ECall after completing the system call. Existing designs of

the TEE index typically adopt a straightforward adaptation of tra-

ditional indexes like B+tree, supplemented by optimizations such

as multi-level bu�er pools[6]. These traditional index based de-

signs cannot e�ectively mitigate the two issues mentioned above,

primarily due to the di�culty of maintaining a small index size.

In recent years, a new type of index, known as learned indexes,

has been proposed and extensively studied. Learned indexes lever-

age simple regression models, such as piecewise linear models, to

approximate the cumulative distribution function (CDF) of the data,

signi�cantly reducing the index size [7]. Introducing learned in-

dexes into the design of TEE indexes is a promising solution, though

many challenges remain.

Challenge 1. TEE-inducedAmpli�cation of “LastMile” Search

Penalty. Firstly, Given a query key, learned indexes predict the

corresponding position in the sorted array of tuples. Almost all

existing learned indexes introduce errors during the prediction

process. Therefore, an additional “last mile” search [3, 7] within

the error bound must be performed to correct the discrepancy. The

“last mile” search is typically one of the most time-consuming parts

of the entire search process, and this overhead is further ampli�ed

in a TEE setting. For the read of a single �le block, TEE introduces

two REE-TEE context switches, including some time-consuming

security operations (e.g. integrity veri�cation). Since a typical “last

mile” search requires multiple such block accesses, the accumulated

overhead makes it prohibitively expensive in TEE environments.

Challenge 2. Context Switch Overhead in Structure Updates.

Secondly, When a learned index performs an update, it may trigger

a structural modi�cation operation (SMO), such as when a node

is full. An SMO may trigger a series of node modi�cations and

writebacks. In conventional learned indexes without TEE, these

operations incur negligible overhead since the nodes typically reside

in the memory bu�er pool. However, in a TEE index setting, nodes

may be placed in a REE bu�er pool, forcing each SMO to trigger

multiple context switches.

Challenge 3. E�cient Layout of Index Storage. Thirdly, it is

crucial to maximize the e�cient use of enclave memory when orga-

nizing the storage structure of learned indexes. Compared to typical

disk indexing scenarios, the TEE index design needs to consider

utilizing both TEE and REE memory. Therefore, when designing

the storage layout of a learned index, it is essential to consider its

placement in TEE memory, REE memory, and external storage to

maximize e�ciency, which presents a signi�cant challenge.

To address the above challenges, we propose LETIndex, an e�-

cient index designed for TEE databases, supporting bulk load, lower



Dynamic

Buffer

Inner Nodes

Crypto Module

Database Engine

Historical 

Access 

Information

Leaf Nodes

(Tuple Arrays)A
u

th
e

n
ti

ca
ti

o
n

 

M
o

d
u

le

Crypto

Module Leaf Nodes

(Files)

Ecalls

Ocalls

Tables

Disk IO

LETIndex

REE TEE

Server Side

HTTPS

Requests

U
se
r
In
te
rf
a
ce

SQL

REE

Client Side

Figure 1: System Architecture.

bound, range queries, and updates. To mitigate the performance

degradation caused by the “last mile” search, we utilize statistical

information about the relative positions between the predicted and

real positions of historical query keys, adaptively prefetch multi-

ple blocks and reduce the overhead of context switches. For more

e�cient utilization of TEE memory, we adopt Piecewise Geomet-

ric Models (PGM) [2] to �t the data distribution of sorted keys.

LETIndex consists of multiple PGMs with exponentially increasing

sizes. The inner nodes of PGM are a compact set of linear models,

achieving an extremely small size. By prioritizing the placement of

all internal PGM nodes within the enclave and performing batch

updates, we achieve a low amortized cost per update operation

(including insertions, deletions, and modi�cations).

We evaluate our index with the SOSD [4] benchmark on both

synthetic and real-world datasets. The experimental results show

that LETIndex achieves up to 22x higher throughput compared to

existing TEE indexes (B+tree-based) under write-only and balanced

workloads. On read-only workloads, LETIndex has more than 15%

throughput improvement. Our demonstration presents two scenar-

ios: binary join and multi-table join. In our demonstration, users

can select encrypted columns to create TEE indexes, utilize prede-

�ned SQL templates to generate queries containing binary join or

multi-table join, and explore the visualized work�ow of LETIndex

in response to the queries.

2 LETINDEX OVERVIEW

Figure 1 illustrates the architecture of our system. The client pos-

sesses the encryption keys. Before queries are sent to the server

side, the crypto module encrypts all keys corresponding to sensitive

columns. Then the query is sent to the cloud server and executed by

the database engine after authentication. When accessing data, if an

index exists on the target column, our system utilizes LETIndex for

e�cient search. The encrypted keys in the query will be decrypted

in TEE to keep con�dentiality. LETIndex performs required opera-

tions like point search and returns a result. The server then returns

query results containing both plaintext and ciphertext columns,

while the client decrypts the encrypted parts locally.

2.1 Index Layout

When designing an index layout, the core principle is to maximize

both data storage e�ciency and bu�er hit ratio in TEE memory.

We utilize the Piecewise Geometric Model (PGM) [2] to approxi-

mate data distributions, which is well known for achieving small

index sizes through optimal piecewise linear approximation of

data. Similar to DPGM [2], we adopt an LSM [5] (Log-Structured

Merge)-like organization of multiple PGMs to support update oper-

ations. LETIndex manages exponentially growing PGM indexes by

retaining all internal nodes in TEE memory (achievable by tuning

prediction error bound Ċ) while storing encrypted leaf nodes in

REE memory or on disk. It also maintains a dynamic bu�er to cache

the most recently updated tuples in TEE.

2.2 Adaptive Prefetch

A unique challenge in TEE-based databases lies in the performance

penalty during disk data reads (and even REE memory reads). Be-

sides the data volume itself, the frequency of read operations sig-

ni�cantly impacts performance due to the context-switching over-

head between TEE and REE. While learned indexes excel in pure

in-memory settings, their disk-based implementations su�er sig-

ni�cant performance degradation for introducing prediction error.

Given a prediction error bound Ċ , let Ħ be the predicted position of

a query key at the leaf level by the last used inner node. The precise

position of the key lies within the range [Ħ − Ċ, Ħ + Ċ]. No matter

how the error bound Ċ is adjusted (which is even not supported

to be assigned in some kinds of learned index), misalignment be-

tween the search range and block size (typically 4KB) inevitably

occurs. This may result in searches spanning two or even more

disk blocks, leading to multiple context switches and more severe

performance degradation compared to conventional disk scenar-

ios. Moreover, the probability that the error bound covers blocks

containing the query key also varies. For example, the error bound

may only cover the last tuple in the �rst block, which means the

�rst block is less likely to contain the query key. We propose an

adaptive prefetch mechanism leveraging historical access informa-

tion. LETIndex maintains metadata in TEE-resident memory that

records the correct search direction for each range search starting

at position Ħ . This metadata is then used to determine whether to

prefetch the left or right block adjacent to Ħ . Our experiments show

that the adaptive prefetch mechanism achieves approximately 20%

improvement in index throughput (as �gure 5 illustrates).

2.3 Operation Supports

LETIndex supports point queries, range queries, insertions, dele-

tions, and updates. Upon receiving each query, the encrypted keys

in the query are �rst decrypted within the TEE to facilitate subse-

quent query execution. For point queries, LETIndex �rst searches

in the dynamic bu�er within TEE memory, which stores the re-

cently inserted data. If the key is not found in the dynamic bu�er,

LETIndex initiates a search from the smallest PGM. It �rst predicts

the target tuple’s location at the leaf node level based on the query

key, then performs an exponential search or binary search within

the predicted range. This process typically incurs 1-2 times of TEE-

REE context switches. If the key is still not found, then LETIndex

searches in the next PGM. Bloom �lters can be employed to accel-

erate this search process. Range queries follow a similar execution

pattern but require additional result merging. For dynamic oper-

ations, LETIndex takes an append-only strategy that converts all

queries into insert operations.



Figure 2: Page of Table Inspector.

3 DEMONSTRATION

In this section, we present the user interface of LETIndex, which

includes three pages: table inspector, binary join, and multi-table

join.

Table Inspector. Figure 2 is a screenshot of the table inspector

page. This page allows users to inspect the tables involved in both

binary and multi-table joins. Users can select a table from the drop-

downmenu to explore its structure and data. Taking the employees

table as an example, after selecting the table and clicking the query

button, the page displays the �rst 10 rows of data. To protect the

company’s organizational hierarchy, the ID and MANAGER_ID col-

umn is encrypted, and the table presents the encrypted version of

these two columns. Since the client also holds a copy of the key,

users can freely encrypt and decrypt data. Thus, clicking on the

header of the encrypted column allows users to view the decrypted

MANAGER_ID.

Scenario 1 - Binary Join As shown in the left sub�gure of �gure 3,

users can select two di�erent indexes to accelerate the execution

of binary joins: LETIndex and a B+Tree-based TEE index. Users

may also experiment by running the query without any index to

observe the execution time, thereby gaining a clearer understanding

of the performance improvement achieved through LETIndex. The

query for the binary join is displayed in the left text box. Upon

selecting an index and clicking the submit button, the execution

begins (d). After the execution is completed, users can view the

execution time and check the returned results at the bottom of

the page (e). In addition, if users choose to use LETIndex, our

system visually demonstrates how LETIndex processes queries for

a speci�c manager_id to help users better understand the index

structure (f).

Scenario 2 - Multi-Table Join Compared to binary joins, the scale

of indexing has a greater impact in multi-table join scenarios due

to the potential need to construct indexes for multiple tables. In a

real-world cloud service scenario, the sharing of server resources

among multiple tenants intensi�es the pressure on enclave memory

resources. For multi-table join, our system provides several SQL

templates, all of which are multi-table join queries from TPC-H (as

illustrated in the right sub�gure of �gure 3). Users can select an

SQL template from the dropdown list, and then choose an index to

use (d). The query execution time and results are displayed at the

bottom of the page (e). Module f presents the query execution

tree and time cost of each join operation.

4 EVALUATION

We evaluate the performance of LETIndex with three experiments.

First, we run the SOSD benchmark to evaluate the performance of

LETIndex on di�erent workloads and datasets. Then we evaluate

the performance of LETIndex on binary join and multi-table join,

which are two common scenarios in real-world applications.

Experimental Setup.We conducted experiments on a server with

a 2.70GHz Intel(R) Xeon(R) Platinum 8369B CPU, 32GB RAM, and

512GB SSD, running Ubuntu 22.04.5 LTS. Our implementation of

LETIndex is based on Intel SGX 2.25 and Gramine 1.81.

SOSD Benchmark. For the SOSD benchmark, we used YCSB [1]

to generate write-only, read-only, and balanced workloads, each

with 150 million records. We compared LETIndex with two base-

lines, B+Tree_ALL_Cache and B+Tree_Selected_Cache. Both are

B+Tree-based TEE indexes with separate bu�er pools in TEE and

REE. The �rst caches both internal and leaf nodes in both pools,

while the second only caches internal nodes in the TEE bu�er.

Figure 4 shows that LETIndex outperforms both baselines across

three di�erent workloads. It is worth noting that LETIndex deliv-

ers exceptional performance under the write-only workload. The

reason lies in the fact that B+Tree-based indexes may encounter

node splits during updates. Node splits involve multiple levels of

nodes, resulting in poor spatial locality, as data may be scattered

across the TEE bu�er pool, REE bu�er pool, or even disk, leading

to frequent context switches. In contrast, LETIndex uses an LSM-

like structure to batch updates, enhancing spatial locality, reducing

context switches, and amortizing update costs. Under the read-

only workload, LETIndex outperforms B+Tree_Selected_Cache

by approximately 15%, which is not easy for learned indexes in disk-

based indexing scenarios. This is attributed to our adaptive prefetch

strategy. To assess the impact of prefetching, we conducted an ab-

lation on the read-only workload, comparing the throughput of

LETIndex (prefetch) and LETIndex_naive (no prefetch). As shown

in �gure 5, the application of adaptive prefetch improves the index

performance by approximately 20%.

Binary Join. For binary joins, we adopted a synthetic data table

employees (150 million lines) and performed a join operation on

the ID and MANAGER_ID columns to retrieve employee-manager

relationships. We built indexes on the encrypted ID column to

accelerate the join. LETIndex achieves a 17% reduction in execution

time compared to B+Tree_Selected_Cache (514.34s vs. 619.74s).

Multi-Table Join. To evaluate the performance improvement of

LETIndex for multi-table joins, we tested TPC-H Query 7 and com-

pared the join time with LETIndex and B+Tree_Cache (same as

B+Tree_Selected_Cache). The scale factor was set to 0.1. The com-

parison of join times across di�erent tables is shown in Table 1. It

can be observed that LETIndex provides greater optimization in

join time compared to B+Tree_Cache.

ACKNOWLEDGMENTS

This paper was supported by National Key R&D Program of China

(2023YFB4503600), NSF of China (62525202, 62232009), Shenzhen

Project (CJGJZD20230724093403007), Zhongguancun Lab, and Bei-

jing National Research Center for Information Science and Tech-

nology (BNRist). Guoliang Li is the corresponding author.

1https://github.com/gramineproject/gramine



Figure 3: Screenshots of binary join page (the left sub�gure) and multi-table join page (the right sub�gure).

fb books osm_cellids wiki_ts lognormal normal uniform_dense uniform_sparse
0

25

50

75

100

125

150

175

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

LETIndex
B+Tree_Selected_Cache
B+Tree_ALL_Cache

Write-only
Read-only
Balanced

Figure 4: Throughput of LETIndex against two baselines on the SOSD benchmark.

fb
bo

ok
s

os
m_c

ell
ids

wiki
_ts

log
no

rm
al

no
rm

al

un
ifo

rm
_d

en
se

un
ifo

rm
_s

pa
rse

0

10

20

30

40

50

60

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

LETIndex
LETIndex_naive

Figure 5: Ablation study of adaptive prefetch.

REFERENCES
[1] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB (SoCC ’10). 143–154.
[2] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic

compressed learned index with provable worst-case bounds. Proc. VLDB Endow.
13, 8 (April 2020), 1162–1175.

[3] Tim Kraska, Alex Beutel, Ed H. Chi, Je�rey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures (SIGMOD ’18). 489–504.

Table 1: Time Cost of Di�erent Joins

Join (s) LETIndex B+Tree_Cache

ĢğĤěğĪěģ ²³ ĩīĦĦĢğěĨ 4.145 5.578

ĢğĤěğĪěģ ²³ ĥĨĚěĨĩ 4.341 5.661

ĥĨĚěĨĩ ²³ ęīĩĪĥģěĨ 5.128 5.593

ĤėĪğĥĤ ²³ ęīĩĪĥģěĨ ²³ ĩīĦĦĢğěĨ 6.265 9.387

[4] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,
Alfons Kemper, Thomas Neumann, and Tim Kraska. 2020. Benchmarking Learned
Indexes. Proc. VLDB Endow. 14, 1 (2020), 1–13.

[5] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Inf. 33, 4 (June 1996), 351–385. https:
//doi.org/10.1007/s002360050048

[6] Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei Li. 2021. Building enclave-
native storage engines for practical encrypted databases. Proc. VLDB Endow. 14, 6
(2021), 1019–1032.

[7] Zhaoyan Sun, Xuanhe Zhou, and Guoliang Li. 2023. Learned Index: A Comprehen-
sive Experimental Evaluation. Proc. VLDB Endow. 16, 8 (April 2023), 1992–2004.

[8] O�r Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves. SIGARCH Comput. Archit.
News 45, 2 (June 2017), 81–93.


	Abstract
	1 Introduction
	2 LETIndex Overview
	2.1 Index Layout
	2.2 Adaptive Prefetch
	2.3 Operation Supports

	3 Demonstration
	4 Evaluation
	Acknowledgments
	References

